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We investigate special solutions to the Bethe Ansatz equations (BAE) for open integrable XXZ Heisenberg
spin chains containing phantom (infinite) Bethe roots. The phantom Bethe roots do not contribute to the energy
of the Bethe state, so the energy is determined exclusively by the remaining regular excitations. We derive the
phantom Bethe roots criterion and focus on BAE solutions for mixtures of phantom roots and regular (finite)
Bethe roots. We prove that in the presence of phantom Bethe roots, all eigenstates are split between two invariant
subspaces, spanned by chiral shock states. Bethe eigenstates are described by two complementary sets of Bethe
ansatz equations for regular roots, one for each invariant subspace. The respective “semiphantom” Bethe vectors
are states of chiral nature, with chirality properties getting less pronounced when more regular Bethe roots are
added. For the easy plane case, “semiphantom” Bethe states carry nonzero magnetic current and are characterized
by quasiperiodic modulation of the magnetization profile, the most prominent example being the spin helix states
(SHS). We illustrate our results investigating “semiphantom” Bethe states generated by one regular Bethe root
(the other Bethe roots being phantom), with a simple structure of the invariant subspace, in all details. We
obtain the explicit expressions for Bethe vectors and calculate the simplest correlation functions, including the
spin-current for all the states in the single-particle multiplet.
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I. INTRODUCTION

Contemporary experimental techniques allow to realize
almost perfect one-dimensional XXZ spin chains with ad-
justable anisotropy [1]. The spin- 1

2 XXZ chain, being an
integrable interacting many-body system, is one of the best
studied paradigmatic models in quantum statistical mechan-
ics [2]. Ongoing advances make the XXZ model a source of
inspiration and fascinating new discoveries, such as finding
a set of quasilocal conservation laws [3], calculating finite
temperature correlation functions [4,5], and giving a ma-
jor contribution to the theory of finite-temperature quantum
transport [6].

In our paper [7] we have shown that SHS correspond
to a novel type of Bethe roots, phantom “singular” Bethe
roots in the Bethe ansatz equations. These exotic Bethe roots
describe excitations, which do not contribute to the energy
of the system. We show that the presence of such excita-
tions leads to highly atypical chiral XXZ eigenstates carrying
nonzero spin currents and exhibiting periodic modulations
of the magnetization density profile. We have established
a criterion for the presence of phantom Bethe roots, for
both periodic and open boundaries, and investigated phan-
tom Bethe states formed exclusively from phantom Bethe
excitations.

In the present manuscript, we treat the most challenging
case of an open XXZ Hamiltonian with nondiagonal boundary
fields. The Bethe ansatz equations for the spectrum have been
formally constructed [8–10] for the general integrable open
chain. The separation of variables method has been applied
to this model in [11–13]. And under a certain compatibility

condition the so-called alternative modified Algebraic Bethe
ansatz approach [14,15] was successful. Despite these works
little is known about the solutions to the eigenvalue equations
and even less is known about the structure of the eigenstates.
Here we demonstrate that in presence of any number of
phantom Bethe roots the Hilbert space of the system is split
into two blocks, invariant with respect to the action of the
Hamiltonian. The condition for the splitting coincides with
the condition needed for the applicability of the alternative
modified algebraic Bethe ansatz [14,15] and a conventional
Baxter’s T -Q relation [8].

We refer to our finding as the “splitting theorem” which
gives us a tool to study the structure of phantom Bethe
states, belonging to each invariant subspace, and to show
that “semiphantom” Bethe states retain the chiral character of
“fully phantom” spin-helix states, as long as the number of
regular Bethe roots involved remains small in comparison to
the system size. In special cases, the explicit form of phantom
Bethe states and various observables including spin magneti-
zation current can be calculated analytically.

The plan of the paper is the following. After introducing the
model we remind of the concept of phantom Bethe roots, and
derive the phantom Bethe roots existence criterion. Next, we
prove the theorem about the splitting of the Hilbert space into
two invariant chiral subspaces, and describe the basis states
spanning them. In the final part of the manuscript, we use
the gained knowledge to investigate the phantom Bethe states
belonging to the invariant subspace with dimension N + 1
where N is the length of the XXZ spin chain. Details of the
proofs are given in the Appendix.
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II. PHANTOM BETHE ROOTS IN THE OPEN XXZ CHAIN

We consider the XXZ spin- 1
2 chain with open boundaries.

The Hamiltonian reads

H =
N−1∑
n=1

hn,n+1 + h1 + hN , (1)

with

hn,n+1 = σ x
n σ x

n+1 + σ y
n σ

y
n+1 + coshησ z

nσ z
n+1 − coshη I, (2)

h1 = sinh η

sinh(α−) cosh(β−)

(
cosh(θ−)σ x

1 + i sinh(θ−)σ y
1

+ cosh(α−) sinh(β−)σ z
1

)
, (3)

hN = sinhη

sinh(α+)cosh(β+)

(
cosh(θ+)σ x

N + i sinh(θ+)σ y
N

− cosh(α+)sinh(β+)σ z
N

)
. (4)

Here α±, β± and θ± are boundary parameters. The system (1)
is integrable [8] and its exact solutions are given by the
off-diagonal Bethe ansatz (ODBA) method [8–10] and the
separation of variables method [11–13].

Under generic open boundary conditions, the exact so-
lutions of the system are given by an unconventional T -Q
relation with inhomogeneous term [8,9], resulting in a set of
BAE with N so-called Bethe roots {μ1, . . . , μN }

2G(−μ j − η

2 )Q
( − μ j − η

2

)
sinh(2μ j + η) sinh2N

(
μ j + η

2

)
+ 2G

(
μ j − η

2

)
Q

(
μ j − η

2

)
sinh(2μ j − η) sinh2N

(
μ j − η

2

)
= c sinh(2μ j ), j = 1, . . . , N, (5)

Q(u) =
N∏

k=1

sinh
(

u − μk − η

2

)
sinh

(
u + μk − η

2

)
,

G(u) =
∏
σ=±

sinh (u − ασ ) cosh(u − βσ ) ,

c = cosh[(N + 1)η + α− + β− + α+ + β+]

− cosh(θ− − θ+) . (6)

All eigenvalues of the Hamiltonian (1) are classified by differ-
ent sets of Bethe roots {μ j} as

E =
N∑

j=1

4 sinh2 η

cosh(2μ j ) − cosh η
+ E0, (7)

E0 = −sinhη(coth(α−) + tanh(β−)

+ coth(α+) + tanh(β+)). (8)

Note that unlike the periodic chain and the open chain with
diagonal boundary fields which preserve the U (1) symmetry,
here each eigenstate and the corresponding eigenvalue are
characterized by a set of Bethe roots {μ j} with strictly N
members. Typically, it is taken for granted that all {μ j}N

j=1 are
bounded, so that every Bethe root gives a nonzero contribution
to the energy (7). However, it was pointed out by us [7],
that unbounded “phantom” solutions of BAE (5) do exist,

which lead to “phantom” excitations not contributing to the
energy. For completeness, below we give the definition and
the derivation of the phantom Bethe roots existence criterion.

Definition. We shall call a Bethe root μp satisfying (5), a
phantom Bethe root, if it does not give a contribution to the
respective energy eigenvalue (7), i.e., if

Re[μp] = ±∞. (9)

We assume that, out of N Bethe roots, N − M roots are
phantom,

μp = ∞ + γp, p = 1, 2, . . . N − M, (10)

where γp are some finite imaginary constants. The more pre-
cise formulation of (10) is μp = μ∞ + γp with μ∞ → ∞.
The remaining M Bethe roots μN−M+1, μN−M+2, . . . , μN are
supposed to remain finite. In this situation, the BAE decouple
for the phantom roots and the regular roots. Inserting (10)
into (5), for 1 � p � N − M, we obtain

eW
N−M∏
k=1

2eγk−γp sinh(γp − γk + η)

+ e−W
N−M∏
k=1

2eγk−γp sinh(γp − γk − η) = 2c,

W = (M + 1)η + α− + β− + α+ + β+. (11)

Let us use the ansatz

γk = iπk/(N − M ), (12)

and denote ω = eiπ/(N−M ), so that ωN−M = −1 and eγk = ωk .
Then we can rewrite the first term on the left-hand side
of (11) as

N−M∏
k=1

eγk−γp (2 sinh(γp − γk + η))

= e(N−M )η
N−M∏
n=1

(1 − ω2n−2e−2η )

= e(N−M )η(1 − e−2η(N−M ) ) = 2 sinh((N − M )η), (13)

where we used the identity
N−M∏
n=1

(1 − ω2n−2z) = 1 − zN−M , (14)

as both sides are polynomials of degree N − M in z, share
the same zeros and have identical 0-th order coefficient. For
z = e−2η, the right-hand side of (14) reduces to the term in
brackets of line (13). Analogously, we obtain

N−M∏
k=1

2eγk−γp sinh(γp − γk − η) = −2 sinh((N − M )η). (15)

The left-hand side of (11) can thus be rewritten as

4 sinh W sinh((N − M )η)

= 2 cosh((N − M )η + W ) − 2 cosh((N − M )η − W )

= 2c. (16)

Recalling the definition of W in (11) and c in (6) we note that
2c = 2 cosh((N − M )η + W ) − 2 cosh(θ− − θ+). In order to
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satisfy (16), we must require cosh(θ− − θ+) = cosh((N −
M )η − W ), i.e.

