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Anderson disorder-induced nontrivial topological phase transitions
in two-dimensional topological superconductors
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We numerically investigate the quantum phase transitions induced by Anderson disorder in a topological
superconductor (TSC), which is composed of a quantum anomalous Hall insulator (QAHI) and a proximity
coupled s-wave superconductor (SC). From the transport phenomena presented, we deduce that with the increase
of Anderson disorder strength, the topological quantum phase changes from Chern number N = 0 to N = 1 and
finally to N = 2. Then we use the effective-medium theory to verify our numerical results and conclude that the
phase transitions should ascribe to the negative correction of topological mass.
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I. INTRODUCTION

Majorana fermions, which are their own antiparticles [1]
and obey exotic non-Abelian statistics, may play a crucial
role in future fault-tolerant topological quantum computation
[2–4]. Finding such particles is a wide concern topic in the
fields of condensed matter physics and material science. Since
they are most likely to exist in topological superconductors
(TSCs), TSCs become one of the most fascinating fields
nowadays [5–8]. These particles, which exist in the form
of quasiparticles in the condensed matter system, were first
predicted to be found in the fractional quantum Hall state
[9,10]. Subsequently, in 2000, Read and Green theoretically
predicted that Majorana fermions would appear in a px + ipy

wave superconductor (SC) [11]. In 2001, Kitaev proposed a
simple one-dimensional toy model for spinless p-wave SC.
He also proved that Majorana fermions appear at both ends
of this one-dimensional SC [12]. Since the proposed SC is
difficult to realize in experiment, it has not attracted many
people’s attention. The discovery of topological insulator (TI)
provides an ideal research platform for Majorana fermions.
In 2008, Fu and Kane pointed out that the proximity effect
between normal s-wave SC and the surface states of a strong
TI can result in the generation of px + ipy wave TSCs and the
Majorana fermions can appear at the interface between the TI
and the SC [13,14]. Henceforward, researches on the TI in
the proximity of a SC have attracted extensive attention from
many researchers [15–20].

Recently, Chung et al. [21] and Wang et al. [22] theo-
retically predicted that the two-dimensional (2D) chiral TSC
state can be realized in the quantum anomalous Hall insulator
(QAHI) thin film through the proximity effect to a conven-
tional s-wave SC. The unique signature is that the longitudinal
conductance is quantized into a half-integer conductance
plateau with a value of e2/2h in their hybrid structure. In
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2017, He et al. have observed such a quantized plateau exper-
imentally in the QAHI bar covered by the s-wave SC, which
is signature of chiral Majorana fermion [23]. However, Ji
et al. [24] indicated that the observed half-integer conductance
plateau may not imply the existence of one-dimensional chiral
Majorana fermions. They claimed that a metallic phase in
the central region of hybrid structure also presents a quan-
tized conductance of e2/2h. Almost simultaneously, based on
the percolation theory Huang et al. [25] found the existence
of a similar conductance plateau in the magnetic disordered
hybrid structure at a relatively high temperature or in the pres-
ence of dephasing arising from the interplay of disorder and
temperature [26]. Subsequently, Lian et al. [27] theoretically
compared the critical behavior near the e2/2h conductance
plateau induced by the TSC with the conductance plateau
predicted by Huang et al. and finally pointed out that the
two plateaus can be distinguished in the experiment. In 2020,
Kayyalha et al. experimentally studied similar QAHI-SC hy-
brid devices; they found that the half-quantized conductance
plateau is unlikely to be induced by chiral Majorana fermions
in their samples with a highly transparent interface [28].
Therefore, one may ask: What are the characteristics of the
quantized conductance of e2/2h induced by disorder? More
importantly, what is the physical mechanism of the quan-
tized conductance of e2/2h? These questions still need to be
clarified.

