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Spin-thermoelectric transport in nonuniform strained zigzag graphene nanoribbons
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We study a nonuniform strain in zigzag graphene nanoribbons for producing the spin-thermoelectric effects,
using the mean-field Hubbard approximation and a Green’s function approach. Our theoretical results show
that a sinusoidal-shaped inhomogeneous strain with electron-electron interaction could induce a different effect
on each edge of zigzag nanoribbons and finally generate a spin semiconductor with a tunable spin-dependent
band gap. The strength of strain also controls the magnitude of magnetization in each edge. Interestingly, pure
spin current and a giant spin Seebeck coefficient can be produced even at low values of strain by applying a
thermal gradient and without magnetic elements. These results pave a practical way toward improved design for
spin-thermoelectric applications through strain engineering.
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I. INTRODUCTION

Strain as a possible effective way to tailor electronic
properties of two-dimensional materials has been studied sig-
nificantly [1–6]. Strain induces new features via changing
atomic bond length, angle, and strength [7]. Experimentally,
some methods to induce strain in 2D materials are epitaxial in-
teraction, thermal expansion mismatch, patterning substrates,
and stretching of flexible substrates [8,9]. Substrate surface
topography modification and piezoelectric substrate actuation
are also used to apply strain in the sample [7].

Graphene is verified to be one of the most persistent 2D
materials exposed to strain [10]. Its unit cell can endure elastic
tensile strain more than 20% without breaking [10]. Thus,
graphene is a feasible candidate for straintronics [4,11–13]
due to its high mechanical stability [10].

Based on previous studies, inducing strain in graphene
gives rise to producing an effective scalar potential [14] and
a useful gauge potential in the system [15,16]. The induced
pseudomagnetic field has opposite signs for two valleys,
while the external magnetic field has the same effect on all
electrons in the lattice [8]. Also, an in-plane electric field
may be generated in regions with different stretches due to
the various local electron densities [8]. Strain by changing
the features of the Dirac fermions reveals new fascinating
transport properties. For instance, the Dirac cones are shifted
away from previous positions by uniaxial strain below the
critical strain value in graphene around 20% and become
massive in strain values above the critical value [17,18].
Opening a band gap by uniaxial strain has been studied a lot
in graphene [19,20]. Contrarily, biaxial strain only changes
the Fermi velocity by varying the slope of the Dirac cones
[17]. Moreover, some strain distributions by inducing strong
uniform pseudomagnetic field give rise to the appearance of

*rfarghadan@kashanu.ac.ir

a pseudo-quantum-Hall effect in the absence of real magnetic
field [4,21,22].

Changing the spin polarization and the local magnetization
is another exciting performance of strained graphene [21,23–
25] for spintronic devices. Enhancing the magnetic order at
edges of graphene nanoribbons (GNRs) and quantum dots was
predicted by Viana-Gomes et al. [26]. Then it was extensively
studied, and we mention some of the studies here. Lu and
Guo indicated that strain changes the spin polarization at the
edges of GNRs in the presence of the Hubbard interaction
and, in addition to that, adjusts the band gap [19]. Kou et al.
revealed a ferromagnetic ground state for strained graphene
with line defects [24]. Inducing a magnetic effect in rippled
graphene by vacancies is also explored in [23]. Chang et al.
assumed an arc-bend strained GNR with Hubbard repulsion
and showed that a measurable polarization difference be-
tween two sublattices is induced and generates nonuniform
magnetic field [21]. In addition, Yang et al. illustrated that
Coulomb interaction induces a ferromagnetic-like behavior
under a proper strain, and strain could control graphene mag-
netism [27]. Other researchers investigated edge magnetism
of graphene quantum dots [28,29] and spin-resolved trans-
port of strained with external exchange field [30]. Recently,
transistors using strained graphene have been introduced
too [31].

On the other hand, strain increases the mismatch between
phonon vibrations, leading to suppressing thermal conductiv-
ity [32,33]. Hence, the strained graphene could be a good
choice for devices with thermal transport. Thermal conduc-
tivity of both strained and unstrained graphene sheets [33] and
graphene nanoribbons [34] has been calculated. Moreover, the
band gap opened in graphene by strain, owing to the modified
orbital hybridization [35,36], has added another superiority
for graphene-based thermoelectric devices. First-principles
studies investigated the thermoelectric properties of strained
graphene nanoribbons [37]. Mani and Benjamin also showed
that strained graphene acts as a highly efficient quantum heat
engine operating at maximum power [38,39]. Also, thermal
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FIG. 1. Sinusoidal strain applied along the width of ZGNR. λ and hm denote the wavelength and amplitude of the wave, respectively. The
periodic structure of the ZGNR is along the x axis, and the sinusoidal strain is extended in the y direction perpendicular to the nanoribbon.

transport in the strain-induced rippled graphene is studied in
Ref. [40].