±(θ+ − θ−)

= (2M − N + 1)η + α− + β− + α+ + β+ mod 2π i.

(17)

Therefore, under condition (17), N − M out of N Bethe roots
in (5) can be chosen phantom. The integer M naturally has the
range 0 � M < N .

To obtain the BAE for the M remaining finite roots x j =
μN−M+ j , we substitute (10) into (5) and take j > N − M. The
left-hand side of (5) contains factoring divergent terms, so that
the finite constant 2c on the right-hand side of (5) can be ne-
glected. The leading order gives the final BAE [14,16,17,18]

[
sinh

(
x j + η

2

)
sinh

(
x j − η

2

)]2N ∏
σ=±

sinh
(
x j − ασ − η

2

)
sinh

(
x j + ασ + η

2

) cosh
(
x j − βσ − η

2

)
cosh

(
x j + βσ + η

2

) =
M∏

k �= j

sinh(x j − xk + η) sinh(x j + xk + η)

sinh(x j − xk − η) sinh(x j + xk − η)
, j = 1, . . . , M,

(18)

while the respective energy has contributions from the M finite
Bethe roots only,

E =
M∑

j=1

4sinh2η

cosh(2x j ) − coshη
+ E0. (19)

The condition (17) has been derived in Refs. [9,14,16,17]
as a restriction, under which a modified algebraic Bethe
ansatz, based on special properties of Sklyanin’s K matri-
ces, can be applied. Alternatively, as is mentioned in [8]
the condition (17) gives a direct possibility to construct a
conventional T -Q relation without any inhomogeneous terms,
see the discussion around Eq. (5.3.34) on pp. 145,148 in

Ref. [8]. With both techniques (algebraic Bethe ansatz based
on special properties of Sklyanin’s K matrices, and from the
homogeneous T -Q relation), the Bethe ansatz equations of the
form (18), and (21) for the spectrum can also be constructed.

The Hamiltonian H is invariant upon the following substi-
tutions:

α± → −α±, β± → −β±, θ± → iπ + θ±. (20)

Now Eq. (17) will be mapped onto itself under substi-
tutions (20) and M → M̃ = N − M − 1. Using substitu-
tions (20) and letting M → M̃ in (18) and (19), we obtain
another set of BAE with M̃ finite roots, namely,

[
sinh

(
x j + η

2

)
sinh

(
x j − η

2

)]2N ∏
σ=±

sinh
(
x j + ασ − η

2

)
sinh

(
x j − ασ + η

2

) cosh
(
x j + βσ − η

2

)
cosh

(
x j − βσ + η

2

) =
M̃∏

k �= j

sinh(x j − xk + η) sinh(x j + xk + η)

sinh(x j − xk − η) sinh(x j + xk − η)
, j = 1, . . . , M̃,

(21)

while the respective energy has contributions from the M̃ =
N − M − 1 finite Bethe roots only,

E =
M̃∑

j=1

4sinh2η

cosh(2x j ) − coshη
− E0. (22)

We remark that by our initial assumption about the ex-
istence of some phantom Bethe roots among the total of N
Bethe roots, the number M of regular roots in (17) naturally
takes the values 0 � M < N . For condition (17) satisfied with
M = N it has been argued in Ref. [16] that the BAE set (18)
alone yields the full spectrum (of course with all Bethe roots
regular).

For convenience, introduce the notation


 = coshη = cos γ , η = iγ .

When the constraint (17) holds, the hermiticity of the Hamil-
tonian requires in the case |
| < 1 (the easy plane regime)

Re[α±] = Re[θ±] = Re[η] = 0,

Im[β±] = 0 and β+ = −β−, (23)

and in the case 
 > 1 (the easy axis regime)

Im[α±] = Im[β±] = Im[η] = 0,

Re[θ±] = 0 and θ+ = θ− mod 2iπ. (24)

Finally, for Hermitian Hamiltonian (1) the sign on the left
hand side of Eq. (17) can be switched, by a reparametriza-
tion α± → −α±, η → −η, which leaves the Hamiltonian
invariant. Indeed, for |
| < 1, the left-hand side of Eq. (17)
switches sign under the reparametrization using β+ + β− =
0, see (23). For |
| > 1 we have θ+ = θ− from (24), so the
sign on the left-hand side of Eq. (17) is irrelevant. Without
loss of generality, we choose the “+” sign in (17), yielding

θ+ − θ−
= (2M − N + 1)η + α− + β− + α+ + β+ mod 2π i.

(25)

Below we formulate our main result, demonstrating a split-
ting of the Hilbert space into two chiral invariant subspaces, if
the condition (25) is fulfilled.
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III. MIXTURE OF PHANTOM AND REGULAR ROOTS:
SPLITTING OF THE HILBERT SPACE INTO TWO CHIRAL

INVARIANT SUBSPACES

Here we show that under the phantom Bethe roots (PBR)
criterion (25) the Hilbert space splits into two subspaces
which are invariant under the action of the open XXZ Hamil-
tonian (1) and describe them.

Define the following local vectors for each site n

φn(x) = (
1, −eθ−+α−+β−+(2x−n+1)η

)
, (26)

φ̃n(x) =
(

1
e−θ−−α−−β−+(2x−n+1)η

)
. (27)

Note the second component of these states depends on the
position index n. Let us introduce two families of factorized
states parametrized by an integer number m:

�+(n1, . . . , nm)

= ⊗n1
k1=1 φk1 (M − m) ⊗n2

k2=n1+1 φk2 (M − m + 1) . . .

⊗N
km+1=nm+1 φkm (M ),

1 � n1 < n2 . . . < nm � N, m = 0, 1, . . . , M, (28)

and

�−(n1, . . . , nm)

= ⊗n1
k1=1 φ̃k1 (M̃ − m) ⊗n2

k2=n1+1 φ̃k2 (M̃ − m + 1) . . .

⊗N
km+1=nm+1 φ̃km (M̃ ),

1 � n1 < n2 . . . < nm � N, m = 0, 1, . . . , M̃, (29)

where M̃ = N − M − 1.
Theorem. The open XXZ Hamiltonian, satisfying PBR cri-

terion (25) with 0 � M < N is block-diagonalized into two
complementary invariant subspaces G+

M and G−
M of dimen-

sions dim G+
M = ∑M

k=0

(N
k

)
and dim G−

M = 2N − dim G+
M , re-

spectively. G+
M is spanned by the family {�+(n1, . . . , nm)}M

m=0.

Subspace G−
M is spanned by the family {�−(n1, . . . , nm)}M̃

m=0.
The eigenvalues of H belonging to G+

M are given by the
BAE (18), while those belonging to G−

M are given by (21).
The proof of the “invariance property” of the subspaces G±

M
for the theorem is given in the Appendix.

For the rest of the theorem it remains to be demonstrated
that the eigenstates of H belonging to the invariant subspaces
G+

M and G−
M are precisely those given by BAE (18) for M and

BAE (21) for M̃, respectively, leading further below to the sets
of BAE (34) and (38). Indeed, we observe precisely that the
BAE (34) appear as consistency conditions when we construct
the Bethe eigenstates via a coordinate Bethe ansatz for M =
1 and M = 2, and for larger M > 2. The set of basis states
generated in the alternative modified algebraic Bethe ansatz
approach [14,15] is equivalent to that given by the theorem.

Below, we demonstrate how this works for M = 1, see sec-
tion “Mixtures of phantom and regular roots: “semiphantom”
Bethe states.”