The defects are an inevitable factor in manufacturing pro-
cesses. Moreover, the effect of disorder constitutes a crucial
issue in the unique transport properties of the topological ma-
terials being studied. Therefore, various topological systems
exhibit many novel phenomena induced by disorder [29–35].
The most striking of these phenomena is the phase transi-
tion of TI caused by the strong disorder, which discovered
the topology Anderson insulator [35]. Then, by using the
effective-medium theory, Groth et al. theoretically demon-
strated the physical mechanism of this topological quantum
phase transition induced by Anderson disorder [36]. Based
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on this theory, Song et al. and Guo et al. discussed the
phase transition in a 2D TI system with different disorder
[37] and a three-dimensional TI system with nonmagnetic
disorder, respectively [38]. TSC is another topological matter
discovered after the TIs. The TSC hybrid structure involving
Majorana fermions exhibit extraordinary physical phenomena
in transport, especially for the clean N = 1 chiral Majorana
edge case, which presents four scattering processes: trans-
mission, local Andreev reflection, crossed Andreev reflection,
and normal reflection. These four processes have equal prob-
ability with a value of 0.25 [16,21]. Recently Mross et al.
[39] and Wang et al. [40] predicted that disorder can in-
duce transition between the non-Abelian phase and Abelian
phase, resulting in changes of the thermal Hall conductance
plateau. Before these reports, Ryu and Nomura have pointed
out that disorder not only induces topological quantum phase
transition in TI but also in TSC [41]. Subsequently, Borch-
mann et al. used three different methods to find evidence
for the change of Chern number with Anderson disorder in
spin-orbit coupled TSC, which is named Anderson TSC [42].
The phase transitions from high Chern number phase into a
topological phase with Chern number N = 1 is seen in all of
their three cases. Investigating the effects of disorder on the
one-dimensional dimerized Kitaev superconductor chain by
using the Su-Schrieffer-Heeger model, Hua et al. found that
the phase transition can also occur [43]. Before that, Qin et al.
theoretically explored the effects of disorder on the topolog-
ical phases in 2D Rashba spin-orbit coupled SC. They found
that a topologically trivial TSC can be driven into a nontrivial
chiral TSC upon diluted doping of isolated magnetic disorder
[44]. However, it is still unclear whether Anderson’s disorder
can induce a trivial quantum phase in 2D TSC to a nontrivial
quantum phase, as TI does.

Thus in this paper, we study 2D QAHI proximity cou-
pled by an s-wave SC in a hybrid system where Anderson
disorder in the central top-covered region is considered, as
shown in Fig. 1(a). It is found that between the N = 2 phase
and N = 0 phase, there is a topological quantum phase with
N = 1. The result is similar to the work of Lian et al. [27].
In their work, they claimed that the disorder induced by
the magnetic field can cause the change of Chern number
in TSC. But we find that in our model, with the increase
of nonmagnetic Anderson disorder strength, the topological
quantum phase changes from N = 0 to N = 1 and finally to
N = 2. Based on effective-medium theory, we further calcu-
late the renormalized topological mass. The calculation results
show that the topological mass obtains a negative correc-
tion with the increase of disorder strength. More specifically,
the trivial TSC phase represented by point B in the phase
diagram [see Fig. 1(b)] can be driven into the chiral TSC
phase [blue region in Fig. 1(b)]. Therefore, we come to the
conclusion that Anderson disorder can adjust the magnetic
strength, resulting in closing and reopening the band gap
of TSC.

This paper is organized as follows: In Sec. II, our theo-
retical model and used approach are introduced. In Sec. III,
disorder induced topological phase transition is discussed. In
Sec. IV, mechanism and explanation of the topological phase
transition are given. Finally, in Sec. V a brief conclusion is
summarized.

FIG. 1. (a) Schematic diagram of the QAHI/TSC(trivial)/QAHI
hybrid system. The labels L and R refer to the corresponding leads.
The dirtied central region represents the nontrivial TSC region where
disorder is applied in the calculations. (b)Phase diagram of the TSC
in the (�, m) plane for μ = 0 . Red hollow circles A and B denote
the phase point in the two leads and in the central trivial TSC region
used in the calculation, respectively. N label the Chern number of
the TSC. Here, only � > 0 are given.

