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A semiclassical theory for the orbital magnetization due to adiabatic evolutions of Bloch electronic states is
proposed. It renders a unified theory for the periodic-evolution pumped orbital magnetization and the orbital
magnetoelectric response in insulators by revealing that these two phenomena are the only instances where the
induced magnetization is gauge invariant. This theory also accounts for the electric-field-induced intrinsic orbital
magnetization in two-dimensional metals and Chern insulators. We illustrate the orbital magnetization pumped
by microscopic local rotations of atoms, which correspond to phonon modes with angular momentum, in toy
models based on honeycomb lattice, and the results are comparable to the pumped spin magnetization via strong
Rashba spin-orbit coupling. We also show the vital role of the orbital magnetoelectricity in validating the Mott
relation between the intrinsic nonlinear anomalous Hall and Ettingshausen effects.

DOI: 10.1103/PhysRevB.103.115432

I. INTRODUCTION

Understanding the orbital magnetization in crystalline
solids is among the most important objectives of orbitronics
[1–3]. Unlike its spin companion, the orbital magnetization
of Bloch electrons in the absence of external perturbations
is already hard to access quantum mechanically, as it does
not correspond to a bounded operator. This nonlocality is
finally accounted for by a Berry phase formula [4–6] that
gives significantly distinct orbital magnetization from the
atom-centered approximation when combined with ab initio
calculations in various magnetic materials [7–9]. In the pres-
ence of external driving electric fields, the extrinsic responses
of spin and orbital magnetization, namely the spin and or-
bital Edelstein effects, are given similarly by the magnetic
moments averaged over current-carrying states [10–15]. In
contrast, the intrinsic responses of them, i.e., the spin and
orbital magnetoelectric effects, are completely different due
to the nonlocal nature of the magnetic dipole operator. Specif-
ically, the spin magnetoelectricity [16,17] is dictated by a
Berry curvature following the ubiquitous character of intrinsic
linear responses of a local operator [18], while the orbital one
consists of a Chern-Simons three form and a perturbative term
of the reciprocal-space Berry connection [19–22]. Besides,
the magnetization pumped by periodic adiabatic processes in
band insulators has been studied recently by a density matrix
approach evaluating the time-averaged expectation value of
the spin and magnetic dipole operators [23,24]. In this ap-
proach, the orbital magnetization can only be obtained in the
Wannier basis [23], in contrast to the spin one that can be
evaluated in the Bloch representation.

Up to now, the orbital magnetization induced by electric
fields and by periodic adiabatic processes have been treated
by different theories. Whether both phenomena have a deep
connection and if they can emerge in a unified theoretical
framework are still unknown. In this work, we develop a

semiclassical theory for the magnetization induced by adi-
abatic evolutions of Bloch electronic states. In general, the
adiabatically induced orbital magnetization is gauge depen-
dent due to the presence of the electric current in the second
Chern form of Berry curvatures. Noticeably, the orbital mag-
netoelectric effect and the periodic-evolution pumped orbital
magnetization emerge as the only instances where the induced
magnetization is gauge invariant due to the elimination of
its explicit time dependence. Our work thus renders a uni-
fied theory of both phenomena in insulators with vanishing
Chern numbers. Besides, unlike the Chern-Simons contribu-
tion deduced from the second Chern form current, the induced
magnetization due to the perturbed Berry connection is well
defined irrespective of Chern invariants and of insulators or
metals. As a result, the orbital magnetoelectricity in two-
dimensional (2D) metals and Chern insulators, which had
long been hard to approach, is also attained in our theory.

We apply our theory to illustrate the orbital magnetization
pumped by microscopic atomic rotations, which correspond to
phonon modes with angular momentum [25,26], in toy models
based on the honeycomb lattice. The results are comparable to
the pumped spin magnetization via a strong Rashba spin-orbit
coupling [24]. We also show the vital role played by the
electric-field-induced orbital magnetization in the nonlinear
intrinsic anomalous Ettingshausen effect in 2D metallic sys-
tems. In particular, the Mott relation is validated in intrinsic
nonlinear transport by subtracting the magnetization compo-
nent of the thermal current in the second order of the electric
field.

This paper is organized as follows. In Sec. II we lay out the
semiclassical theory of Bloch electrons, which is employed
to study the adiabatically induced orbital magnetization in
metals and insulators, respectively, in Secs. III and IV. A case
study of the orbital magnetization pumped by local rotations
of atoms and the application of the orbital magnetoelectricity
to the intrinsic nonlinear anomalous Ettingshausen effect are
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shown in Sec. V, followed by a summary in Sec. VI. Some
technical details of the theory are presented in Appendices A
and B for the convenience of interested readers.

