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Selection rules of twistronic angles in two-dimensional material flakes via dislocation theory
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Interlayer rotation angles couple strongly to the electronic states of twisted van der Waals layers. However, not
every angle is energetically favorable. Recent experiments on rotation-tunable electronics reveal the existence
of a discrete set of angles at which the rotation-tunable electronics assume the most stable configurations.
Nevertheless, a quantitative map for locating these intrinsically preferred twist angles in a twisted bilayer system
has not been available, posing challenges for the on-demand design of twisted electronics that are intrinsically
stable at desired twist angles. Here we reveal a simple mapping between intrinsically preferred twist angles and
the geometry of the twisted bilayer system, in the form of geometric scaling laws for a wide range of intrinsically
preferred twist angles as a function of only geometric parameters of the rotating flake on a supporting layer. We
reveal these scaling laws for triangular and hexagonal flakes since they frequently appear in chemical vapor
deposition growth. We also present a general method for handling arbitrary flake geometry. Such dimensionless
scaling laws possess universality for all kinds of two-dimensional material bilayer systems, providing abundant
opportunities for the on-demand design of intrinsic “twistronics.” For example, the set of increasing magic sizes
that intrinsically prefer a zero-approaching sequence of multiple magic angles in a bilayer graphene system can
be revealed.
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I. INTRODUCTION

Tuning electronic states in twisted two-dimensional (2D)
van der Waals (vdW) layers represents an emerging field
known as “twistronics” [1], where controlling the interlayer
rotation angle is critical [2–4]. Examples include the corre-
lated insulator states and superconductivity in magic-angle
(i.e., angle with flat band formation) twisted bilayer graphene
[5–10] and angle-dependent conductivity in twisted bilayer
graphene interface [11], as well as tunable photoluminescence
spectra [12] and band gaps of bilayer MoS2 over twist angles
up to tens of degrees [13]. Existing experimental control on
the interlayer rotation angle usually begins with transferring
a top layer flake onto another supporting layer with relative
twist imposed [12,14–17].

Nevertheless, the twist techniques which rely on imposing
well-controlled global rotation extrinsically [5,7,9,18] suffer
from the fact that not every angle is intrinsically favorable.
Recent experiments on rotation-tunable electronics [1], where
an atomic force microscope tip is used to rotate the top flake
over a range of angles [1,19–21], confirm the existence of
a discrete set of twist angles at which the top flake is more
stable and resistant to rotation. Energetically, these angles are
associated with local minima of a rotating interface energy
landscape [1,22]. In addition, if the applied global twist angle
is not intrinsically favorable, local energetic relaxation over a
twisted interface may result in disorder [6] of the local twist
angle, the mapping of which may be difficult. The mapping of
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local twist angle disorder in magic-angle graphene has only
recently been demonstrated using a nanoscale on-tip scanning
superconducting quantum interference device [6]. Therefore,
on-demand design and investigation of twisted structures that
intrinsically favor definite desired twist angles still remain
challenging. A particular example is the difficulty in access-
ing the higher-order zero-approaching sequence of multiple
magic angles of graphene [8] (e.g., 0.5◦, 0.35◦, 0.24◦, and
0.2◦), where interesting physics might arise.

Ideally, one could design a system in which the desired
twist angles coincide with angles at which the interface energy
is at a local minimum. It would then be possible to envision
an intrinsic twisted structure, where the top layer flakes intrin-
sically favor the desired twist angles. For example, one could
envision a top layer flake in a twisted bilayer graphene system
(e.g., fabricated from either chemical vapor deposition growth
or etching if the right geometry of flake is known) that intrin-
sically prefers to be in a state of magic-angle rotation relative
to the bottom layer. The robustness and precision of the twist
angle are protected by intrinsic interface energetics. Then any
perturbation (e.g., tip manipulation) would easily deliver the
system to that stable state of desired twist angle with certainty.
However, missing in this picture is a quantitative map for
locating angles of local energy minima for various twisted 2D
material systems, which is critical to address the challenge of
on-demand design of intrinsic twistronics.

Here we reveal this map in the form of geometric scaling
laws for a wide range of intrinsically preferred twist angles
as a function of only geometric parameters, such as size and
shape, for a rotating flake. Our analysis starts with the generic
geometric description of the interface in a twisted bilayer
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FIG. 1. (a) Geometric characterization of generic displacement vectors during rotation, defined as in-plane deviation of the atoms in the
top layer (flake) from their nearest equilibrium sites (dashed circles) in the bottom layer. (b) For initial AA stacking, every atom has the largest
possible displacement. (c) As it rotates, periodic clusters of large displacements emerge. The paths connecting these large-displacement clusters
demarcate the flake into low-displacement regions. (d) Generic relaxed configuration. (e)–(g) is for initial AB stacking, where initially every
atom has the smallest possible displacement. The displacements are normalized by the largest possible magnitude, and are colored according
to their magnitude.