II. MODEL AND METHOD

We consider a QAHI/trivial TSC/QAHI hybrid structure
that couples an s-wave SC to the disordered central region
of a QAHI film, as shown in Fig. 1(a). The size of the cen-
tral region is Nx × Ny. Given a basis of the k space [c↑(k),
c↓(k)]T , where c↑(k) (c↓(k)) is the annihilation operator, ↑
(↓) represents spin-up (spin-down). In our numerical calcula-
tion, we adopt the most general two-band Hamiltonian with
low-energy effective states near the � point describing the
2D QAHI system, which can be expressed in the following
form [45,46]:

HQAHI(k) =
(

m + Bk2 A(kx − iky)
A(kx + iky) −m − Bk2

)
, (1)

where A, B, and m are material parameters. Since we use
the nearest-neighbor tight-binding representation in the cal-
culations, the corresponding Hamiltonian of a 2D square
lattice can be obtained by Fourier transformation. There-
fore, the Hamiltonian in equation (1) can be expressed
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as [47]

HQAHI =
∑

i

ϕ
†
i T0ϕi +

∑
i

ϕ
†
i Txϕi+δx

+
∑

i

ϕ
†
i Tyϕi+δy + H.c.,

T0 = (m + 4B

a2
)σz,

Tx = − B

a2
σz − iA

2a
σx,

Ty = − B

a2
σz − iA

2a
σy, (2)

where i represents the real space coordinate site (x, y), δx (δy)
is the unit vector along the x (y) direction, ϕi = [ci↑, ci↓]T are
annihilation operators of the electron on site i in real space for
spin-up and spin-down, σx,y,z are the Pauli matrices, and a is
the lattice constant.

The Bogoliubov-de Gennes (BdG) Hamiltonian of QAHI
proximity coupled with an s-wave SC in the central region is

HTSC(k) =
(

HQAHI(k) + μ i�σy

−i�∗σy −H∗
QAHI(−k) − μ

)
, (3)

where potential energy of the top-gated voltage in central TSC
region is represented by μ and the basis vector is expressed
by ϕk = [c↑(k), c↓(k), c†

↑(k), c†
↓(k)]T . � is induced pairing

potential due to the proximity to an s-wave SC.
We include the effects of Anderson disorder by adding an

onsite potential term; by considering particle-hole symmetry,
the Anderson disorder of TSC in real space is described by the
Hamiltonian [47],

HD =
∑

i

ψ
†
i wiτz ⊗ σ0ψi, (4)

where wi is the onsite disorder energy uniformly distributed
in the range [−W/2,W/2] with the disorder strength W . ψi =
[ci↑, ci↓, c†

i↑, c†
i↓]T is the spinor on site i in Nambu space. τz is

the Pauli matrix in the z direction acting on the particle and
hole degrees of freedom, and σ0 denotes the unit matrix in
spin space.

With the aid of the Keldysh nonequilibrium-Green-
function technique, a formal expression for current from the
left (L) or right (R) lead to the central region can be written
as [48,49]

I (E ) = ie

h̄

∫
dE

2π
Tr{�L/R(E )(G<(E )

+ fL/R(E )[Gr (E ) − Ga(E )])}, (5)

where Gr (E ) = [Ga(E )]+ = (E − HTSC − 
r
L − 
r

R) is the
retarded (advanced) Green’s function of central TSC region
in Nambu representation. The broadened �L/R is defined as
�L/R(E) = i[
r