II. SEMICLASSICAL THEORY

In the semiclassical description, the Hamiltonian felt
by a narrow wave packet centered around position rc is
Ĥ = Ĥc + Ĥ ′ in the first-order gradient expansion, where

Ĥc = Ĥ0[r̂, p̂; w(rc), R(t )] + ∑
α θ̂

(α) · h(α)(rc, t ) is the local

Hamiltonian and Ĥ ′ = 1
2 {(r̂ − rc)i,

∂Ĥc
∂rci

} is the gradient cor-
rection [27]. The Einstein summation convention is implied
for repeated Cartesian indices i, j, and s henceforth. Ĥ0 is
the local approximation of the genuine Hamiltonian. The most
general Ĥ0 considered here includes w(rc), which represents
possible nonuniform static mechanical fields varying slowly
on the scale of the wave packet, and R(t ) serving as a pa-
rameter whose time evolution is adiabatic. Besides, in order
to implement the variational approach to obtain the local
density of a bounded observable, we add the auxiliary term∑

α θ̂
(α) · h(α)(r, t ) into the Hamiltonian and expand it around

rc. Here θ̂
(α)

(α = 1, 2, . . .) is a set of bounded observable
operators, each of which is assumed to be a vector for simple
notations, without losing generality. h(α)(r, t ) denotes the con-
jugate slowly varying external fields, and h(α)(rc, t ) changes
adiabatically in the parameter space (t, rc). At the end of the
calculation the auxiliary term is set to zero, i.e., h(α) = 0.

In the semiclassical theory that is accurate to the
first order of spatial gradients and of the time derivative
[27,28], the wave packet |Wn(k, rc, t )〉 = ∑

p Cnp|ψnp〉 is con-
structed by superposing the local Bloch states |ψnp(rc, t )〉 =
eip·r̂|unp(rc, t )〉 of Ĥc. Here n and h̄p are the band index and
crystal momentum, respectively, and the coefficient Cnp is
sharply distributed around the wave vector k of the wave
packet, obeying

∑
p |Cnp|2 = 1. To simplify notations, all the

band quantities without explicit band index are considered for
band n, unless otherwise noted. Throughout this study we
consider nondegenerate bands to simplify the analysis and
assume they are so separated that adiabatic evolutions are
feasible. The wave-packet Lagrangian reads (set h̄ = 1)

L = 〈W |i d

dt
− Ĥ |W 〉 = ṙc · k + k̇ · Ak + ṙc · Arc + At − ε̃,

(1)
where Ak/rc = 〈un|i∂k/rc

|un〉 and At = 〈un|i∂t |un〉 are the
Berry connections derived from the periodic part |un(k, rc, t )〉
of the Bloch wave [27]. The noncanonical form of the La-
grangian due to Berry connections implies that (rc, k) are
not canonical variables, and thus the measure of the phase
space spanned by (rc, k) should be modified, with the re-
sult [4] D = 1 + �

krc
ii . Here �

krc
ii is the trace of the Berry

curvature �
krc
i j ≡ ∂kiArc

j − ∂rc jAk
i , and other Berry curvatures

are formed similarly. The wave-packet energy is given by
ε̃ = ε + δε up to first-order gradients, where εn(k, rc, t ) is
the local Bloch energy, δεn = Re

∑
n1 �=n Ak

nn1
· (∂rc Ĥc)n1n and

Ak
nn1

= 〈un|i∂k|un1〉 is the interband Berry connection.
When going beyond the above first-order theory, the wave

packet is no longer dictated only by the Bloch states of the lo-
cal Hamiltonian Ĥc but is modified by Ĥ ′ up to the linear order

of spatial gradients [22]. In the well-established second-order
theory [29] the inhomogeneity appears only in electromag-
netic gauge potentials, whereas the following results account
for weak inhomogeneities of mechanical fields conjugate to
general bounded operators. This generalization is necessary to
obtain the adiabatically induced orbital magnetization carried
by Bloch electrons by calculating the magnetization current,
which is manifested only in nonuniform systems [30,31]. For
this purpose, it is sufficient to retain results up to the order of
the product spatial and time derivatives.

In the second-order theory (derivations presented in Ap-
pendix A), one can find that the wave-packet Lagrangian takes
the same form as Eq. (1), but the involved Berry connec-

tions are modified by inhomogeneity, i.e., Ãk = Ak + ak and
Ãt = At + at . Note that the correction to Arc is not needed,
since Arc is already in the first order of spatial gradients. The
obtained gauge-invariant modifications up to the first order of
spatial gradients read

ak
n = 2 Re

∑
n1 �=n

Ak
nn1

�n1n

εn − εn1

− ∂k · Grck
n , (2)

at
n = 2 Re

∑
n1 �=n

At
nn1

�n1n

εn − εn1

− ∂k · Grct
n , (3)

where Grck
n = Re

∑
n1 �=n Arc

nn1
Ak

n1n is the quantum metric ten-
sor in (rc, k) space, Grct

n = Re
∑

n1 �=n Arc
nn1

At
n1n, with Arc

nn1
=

〈un|i∂rc |un1〉, and

�n1n ≡ i

2
(∂p̂ · ∂rc Ĥc)n1n +

∑
n2 �=n

(∂rc Ĥc)n1n2 · Ap
n2n

− Arc
n1n · vn (4)

has the dimension of energy. ak has the dimension of position
and is pictorially a positional shift of the wave-packet center
induced by general inhomogeneities (Appendix A). at has
the dimension of energy, and, in view of the form of the
Lagrangian, −at may be envisioned simply as an effective
energy due to the adiabatic evolution of electronic states un-
der inhomogeneous circumstances. These pictures are very
helpful in understanding the following results. Meanwhile, the
wave-packet energy ε̃ does not receive further corrections at
the order of the product spatial and time derivatives.