system, and then provides a description of the associated
geometrically necessary dislocation networks, from which
the geometric scaling laws gradually emerge. Using triangu-
lar and hexagonal shapes as examples (since they are most
frequently seen in chemical vapor deposition growth), the
as-found scaling laws are completely dimensionless and geo-
metric, and thus possess universality for all kinds of twisted
2D vdW bilayers that are governed by the mathematically
precise geometry of moiré periodicity. In light of such scaling
laws, the design and investigation of intrinsic twistronics,
which intrinsically favors desired twist angles, are feasible
and possible. Given the strong connection of twist angles to
various emerging condensed matter properties in 2D material
layers, these scaling laws offer rich opportunities.

II. DISLOCATION ANALYSIS TOWARDS GEOMETRIC
SCALING LAWS

A twisted bilayer 2D material interface can be understood
as assemblies of periodic regions of interlayer commensura-
bility and incommensurability. These assemblies, known as
superlattices or moiré patterns, result from a purely geometric
effect of rotation. For any amount of rotation, the moiré wave-
length is encoded in the following geometric function [23,24]
of the material lattice constant a, and rotation angle θ :

λ(θ ) = a√
2 − 2cosθ

. (1)

A displacement vector can describe the direction and mag-
nitude of the deviation from the nearest equilibrium location
for every atom in either layer, as illustrated using a generic
bilayer system of triangular lattices [Fig. 1(a)]. This geometry
could represent, for example, the triangular sublattice of a
bilayer graphene system, or it could represent the triangular
lattice of interfacial sulfur layers of a bilayer MoS2 system.
Without loss of generality in the analysis that follows, the

top layer is assumed to be triangular in shape with equal
side lengths, while the bottom layer is assumed to be much
larger. The rotation axis of the top flake passes through its
symmetrical center. Then for each atom in the top flake,
the displacement vector is defined as the in-plane deviation
from the nearest minimum energy site on the bottom flake
[Fig. 1(a)].

Figures 1(b) and 1(c) show the evolution of displacement
vectors, colored according to their magnitudes, for a repre-
sentative rotation from the initial AA stacked configuration.
Before rotation, all the atoms on the top flake have the same
large displacements due to the nature of AA stacking. Af-
ter a typical rotation, the average displacement magnitude
(i.e., the central range of the contour scale) is distributed
along paths whose intersections are occupied by clusters
of atoms with large displacement. These large-displacement
junctions in Fig. 1(c) appear at the flake center as well as
near the flake edge. The regions separated by these paths
are filled with small-displacement atoms. The displacement
vectors, defined as above, do not contain any in-plane re-
laxation, and can therefore represent the weak interfacial
coupling case. For strong interfacial coupling, the displace-
ment vectors are expected to further evolve. Since relaxation
would try to pull each atom towards its nearest minimum
energy site, by utilizing a generic interfacial potential (see
Appendix A), the generic relaxed configuration of dis-
placement vectors can be simulated [Fig. 1(d)]. Together
with Fig. 1(c), it can be observed that regardless of
the interfacial coupling strength, the large-displacement
regions are distributed along the paths whose intersec-
tions are the large-displacement junctions. This observa-
tion also holds true for the rotation from the initial AB
stacked configuration [Figs. 1(e)–1(g)]. It is clear that
the creation of these paths, whose intersections are the
large-displacement junctions, is a purely geometric effect
of rotation. We next use bilayer systems of graphene
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FIG. 2. MoS2 (a) and graphene (b) finite flakes rotated by 5◦ produce an atomic convolution image. The dislocation network (red lines on
the background) is superimposed onto the atomic moiré pattern. (c) Twisted moiré pattern highlighting the periodicity of different stacking
shown in insets (AB, sp, and AA in gray, pink, and red, respectively). White solid triangles outline flake region as in (a), (b). (d)–(g) Schematics
showing transition of AB-sp-BA stacking across the dislocation line to highlight its topology. Light blue thick lines are visual guides to show
the Burgers circuits and relaxations. Dislocation topology of graphene for a pure twist (d) and relaxed (e) configuration. Dislocation topology
of MoS2 for all atoms (f) and just interfacial sulfur atoms (g). (h) Dislocation line model for AA and AB center stackings. The dislocation line
region carries a finite width αλ, where α is a constant and λ is the moiré wavelength.

and MoS2 as examples to show that such geometric
effects are topological and represent geometrically necessary
dislocations.