Remark 1. The theorem is valid for an arbitrary Hamilto-
nian H of type (1) satisfying (25), whether it is Hermitian or
not. For the applications, we will consider Hermitian H , i.e.,
with boundary parameters satisfying (23) or (24).

Remark 2. If one chooses M outside of the range [0, N − 1]
in (25) or (17), a splitting of the Hilbert space will not occur.
However, one can still argue that as a consequence, the whole
spectrum will be governed by BAE of type (18) or (21) alone,
with the total number of regular Bethe roots larger or equal to
N , see elsewhere for details.

The proof of the theorem is our main result.
To evaluate observables in the phantom Bethe states we

need further knowledge about the Bethe amplitudes. In the fol-
lowing we perform an exhaustive analysis of phantom Bethe
states for the M = 0 and M = 1 cases. Similar results for
M̃ = 0, 1 hold after a substitution of the boundary parameters.

Below we shall explore the consequences of the theorem
and construct phantom Bethe states belonging to simple in-
variant subspaces, corresponding to mixtures of regular and
phantom Bethe excitations.

IV. SPIN HELIX STATES AS “PERFECT” PHANTOM
BETHE STATES

By “perfect” phantom Bethe states we mean the Bethe
states consisting of exclusively infinite Bethe rapidities. This
case has been considered in detail in Ref. [7], and it cor-
responds to the choice M = 0 in the phantom Bethe roots
existence criterion in (25).

The invariant subspace G+
M for M = 0 consists of a single

state, the so-called spin helix state (SHS)

〈SHS| = φ1(0)φ2(0) · · · φN (0), (30)

which has the energy E0 given by (8). Another SHS corre-
sponds to G−

M with M = N − 1, or equivalently, M̃ = 0,

|SHS〉〉 = φ̃1(0)φ̃2(0) · · · φ̃N (0), (31)

which has the energy −E0. Despite being factorized states,
SHS are rather nontrivial states of chiral nature, characterized
by periodic modulations of the polarization and large O(1)
magnetic current in the easy plane regime η = iγ . The mag-
netic currents for (30) and (31) are of opposite signs, reflecting
the opposite chiralities,

jz
SHS = ± 2 sin γ

cosh2(β+)
, (32)

with + and − corresponding to (30) and (31) respectively.
Spin helix states can be prepared experimentally via co-
herent [1,19] and dissipative protocols [20,21]. Their chiral
properties, and in particular their large O(1) current (32) make
them very different from typical eigenstates of many-body
interacting systems. This fact leads to singular features in the
magnetization current’s dependence on various system param-
eters in the proximity of “phantom Bethe roots” manifolds in
the dissipative protocols, see [22,23].

In the following, we describe generalizations of the spin
helix states, and show that their distinct chiral features persist
also in presence of regular Bethe roots, as long as phantom
Bethe roots are present.

Before proceeding to the description of Bethe states corre-
sponding to mixtures of phantom and regular Bethe roots, we
rewrite the BAE in a momentum representation which will be
convenient for the further analysis.
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V. XXZ OPEN SPIN- 1
2 CHAIN WITH PHANTOM ROOTS:

MOMENTUM REPRESENTATION

Following the traditional coordinate Bethe ansatz method,
we use the single particle quasimomentum p j related to x j by

eip j = sinh
(
x j + η

2

)
sinh

(
x j − η

2

) . (33)

The BAE (18) become

e2iNp j
∏
σ=±

aσ − eip j

1 − aσ eip j

bσ − eip j

1 − bσ eip j

=
∏
σ=±

M∏
k �= j

1 − 2coshη eip j + eip j+iσpk

1 − 2coshη eiσpk + eip j+iσpk
, j =1, . . . , M,

(34)

where

a± = sinh(α± + η)

sinh(α±)
, b± = cosh(β± + η)

cosh(β±)
, (35)

and the selection rules of Bethe roots are

eip j �= e±ipk , eip j �= ±1, eip j �= e±η. (36)

The energy is given by

E = 4
M∑

j=1

(cos(p j ) − coshη) + E0. (37)

The second set of BAE (21) and the respective energy are
rewritten in terms of single particle quasimomenta as

e2iNp j
∏
σ=±

ãσ − eip j

1 − ãσ eip j

b̃σ − eip j

1 − b̃σ eip j

=
∏
σ=±

M̃∏
k �= j

1 − 2coshη eip j + eip j+iσpk

1 − 2coshη eiσpk + eip j+iσpk
, j = 1, . . . , M̃,

(38)

ã± = sinh(α± − η)

sinh(α±)
, b̃± = cosh(β± − η)

cosh(β±)
, (39)

E = 4
M̃∑

j=1

(cos(p j ) − coshη) − E0. (40)

We will show that solutions of (34) and (38) constitute the
complete set of eigenstates and eigenvalues in the case with
phantom Bethe roots present, i.e., under the criterion (25).

VI. MIXTURES OF PHANTOM AND REGULAR ROOTS:
“SEMIPHANTOM” BETHE STATES

Here we obtain generalizations of the spin-helix state (30)
for the case when all but one Bethe root are phantom, i.e.,
there are N − 1 phantom Bethe roots and one regular Bethe
root. This situation arises at the manifold described by (25)
for M = 1.

We shall call the corresponding Bethe states semiphantom
Bethe states or, with some abuse of notations, as phantom
Bethe states.

Here we construct explicit phantom Bethe eigenstates
for M = 1.

The basis of the invariant subspace G+
1 , according to the

theorem for the case M = 1, is given by linearly independent
vectors 〈0|, 〈1|, . . . , 〈N | of the form

〈n| = enηφ1(0) · · · φn(0)φn+1(1) · · · φN (1), (41)

where the prefactor enη is introduced for convenience. The
states 〈N | and 〈0| are both SHS of type (30), with the same
chirality, differing by an overall phase shift. The generic state
of the single-particle multiplet 〈n| is a state where the pieces
of both SHS are joined together at the link n, n + 1 where an
additional phase shift occurs.

Any eigenstate of H belonging to the invariant subspace
G+

1 can be expanded as a linear combination of 〈n| as

〈
| =
N∑

n=0

〈n| fn, (42)

with the energy given by

E = 4 cos(p1) − 4 cosh η + E0, (43)

where p1 satisfies the BAE (34) and E0 is given by (8).
Obviously, (42) predicts the existence of N + 1 linearly in-
dependent Bethe vectors.

It is straightforward to verify that the action of 〈n|H pro-
duces a linear combination of 〈n − 1|, 〈n|, and 〈n + 1| (see
also Appendix B)

〈n|H = 2〈n − 1| + 2〈n + 1| − d0〈n|,
〈0|H = −d̃0〈0| + d−〈1|, 〈N |H = d̃0〈N | + d+〈N − 1|,

(44)

d0 = a+ + b+ + a− + b−, d̃0 = a+ + b+ − a− − b−,

d± = 2 − 2a± b±. (45)

Inserting the above equations into the eigenvalue problem
〈
|H = E 〈
| gives the following identities:

f1 = (2 cos(p) − a− − b−) f0, (46)

(1 − a− b−) f0 + f2 = 2 cos(p) f1, (47)

fn−1 + fn+1 = 2 cos(p) fn, 2 � n � N−2, (48)

(1 − a+ b+) fN + fN−2 = 2 cos(p) fN−1, (49)

fN−1 = (2 cos(p) − a+ − b+) fN , (50)

where a±, b± are given by (35) and p ≡ p1.
We use the ansatz

fn = A+einp + A−e−inp, 1 � n � N − 1,

f0 = 1

1 − a−b−
(A+ + A−),

fN = 1

1 − a+b+
(A+eiNp + A−e−iNp), (51)
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which satisfies Eqs. (47)–(49). To satisfy (46) and (50),
we need

A+
A−

= − a− − eip

1 − a− eip

b− − eip

1 − b− eip
, (52)

A−
A+

= − e2iNp a+ − eip

1 − a+ eip

b+ − eip

1 − b+ eip
. (53)

Multiplying the above equations, we retrieve BAE (34)
for M = 1

e2iNp a+ − eip

1 − a+ eip

b+ − eip

1 − b+ eip

a− − eip

1 − a− eip

b− − eip

1 − b− eip
= 1,

(54)

which thus serves as a compatibility condition of Eqs. (52)
and (53). To sum up, the Bethe vectors of the single-particle
multiplet (invariant subspace G+

1 ) are given by (42) with
f0, . . . , fN being simplified to

fn = A+einp + A−e−inp = sin(np + α), n = 1, . . . , N − 1,

f0 = 1

1 − a−b−
sin α, fN = 1

1 − a+b+
sin(Np + α), (55)

α = 1

2i
ln

(
a− − eip

1 − a− eip

b− − eip

1 − b− eip

)
, (56)

and p satisfying BAE (54).
Special cases. For the generic case, the structure of the

invariant subspace G+
1 spanned by {〈n|}N

n=0 is a fully con-
nected one; meaning that with a repeated action 〈n|H , 〈n|H2,
etc. on any basis vector 〈n| one gets the full basis. Conse-
quently, any eigenvector from the single-particle multiplet has
nonzero components of all basis vectors, and all phantom
Bethe eigenvectors are given by Eqs. (51)–(54). This remains
true also for higher invariant subspaces G±

M which are generi-
cally fully connected. However, in special cases, the invariant
subspaces G±

M may have additional internal structure, i.e., con-
tain invariant subspaces of smaller sizes. This case of further
partitioning, can already be illustrated on our example of G+

1 ,
which has internal structure if one or both coefficients d±
in (45) vanish, as is illustrated below.