Having identified the wave-packet Lagrangian and the
concomitant action S, one gets directly the semiclassical dy-
namics of Bloch electrons following from the Euler-Lagrange
equation in (rc, k) space. Furthermore, one can consider
the local density of a bounded observable θ̂, of which
the conjugate external field is marked by h, contributed
by a Bloch-electron ensemble with the occupation function
fn(rc, k, t ). The general recipe for this has been given recently
as [18]

θ(r, t ) = −
∫

[dk]drcD f
δS

δh(r, t )
|h→0, (5)

where [dk] ≡ ∑
n dk/(2π )d with d as the spatial dimension-

ality. In what follows we suppress the notation h → 0, but the
results for various adiabatic responses are calculated in this
limit. We take f (ε̃) as the Fermi distribution in order to focus
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on adiabatic intrinsic contributions determined solely by band
structures.

The spin magnetoelectricity and spin pumping by periodic
adiabatic processes can be readily obtained from the above
formula in the first order of the time derivative, as detailed
in Appendix B, while the orbital counterparts can only be
acquired through calculating the electric current, which is
much more involved and is elaborated in the next two sections.

III. ORBITAL MAGNETIZATION IN METALS

A. Nonlinear electric current

In order to address the orbital magnetization induced by
adiabatic evolutions, we need to formulate the local charge
current density up to the order of the product spatial and time
derivatives. To achieve this, Eq. (5) is considered in the case of
θ̂ = ev̂ being the charge current operator, hence h = −A is the
electromagnetic vector potential with a minus sign, which en-
ters through the minimal coupling, resulting in the chain rule
∂−A = e∂k. We still use k to denote the gauge invariant crystal
momentum. In the following the center label c is suppressed,
unless otherwise noted. After some manipulations, as shown
in Appendix B, we arrive at [hereafter

∫
without an integral

variable is shorthand for
∫

[dk], f 0 = f (ε)]

j(r, t ) = ∇ ×
(

M0 +
∫

f 0∂Bat

)
+ ∂t

∫
f 0eak

− e
∫

f 0
(
�kt + �k[kr]t

s ês
)

− e
∫

∂ε f 0δε�kt + e
∫

(∂k f 0at − ∂t f 0ak ), (6)

where the second Chern form of the Berry curvature [32,33] is
labeled as �k[kr]t

s ≡ �kk
si �rt

i + �kr
si �

tk
i + �kt

s �kr
ii , ês is the unit

vector in the s direction, and

M0 =
∫

( f 0m + eg0�). (7)

Here mn = e
2

∑
n1 �=n Ak

nn1
× vn1n is the orbital moment of a

Bloch electron, � is the vector form of the Berry curvature
�kk

i j , and g0 = − ∫ ∞
ε

f (η)dη is the grand potential density
contributed by a Bloch electron. With the symmetric gauge
for the uniform magnetic field, Eq. (3) gives

∂Bat = 2 Re
∑
n1 �=n

−At
nn1

mn1n

εn − εn1

+ e

2
∂k × Gkt

n , (8)

where Gkt
n = Re

∑
n1 �=n Ak

nn1
At

n1n is the quantum metric in
(k, t ) space, and mn1n = −∂B�n1n, which is elaborated later
in combination with a more specific physical context.

Equation (6) is the pivotal result of this paper. The first line
is of total spatial and time derivatives; hence, it is certainly
intimately related to the orbital magnetization and electric
polarization. Apparently, M0 is the magnetization that relies
solely on instantaneous electronic states and corresponds to
the equilibrium orbital magnetization in the static case [6].
Moreover, recall that −at serves as an effective energy due
to adiabatic evolutions of electronic states, and thus

∫
f 0∂Bat

is an adiabatically induced orbital magnetization density con-
tributed by the electron ensemble. Meanwhile, as ak is the

positional shift of a semiclassical electron,
∫

f 0eak has the
meaning of an electric polarization density. On the other hand,
the magnetization and polarization may not be determined
by the first line of Eq. (6) alone, as the second line can be
relevant as well. This line consists of first and second Chern
forms of Berry curvatures, which underline various electronic
topological responses of insulators [28,33–35]. Besides, the
last line signifies intrinsic Fermi-surface contributions to the
charge current density in metals, which are beyond the con-
ventional Boltzmann transport picture of conductors [36] and
are distinct from intrinsic Fermi-sea contributions to linear
response.

Now we are in a position to compare Eq. (6) with existing
results at the same order. The second line of this equation
has been formulated in inhomogeneous insulators [33,37] and
metals [38]. The specific case where the inhomogeneity enters
only through the magnetic vector potential has been studied
in insulators with degenerate bands [20,34] and in metals
[39]. Meanwhile, these pioneering studies have disregarded
the magnetization current in the first line of Eq. (6), especially
the orbital magnetization induced by the Berry connection at

due to adiabatic time evolutions [Eq. (8)]. However, there is an
important physical context: orbital magnetoelectricity in 2D
metals, which is contributed entirely by this gauge invariant
term and therefore is beyond the scope of the aforementioned
theories. We discuss this subject shortly.

B. Orbital magnetoelectricity in 2D

To address the orbital magnetoelectricity, we consider the
case that the adiabatic time dependence stems entirely from
the vector potential, i.e., E = −∂t A, with E being a weak
constant electric field, then ∂t = eE · ∂k, at = ak · eE and
�k[kr]t

s = �
k[kr]k
s j eE j . Thus the local charge current density

[Eq. (6)] reduces to

j(r) = ∇ ×
[

M0 +
∫

f 0∂B(eE · ak )

]

− e2E ×
∫

f 0� − e2Ei

∫
f 0�

k[kr]k
si ês

+ e2E ×
∫

∂ε f 0(v × ak − δε�). (9)

To understand this current we first inspect the case when
the spatial dependence originates only from the vector poten-
tial, i.e., B = ∇ × A. Then it is apparent that

j = −e2E ×
∫

{ f 0� − ∂ε f 0[v × (ak )B + (m · B)�]}, (10)

where (ak )B is proportional to the magnetic field. This result
recovers the intrinsic magneto-nonlinear Hall current of order
EB that was obtained previously by a different method [22].