Figure 2 illustrates how the topology of the displace-
ment vectors characterizes the geometrically necessary partial
dislocations in bilayer systems of graphene and MoS2. Fig-
ures 2(a) and 2(b) show atomic convolutions of MoS2 and
graphene homobilayers rotated by 5◦, for the as-shown flake
size. The rotation introduces a triangular moiré pattern high-
lighted by red lines on the background. Figure 2(c) further
abstracts the atomic convolutions of the moiré topology into
gray regions, representing the ground state (termed as AB
stacking), separated by pink regions, representing the saddle
point [25] (termed as sp stacking). The junctions of pink
regions assume AA high-energy stacking, where atoms from
each layer are on top of each other. Such moiré topology is
purely geometric. For our analysis, we center the flakes on
initial AA/AB stacking to show the broad applicability of the
dislocation interpretation.

The topological character of a boundary line separating
stacking regions is defined by how the atomic structure
changes across it. Figures 2(d) and 2(e) show the left to right
transition from AB to sp to BA for a perfect twist (no interface
relaxation) and a shear boundary (with interface relaxation)
in bilayer graphene. The interface relaxation changes dis-
placements but maintains the topology (AB-sp-BA) of the
boundary line. The topological character is defined using a
Burgers circuit (light blue lines are visual guides; also see
Appendix B), which shows that the Burgers vector is parallel
to the boundary line separating stacking regions [26]. There-
fore, the displacement topology (e.g., Fig. 1) represents partial
screw dislocations with Burgers vectors parallel to their line
direction. They are partial dislocations because they separate
equivalent (AB/BA), not identical (AB/AB), stacking regions.
For MoS2, the topological analysis is shown for all atoms
[Fig. 2(f)] and for just interfacial sulfur atoms [Fig. 2(g)].
In either case, the Burgers circuit again defines the displace-

ment topology as partial screw dislocations. Therefore, both a
twisted bilayer system of graphene and MoS2 can be equiva-
lently described as networks of dislocations [27,28].

The above dislocation topology can be generalized to a
generic dislocation line model as described in Fig. 2(h), where
the dislocation line area stripe is colored pink, the central
dislocation line is in red, and the gray region is assumed dislo-
cation free. The distance between the dislocation junction is λ

as in Eq. (1). The dislocation line region carries a finite width
αλ, where α is assumed a constant. Although decreasing α

represents increasing interfacial interaction, in which case the
commensurable region (i.e., the small-displacement region)
tends to expand more in area and thus reduce the width of
the dislocation line region, α is shown later to be independent
of the angles of local energy minima. Because the location of
the dislocation junction during rotation can be predetermined
mathematically, one can thus track the change in the total area
of the geometric union of these dislocation line regions within
the flake boundary, which will be calculated numerically, as
a function of rotation angle. Figure 3(a) shows a sequence of
dislocation region configurations during rotation with initial
AA stacking. The flake center is a junction due to the nature
of AA stacking [Fig. 1(c)]. Before rotation, the entire flake is
in a dislocation region due to the very large junction spacing,
consistent with Fig. 1(b). As rotation increases, the junction
spacing λ decreases. The rotation thus geometrically drives
dislocation junctions, which were previously exterior to the
flake, across the boundary to reside inside the flake.

The evolution of the total area of the geometric union
of these dislocation line regions exhibits a sequence of ex-
trema during rotation [Fig. 3(b)]. More importantly, these
angles of area extrema, are insensitive to dislocation linewidth
[Figs. 3(b) and 3(c)], which is generically coupled to vari-
ous material-specific interlayer relaxation. Furthermore, these
angles of area extrema correspond to angles of interface en-
ergy local extrema [Fig. 3(b)]. While the angles of local
extrema vary for different flake sizes, the insensitivity to the
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FIG. 3. (a) Dislocation line region configurations during the rotation of a flake with initial AA stacking. (b) For initial AA stacking,
the comparison of the normalized total dislocation line area of varying linewidth (top three blue solid curves, α = 0.4, 0.3, 0.2) with the
normalized interface energy from MD simulation (bottom, brown dashed curves) for a normalized flake size. The angles of local extrema are
in good agreement. (c) For initial AA stacking, the comparison in angles of local extrema of the total dislocation line area with the interface
energy from MD simulations, for two normalized flake sizes and five sets of α, which show good agreements. (d)–(f) is the parallel version of
(a)–(c) but for initial AB stacking. Note that in all figures, the angle unit is degree, while the area and energy are dimensionless.

dislocation linewidth remains [Fig. 3(c)]. These observations,
suggesting the nature of insensitivity for the angles of local
extrema to various degrees of relaxation, are clear from the
comparison [Fig. 3(b)] of the total dislocation line area with
the interface energy calculated by molecular dynamics (MD)
simulation [29,30] for a rotating flake with triangular lattices
(see Appendix C), and from the comparison [Fig. 3(c)] among
two flake sizes and five sets of dislocation linewidth. All these
comparisons are made in terms of normalized quantities de-
fined as follows. The total dislocation line area is normalized
by the area of the flake. The interface energy is normalized by
the interatomic interaction strength in the assumed Lennard-
Jones vdW potential [i.e., normalized by the ε in V (r) =
4ε( σ 12