L/R − 
r+
L/R]. 
r

L/R is the retarded self-energy
due to the coupling between L (R) lead and central TSC region
[50–53]. fL/R represents the Fermi distribution function in the
L (R) lead. Considering the condition that electron and hole
in the two leads are not coupled, we divide each quantity of
equation (5) under the Nambu representation into two parts,

electron and hole. we obtain

I (E ) = e

h

∫
dETr

{
( fLe − fRh)�L

eeGr
ee�

R
eeGa

ee

+ ( fLe − fRh)�L
eeGr

eh�
R
hhGa

he

+ ( fLe − fLh)�L
eeGr

eh�
L
hhGa

he

}
, (6)

where Gr/a = (Gr/a
ee Gr/a

eh
Gr/a

he Gr/a
hh

), �R/L = (�
R/L
ee 0
0 �

R/L
hh

). e(h) indicates

electron (hole). fLe/Lh ( fRe/Rh) represents the electron or hole
Fermi distribution function of the L (R) leads. Thus the trans-
mission coefficient (T ), Andreev reflection coefficient (TAR),
and cross Andreev reflection coefficient (TCAR) can be ob-
tained [54,55]:

T (E ) = Tr
[
�L

eeGr
ee�

R
eeGa

ee

]
,

TAR(E ) = Tr
[
�L

eeGr
eh�

L
hhGa

he

]
,

TCAR(E ) = Tr
[
�L

eeGr
eh�

R
hhGa

he

]
. (7)

Topological quantum phases play an important role in
quantum transport, so determining the phase of the system is
extremely important. Since topological invariants can change
with closing the bulk gap, by solving the eigenvalues of the
Hamiltonian HTSC in equation (3) and considering the gapless
regions in the energy spectrum, one can obtain the following
critical condition

m < −
√

�2 + μ2 N = 2,

−
√

�2 + μ2 < m <
√

�2 + μ2 N = 1,

m >
√

�2 + μ2 N = 0. (8)

According to equation (8), the phase diagram of TSC can
be mapped. Figure 1(b) shows the phase diagram in (�, m)
plane with chemical potential μ = 0 in the central TSC re-
gion. It can be seen from equation (8) that the three quantities
(m, �, and μ) determine the quantum phase of the system, a
change for any three quantities that may induce topological
quantum phase transition of the system.

Due to inevitable defects in manufacturing processes, usu-
ally disorder also plays an important role in the quantum
transport properties of the devices being studied. Based on the
effective-medium theory, Groth et al. discovered that Ander-
son disorder can induce self energy which causes a definite
momentum state to decay exponentially as a function of time
and space [36]. They also concluded that increasing the An-
derson disorder strength can lead to a transition of topological
mass m from positive to negative. We replace the Hamiltonian
of the TI in the central region with the TSC Hamiltonian; then
the self-energy can be given by

[EF + i0+ − HTSC(k) − 
]−1 =< [EF − H (k)]−1 >,

(9)

where HTSC(k) is the lattice Hamiltonian of the clean system
of central TSC region in k space and < ... > represents the
disorder average. The self-energy induced by disorder can be
obtained from [56,57]


 = N

�

∑
k

U (k)G(k)U (k), (10)
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where U (k) is random potential of the interaction pro-
duced by impurities in k space, N is the total number
of impurities, and � is the volume of the disordered
TSC region. For Anderson disorder, under the basis of
ϕk = [c↑(k), c↓(k), c+

↑ (k), c+
↓ (k)]T , U (k) can be expressed by

U (k) = U (τz ⊗ σ0), and G = (EF + i0+ − HTSC(k) − 
)−1

is Green’s function with disorder. The average strength of
the disorder in equation (10) can be obtained by U 2 =

1
W N

∫ W
2

− W
2

U 2dU = W 2

12N . By using the self-consistent Born

approximation, the self-energy induced by disorder in equa-
tion (10) can be concretely obtained from the integral
equation [36,42]


 = W 2

12
(

1

2π
)2

∫
BZ

dk(τz ⊗ σ0)