On the other hand, to identify the orbital magnetization one
could introduce the spatial dependence from other inhomoge-
neous external mechanical fields. By doing so one may expect
that the local current density in bulk can be decomposed into
a transport and a magnetization component, namely [30],

j = jtr + ∇ × M, (11)
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where the transport current jtr contributes to the net flow
through the sample. In 2D the second Chern form current
is enforced to vanish due to �

k[kr]k
si = 0; hence, Eq. (11) is

rescued with jtr taking the same form as the above magneto-
nonlinear Hall current Eq. (10) and

M = M0 +
∫

f 0∂B(eE · ak ). (12)

As is anticipated, the electric work upon the positional shift ak

implies immediately an orbital magnetization. This electric-
field-induced magnetization is in agreement with what is
obtained recently by a different method [40], but the present
derivation is much simpler, even though starting from a more
generic framework. In 2D, M is a pseudoscalar and is well
defined irrespective of metals or Chern insulators.

Owing to the gauge invariance of ak , it is legitimate to
define the orbital magnetoelectric susceptibility contributed
by each Bloch electron in 2D αo

i j via

∂Mj/∂Ei =
∫

f 0αo
i j . (13)

αo
i j takes a gauge-invariant form ( j = z in 2D),

αo
i j = −2e Re

∑
n1 �=n

(
Ak

i

)
nn1

(mj )n1n

εn − εn1

+ e2

2
ε jls∂kl

(
Gkk

si

)
n, (14)

with Gkk
n = Re

∑
n1 �=n Ak

nn1
Ak

n1n as the k-space quantum met-
ric [41].

It is interesting to compare αo
i j with the spin magnetoelec-

tric susceptibility contributed by each Bloch electron, which
is given by the first term of Eq. (14) with mn1n replaced by
the interband elements of the spin magnetic moment. Since
mn1n = − e

2

∑
n2 �=n(vn1n2 + δn2n1vn) × Ak

n2n reduces to the fa-
miliar orbital moment mn when n1 = n, it can be deemed as
an interband orbital magnetic moment. Despite this similarity
between spin and orbital magnetoelectric susceptibility, the
distinction is apparent: the k-space dipole moment of the
quantum metric ∂klGkk

si does not have a counterpart in spin
magnetoelectricity. Noticeably, for two-band metallic systems
with particle-hole symmetry, the first term of αo

i j vanishes;

hence, αo
i j = e2

2 ε jls∂klGkk
si is given solely by the quantum met-

ric dipole, which is an intrinsic Fermi-surface effect.
Before closing this section, we note that in 3D insulators

with nonvanishing k-space Chern invariants or 3D metals,
the second Chern form current in Eq. (9) obviously poses
a difficulty in pursuing a gauge-invariant decomposition in
the form of Eq. (11). This difficulty raises the question as to
whether the electric-field-induced orbital magnetization can
be defined as a bulk quantity in such systems. At the present
stage this is still an open question [42–44] and is left for future
efforts.

IV. ORBITAL MAGNETIZATION IN NON-CHERN
INSULATORS

Now we turn to the nonlinear electric current in insulators
in the general case of adiabatic time evolutions and spatial de-
pendence, under the assumption of vanishing Chern numbers
in all the pertinent parameter spaces. Great simplifications of

Eq. (6) occur in insulators. First, the Fermi-surface terms van-
ish and the Fermi-sea ones are contributed by fully occupied
bands. Then, according to the antisymmetric decomposition
of the second Chern form

�k[kr]t
s = ∂ksCStkr

ii − ∂kiCStkr
si − ∂riCStkk

is − ∂tCSkkr
sii , (15)

where the involved Chern-Simons three forms read, e.g.,
CStkr

si = 1
2 (At�kr

si + Ak
s�

rt
i + Ar

i �
tk
s ), CStkk

is = 1
2 (At�kk

is +
Ak

i �
kt
s + Ak

s�
tk
i ), and CSkkr

sii = 1
2 (Ak

s�
kr
ii + Ak

i �
rk
is + Ar

i �
kk
si ),

the current density takes the form of

j(r, t ) = ∇ × M(r, t ) + ∂t P(r, t ). (16)

Here we have taken the k-space periodic gauge for Bloch wave
functions, and

M = M0 +
∫ (

∂Bat − e
1

2
εlisCStkk

is êl

)
, (17)

P = e
∫ (

Ak + ak + CSkkr
sii ês

)
(18)

can be deemed as the orbital magnetization and polarization
induced, respectively, by the adiabatic time evolution and
spatial inhomogeneity.