(i) d− = 0. This happens for a−b− = 1, for which a one-
dimensional invariant subspace of G+

1 containing just one
state, the basis state 〈0|, appears, see (44). Consequently,
〈0| itself is a Bethe eigenvector with eigenvalue −d̃0, while
the remaining N phantom Bethe eigenvectors have nonzero
components of all basis vectors, given by the BAE which now
has N solutions instead of N + 1 solutions and α = 0.

(ii) d+ = 0. This happens for a+b+ = 1 with similar struc-
tures as in the d− = 0 case. The SHS 〈N | is an eigenstate of
H with corresponding eigenvalue d̃0. The other N eigenstates
are given by Eqs. (51), (54) and (55) with α = −Np.

(iii) d+ = d− = 0. When a±b± = 1, i.e., cosh(α± + β± +
η) = 0 [see Eq. (C5)], G+

1 contains two one-dimensional
invariant subspaces, 〈0| and 〈N |, as follows from (44). Con-
sequently 〈N | and 〈0| become the eigenvectors of H with
eigenvalues d̃0 and −d̃0, respectively. The remaining N − 1
phantom Bethe states are given by BAE (54) which acquire
the remarkably simple form

e2iNp = 1 , (57)

yielding N − 1 real solutions

p = mπ

N
, m = 1, . . . , N − 1 , (58)

where due to (36), p = 0, π are not allowed. From Eqs. (52)–
(56), we find

α = 0, fn = sin(np), n = 1, . . . , N − 1,

f0 = lim
a−b−→1

sin(α)

1 − a− b−
= sin(p)

2 cos(p) − a− − b−
,

fN = lim
a+b+→1

sin(Np+α)

1 − a+ b+
= sin((N−1)p)

2 cos(p) − a+ − b+
. (59)

VII. PROPERTIES OF PHANTOM BETHE
VECTORS FOR M = 1.

Distribution of regular Bethe roots in the single-particle
multiplet. As expected, there are N + 1 physical solutions
of the BAE (34) for one quasimomentum p ≡ p1 (M = 1).
These solutions for p and α are denoted by p j and α j with
j = 1, . . . , N + 1. We refer to the sets {pj}N+1

j=1 and {α j}N+1
j=1

of solutions as the single-particle multiplet.
Note that for a Hermitian Hamiltonian H it follows

from (43) that p can be either real or purely imaginary. In
the following we shall concentrate on the easy plane case
|
| < 1 which is physically more interesting since it produces
eigenstates with multiple windings of the magnetization vec-
tor along the chain for large systems, see Fig. 3.

It can be shown (see Appendix) that in the single-particle
multiplet {p j}N+1

j=1 there are 0,1 or 2 purely imaginary p j

solutions depending on the system size N and on the values
a±, b±; the remaining N + 1, N or N − 1 solutions are real.

It can be argued that in the thermodynamic limit N 	 1
the points τ j = eip j for real p j densely populate the upper
unit semicircle. Let us order the real pm in order of increas-
ing energy Em. One finds min j p j = |O(1/N )| and max j p j =
π − |O(1/N )|. Thus the energies of the real members of the
single-particle multiplet {pj}N+1

j=1 densely populate the interval
of energies Ej ∈ (E0−4
−4, E0−4
+4), see Fig. 1.

Amplitudes of phantom Bethe vectors in the single-particle
multiplet: standing waves structure of the coefficients fn. It
can be shown that the distribution of the shock amplitudes
fn near the lower part of the energy spectrum (inside the
single-particle multiplet) obeys Re[ fn] ≈ (−1)n sin( mπ

N ), m =
1, 2, 3, . . . valid for m/N � 1. Likewise, the shock ampli-
tudes fn in the upper part of the energy spectrum (inside the
single-particle multiplet apart from the states with exponen-
tially decaying amplitudes fn) obey Re[ fn] ≈ sin( mπ

N ), m =
1, 2, 3, . . ., where m/N � 1 respectively. The functions { fn}
thus have the form of discrete standing waves, with nodes near
the “edges” n = 0, N , see Fig. 2. On the contrary, imaginary
solutions pj correspond to exponentially decaying amplitudes
fn, see Fig. 2.

Chirality of phantom Bethe vectors in the single-particle
multiplet: high current and modulations in the density profile.
Before calculating explicit expressions for the magnetiza-
tion current jz by using the explicit form of the Bethe
function (42), let us make a rough estimate. The basis of
the invariant subspace (41) consists of N + 1 basis vec-
tors, {〈n|}N

n=0. The two states 〈0|, 〈N | are pure SHS. The
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FIG. 1. Energy levels Em = E0 − 4
 + 4 cos(pm ) plotted versus
m of a single-particle multiplet for M = 1. Dotted lines show strict
lower and upper bounds E0 − 4
 − 4 and E0 − 4
 + 4, E0 given
by (8), for energies Em of real pm solutions. Two separate points
representing the largest energies correspond to two imaginary pm so-
lutions. Parameters are: N = 100, 
 = cos(π/6.2) ≈ 0.874, α+ =
0.3i, α− = 0.7i, and β+ = −β− = 1.5. The structure of selected
phantom Bethe states belonging to the single-particle multiplet is
shown in Fig. 2. The values of θ± are arbitrary imaginary parameters
satisfying (17).

expectation value of the spin current operator 〈n| jz
l |n〉 for

n = 0, N does not depend on the site and is given by (32),
or, in terms of boundary parameters, by

j (0)
z = 2 sin γ

cosh2(β+)
. (60)

The remaining basis states 〈n|, i.e., 〈1|, 〈2| . . . 〈N − 1| have
a kink in the phase at the link n, n + 1, where the qubit
phase difference flips sign. The expectation value of the spin
operator 〈n| jz

l |n〉 with jz
l = 2(σ x

l σ
y
l+1 − σ

y
l σ x

l+1) depends on
l: we find 〈n| jz

l |n〉 = j (0)
z for all links, except for the link

l, l + 1 with kink: 〈l| jz
l |l〉 = − j (0)

z . The local current 〈n| jz
l |n〉

averaged over all links is given by

1

N − 1

N−1∑
l=1

〈n| jz
l |n〉 = j (0)

z

(
1 − 2

N − 1

)
, n = 1, . . . N − 1,

(61)

1

N − 1

N−1∑
l=1

〈n| jz
l |n〉 = j (0)

z , n = 0, N. (62)

Consequently, the local current averaged over all links and all
the basis states of the G+

1 single-particle multiplet is

〈 jz
local〉G+

1
= 1

(N + 1)(N − 1)

N−1∑
l=1

N∑
n=0

〈n| jz
l |n〉

= j (0)
z

(
1 − 2

N + 1

)
. (63)

Analogously to (63), for phantom Bethe states with two regu-
lar Bethe roots M = 2, we obtain

〈 jz
local〉G+

2
= 1

(N − 1) dim G+
2

N−1∑
l=1

dim G+
2∑

m=1

〈m| jz
l |m〉

= j (0)
z

(
1 − 4

N + 1 + 2
N

)
= j (0)

z

(
1 − 4

N + 1

)
+ O

(
1

N2

)
, (64)

(here |m〉 numerate basis states spanning G+
2 ), and so on.