× [EF + i0+ − HTSC(k) − 
]−1(τz ⊗ σ0), (11)

where BZ denote the integral over the first Brillouin zone.
Self-energy 
 can be decomposed with sixteen 4 × 4
Dirac matrices 
 = 
0γ0 + 
1γ1 + 
2γ2+....
15γ15 where
the fundamental Dirac matrices γμ can be expressed by 2 × 2

unit matrix I and 2 × 2 Pauli’s matrices σ j , γ0 = (I 0
0 I ), γ j =

( 0 −iσ j

iσ j 0 )( j = 1, 2, 3), γ4 = (I 0
0 −I), and the other eleven

Dirac matrices can be obtained by γ5 = γ1γ2, γ6 = γ1γ3,
γ7 = γ1γ4, γ8 = γ2γ3, γ9 = γ2γ4, γ10 = γ3γ4, γ11 = γ2γ3γ4,
γ12 = γ3γ4γ1, γ13 = γ4γ1γ2, γ14 = γ1γ2γ3, γ15 = γ1γ2γ3γ4

[58]. Therefore, the original Hamiltonian HTSC(k) is corrected
and the topological mass is renormalized. The correction of
topological mass is as follows

M = M − lim
k→0

Im
13. (12)

III. DISORDER INDUCED TOPOLOGICAL PHASE
TRANSITION

In our numerical calculations, we set A = B = 1 and the
lattice constant a = 1. We choose m = −0.5 in the two leads.
The central TSC region size is fixed to Ny = 100 and Nx = 60.
The incident electron energy is set to E = 0. The pair potential
of the central TSC is fixed to � = 0.35. The other parameters
in central TSC region are fixed as follows unless otherwise
specified: μ = 0, m = 0.45. From equation (8), it can be de-
duced that the phases of the two leads are both in the QAHI
phase [A point in Fig. 1(b)] where two degenerate chiral edge
states present. While in TSC region m = 0.45 and � = 0.35
[B point in Fig. 1(b)], the phase is in trivial phase with Chern
number N = 0. Therefore the energy gap presents around the
Fermi energy, and an electron is restricted inside the energy
gap. Due to that the length of the central TSC region is long
enough to shut down both the electron and hole channel, none
of the transmission processes can happen.

We wonder whether the disorder will affect the transport
process of the proposed system. Thus, in Fig. 2(a), we cal-
culate the normal tunneling coefficient T , the local Andreev
reflection coefficient TAR, and the crossed Andreev reflection
coefficient TCAR through the hybrid system with the change of
disorder strength W . In the simulation, random values of wi

were used to calculate the conductance for 1000 times. The
sum of the 1000 results is averaged. The three coefficients

FIG. 2. (a) The normal tunneling coefficient T , the local Andreev
reflection coefficient TAR, and the crossed Andreev reflection coeffi-
cient TCAR as a function of disorder strength with E = 0, we choose
μ = 0, m = 0.45 and � = 0.35 in the central TSC region, the length
of the central TSC region is Nx = 60, the width of the central TSC
region is Ny = 100, and we set m = −0.5 in the two leads. (b) The
corresponding transmission coefficient fluctuation as a function of
disorder strength. Here, the curves are averaged over results obtained
with 1000 random values of W .

T , TAR, and TCAR in Figs. 2(a) and 2(b) are represented by
a black, red, and blue solid line, respectively. One can see
from Fig. 2(a), just as expected, all three coefficients are
zero with low disorder strength. But to our surprise, with the
increase of disorder, the electron and copper pair transport
through the junction with the same probability. We can see
from Fig. 2(a) that the three coefficients increase to a plateau
with a value of 0.25 around W = 2. Then the value of the
plateau remains at 0.25 in a wide range of disorder strength
until near W = 5. When W > 5, the other striking feature in
Fig. 2(a) is present. That is, the coefficients show damped
oscillatory behavior. Subsequently all three coefficients oscil-
late violently as the disorder strength increases. The change
of the three coefficients plateau always implies a new phase.
So we deduce that the quantum transition occurs near W = 2
and W = 5. We also study the fluctuation of the three coeffi-
cients �T = √