One can tell from Eq. (6) that the perturbative contribution
∂Bat to the orbital magnetization is well defined regardless
of Chern numbers in the (k, t ) space and is invariant under a
gauge transformation of Bloch wave functions (a phase trans-
formation is compatible with the k-space periodic gauge).
In contrast, the Chern-Simons orbital magnetization deduced
from the second Chern form current is only well defined
in insulators with vanishing (k, t )-space Chern numbers. It
changes under the gauge transformation. It can be readily
shown that this gauge dependence is permitted by the inherent
degrees of freedom of M(r, t ) and P(r, t ) determined by the
invariance of the local current density equation (16) [45] [e.g.,
in the 2D case the inherent degrees of freedom of M and P are
Mz ẑ → Mz ẑ − ∂tχ ẑ and P → P + ∇ × (χ ẑ), with the scalar
field χ (r, t )].

This gauge dependence also implies, on the other hand,
the necessity of removing the time dependence of the orbital
magnetization and the spatial dependence of the electric polar-
ization if one would like to pursue gauge-invariant definitions
of them. Therefore, there are generally two ways to have
a gauge-invariant orbital magnetization: to either eliminate
the explicit time dependence of M or pursue the definition
upon an average over time. These two approaches correspond
to two important physical contexts—orbital magnetoelectric
response and orbital magnetization pumping—that are ad-
dressed separately in the following two subsections.

A. Orbital magnetoelectric response

When the time dependence and the spatial dependence
concern only the electromagnetic gauge potentials, the ex-
plicit time dependence of M and the spatial dependence of
P are removed due to the minimal coupling. This is the case
of the orbital magnetoelectric response in insulators, which
includes two dual effects: a constant electric (magnetic) field
induces an orbital magnetization (electric polarization). Most
previous derivations are designed for only one of the two dual
effects [19–22], while a theory capable of both simultaneously
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is rare [46]. Here we show that they are readily derived from
the present theory.

On the one hand, when the time dependence appears
solely as E = −∂t A, one has

∫
CStkk

is = −θe
4π2 εis jE j , where θ =

− ∫
d3k
4π

Ak · � is the abelian version of the so-called θ term
[28,35]. Then M [Eq. (17)] becomes a time-independent or-
bital magnetization:

M = M0 + ∂B

∫
ak · eE + e2

4π2
θE. (19)

On the other hand, when the spatial dependence appears only
as a magnetic field,

∫
CSkkr

sii = θe
4π2 Bs. Thus, one can identify

P as a uniform polarization, which is in agreement with the
previous theory [22], and verify ∂Mi/∂Ej = ∂Pj/∂Bi.

B. Periodic-evolution pumped orbital magnetization

It is also possible to define, based on M and P, the time-
averaged orbital magnetization in time periodic systems and
the spatially averaged polarization in spatially periodic sys-
tems. Here we concentrate on the magnetization, and the
polarization can be discussed similarly. If the adiabatic time
dependence of the electronic Hamiltonian is periodic with
period T and the Chern invariants in (k, t ) space are zero, then
the time-averaged M is gauge invariant and can be perceived
as the orbital magnetization pumped by the periodic evolution,
namely,

M̄(r) =
∫ T

0

dt

T
M(r, t ). (20)

We use the notation M̄ to distinguish from the instantaneous
magnetization M(r, t ) in Eq. (16). In 2D the ∇φ degree of
freedom of the magnetization is irrelevant and the so-defined
M̄(r) gives the orbital magnetization unambiguously. In both
2D and 3D this M̄ coincides with the abelian version of the
so-called geometric orbital magnetization obtained by a den-
sity matrix approach evaluating the time-averaged expectation
value of the magnetic dipole operator in the Wannier basis
in homogeneous band insulators [23]. On the other hand, the
present theory does not invoke the Wannier basis and accounts
also for weak inhomogeneous systems.

V. APPLICATIONS

A. Model illustration of orbital magnetization pumped by local
rotations of atoms

To illustrate the above theory, we consider a minimal model
for the orbital magnetization due to the periodic adiabatic
evolution of electronic states induced by microscopic local
rotations of atoms. Such a model is not required to possess
the spin-orbit coupling, in contrast to the spin magnetization
induced by local circulations of atoms that is only possible
with the aid of spin-orbit coupling [24]. The minimal spatial
dimensionality for rotational motions is two, and the model
should have a gap. Moreover, the second Chern form current
can be nonzero only if the dimension of the Hamiltonian is
larger than two [33]. Therefore, we here consider a two-band

model; hence, we focus exclusively on the contribution

M̄ =
∫ T

0

dt

T

∫
dk

(2π )2
∂Bat (21)

from the perturbed Berry connection. According to the ex-
pression for ∂Bat [only the first term of Eq. (8) matters in
insulators], one can easily verify that it can be nonvanishing
in a two-band model only if the particle-hole symmetry is
broken.

Such a minimal model can thus be chosen as a spinless
graphene-type one based on the honeycomb lattice taking
into account the next-nearest-neighbor hopping, which is de-
scribed by the Hamiltonian

Ĥ (k) = t0(FRσx − FImσy) + �σz + t1FNNσ0, (22)

where FR = 2 cos x cos y + cos 2y, FIm = 2 cos x sin y −
sin 2y, and FNN = 2 cos(2x/

√
3) + 4 cos(x/

√
3) cos

√
3y + 3,

with x = kxa0

√
3/2, y = kya0/2, and a0 being the interatomic

distance. The first and second nearest-neighbor hoppings are
t0 and t1, respectively, and a nonzero t1 breaks the particle-hole
symmetry. The staggered sublattice potential strength is �.