The quantity 〈 jz
local〉G+

1
from (63) can be regarded as a

rough estimate for a typical current of the single-particle mul-
tiplet; it cannot be precise since we made the equal amplitude
assumption fn ≡ 1 and in addition ignored the nonorthogo-
nality of the basis states 〈n|m〉 �= δnm. However, it renders
our idea that typical currents in the single-particle multiplet
can differ from the SHS current j (0)

z at most by O(1/N )
corrections, which are strictly negative, hence decreasing its
amplitude. Moreover, the calculations performed for special
boundary parameters, confirm the estimate (63) even quanti-
tatively, see Eq. (70).

Using similar arguments for the magnetization profile, we
conjecture that typical transversal magnetization components
must be quasiperiodic. In fact this conjecture is confirmed by
numerical simulations, see Fig. 3.

Summarizing, remarkable qualitative chirality features of
the SHS are conserved if a regular excitation is added (M =
1). Quantitatively, they get only slightly distorted, with degree
of distortion that can be quantified.

Thus all states of the single-particle multiplet have distinct
chiral features: quasiperiodicity of a magnetization profile and
large magnetization current. This is especially evident for
imaginary p j solutions, if the system admits any: in fact, in
this case, the major contribution to the Bethe state is given by
either the pure chiral SHS 〈0| or the SHS 〈N |, while the other
states contribute with exponentially decaying amplitudes fn.

Let us illustrate the calculation of a physical observable for
phantom Bethe states belonging to the single-particle multi-
plet at the example of the special case (iii) in the previous
section. For a Hermitian Hamiltonian in the easy plane regime
[see Eq. (23)] we can satisfy the constraints a± b± = 1 with
the following choice of the boundary parameters, without
losing generality:

β+ = β− = 0, α± = −iγ + i
π

2
mod 2π i,

θ− − θ+ = i(N − 1)γ mod 2π i. (65)

In this special case, there are two SHS: 〈0| and 〈N | and the
current in these two states can be calculated exactly as

jz = 〈0| jz
l |0〉

〈0|0〉 = 〈N | jz
l |N〉

〈N |N〉 = 2 sin γ . (66)

For the remaining N − 1 states, we know the Bethe roots
pm = πm/N, m = 1, . . . , N −1 from (57). After some te-
dious calculations, we get the norm of the phantom Bethe
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FIG. 2. Amplitudes of the Bethe vectors fn in the expansion 〈
| = ∑N
n=0〈n| fn for selected states in the single-particle multiplet Fig. 1,

obtained by numerical solutions of BAE (54). (Top three panels in the left column) Phantom Bethe states with the three lowest energies Ej of
the single-particle multiplet, (the energy increases from top to bottom). The thin lines connecting the points are guides for the eye. We show
only Re[ fn] in the graphs. Im[ fn] looks similar, with a shift by a quarter of a period as in the right panel. (Top three panels in the right column)
phantom Bethe states with the three highest energies Ej of the real pj solutions (the energy decreases from top to bottom). Large and small
points correspond to Re[ fn] and Im[ fn] respectively. (Bottom row) Two phantom Bethe states corresponding to the two highest energy levels
in the single-particle multiplet, corresponding to imaginary pj solutions. The largest (the second largest) energy of the single-particle multiplet
corresponds to the right (left) panel in the bottom row.
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FIG. 3. Transversal components of the magnetization profiles
〈σ x

k 〉, 〈σ y
k 〉 (blue and yellow curves, respectively), for a typical phan-

tom Bethe state from G+
1 (one regular Bethe root), vs site number

k. Parameters: N = 29, η = iγ = i 103π

493 , 
 = cos 103π

493 ≈ 0.79, α± =
−η, β± = 0, θ− = iπ, θ+ = i(π − �), and � = (N − 1)γ . The
energy of the chosen state is Em = −5.39 and the corresponding
current is jz = 1.216, close to the asymptotic SHS current jSHS ≈
1.22. The dotted line shows the y component of an “ideal chiral”
SHS profile for the same value of the anisotropy and is given for
comparison.

vectors

〈
|
〉 = 2N
∑

0�n1,n2�N

fn1 fn2

|n1−n2|

= 2N−1N (1 − 
2)

(1 + 
2 − 2
 cos pm)
, 
 = cos γ . (67)

The explicit expression of the current is

jz(m) = 〈
| jz
l |
〉

〈
|
〉

= 2 sin γ

∑
0�n1,n2�N fn1 fn2


|n1−n2| + 2 f 2
0 − 2 f 2

0 
−2∑
0�n1,n2�N fn1 fn2


|n1−n2|

= 2 sin γ

(
1 − 4(1 − cos2 pm)

N (1 + 
2 − 2
 cos pm)

)
,

pm = πm

N
, m = 1, . . . , N − 1, (68)

where we emphasize the dependence of the current on the par-
ticular state by using the state’s ordinal number as argument in
jz(m). The expression (68) can also be applied to the other two
SHS letting m = 0, N . Suppose 0 < γ < π . The respective
SHS current jz(0) = jz(N ) is maximal and the minimal value
is among jz(m) and jz(m+1) with mπ

N � γ � (m+1)π
N . In the

case N 	 1,

min
m

jz(m) = j (0)
z

(
1 − 4

N

)
+ o

(
1

N

)
. (69)

We can calculate the average current of the single-particle
multiplet,

〈 jz〉G+
1

= 1

N + 1

N∑
m=0

jz(m) = j (0)
z

(
1 − 2

N + 1

)
+ O

(
1

N2

)
,

(70)

in qualitative accordance with our naive estimate (63). The
fact that corrections to the current are strictly negative origi-
nates from the influence of the kinks in the states as explained
in the paragraph following (60). The links with kinks sustain
local current of opposite sign, reducing the current amplitude.
The invariant subspace for M = 0 contains one state (SHS)
with no kinks and the respective SHS current j (0)

z is max-
imal. The N + 1-dimensional invariant subspace for M = 1
consists of states with 0 or 1 kink and the average current
reduces by the fraction 2

N+1 , see (70), (63). For M = 2, the
invariant subspace consists of states with 0,1 or 2 kinks, lead-
ing to a further decrease of the average current, as predicted
by Eq. (64).

We conclude that the inclusion of further regular Bethe
roots (in case of larger M) makes the chiral properties of the
phantom Bethe states less pronounced. However the average
multiplet current can decrease significantly, only if typical
multiplet basis states contain sizable proportions of kinks,
meaning M/N = O(1). The accurate analysis of the quan-
tity (70) for arbitrary M requires further investigation and is
out of the present scope.

A high average current is not the only chiral feature of
phantom Bethe states. Another typical feature is the large
periodic modulation of the magnetization profile. We find that
inclusions of regular Bethe roots distort the perfectly peri-
odic spin helix structure. The degree of distortion naturally
depends on the number M of regular Bethe roots involved.
If M/N � 1, modulations of the magnetization profile are
clearly visible for all members of the multiplet. We show
typical magnetization profiles in Fig. 3 for M = 1.

Our analytic results are fully confirmed by numerical sim-
ulations, done for large system size N . In Fig. 2, we show
typical amplitudes of phantom Bethe vectors for M = 1. In
Fig. 3, we show typical magnetization profiles.

VIII. DISCUSSION

We have analyzed the integrable XXZ Heisenberg spin
chain with open boundary conditions and have described a
novel type of solutions to the Bethe ansatz equations contain-
ing phantom (infinite) Bethe roots, as well as regular (finite)
Bethe roots. These solutions appear under condition (17)
which leads to a complete decoupling of the Bethe ansatz
equations for phantom and regular Bethe roots. Phantom
Bethe roots do not contribute to the energy of the system,
which in case of spin chains with periodic boundary condition
leads to degeneracies of the energies [7] which we refer to as
phantom excitations.

Condition (17) has appeared in [9,14,16,17] as a technical
condition for the applicability of a modified algebraic Bethe
ansatz, based on special properties of Sklyanin’s K matrices.
In the present manuscript, we have unveiled its meaning as
a condition for the splitting of the Hilbert space into two
invariant chiral subspaces G±

M . In addition, here we used
phantom Bethe roots as a useful shortcut to obtain reduced
BAEs (18) and (21). The integer parameter 0 � M < N enter-
ing (17) determines the dimensions of the invariant subspaces,
dim G+

M = ∑M
k=0

(N
k

)
and dim G−

M = 2N − dim G+
M .