r12 − σ 6

r6 )]. The normalized flake size R′ = R/a is defined
as the vertex to center distance of the flake R divided by the
implicit material lattice constant a that appears in Eq. (1).
Hereinafter we will employ the above normalizations and
notations unless noted otherwise. Figures 3(d)–3(f) further
shows the same results as Figs. 3(a)–3(c) but for the initial
AB stacking case. Because MD simulations are designed to
enable the sampling of interface energy at a fixed imposed
angle [31,32], which considers no in-plane relaxation, the con-
vergence of angles of local extrema [e.g., Figs. 3(c) and 3(f)]
to those calculated from MD simulation thus suggests that the
insensitivity applies to the weak coupling limit. Therefore, the
insensitivity is to be maintained over a spectrum of interlayer
couplings in various material systems.

The nature of insensitivity in the angles of local extrema to
various degrees of relaxation hints at the existence of a geo-
metric invariant quantity. In other words, these angles should
be able to reveal themselves from a purely geometric calcu-
lation (i.e., free from any material-specific relaxation). To see

this, one suitable calculation can be done in the framework
of purely plane-geometric unrelaxed displacement [Fig. 1(a)].
We seek to calculate the mean displacement, defined as the
average of the magnitude of displacements among all the
atoms on the top flake during rotation. Figure 4(a) shows
the agreement of angles of local extrema in the evolution of
mean displacement with the normalized total dislocation line
area during rotation for the same normalized flake size as in
Figs. 3(b) and 3(e), and for both initial stackings. These agree-
ments confirm that the angles of extrema for total dislocation
line area (regardless of the dislocation linewidth), the interface
energy, and the mean displacement converge. Therefore, the
geometric invariant quantity that governs the angles of local
extrema can be associated with displacement field [Fig. 1(a)].

We then work with the geometry of the displacement field
to reveal the geometric scaling laws of angles of local ex-
trema. Taking advantage of the geometric insensitivity, we
assume the geometry of large-displacement regions and low-
displacement regions to be circles of equal diameter that are
tangential to each other, as shown in the inset in Fig. 4(b). We
find that this assumption significantly simplifies the deriva-
tion of a first-order geometric approximation to the scaling
laws for the angles of extrema. Quantitative calculations (see
Appendix D) confirm that, for a triangular flake with initial
AA stacking, when the centers of the red circles are on the
flake boundaries, the ratio of the area occupied by the blue
circles (i.e., low-displacement regions) to the area occupied
by the red circles (i.e., large-displacement regions) reaches
its maximum, thus corresponding to minimum mean displace-
ment. This geometric condition can be approximated by λ =
R = aR′. Considering Eq. (1), one obtains the scaling law for
the first local minimum angle for rotation of a triangular flake
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FIG. 4. (a) The correlation of angles of local extrema for normalized total dislocation line area (from Fig. 3) with the mean displacement
during rotation. Left panel: AA stacking; right panel: AB stacking. (b), (c) The displacement maps correspond to first local extrema in mean
displacement for rotation from initial AA stacking (b) or AB stacking (c). The flake can be divided into two subregions with large and small
mean displacement, bounded by red and blue circles as shown in the top-right subimage. (d)–(g) The comparison of the angles of nth local
energy extrema (obtained from MD simulation of twisted bilayer graphene) with the prediction from geometric scaling theories [Eqs. (4) and
(5), n = 1, 2, 3, 4], as a function of normalized flake size, for both types of center stackings. Note that in all figures, the angle unit is degree,
while the area and the displacement are dimensionless.

from initial AA stacking:

θ = arccos

(
1 − 1

2R′2

)
. (2)

Similarly, when major fractions of the red circles are en-
closed within the flake boundary, the area ratio of blue circles
to red circles reaches its minimum, thus corresponding to the
maximum mean displacement. This geometric condition can
be approximated by (1 + 1

2 )λ = R = aR′, which leads to the
scaling law for the first local maximum angle for rotation of a
triangular flake from initial AA stacking.

θ = arccos

(
1 − 9

8R′2

)
. (3)

However, the nature of the extrema is reversed for the
initial AB stacking case [Fig. 4(c)]. This is caused by the
difference in the geometric dislocation topology (i.e., geomet-
ric distribution pattern of blue and red circles). Nevertheless,
the mathematical form of the geometric condition remains
unchanged, which can be easily confirmed by inspecting the
geometry.