Next, we add an adiabatic perturbation term due to the
microscopic local rotation of atoms and mainly follow the
treatment introduced in Ref. [24], where a right-handed circu-
larly polarized optical phonon mode at � point is considered,
with frequency ω and displacement vectors

uA = u0(cos ωt, sin ωt ), uB = −uA (23)

of A and B atoms on the two sublattices. There is a phase dif-
ference π between the circular rotations of atoms A and B [see
also Fig. 1(a)], and thus the nearest-neighbor bond lengths
change with time by the microscopic local rotations, while
the next-nearest-neighbor ones do not. One can therefore
take these rotations as the modulation of the nearest-neighbor
hopping. By writing down the tight-binding Hamiltonian and
converting it to a k-space one, the resultant adiabatic pertur-
bation to Ĥ (k) reads

δĤ (k, t ) = −δt0(σx sin y + σy cos y)
√

3 sin x cos ωt

+ δt0[(cos x cos y − cos 2y)σx

− (cos x sin y + sin 2y)σy] sin ωt, (24)

where δt0 ∝ 2u0 arises from the change of the first nearest-
neighbor hopping energy due to the variation of the inter-
atomic distance by the local rotations [24]. In our calculation,
we consider the chemical potential inside the band gap and set
t0 as the energy unit, t1 = 0.1t0, and δt0 = 0.1t0.

With � = 0.2t0, we plot energy bands in the absence of
phonons in Fig. 1(a) where a band gap opens and the energy
bands do not show particle-hole symmetry. In the presence of
phonons, the adiabatic evolution of the electronic states due to
the local rotations of A and B atoms leads to a time-dependent
orbital magnetic moment, which is plotted in Fig. 1(b) in
units of et0

h̄ a2 h̄ω
t0

(magnetic moment upon an area of a2) in
an evolution period. It is apparent that the induced orbital
magnetization is proportional to the phonon frequency ω. By
using the parameters of graphene with t0 = 3 eV and the lat-
tice constant a = √

3a0 = 2.46 Å, et0
h̄ a2 is about 4.77μB, with

μB as the Bohr magneton. One can find a weak oscillation
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FIG. 1. Model illustration of the orbital magnetization of Bloch
electrons induced by the microscopic local rotation of atoms.
(a) Band structure of a spinless-graphene toy model with first and
second nearest-neighbor hoppings. (b) Time dependence of the adi-
abatically induced magnetic moment in units of eωa2 per unit cell.
Here ω is the angular frequency of the atomic rotation, a is the lattice
constant, and we take the parameters as � = 0.2t0, t1 = 0.1t0, and
δt0 = 0.1t0. The insert shows that the pumped orbital magnetization
in one period of the local rotations of atoms is proportional to the
next-nearest-neighbor hopping parameter. (c) k-space distribution of
∂Bat of the valence band. (d) Gap dependence of the pumped orbital
magnetization.

with a nonzero net contribution (about −3.5 × 10−3μB
h̄ω
t0

)
upon one period of the local rotations of atoms, which implies
a nonzero pumping of orbital magnetization. The k-resolved
instantaneous orbital magnetization ∂Bat is plotted in Fig. 1(c)
where one can find that the main contribution is from K
and K ′ points with minimal interband spacings. As the band
gap decreases, the magnitude of the induced magnetization
increases rapidly [Fig. 1(d)].

We verify that the induced orbital magnetization vanishes
with the next-nearest-neighbor hopping parameter t1 in the
insert in Fig. 1(b), which also shows that the pumped mag-
netization is proportional to t1 at least up to t1 = 0.1t0. The
resultant orbital magnetization pumping in the above toy
model is of the same order as the pumped spin magnetization
in a honeycomb lattice with very strong Rashba spin-orbit
coupling (the Rashba coefficient equals to 0.4t0) [24]. We
also mention that, in this latter four-band model, breaking the
particle-hole symmetry is not required for supporting nonzero
orbital magnetization pumped by rotations of atoms, and the
pumped orbital and spin magnetization are also generally
comparable (not shown here). Furthermore, taking h̄ω/t0 =
0.1 (the ratio of the typical energy scales of phonons and
electrons), the magnetic-moment pumping due to the periodic
adiabatic change of electronic states induced by microscopic
rotations of atoms is of the order of the nuclear magneton.

B. Intrinsic nonlinear anomalous Ettingshausen effect in 2D
metals

Not only the electric current but also a thermal current car-
ried by Bloch electrons can be induced by an applied electric
field. In the intrinsic linear thermal current response to the
electric field, the zero-field orbital magnetization plays a vital
role [30,31,47]. It is therefore anticipated that the electric-
field-induced orbital magnetization is indispensable in the
second-order nonlinear intrinsic thermal current response to
the electric field, i.e., the nonlinear intrinsic anomalous Etting-
shausen effect. In this subsection we discuss in more detail
the semiclassical picture of the electric-field-induced orbital
magnetization in 2D metals and point out its key role in the
intrinsic nonlinear anomalous Ettingshausen effect.

First, the electric-field-modified orbital magnetization can
be recast into an instructive form,

M =
∫

( f 0m̃ + eg0�̃), (25)

in analogy to the magnetization (7) in the absence of
electric fields. Here �̃ = ∂k × [Ak + (ak )E] is the electric-
field-modified Berry curvature, and

m̃ = m + ∂B(eE · ak ) + ev0 × (ak )E (26)

is the orbital moment m̃ = e
2 〈W |(r̂ − rc) × v̂|W 〉 up to the

first order of the electric field. m is the zero-field orbital
moment, v0 is the band velocity, and (ak )E is the positional
shift linear in the electric field [22].