The meaning of the key parameter M, and its dual M̃ =
N − M − 1, parametrizing the hyperplane (17) is twofold. On
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one hand, M is the maximal number of kinks in the chiral basis
vectors (28) of G+

M . Analogously, M̃ is the maximal number of
kinks in the chiral basis vectors of G−

M . On the other hand, the
fulfillment of (17) entails a reduction of the number of regular
Bethe roots from N in the general “inhomogeneous” BAE to
M or M̃ in the reduced sets of BAE. The solutions of the two
BAE sets give all Bethe eigenstates, which necessarily possess
chiral properties since the nature of the invariant subspaces is
chiral.

Conversely, we understand condition (17) as a criterion
for the occurrence of phantom Bethe roots [7] among the N
initial Bethe roots: the phantom Bethe roots decouple from
the general “inhomogeneous” BAE, leading to the two (dual)
homogeneous BAE sets for M or M̃ regular Bethe roots. The
BAE for the phantom Bethe roots are not trivially satisfied
just by these roots lying at infinity. The equations require a
specific arrangement of the roots in a string that is unrelated
to the usual TBA strings.

The appearance of invariant subspaces and the splitting
of the set of eigenvectors into blocks is sowewhat similar to
the occurrence of invariant subspaces for the periodic XXZ
spin chain with fixed values of magnetization. There are how-
ever crucial differences: in the periodic case, there are N +
1 blocks, with magnetizations −N/2,−N/2 + 1, . . . , N/2
and BAE with a number of Bethe roots specific for each
block, ranging from 0 to N/2 for even N and to (N − 1)/2
for odd N .

In contrast, in the open XXZ model fulfilling (17) with 0 �
M < N all eigenstates split into just two blocks, with basis
vectors that are chiral, which leads to two sets of BAE with
a total number of M roots or M̃ roots. The latter fact leads to
highly unusual properties of the respective eigenstates such as
high magnetization currents and quasiperiodic magnetization
profiles.

The main result of this paper is the proof that in the open
integrable XXZ spin chain, the occurrence of phantom Bethe
roots entails the splitting of the Hilbert space into two chiral
invariant subspaces. Based on the splitting, we are able to
construct explicit Bethe vectors, the eigenstates of the open
XXZ model with fine-tuned nondiagonal boundary fields, and
investigate their properties to the same degree of detail as
for the periodic spin chain with U(1) symmetry for a given
magnetization sector. The phantom Bethe eigenstates in open
systems are very unusual and carry distinct chiral properties.
This is due to the underlying chiral nature of the basis states,
constituting the respective invariant subspaces. Our results
can be used for the generation of stable spin helix states in
experimental setups allowing to realize a paradigmatic XXZ
model with tunable anisotropy [1] as argued in Ref. [7].

It would be interesting to extend our results to other inte-
grable systems with phantom Bethe roots, e.g., to the spin-1
Fateev-Zamolodchikov model with open boundary condi-
tions, see Ref. [7].
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APPENDIX A: PROOF OF COMPLETENESS

Here we prove that the basis of states spanning G+
M and G−

M
is complete, i.e.,

H = G+
M ⊕ G−

M , (A1)

where H is the full Hilbert space. First we prove, that the
vectors 〈 g+,k| ∈ G+

M , k = 1, 2, . . . , dim G+
M are all indepen-

dent for η �= 0, iπ (for the cases η = 0, iπ , a jump φn(x) →
φn(x + 1) ≡ φn(x) is trivial). We restrict our proof to the most
“unfavourable,” extreme case of η = iπ/2, β− = 0 under the
hermiticity condition (23). For this special case, the property
φn(x)φ†

n (x + 1)=0 renders all states 〈 g+,k| ∈ G+
M being pair-

wise orthonormal, 〈 g+,k|g+,l〉 = 2Nδkl〈 g+,k|g+,k〉. Thus, even
in the most “unfavourable” setting all 〈 g+,k| are independent,
and the same is valid for the basis vectors |g−,k〉〉 spanning G−

M .
In the next step, we return to the general setup and show

that any two vectors g− ∈ G−
M and g+ ∈ G+

M are orthogonal.
Define the function y(n, jn, kn) as

φn( jn) φ̃n(kn) = 1 − e2y(n, jn,kn )η,

y(n, jn, kn) = jn + kn − n + 1. (A2)

When y(n, jn, kn) = 0, the local vectors φn( jn) and φ̃n(kn) are
orthogonal. From the definition of (28) and (29), any basis
vector belonging to G+

M is a tensor product of φn( jn) with 0 �
j1 � j2 . . . � jN � M and any basis vector belonging to G−

M

is a tensor product of φ̃n(kn) with 0 � k1 � k2 . . . � kN � M̃.
It is easy to find

y(n + 1, jn+1, kn+1) − y(n, jn, kn) = 0,±1,

y(N, jN , kN ) � 0, y(1, j1, k1) � 0. (A3)

so that y(n, jn, kn) = 0 holds at least for one point n (1 � n �
N). It shows that any pair of vectors g− ∈ G−

M and g+ ∈ G+
M is

orthogonal.
The dimension of G+

M is equal to the total number of dif-
ferent tuples (n1, . . . , nk ) with 1 � n1 < n2 < . . . < nk � N
over all k = 0, . . . M, which is given by

dim G+
M =

M∑
m=0

(
N

m

)
=

(
N

0

)
+

(
N

1

)
+ . . .

(
N

M

)
. (A4)

Analogously, the dimension of G−
M is

dim G−
M =

M̃∑
m=0

(
N

m

)
=

N∑
n=M+1

(
N

n

)
. (A5)

The sum of dimensions dim G+
M + dim G−

M = ∑N
n=0

(N
n

) = 2N

is identical to the dimension of the total Hilbert space H.
Hence the basis vectors in (28) and (29) span G+

M and G−
M

respectively, hence (A1) is proved.
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APPENDIX B: THE INVARIANCE PROPERTY OF G±
M

Here we prove the theorem for arbitrary Hamiltonian H of type (1), satisfying (25), whether being Hermitian or not. It is easy
to prove that

φn(x)φn+1(x)hn,n+1 = sinhη φn(x) σ z
n φn+1(x) − sinhη φn(x) φn+1(x) σ z

n+1, (B1)

φn(x−1)φn+1(x)hn,n+1 = sinhη φn(x−1) φn+1(x) σ z
n+1 − sinhη φn(x−1) σ z

n φn+1(x), (B2)

φ1(x)h1 = − sinhη cosh(α−+β−+2xη)

sinh(α−)cosh(β−)
φ1(x) + sinhη

sinh(α−)cosh(β−)

×(cosh(α−)sinh(β−) − sinh(α−+β−+2xη))φ1(x) σ z
1 , (B3)

φN (x)hN = − sinhη cosh(α++β++2(M−x)η)

sinh(α+)cosh(β+)
φN (x)

+ sinhη

sinh(α+)cosh(β+)
(sinh(α++β++2(M−x)η) − cosh(α+)sinh(β+))φN (x) σ z

N . (B4)

From (B1)–(B4), it is obvious that

�+(n1, . . . , nk ) H = C0(n1, . . . , nk )�+(n1, . . . , nk ) +
N∑

n=1

Cn(n1, . . . , nk )�+(n1, . . . , nk ) σ z
n , (B5)

where Cn(n1, . . . , nk ), n = 0, 1, . . . , N , are some constants. Using Eqs. (B1)–(B4) repeatedly and checking the detailed
coefficients, we can prove that the coefficient Cn(n1, . . . , nk ) is zero when �+(n1, . . . , nk ) has some special structure, which
is realized under any of the following conditions:

�+(n1, . . . , nM ) = φ1(0)φ2(0) · · · , i.e., 2�n1 <n2 . . .<nM �N, C1(n1, . . . , nM ) = 0,

�+(n1, . . . , nk ) = · · · φN−1(M )φN (M ), i.e., 1�n1 <n2 . . .<nk �N −2, CN (n1, . . . , nk ) = 0,

�+(n1, . . . , nk ) = · · · φn−1(x)φn(x)φn+1(x) · · · , i.e., nm �n−2, nm+1 �n+1, Cn(n1, . . . , nk ) = 0,

�+(n1, . . . , nk ) = · · · φn−1(x − 1)φn(x)φn+1(x + 1) · · · , i.e., nm =n−1, nm+1 =n, Cn(n1, . . . , nk ) = 0. (B6)