Equations (2) and (3) can be easily generalized for a
sequence of angles of local extrema by considering the pe-
riodicity of dislocation junctions (see Appendix D). Namely,
the 2n–1th local extreme energy state (nth min for AA; nth
max for AB) satisfies nλ = R = aR′, which leads to angles of

local extrema as

θ = arccos

(
1 − n2

2R′2

)
. (4)

The 2nth local extreme energy state (nth max for AA, nth
min for AB) satisfies (n + 1

2 )λ = R = aR′, which leads to
angles of local extrema as

θ = arccos

[
1 − (2n + 1)2

8R′2

]
. (5)

Equations (4) and (5), applicable to triangular flakes, are
summarized in Table I. The explicit ordering of extrema can
be easily tracked by considering the initial stacking. For ex-
ample, for initial AA stacking, the first extreme has to be
local minimum because initially the mean displacement is
the maximum [Fig. 1(b)]. Also note that higher-order angles
of local extrema are associated with more spatial periods of
moiré pattern within the flake (see Appendix D).

The accuracy of these scaling laws [Eqs. (4) and (5)] can be
tested against the large-scale MD simulation for twist bilayer
graphene (see Appendix C), where the sampling on angles
of local extrema is performed by calculating the interface
energy at z fixed imposed angle for a wide range of sizes.
The comparisons are displayed in Figs. 4(d)–4(g), where the
MD simulation data have been converted to normalized form.
The strong agreement between the scaling laws [Eqs. (4) and
(5)] with a specific material example (i.e., twisted bilayer
graphene), over a wide range of sizes, and up to several
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TABLE I. Selection rules of twistronic angles for triangular and
hexagonal 2D material flakes as a function of dimensionless flake
size for AA/AB stackings at the rotation center. A set of increasing
magic sizes (normalized) which prefer the first magic-angle twist
(1.1◦) is calculated.

Triangle
AA nth local min AB nth local min

θ = arccos[1− n2

2R′2 ] θ = arccos[1− (2n+1)2

8R′2 ]
at θ = 1.1◦, at θ = 1.1◦,
R′ = 52.0879, 104.176, · · · R′ = 73.1318, 130.22, · · ·

Hexagon
AA nth local min AB nth local min

θ = arccos[1− (2
√

3n−1)
2

24R′2 ] θ = arccos[1− (3n+1)2

18R′2 ]
at θ = 1.1◦, at θ = 1.1◦,
R′ = 37.0514, 89.1393, · · · R′ = 69.4505, 121.538, · · ·

orders of extrema, further attests to the universality of these
geometric scaling laws and our analytical approaches.

Finally, we consider arbitrary flake shapes. Since the nor-
malized dislocation junction spacing λ/a only depends on
rotation angle [see Eq. (1)], it is thus also a fundamental
geometric invariant quantity. Therefore, we must also be able
to directly extract the angles of local extrema from it. To
see this, we resort to Fourier series expansion in the fol-
lowing procedure, which enables the analysis of arbitrary
flake shapes [Fig. 5(a)]. First a generic periodic density func-
tion is expressed as ρ(�r) = ∑

�G cos( �G · �r), where �G denotes

reciprocal lattice vectors coupled to the spatial periodicity
of the dislocation junctions. Then the total quantity that is
associated with the summation of the generic density function
over a region can be expressed as S = ∫ ρ(�r)dA, where the
integration region can be an arbitrary flake shape. Here we call
this integral as the summation integral, or S integral. Then by
inspecting the value of the S integral in the space of shape size
and rotation angle, one can easily identify the local angles of
extrema as a function of size, and thus delineate the scaling
law. We next demonstrate the application of the S integral to
triangular and hexagonal flakes (see Appendix E).

Figure 5(b) shows the surface plot of the S integral for a
triangle of initial AA stacking as a function of rotation angle
and normalized flake size, where a sequence of trenches on
the surface is identified. Extracting the angles and sizes corre-
sponding to the trenches (i.e., local minimum), and plotting
them against the scaling theory [i.e., Eq. (4)], one can see
again the good agreement [Fig. 5(c)]. Similarly, the S integral
for a triangle of initial AB stacking produces agreeing angles
of local minimum [Fig. 5(d)] with scaling theory [i.e., Eq. (5)].
Figure 5(e) shows the surface plot of the S integral for a
hexagon of initial AA stacking, where more salient features
of trenches emerge in terms of depth as compared with that of
the triangle case [Fig. 5(b)].

To enable direct comparison, the scaling laws for the
hexagon shape are revealed using the same techniques as
before (see Appendix D). For a hexagonal flake, the 2n–1th
local extreme energy state (nth min for AA; nth max for AB)
satisfies (n−

√
3

6 )λ = R = aR′, which leads to angles of local

FIG. 5. (a) Generic periodic density function respecting the spatial periodicity of the dislocation junctions. Then the total quantity that is
associated with the summation of the general density function over a region can be expressed as an integral (termed the S integral), where
the integration region can be an arbitrary flake shape. (b) The surface plot of S as a function of rotation angle and normalized flake size, for
triangle flakes with initial AA stacking. (c), (d) The comparison of the predicted angles of local minimum by the S integral and scaling theories
[Eqs. (4) and (5)], for AA and AB initial stacking, respectively. (e) The surface plot of S as a function of rotation angle and normalized flake
size, for hexagon flakes with initial AA stacking. (f), (g) The comparison of the predicted angles of nth local minimum by the S integral and
scaling theories [Eqs. (6) and (7), n = 1, 2, 3, 4], for AA and AB initial stacking, respectively. Note that in all figures, the angle unit is degree.
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extrema as