< T − < T �2 where < ... > represents the
average over the disorder with the same disorder strength W
[29]. In Fig. 2(b), we plot the transmission coefficient fluc-
tuations versus the disorder strength. �T , �TAR, and �TCAR

represent the fluctuation of T , TAR, and TCAR correspondingly.
Figure 2(b) shows that with small W , there is no fluctuation.
As disorder strength increases, the topological quantum phase
transition occurs, so the fluctuations of the three coefficients
emerge. As disorder strength continues to increase, the system
is in a new topological phase. Thus, the fluctuations of the
coefficients go to zero. When m increases to around 4, the
fluctuations emerge again. Thereafter the fluctuations show
a trend of continuous increase. It indicates that the system
undergoes another phase transition. The phenomena presented
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FIG. 3. The three coefficients T , TAR, and TCAR as a function of
topological mass m with different disorder strength with (a) W = 0,
(b) W = 1, (c) W = 3, and (d) W = 5. The vertical blue dashed lines
in (a)–(c) are the boundaries of the TSC phases, which are N = 2
to N = 1 and N = 1 to N = 0, respectively. All of the curves are
averaged over results obtained with 1000 random values of W . The
other parameters are the same as for Fig. 2(a).

in Fig. 2(b) are consistent with the phenomena presented
in Fig. 2(a).

In order to confirm whether the quantum phase tran-
sition really occurs with increasing of disorder strength
in the central TSC region, we calculate the three coeffi-
cients T , TAR, and TCAR through the hybrid system versus
topological mass in the central TSC region for differ-
ent disorder strengths with W = 0, 1, 3, 5, as shown in
Figs. 3(a)–3(d). The sharpness of the slopes between the
two conductance plateaus in Figs. 3(a)–3(d)) depends on the
width of the system. To avoid large consumption of com-
puting resources, we choose Ny = 100 and Nx = 60 in the
simulations. Such parameters are sufficient to compare the
boundaries of each TSC phase indicated by the blue dashed
lines in Figs. 3(a)–3(c). We can see from Fig. 3(a) that when
m is less than −0.35, both TAR and TCAR are zero but T
presents a quantized plateau with a value of integer 1. It
is mainly due to the fact that the formula in equation (8)
m < −

√
�2 + μ2 is satisfied; the system is in the topologi-

cal phase of N = 2, as shown in Fig. 1(b) within the pink
region, thus the edge current is perfectly transmitted [16].
When m is between −0.35 and 0.35, corresponding with the
blue region in Fig. 1(b) where the condition −

√
�2 + μ2 <

m <
√

�2 + μ2 is satisfied. The TSC phase transits from

FIG. 4. The three coefficients T , TAR, and TCAR as a function of
chemical potential μ in the central TSC region for different disorder
strength with (a) W = 0, (b) W = 1, (c) W = 2, and (d) W = 3. All
of the curves are averaged over results obtained with 1000 random
values of W . The other parameters are the same as for Fig. 2(a).

N = 2 to N = 1, and there only exists one chiral Majorana
edge state in the central TSC region, so the four scattering
processes—electron tunneling, normal reflection, the Andreev
reflection, and the crossed Andreev reflection—have equal
probability with a value of 1/4 fraction [16,18,21]. When
m > 0.35, the condition m >

√
�2 + μ2 is satisfied, and

the TSC phase transits from the N = 1 nontrivial state to the
trivial state with Chern number N = 0. For the W = 1 case,
as shown in Fig. 3(b), compared with Fig. 3(a), the entire
image has only a slight offset to the right. It implies that the
three coefficients have not undergone conspicuous changes.
Such a result is consistent with those of other researches,
which indicates that the nontrivial state is robust against weak
disorder [17,59]. For the W = 3 case, the three coefficients
show obvious right offset, as clearly shown in Fig. 3(c). But
the two conductance plateaus are still maintained. For the
W = 5 case, we can see clearly in Fig. 3(d) that the plateau of
N = 2 is destroyed, but the plateau N = 1 remains and it still
shifts rightward. From the above analysis we can conclude
that the phase corresponding with m = 0.45 in the central
TSC region does undergo phase transition.