Second, a coarse-graining process based on the wave-
packet description of Bloch electrons [47] shows that the
electric-field-induced local energy current density up to the
second order is given by

jE = −eE ×
∫

f 0ε�̃ − E ×
∫

f 0m̃. (27)

A magnetization current jE,mag should be discounted to obtain
the transport energy current density [30] jE,tr = jE − jE,mag.
In uniform crystals, the energy magnetization current at the
linear order of the electric field is given by the material-
dependent part of the Poynting vector describing the energy
flow [47]: jE,mag = −E × M0. In the present nonlinear re-
sponse, one has

jE,mag = −E × M. (28)

Consequently, the transport thermal current is given by

jh,tr = jE,tr − μ

e
j = −eE × T

∫
s(ε)�̃, (29)

where s(ε) = [(ε − μ) f 0 − g0]/T is the entropy density con-
tributed by a particular Bloch state, μ is the chemical
potential, T is the temperature, and we have made use of
the result for the intrinsic nonlinear Hall electric current [22]
j = −e2E × ∫

f 0�̃.
By integration by parts, the entropy density takes the form

of s(ε) = ∫
dη(η − μ)∂μ f (η)θ (η − ε)/T , which renders the

thermal transport current to be

jh,tr

T
= −1

e

∫
dη

η − μ

T

∂ f (η)

∂η
j(η). (30)
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Here j(η) = −e2E × ∫
θ (η − ε)�̃ is the nonlinear Hall elec-

tric current at zero temperature with Fermi energy η. This
equation is completely parallel to the generalized Mott re-
lation between the transport thermal current and the electric
current in the linear order of electric fields. At low temper-
atures, much less than the distances between the chemical
potential and band edges, the Sommerfeld expansion is le-
gitimate [48]; hence, the entropy density reduces to s(ε) =
1
3π2k2

BT δ(μ − ε), which is concentrated on the Fermi surface
and decays dramatically away from it. Then the standard form
of the Mott relation follows

jh/T = (
π2k2

BT/3e
)
[∂ j(ε)/∂ε]|ε=μ. (31)

Therefore, we extend the regime of validity of the Mott
relation to the second-order intrinsic thermoelectric current
responses to a constant electric field.

VI. SUMMARY

We have formulated a semiclassical theory for the or-
bital magnetization induced by general adiabatic evolutions
of Bloch electronic states. This theory starts from formu-
lating the electric current density in bulk, from which the
magnetization can be extracted. The induced orbital magne-
tization is gauge dependent in the general case but is gauge
invariant only when the adiabatic time dependence is implicit
or averaged out. These two cases correspond to the orbital
magnetoelectric response and the periodic-evolution pumped
orbital magnetization.

In the orbital magnetoelectric effect the adiabatic evolution
is driven by a constant electric field, and the time depen-
dence is only implicit through the evolution of mechanical
crystal momentum. Thus the pertinent second Chern form
current vanishes in 2D, making the 2D orbital magnetoelec-
tricity governed completely by the perturbative term of the
reciprocal-space Berry connection [Eqs. (13) and (14)], ir-
respective of insulators or metals. The role of the orbital
magnetoelectricity in the nonlinear intrinsic anomalous Et-
tingshausen effect, which is proposed here as a transverse
thermal current response in the second order of the driving
electric field, has also been revealed in 2D metals. On the
other hand, the orbital magnetoelectricity and the nonlinear
intrinsic anomalous Ettingshausen effect in 3D metals are
beyond the scope of the present theory. They may not be de-
termined solely by bulk considerations and are left for future
efforts.

In the context of the orbital magnetization pumped by
periodic adiabatic evolutions in non-Chern insulators, the
Chern-Simons contribution deduced from the second Chern
form current can be present even in 2D. Meanwhile, as a
second Chern form can be nonzero only if the system has
more than two bands [33], in a two-band minimal model the
pumped magnetization is dictated solely by the perturbative
term of the time component of the Berry connection [Eqs. (21)
and (8)]. We illustrated the orbital magnetization pumping due
to the periodic adiabatic change of electronic states induced
by microscopic rotations of atoms in toy models based on the
honeycomb lattice. The induced magnetization is of the same
order as the pumped spin magnetization via strong Rashba
spin-orbit coupling.

The presented formulation is based on the assumption of
well-separated nondegenerate Bloch bands, whereas to ex-
plore the semiclassical theories in the case of degenerate
bands and of closely located bands with possible nonadiabatic
effects [49,50] we need separate studies.
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APPENDIX A: DERIVATION OF GRADIENT-CORRECTED
WAVE-PACKET STATE

Given that the perturbative Ĥ ′ is the form of the gradient
correction, the first-order wave packet reads

|Wn(k)〉 =
∑

p

Cnp

[
|ψnp〉

+
∑

n1 p1 �=np

〈ψn1 p1
|Ĥ ′|ψnp〉

εnp − εn1 p1

|ψn1 p1
〉
]

=
∑

p

eip·r̂
[
Cnp|unp〉 +

∑
n1 �=n

Cn1 p|un1 p〉
]
, (A1)

where

Cn1 p =
∑

p1

Cnp1

〈ψn1 p|Ĥ ′|ψnp1
〉

εnp1
− εn1 p

=
∑
n2 p1

Cnp1

[
∂rc Ĥc(p)