θ = arccos

[
1 − (2

√
3n − 1)

2

24R′2

]
. (6)

The 2nth local extreme energy state (nth max for AA;
nth min for AB) satisfies (n + 1

3 )λ = R = aR′, which leads
to angles of local extrema as

θ = arccos

[
1 − (3n + 1)2

18R′2

]
. (7)

Equations (6) and (7), applicable to hexagonal flake, are
also summarized in Table I. The explicit ordering of extrema
can be easily tracked by considering the initial stacking.

The good agreements in the angles of local minimum,
extracted from the S integral for a hexagon of initial AA/AB
stacking, and the scaling theories for hexagons [i.e., Eqs. (6)
and (7)], are apparent in Figs. 5(f) and 5(g). We also find
that the angles of local minimum for the hexagon are slightly
smaller (at most about 0.2◦) than those for the triangle at
the same normalized flake size (see Appendix F). This shows
that flake shape may matter, although the deviation may be
small.

The selection rules of twistronic angles for triangular and
hexagonal 2D material flakes [Eqs. (4)–(7)] are summarized in
Table I. For other flake shapes, the S integral offers a general
solution.

III. DISCUSSION

The essence of geometric theory can be understood in
a simple model as follows. We want to find the locations
of the local minimum (i.e., stable angles) of total energy
density (normalized by flake area) ρtotal(θ ) = ρhighAhigh(θ ) +
ρlowAlow(θ ) subjected to Ahigh(θ ) + Alow(θ ) = 1, where the
ρhigh (ρlow) denotes the constant energy density of high- (low-)
energy stacking, and Ahigh (Alow) is the area fraction of high-
(low-) energy stacking and is a function of rotation angle
θ . Equivalently, we have ρtotal(θ ) = (ρhigh − ρlow)Ahigh(θ ) +
ρlow. It is then clear that the local minimum of ρtotal(θ ) cor-
responds to the local minimum of Ahigh(θ ), and the value of
ρhigh − ρlow in general does not affect the locations of the
local minimum of ρtotal(θ ). This suggests that the locations
of the local minimum of ρtotal(θ ) are, in general, independent
of material types and the associated potentials used to simu-
late them, which are related to the value of ρhigh − ρlow. The
result in Fig. 3 further establishes that the stable angle, which
corresponds to the local minimum of Ahigh(θ ), is insensitive to
various degree of relaxation. Therefore, the stable angle is a
geometric quantity.

There are a few key implications for experimental efforts
and observations based on the geometric selection rules. First,
the intrinsic solution of accessing a particular desired twist
angle may be addressed by fabricating the flake of required
geometry using either chemical vapor deposition or etching,
and then transferring the flake with a rough twist angle to a
supporting layer. Then any perturbation (e.g., tip manipula-
tion) would easily deliver a configuration with well-defined
stable twist angles. Note that there are multiple orders of local
minima that correspond to a single targeted twist angle, offer-

ing many options for flake sizes. Second, given the geometric
conditions that derive these scaling laws, it is easy to see that
higher-order angles of local minima are associated with more
spatial periods of moiré pattern within the flake, leading to
enhanced stability of rotated state [29]. In other words, the
orders of local minima are linked to the topology of dislo-
cation configuration (e.g., number of dislocation junctions)
at the desired twist angle. Therefore, rotational stability [29]
of these angles of local minima are protected by the topol-
ogy of dislocation configuration, where the number of locally
stable energy states and their barrier energies scales with the
flake size, allowing twisted graphene flakes of several tens of
nanometers [29] to remain thermally stable even at chemical
vapor deposition temperatures, while for smaller flakes (e.g.,
less than 4 nm in size) the transition between stable energy
states is more sensitive to thermal effect [33]. Third, these
angles of local minima decrease and gradually approach zero
as the flake size increases. Therefore, tiny twisted angles near
or smaller than 1◦ are intrinsically accessible using flakes
of larger sizes given the scaling laws, which can potentially
offer a solution to engineering intrinsic twistronic structures
targeting near-zero twist angles, such as the zero-approaching
sequence of multiple magic angles of graphene [8], given
the current challenge of accessing very tiny twist angles. In
particular for the twisted bilayer graphene system, Table I
presents a few magic sizes of the flake which intrinsically
prefers the first magic angle of 1.1◦ rotation as the local energy
minimum. For other higher-order magic angle [8] (e.g., 0.5◦,
0.35◦, 0.24◦, and 0.2◦), the set of increasing magic sizes can
also be feasibly calculated. Note that, for a given angle, there
is always a set of increasing sizes that is available, which
offers flexibility and feasibility for experimental investigation
on a fast-increasing number of moiré periods within the flake
(e.g., see Appendix D).