We have demonstrated that the phase transitions happen
with increasing of disorder strength in the central TSC region.
Next, we focus attention on the three coefficients through the
hybrid system with the changes of chemical potential in the
central TSC region where the disorder strength W = 0, 1, 2,
and 3 is considered, as shown in Figs. 4(a)–4(d), respectively.
Here, we fix m = 0.45 and � = 0.35 in the central TSC re-
gion. One can find that, in Fig. 4(a), three coefficients T , TAR,
and TCAR are completely equal to zero, as long as the chemical
potential lies inside a certain range. The reason is that in this
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FIG. 5. The renormalized topological mass m vs disorder
strength W . The blue dashed lines represent the critical phase bound-
aries where renormalized topological mass correspond to m = −0.35
and m = 0.35. The critical phase transition points are represented by
the red solid dot. The other parameters are the same as in Fig. 2(a).

range, although the chemical potential changes, the condition
m >

√
�2 + μ2 is still satisfied, so the phase of the TSC

central region is at trivial phase with Chern number N = 0,
and none of the transmission processes can happen. When
the chemical potential deviates from this range, the nontrivial
phase with Chern number N = 1 is realized, thus the three co-
efficients T , TAR, and TCAR are fixed to the plateau with a value
of 1/4. When the deviation is further increased, T , TAR, and
TCAR present damped oscillation behaviors around the value
1/4. We can see clearly from Figs. 4(b) and 4(c) that with the
increase of the disorder strength, the interval of trivial TSC is
significantly narrower; at last in Fig. 4(d) the interval of the
trivial TSC disappeared, but the condition m >

√
�2 + μ2 is

still satisfied. The phenomenon shown in Figs. 4(b)–4(d) is
confusing. Fortunately, based on the effective-medium theory,
Groth et al. found that the Anderson disorder can make a
negative correction to the topological mass m in 2D TI HgTe
[36]. Thus, they theoretically explain the topological quantum
phase transition in TI induced by Anderson disorder. How-
ever, whether this theory can explain the quantum transition of
TSC and reveal its physical mechanism is still questionable.

IV. MECHANISM AND EXPLANATION OF THE
TOPOLOGICAL PHASE TRANSITION

In order to solve the above doubts, in Fig. 5, we use the
effective-medium theory to numerically calculate the renor-
malized topological mass m as a function of the disorder
strength W at incident electron energy E = 0, where the TSC
with chemical potential μ = 0 is considered. One can see
that, as expected, the renormalized topological mass term
m decreases monotonously with the increase of disorder W .
We also give the boundaries of the topological quantum
phase transition from Chern number N = 0 to N = 1 and
from N = 1 to N = 2, as shown by the blue dashed line
in Fig. 5. We notice that the critical phase transition points
with m = −0.35 and m = 0.35 are at W = 1.9 and W = 5.6,
respectively. The result is consistent with the position where
the plateau begins and where the oscillation starts to emerge
in Fig. 2(a).

FIG. 6. Phase diagram of the (W , m) plane. The black solid line
and the red solid line correspond to the quantum phase transition
boundary of the renormalized topological mass term which is calcu-
lated by the effective-medium theory with m = −0.35 and m = 0.35,
respectively. The black open circles and black solid dots are the
results of two critical boundaries calculated by transport theory. N
labels the Chern number of the TSC. The other parameters are the
same as in Fig. 2(a).