]
n1n2

· i(Dp)n2nδpp1

εnp1
− εn1 p

+
∑
n2 p1

Cnp1

[
∂rc Ĥc(p1)

]
n2n · i(Dp)n1n2δpp1

εnp1
− εn1 p

. (A2)

Here we introduced the notation

i(Dp)n2n ≡ i∂pδn2n + Ap
n2n − rcδn2n. (A3)

After some manipulations we get

Cn1 = �n1nCn

εnp − εn1 p
− iArc

n1n · (
i∂p + Ap

n − rc
)
Cn, (A4)

where

�n1n = 1

2

(
i∂p + Ap

n1
− Ap

n

) · (
∂rc Ĥc

)
n1n

+ 1

2

∑
n2 �=n1

Ap
n1n2

· (
∂rc Ĥc

)
n2n

+ 1

2

∑
n2 �=n

(
∂rc Ĥc

)
n1n2

Ap
n2n − Arc

n1n · vn (A5)

has the dimension of energy. By using

∂p · (
∂rc Ĥc

)
n1n = (

∂p̂ · ∂rc Ĥc
)

n1n

+ i
∑

n2

[
Ap

n1n2
· (

∂rc Ĥc
)

n2n

− (
∂rc Ĥc

)
n1n2

· Ap
n2n

]
, (A6)
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one gets Eq. (4). Here we also note that Eqs. (A4) and (4)
have also been obtained by a different method in a recent
preprint [51]. In addition, when [∂rc Ĥc, r̂] = 0, Eq. (4) reduces
to �n1n ≡ ∑

n2 �=n(∂rc Ĥc)n1n2 · Ap
n2n − Arc

n1n · vn.
The wave-packet center appearing in Eq. (A4) is deter-

mined by rc = 〈W |r̂|W 〉 = ∂kγ (k) + Ak + ak , where −γ (p)
is the phase of Cnp. While the first two terms appear al-
ready in the first-order theory [27], the third term ak

n ≡
2 Re

∑
p

∑
n1 �=n C∗

npCn1 pAp
nn1

is the inhomogeneity-induced
positional shift of the wave-packet center.

APPENDIX B: DERIVATION OF EQ. (6)

As shown in Ref. [18], one has∫
[dk]drcD f

δS

δh
=

∫
D f

[
∂L

∂h
− d

dt

∂L

∂ (∂t h)

]

− ∂ri

∫
D f

[
∂L

∂ (∂ih)
− ∂L

∂ (∂t h)
ṙi

]
, (B1)

and then the field variation formula (5) yields

θs =
∫

D f
(
∂hs ε̃ − �̃hT

s

) − ∂ri

∫
f

[
dθ

is − ∂at

∂ (∂ihs)

]
. (B2)

Here �̃hT
s = �hk

si k̇i + �hr
si ṙi + �̃ht

s , where k̇i = −∂iε + �rt
i

and ṙi = ∂kiε − �kt
i up to the order of the product spatial

and time derivatives according to the equations of motion,
and only the Berry curvature �ht needs to be modified by
inhomogeneity:

�̃ht = ∂hÃt − ∂tÃ
h
, Ãh = ∂Ãt

∂ (∂t h)
= Ah + ah. (B3)

Then we arrive at

θs(r, t ) = ∂hs

(
G −

∫
f 0at

)
− ∂ri

[
Dθ

is −
∫

f 0 ∂at

∂ (∂ihs)

]

−
∫

f 0
(
�ht

s + �h[kr]t
s

) + ∂t

∫
f 0ah

s

−
∫

∂ε f 0δε�ht
s +

∫ (
∂hs f 0at − ∂t f 0ah

s

)
, (B4)

where each term is gauge invariant, and the second Chern
form of the Berry curvature is labeled as

�hk
si �rt

i + �hr
si �

tk
i + �ht

s �kr
ii ≡ �h[kr]t

s . (B5)

Besides, G = ∫
Dg(ε̃) is the electronic grand potential den-

sity and is evaluated to the first order of gradients, g(ε̃) =
g0 + f 0δε, and ∂g(ε̃)/∂ε̃ = f (ε̃) = f 0 + ∂ε f 0δε, with g0 =
− ∫ ∞

ε
f (η)dη and f 0 = f (ε). Dθ

is = ∫
( f 0dθ

is + g0�kh
is ) is

the θ -dipole density of the electron system, with dθ
i j =

∂δεn/∂ (∂ih j ) being the θ -dipole moment of a semiclassical
Bloch electron [18].

In the case of θ̂ = ev̂ and h = −A, Eq. (B4) reduces to
Eq. (6).

On the other hand, in the absence of inhomogeneity,
Eq. (B4) reduces to θ(t ) = ∫

f 0(∂hε − �ht ). In insulators,
hence zero temperature for electrons, one has

θ(t ) =
∫

〈u|θ̂|u〉 −
∫

�ht . (B6)

The first term on the right-hand side is simply the average
value of θ in the electron system obtained by using the instan-
taneous Hamiltonian, whereas the second term is a geometric
term related to the Berry curvature in the (t, h) space:

�ht = −�th = 2 Re
∑
n1 �=n

At
nn1

θn1n

εn − εn1

. (B7)

Equation (B6) gives a unified account of diverse adiabatic
responses of bounded operators in band insulators, such as
the spin magnetoelectric effect, where the spin magnetization
is induced by a weak electric field, and the spin magnetization
pumped by microscopic local rotation of atoms [24].
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