Although our current work is mainly focused on 2D mate-
rials with a honeycomb lattice, the introduced methods can be
extended for other lattice types such as square or rectangular,
as long as one has a full knowledge of the associated disloca-
tion pattern. On the one hand, different geometric derivations
of scaling laws are needed using the different geometric sym-
metry of the dislocation patterns for other lattice types. On the
other hand, the S integral method can directly handle arbitrary
periodic dislocation patterns, as long as the spatial periodicity
of dislocation patterns from other types of lattices is known.
Also note that the current work is focused on homobilayers,
in which the dislocation arrays are of screw type only. The
extension of the analysis to heterobilayers requires the further
careful consideration of dislocation arrays that are of mixed
type, including both screw and edge component [27,34]. The
effect of lattice mismatch can be simulated by straining homo-
bilayers in which one layer is under strain, causing interlayer
mismatch strain [30], and it has been seen that the stable
angles are dependent on mismatch strain. Thorough investi-
gation is needed to reveal the selection rules of stable angles
for heterobilayers.

IV. CONCLUSION

In sum, we reveal a simple mapping between intrinsically
preferred twist angles and the geometry of the twisted bi-
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FIG. 6. (a) Extracting generic simulation models for relaxation. (b), (c) The evolution of displacement relaxation.

layer system, in the form of geometric scaling laws for a
wide range of intrinsically preferred twist angles as a func-
tion of only geometric parameters of the rotating flake on
a supporting layer. The preferred twist angles maximize the
AB/BA stacking area (low energy), and minimize the AA
stacking area (high energy), under the constraint of the twist-
dependent geometric distribution of these areas within the
flake. The scaling laws have been formulated for triangu-
lar or hexagonal shapes, as these are the most frequently
encountered shapes in chemical vapor deposition growth. It
is thus possible to envision an intrinsic twistronic structure,
where the top layer flakes intrinsically favor the desired
twist angles, the robustness and precision of which are pro-
tected by intrinsic interface energetics. Given the geometric
nature of scaling laws, a general method for handling ar-
bitrary flake shapes by integrating Fourier expansion of the
periodic geometry is also proposed. Our analysis can be eas-
ily applied to any practical experimental systems. With this
analysis, the energy-preferred twist angles during interlayer
rotation in any 2D material bilayer systems shall become
immediately clear. Our framework offers a general geometric
solution to accessing a wide range of twist angle, including
very tiny angles such as a higher-order zero-approaching se-
quence of multiple magic angles of graphene [8] (e.g., 0.5◦,
0.35◦, 0.24◦, and 0.2◦). Given the strong connection of twist
angles to various emerging condensed matter properties in
2D material layers, these scaling laws offer rich opportuni-
ties for the on-demand design and investigation of intrinsic
twistronics.
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APPENDIX A: GENERIC RELAXATION
OF DISPLACEMENT

Generic relaxation is performed by assuming a strength
difference between the bonding among particles within the
layer (intralayer bonding), and the bonding from a displaced
particle to the fixed point representing the preferred minimum
energy site (displacement bonding). The fixed points and the
atoms in the top layer are on the same plane. The equilibrium
distance of strong harmonic bonding potentials within the
layer is the pristine atomic spacing, while the equilibrium
distance of weak harmonic bonding potential to the fixed point
is zero. Serving only to qualitatively illustrate the relaxation
process, we assume the strength of displacement bonding is
half of the intralayer bonding, for AA/AB stacking at the
rotation center. Strength difference will not change the topol-
ogy of relaxed displacement configurations. It is clear that the
relaxed displacement vectors are running in parallel with the
dislocation line. See Fig. 6.
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FIG. 7. Illustration of Burgers circuit in Fig. 2(e).

APPENDIX B: BURGERS CIRCUIT

See Fig. 7. The blue line indicates the Burgers circuit, and
the black arrow indicates the Burgers vector.

APPENDIX C: MD SIMULATION ON ROTATIONAL
INTERFACE ENERGIES

To calculate the structure-energy relationship at the rotated
interface, the interaction between the X layer and the X′ layer
[Fig. 8(a)] is described using a standard 12-6 potential,

V (r) = 4ε

(
σ 12

r12
− σ 6

r6

)
, (A1)

where ε = 1 (effectively normalizing the interaction strength).

Since the generic vertical relaxation is considered, we take
σ = ka, where a is the lattice constant and k only serves as
a “safety” constant as long as it can ensure that top layer
does not penetrate the bottom layer so that the system can be
qualitatively physical. The relaxation procedure is illustrated
in Fig. 8(b).

For the generic MD simulation data in Figs. 3(c)–3(f),
k = 0.9467 a. The system is a homotriangular lattice on a
triangular lattice.