To see this more clearly, we also plot a phase diagram in
the (W , m) plane by using the effective-medium theory as
shown in Fig. 6. In Fig. 6, the critical quantum phase boundary
which corresponds to renormalized mass m = 0.35 is indi-
cated by the black solid line. The red solid line represents
the critical phase boundary which corresponds to renormal-
ized mass m = −0.35. Therefore, the topological phases of
N = 0, 1, 2 can be clearly distinguished. To quantitatively
test the phase diagram resulting from the effective-medium
theory, we use the results of numerical transport simulations
in Fig. 3 (The cases with W = 0.5, 1.5, 2.0, 2.5, 3.5, 4.5 are
not given in this paper). The critical quantum phase bound-
aries for N = 0 to N = 1 and N = 1 to N = 2 shown in
Fig. 3 are represented by the hollow circles and solid dots,
respectively. We can see from Fig. 6 that for weak disorder, the
numerical transport simulation results are consistent with the
results of the effective-medium theory, but for strong disorder
strength there are deviations of both cases. The reason is
that the effective-medium theory is only applicable for weak
disorder [36].

In order to get the whole phase diagram in the (W , m)
plane, we calculate transmission coefficient T again using
transport theory. In our calculation, 300 random values of W
were used to calculate the transmission coefficient. In Fig. 7,
N = 0, 1, and 2 phases are represented by blue, green, and
sauce red region, respectively. By comparing with Fig. 6,
we find that for weak Anderson disorder strength the phase
diagram is consistent with that of Fig. 6. It can be seen as
well from Fig. 7 that when disorder strength W = 7.5 the two
boundary lines intersect at one point. One can also notice that
in Fig. 7, when the disorder strength W > 12.5, the phase of
the system is stable at the N = 0 phase, regardless of the
value of the topological mass m. This is consistent with the
common sense of physics, that is, too heavy doping destroys
the edge state completely, and the central region becomes an
insulator with Chern number N = 0.
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FIG. 7. Simulation of topological quantum phases, showing the
average transmission coefficient T as a function of disorder strength
W and topological mass m. All points are averaged over results
obtained with 300 random values of W . The other parameters are
the same as Fig. 2(a).

Finally, we discuss the actual parameters of our dimension-
less model. Majorana fermions are experimentally discovered
in Cr-(Bi, Sb)2Te3 coupled superconductor film [23]. By com-
paring the model spectrum with density functional theory
band structures of Bi2Se3 thin films, Zeng et al. roughly es-
timated the actual parameters of topological mass and pairing
potential; they found that the two parameters are of the order
of 1 meV [60]. In addition, the proximity induced supercon-
ductor gap of the Bi2Se3 film grown on the NbSe2 substrate
can even reach 1.1 meV at 4.2 K and can be tuned by the
thickness of the film [61]. This means that the pair potential
can be modulated in a certain energy range. Recently, by
analyzing and comparing experimental results, Yan et al. gave
the actual values of the parameters of the model [62]. Since
we use the same model and a similar structure as theirs, the
actual parameters used in our simulation correspond to actual

parameters m = 0.45 meV and � = 0.35 meV. Therefore, it
can be concluded that when disorder strength W > 1 meV,
the conductance plateaus can be tuned conspicuously in
experiment.

V. CONCLUSIONS

In summary, we have studied the Anderson disorder effects
on transport properties in the QAHI/trivial TSC/QAHI hy-
brid system. We find that with increasing of Anderson disorder
strength the conductance plateaus exhibit the characteristics
of parallel offset; we deduce that Anderson disorder can drive
a trivial phase in the central region into a chiral TSC phase.
Next, based on the effective-medium theory, we find that the
Anderson disorder can make a negative correction to the topo-
logical mass m. We also find that with increasing of disorder
strength, the renormalized topological mass monotonously
decreases. Therefore, it can induce transition from a trivial
phase with N = 0 to a nontrivial phase. Subsequently, nu-
merically comparing our transport results with the results of
the effective-medium theory, we find that with weak disorder
strength, the results of the two calculations are completely
consistent, however, because the effective-medium theory is
only applicable for weak disorder, for strong disorder there
are deviations. In addition, by using the transport theory, the
entire phase diagrams are obtained. Thus we point out the
region for obtaining chiral Majorana edge states with Chern
number N = 1. At last, we conclude that the results not only
further verify the availability of the effective medium theory
in disordered TSC but also are important for realization of the
chiral TSC phase in experiment with Anderson disorder.
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