We have two useful identities

φn(x) σ z
n = −coshη

sinhη
φn(x) + eη

sinhη
φn(x − 1),

φn(x − 1) σ z
n = coshη

sinhη
φn(x − 1) − e−η

sinhη
φn(x). (B7)

Then, we obtain

φn(x − 1)φn+1(x)σ z
n = coshη

sinhη
φn(x − 1)φn+1(x) − e−η

sinhη
φn(x)φn+1(x),

φn(x)φn+1(x)σ z
n = −coshη

sinhη
φn(x)φn+1(x) + eη

sinhη
φn(x − 1)φn+1(x),

φn−1(x)φn(x + 1)σ z
n = −coshη

sinhη
φn−1(x)φn(x + 1) + eη

sinhη
φn−1(x)φn(x),

φn−1(x)φn(x)σ z
n = coshη

sinhη
φn−1(x)φn(x) − e−η

sinhη
φn−1(x)φn(x + 1). (B8)

Let us extend the definition of �+(n1, . . . , nk ) as

�+(0, n1, . . . , nk ) ≡ �+(n1, . . . , nk ), 1 � n1 < . . . < nk � N. (B9)

Using Eqs. (B5), (B8), and the notation (B9), we can prove that �+(n1, . . . , nk ) H for (nk−1, nk ) �= (N − 1, N ) is a linear
combination of

�+(n1, . . . , nk ) and �+(n1, . . . , nm ± 1, . . . , nk ), m = 1, . . . , k.

Here the actions �+(n1 =0, n2 . . . , nk )H →�+(n1 =1, n2 . . . , nk ) and �+(n1 =1, n2 . . . , nk )H →�+(n1 =0, n2 . . . , nk ) repre-
sent the generation and annihilation of a kink at the left boundary respectively. Due to Eqs. (B6) and (B8), the following unwanted
structures will not appear:

�+(. . . , n j, n j+1 = n j, . . .),

�+(n1, . . . , nM+1), 1 � n1 < n2 < . . . < nM+1 � N. (B10)
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In words, the Hamiltonian H acting on �+(n1, . . . , nk ) with (nk−1, nk ) �= (N − 1, N ) can not degenerate any state beyond our
basis vectors {�+(. . .)}. Some nontrivial situations arise when H acts on �+(n1, . . . , nk−1 =N −1, nk =N )

�+(. . . , N −1, N )H = · · · + F (. . . , N −1, N ) �+(. . . , N, N ), (B11)

where · · · on the right-hand side of (B11) denotes a linear combination of some vectors belonging to �+(. . .) in (28) and
F (. . . , N −1, N ) is a constant. These “unwanted” vectors {�+(. . . , N, N )} are defined by replacing φN−1(M−2)φN (M−1) in
�+(. . . , N −1, N ) with φN−1(M−2) φN (M−2). In fact �+(. . . , N, N ) is not an extra independent vector. Following the method
in (A2) and (A3) we can prove �+(. . . , N, N ) is orthogonal to all the basis vectors in G−

M and can be expanded in the G+
M basis.

Thus the invariance property of the subspace G+
M is proved. Analogously, we prove the invariance property of the set G−

M .

APPENDIX C: THE PROOF OF EQS. (46)–(50)

Using Eqs. (B1)–(B4) and (B7), we find

〈0|H =
(

sinhη cosh(α−+β−)

sinh(α−)cosh(β−)
− sinhη cosh(α++β+)

sinh(α+)cosh(β+)

)
〈0| − 2sinhη cosh(α−+β−+η)

sinh(α−)cosh(β−)
〈1|, (C1)

〈N |H =
(

sinhη cosh(α++β+)

sinh(α+)cosh(β+)
− sinhη cosh(α−+β−)

sinh(α−)cosh(β−)

)
〈N | − 2sinhη cosh(α++β++η)

sinh(α+)cosh(β+)
〈N −1|, (C2)

〈n|H = −
(

sinhη cosh(α−+β−)

sinh(α−)cosh(β−)
+ sinhη cosh(α++β+)

sinh(α+)cosh(β+)
+ 4coshη

)
〈n| + 2〈n−1| + 2〈n+1|, n = 2, . . . , N. (C3)

We have two useful identities
sinhη cosh(α± + β±)

sinh(α±) cosh(β±)
= a± + b± − 2coshη, (C4)

sinhη cosh(α± + β± + η)

sinh(α±) cosh(β±)
= a± b± − 1. (C5)

where a±, b± are given by (35). Using Eqs. (C4) and (C5), we can rewrite Eqs. (C1)–(C3) in terms of a± and b± and then easily
obtain Eqs. (46)–(50).

APPENDIX D: THE SOLUTIONS OF BAE (34) WITH M = 1

Recall the BAE for the M = 1 case

e2iNp
∏
σ=±

aσ − eip

1 − aσ eip

bσ − eip

1 − bσ eip
= 1. (D1)

When M = 1, we can treat eip as an unknown parameter which satisfies the unary equation (D1) with degree 2N+4. It is easy to
prove that eip =±1 are always two trivial solutions. Replacing eip with e−ip, the BAE still holds which implies that eip and e−ip

are equivalent [see Eq. (37)]. So we can summarize that the BAE (D1) has N+1 independent valid solutions. If the Hamiltonian
H is Hermitian, p can be a real or purely imaginary number. Here we only consider the easy plane regime case with (23).

a. Imaginary solutions. Introduce the following auxiliary function:

Y (x) = x2N
∏
σ=±

(x − aσ )(x − bσ ) −
∏
σ=±

(1 − aσ x)(1− bσ x). (D2)

The zeros of Y (x) correspond to the solution of BAE (D1). Suppose 0 < a− < 1 < a+. We find that

Y (1) = 0, Y (0) = −1, Y
(
a−1

+
) = a−2N−4

+
∏
σ=±

(1 − a+ aσ )(1 − a+ bσ ). (D3)

When a+ a− > 1, we find Y (a−1
+ ) > 0 and equation Y (x) = 0 has a solution in the interval (0, a−1

+ ). When a+ a− < 1, we
consider the derivative of Y (x) at the point x = 1

Y ′(1) =
(∏

σ=±
(1 − aσ )(1− bσ )

)(
2N −

∑
σ=±

aσ + 1

aσ − 1
−

∑
σ=±

bσ + 1

bσ − 1

)
. (D4)

If Y ′(1) < 0, i.e.,

N >
1

2

(∑
σ=±

aσ + 1

aσ − 1
+

∑
σ=±

bσ + 1

bσ − 1

)
, (D5)

the function Y (x) has a zero in the interval (a−1
+ , 1).
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Then suppose that 1 < a− < a+. We can prove that

Y (0) < 0, Y
(
a−1

+
)

> 0, Y
(
a−1

−
)

> 0, Y (1) = 0. (D6)

Obviously, there exists a real solution in the interval (0, a−1
+ ). If Y ′(1) > 0, i.e., the inequality (D5) holds, there will be another

real solution in the interval (a−1
− , 1). When N 	 1 the purely imaginary solutions of (D1) are very simple. We find

e2iNp →
{

0, −1 < eip < 1,

∞, eip < −1 or eip > 1.

So there should be a purely imaginary solution at the point eip =a−1
σ + O( 1

N ) in case of aσ > 1 or aσ < −1. We can use a similar
method to analyze the distribution of real solutions in other cases.

b. Real solutions. Suppose that p is a real number p = ε with ε being a small positive real number, then we can prove

aσ − eip

1 − aσ eip
= aσ − (1+iε+· · · )

1 − aσ (1+iε+· · · )
= −1 + i

aσ + 1

aσ − 1
ε + · · · , (D7)

with | iε
1−aσ

|�1. If ∣∣∣∣ iε

1 − aσ

∣∣∣∣�1,

∣∣∣∣ iε

1 − bσ

∣∣∣∣�1, σ =±,

p = ε = mπ
N + O( 1

N2 ) is a solution of BAE (D1) provided that 0< m
N �1.

Now we suppose that p is a real number p = π − ε with ε being a small positive real number, then we find

aσ − eip

1 − aσ eip
= aσ + (1−iε+· · · )

1 + aσ (1−iε+· · · )
= 1 + i

aσ − 1

aσ + 1
ε + · · · , (D8)

with | iε
1+aσ

|�1. If ∣∣∣∣ iε

1 + aσ

∣∣∣∣�1,

∣∣∣∣ iε

1 + bσ

∣∣∣∣�1, σ =±,

p = π − ε = π − πm
N + O( 1

N2 ) is a solution of BAE (D1) provided that 0< m
N �1.