For the MD simulation data of a real lattice of twisted
bilayer graphene in Figs. 4(d)–4(g), a realistic physical pa-
rameter s = 0.34 nm is used, and the lattice constant is
0.246 nm.

FIG. 8. (a) Schematic showing rotated top flake (X) on a support layer (X′). An in-plane twist is applied on the top layer. (b) Schematic
showing the relaxation procedure. Here the interlayer registry mismatch due to rotation is emphasized. The first step is rotating the top flake at
a chosen angle [e.g., in (a) for a given center stacking] so that the interface will have an unrelaxed vdW energy. Then relaxation is performed
using the conjugate-gradient minimization method. Only out-of-plane displacements of the X atoms are permitted while the bottom X ′ atoms
are fixed. After minimization, the interface will have a relaxed vdW energy. Thus, one is able to sample the relaxed interface energy at any
imposed angle, which gives the energy landscape during rotation.
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FIG. 9. (a)–(d).The geometric configuration at which the area in red circles (normalized by flake area) and the area ratio of red circles over
blue circles reaches extrema, for center red circle. (e), (f) Geometric conditions. (g)–(j) Parallel version of (a)–(d) but for center blue circle.
Note the ratio is inversely calculated compared with (a)–(d). Also note the nature of extrema has switched compared with (a)–(d), but the
geometric condition remains intact. Note that in all figures, the angle unit is degree, while the area is dimensionless.
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FIG. 10. (a)–(d).The geometric configuration at which the area in red circles (normalized by flake area) and the area ratio of red circles
over blue circles reaches extrema, for center red circle. (e), (f) Geometric conditions. (g)–(j) Parallel version of (a)–(d) but for center blue
circle. Note the ratio is inversely calculated compared with (a)–(d). Also note the nature of extrema has switched compared with (a)–(d), but
the geometric condition remains intact. Note that in all figures, the angle unit is degree, while the area is dimensionless.
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It has been shown that the generic usage of a simplified
interface Lennard-Jones interaction is able to quantitatively
explain the spontaneous rotation of a flake to several lo-
cal energy minimum states [30], observed in full-scale MD
simulation of graphene and MoS2. Although there are many
potentials for each 2D material, all these potentials must obey
that the AA (AB) stacking has higher (lower) energy. Since
the energy difference between AA-AB stacking order does
not affect the local minimum energy locations (see Sec. III),
using only a generic Lennard-Jones potential has the general
advantage of being material insensitive and computationally
efficient.

APPENDIX D: GEOMETRIC DERIVATION
OF SCALING LAWS

In the derivation, the flake is treated as not rotating while
the wavelength λ decreases as λ(θ ) = a√

2−2cosθ
, where θ is the

implicit rotation angle so that the red circles and blue circles
shrink accordingly. One then plots the area in each type of
circle (within the flake boundary) and the area ratio of these
areas as θ increases. One can identify the extrema values of
the calculated area and area/ratio, and make a connection to
the associated extrema geometry, from which the geometric
conditions appear. Also see captions in Figs. 9 and 10.

APPENDIX E: S INTEGRAL IMPLEMENTATION

In accordance with the geometric derivation, the integra-
tion region is treated as not rotating.

For first-order approximation, we use the simplest possi-
ble density function by only considering the three smallest
nonzero reciprocal lattice vectors.

For center AA stacking, one thus obtains

ρ(�r) =
∑

�G
cos( �G · �r)

= ρ(x, y) = cos

(
4πx√
3λ(θ )

)

+ 2 cos

(
2πx√
3λ(θ )

)
cos

(
2πy

λ(θ )

)
. (E1)

FIG. 11. Small deviations in the angles of local minimum (ob-
tained from the S integral) for triangular and hexagonal flakes. Note
that the angle unit is degree.

For center AB stacking, one obtains by translation,

ρ(x, y) = cos

[
4π

(
x − λ√

3

)
√

3λ(θ )

]

+ 2 cos

[
2π

(
x − λ√

3

)
√

3λ(θ )

]
cos

(
2πy

λ(θ )

)
. (E2)

Also note that

λ(θ ) = a√
2 − 2cosθ

. (E3)

Finally, the summation integral (S integral) is a function of
rotation angle θ and dependent on the integration region (i.e.,
the flake shape). This summation can be normalized by the
area of shape as

S =
∫∫

shape ρ(x, y)dxdy∫∫
shape 1dxdy

. (E4)

For regular shapes such as triangle and hexagon and cen-
ter rotation, S can be expressed as a two-variable function
S(θ, R

a ), from which the surface plots in Fig. 5 are obtained.
Similar procedures work for arbitrary nonregular flake shapes.

APPENDIX F: PREFERRED ANGLES: HEXAGON vs
TRIANGLE

See Fig. 11. The difference in the preferred angles between
hexagonal and triangular flakes is small.
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