Let p = −iη = γ , the left-hand side of (D1) thus becomes e2Nη−4η−2α+−2α− . Obviously, p = γ is not a solution in the general
case. However, in the thermodynamic limit N → ∞, we can always find an integer m to ensure

η = iπm + α+ + α−
N − 2

+ O

(
1

N

)
, N → ∞, m → ∞. (D9)

So p = γ + O( 1
N ) becomes a solution of (D1) in the thermodynamic limit.

APPENDIX E: M = 1 CURRENT: GENERAL CASE

Consider a Hermitian Hamiltonian in the easy plane regime (23) with α±, θ±, and η = iγ being purely imaginary and β+ =
−β− being real. The norm of the eigenvector 〈
| is

〈
|
〉 = (
1 + e−2β+

)N

(∑
n�m

(
fn f ∗

m b̃m−n
+ + f ∗

n fm bm−n
+

) −
∑

n

fn f ∗
n

)
, (E1)

where f ∗
n is the complex conjugate of fn and b+(x) and b̃+(x) are defined in (35) and (39), respectively. Then, the current can be

obtained by

jz = 〈
| jz
l |
〉

〈
|
〉 = 2 sin γ

cosh2(β+)〈
|
〉

(
−

N∑
n=0

fn f ∗
n +

∑
n1 � n2 < l
l < n1 � n2

(
fn1 f ∗

n2
b̃n2−n1+ + f ∗

n1
fn2 bn2−n1+

)

+
∑

n1<l<n2

(
fn1 f ∗

n2
b̃n2−n1−2

+ + f ∗
n1

fn2 bn2−n1−2
+

))
. (E2)

The current is independent of the site number. For a Hermitian Hamiltonian, the parameter p should be real or purely imaginary.
If p is real for large N , the norm is order O(N ) and we obtain the expression of the current in the leading approximation as

jz = 2 sin γ

cosh2(β+)

(
1 − O

(
1

N

))
. (E3)
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If p is purely imaginary, the norm is order O(e2N |p|) and the current is

jz = 2 sin γ

cosh2(β+)

(
1 − O

(
e−N |p|)). (E4)

[1] N. Jepsen, J. Amato-Grill, I. Dimitrova, W. W. Ho, E. Demler,
and W. Ketterle, Spin transport in a tunable Heisenberg model
realized with ultracold atoms, Nature (London) 588, 403
(2020).

[2] M. Gaudin, The Bethe Wavefunction (Cambridge University
Press, Cambridge, England, 2014).

[3] T. Prosen and E. Ilievski, Families of Quasilocal Conserva-
tion Laws and Quantum Spin Transport. Phys. Rev. Lett. 111,
057203 (2013).

[4] F. Göhmann, A. Klümper, and A. Seel, Integral representations
for correlation functions of the XXZ chain at finite temperature.
J. Phys. A: Math. Gen. 37, 7625 (2004).

[5] H. E. Boos, F. Göhmann, A. Klümper, and J. Suzuki, Factor-
ization of multiple integrals representing the density matrix of
a finite segment of the Heisenberg spin chain. J. Stat. Mech.
(2006) P04001.

[6] B. Bertini, F. Heidrich-Meisner, C. Karrasch, T. Prosen, R.
Steinigeweg, and M. Znidaric, Finite-temperature transport in
one-dimensional quantum lattice models. arXiv:2003.03334.

[7] V. Popkov, X. Zhang, and A. Klümper, Phantom Bethe excita-
tions and spin helix eigenstates in integrable periodic and open
spin chains. arXiv:2102.03295.

[8] Y. Wang, W.-L. Yang, J. Cao, and K. Shi, Off-Diagonal Bethe
Ansatz for Exactly Solvable Models (Springer-Verlag, Berlin,
2015).

[9] J. Cao, W.-L. Yang, K. Shi, and Y. Wang, Off-diagonal Bethe
ansatz solutions of the anisotropic spin-1/2 chains with arbitrary
boundary fields. Nucl. Phys. B 877, 152 (2013).

[10] X. Zhang, Y.-Y. Li, J. Cao, W.-L. Yang, K. Shi, and Y. Wang,
Bethe states of the XXZ spin-1/2 chain with arbitrary boundary
fields. Nucl. Phys. B 893, 70 (2015).

[11] G. Niccoli, Non-diagonal open spin-1/2 XXZ quantum chains
by separation of variables: complete spectrum and matrix el-
ements of some quasi-local operators. J. Stat. Mech. (2012)
P10025.

[12] S. Faldella, N. Kitanine, and G. Niccoli, The complete spec-
trum and scalar products for the open spin-1/2 XXZ quantum

chains with non-diagonal boundary terms. J. Stat. Mech. (2014)
P01011.

[13] N. Kitanine, J. M. Maillet, and G. Niccoli, Open spin chains
with generic integrable boundaries: Baxter equation and Bethe
ansatz completeness from separation of variables. J. Stat. Mech.
(2014) P05015.

[14] J. Cao, H.-Q. Lin, K.-J. Shi, and Y. Wang, Exact solution of
XXZ spin chain with unparallel boundary fields. Nucl. Phys. B
663, 487 (2003).

[15] S. Belliard and R. Pimenta, Modified algebraic Bethe ansatz for
XXZ chain on the segment - II - general cases. Nucl. Phys. B
894, 527 (2015).

[16] R. I. Nepomechie and F. Ravanini, Completeness of the Bethe
Ansatz solution of the open XXZ chain with nondiagonal
boundary terms. J. Phys. A: Math. Gen. 36, 11391 (2003).

[17] R. I. Nepomechie, Bethe ansatz solution of the open XXZ chain
with nondiagonal boundary terms. J. Phys. A: Math. Gen. 37,
433 (2003).

[18] R. I. Nepomechie, Functional relations and Bethe Ansatz for the
XXZ chain. J. Stat. Phys. 111, 1363 (2003).

[19] S. Hild, T. Fukuhara, P. Schauß, J. Zeiher, M. Knap, E. Demler,
I. Bloch, and C. Gross, Far-from-Equilibrium Spin Transport
in Heisenberg Quantum Magnets. Phys. Rev. Lett. 113, 147205
(2014).

[20] V. Popkov and C. Presilla, Obtaining pure steady states in
nonequilibrium quantum systems with strong dissipative cou-
plings. Phys. Rev. A 93, 022111 (2016).

[21] V. Popkov and G. M. Schütz, Solution of the Lindblad equation
for spin helix states. Phys. Rev. E 95, 042128 (2017).

[22] V. Popkov, T. Prosen, and L. Zadnik, Exact Nonequilib-
rium Steady State of Open XXZ/XYZ Spin-1/2 Chain with
Dirichlet Boundary Conditions. Phys. Rev. Lett. 124, 160403
(2020).

[23] V. Popkov, T. Prosen, and L. Zadnik, Inhomogeneous ma-
trix product ansatz and exact steady states of boundary-driven
spin chains at large dissipation. Phys. Rev. E 101, 042122
(2020).

115435-14

https://doi.org/10.1038/s41586-020-3033-y
https://doi.org/10.1103/PhysRevLett.111.057203
https://doi.org/10.1088/0305-4470/37/31/001
https://doi.org/10.1088/1742-5468/2006/04/P04001
http://arxiv.org/abs/arXiv:2003.03334
http://arxiv.org/abs/arXiv:2102.03295
https://doi.org/10.1016/j.nuclphysb.2013.10.001
https://doi.org/10.1016/j.nuclphysb.2015.01.022
https://doi.org/10.1088/1742-5468/2012/10/P10025
https://doi.org/10.1088/1742-5468/2014/01/P01011
https://doi.org/10.1088/1742-5468/2014/05/P05015
https://doi.org/10.1016/S0550-3213(03)00372-9
https://doi.org/10.1016/j.nuclphysb.2015.03.016
https://doi.org/10.1088/0305-4470/36/45/003
https://doi.org/10.1088/0305-4470/37/2/012
https://doi.org/10.1023/A:1023016602955
https://doi.org/10.1103/PhysRevLett.113.147205
https://doi.org/10.1103/PhysRevA.93.022111
https://doi.org/10.1103/PhysRevE.95.042128
https://doi.org/10.1103/PhysRevLett.124.160403
https://doi.org/10.1103/PhysRevE.101.042122