Very recently, Banerjee et al. disused a periodic strain on
a graphene sheet that created a strong periodic pseudo-gauge-
field varying at the sample’s length scale and studied its Dirac
behavior electrons [8]. The inhomogeneous strain gradient
creates nonuniform pseudomagnetic and electric fields result-
ing in new transport properties [8]. Furthermore, electronic
properties of rippled graphene are affected by height, wave-
length, and a number of these deformations [8,41]. Ripples are
also detected in suspended graphene, in addition to graphene
on a substrate [42]. However, several theoretical proposals on
various shapes of rippled graphene and experimental attempts
have been performed that achieved exotic findings which can
be found in [43–47].

Our idea in this work is assuming a sinusoidal (strain
based on [8]) transverse to a zigzag graphene nanoribbon
(ZGNR) in the presence of e-e interaction. Our choice is due
to the magnetic features of the zigzag edge GNRs contrary
to the armchair GNRs [48]. Then we apply the temperature
gradient nanoribbon. This nonuniform strain induces different
hopping amplitudes across the ribbon resulting in impressive
band structure beside the Hubbard interaction. The presence
of Hubbard interaction causes local magnetism resulting in
strong spin polarization. Consequently, applying a tempera-
ture gradient could make a pure thermospin current and large
Seebeck effect. The proposed system could be a practical
candidate for new transport device generation through strain
engineering.

II. METHOD

We applied a sinusoidal strain with out-of-plane displace-
ments along the width of the ZGNR as depicted in Fig. 1.
Dislocation of each atom in the strained ZGNR (SZGNR)
relative to its position in the ZGNR is determined by h(y) =
hm sin(2πy/λ) with λ and hm being the wavelength and am-
plitude of the sinusoidal function, respectively. This shape of
strain has been introduced on the graphene sheet by Banerjee
et al. in [8] along with an in-plane displacement. Here, we
consider zero in-plane stretchings, while all atoms in a specific
y are displaced in the z direction by the value h(y). In the
presence of such strain, the carbon-carbon bond length around
the peaks of the sinusoid is shorter compared with middle
locations. It is worth noting that such a nonlinear out-of-plane
strain profile can be rescaled to an in-plane strain tensor
by the Foppl–von Karman model [49,50]. Especially, when

our out-of-plane sinusoidal strain wavelength is very large
analogously to the atomic bond length, the in-plane strain
approximation by the Foppl–von Karman model is extremely
close to our strain profile in every point of the ribbon. The
accuracy of the Foppl–von Karman model for graphene is
discussed in [51].

To survey the electronic structure of the proposed device,
we use the tight-binding approximation in the framework of
the mean-field Hubbard model [52,53], and then utilize coher-
ent transport formalism [52] to calculate the spin-dependent
thermocurrent. The Hamiltonian of the system is represented
by [52]

H = −
∑

〈i, j〉,σ
t ′
i j c†

iσ c jσ

+ U
∑

i

(ni,↑〈ni,↓〉 + ni,↓〈ni,↑〉 − 〈ni,↑〉〈ni,↓〉). (1)

The first term indicates the tight-binding Hamiltonian of the
SZGNR, where c†

iσ and c jσ are the creation and annihilation
operators for an electron with the spin index σ =↑,↓ at sites i
and j, respectively. t ′

i j in this term is the hopping parameter
between the nearest-neighbor atoms at sites i and j of the
strained system and is a function of atomic bond length r as
[18]

t ′ = t0 exp
[
−β

( r

r0
− 1

)]
. (2)

Here, t0 = 2.7 eV and r0 = 1.42 Å [18] are the hopping pa-
rameter and bond length of unstrained graphene, respectively.
β is the decay rate and is assumed to be 4.45 based on first-
principles calculations on similar structures in [8], although
other values are reported too [18].

The second term in Eq. (1) expresses the e-e Hubbard
interaction in the framework of the mean-field approximation.
U is the on-site Coulomb energy assumed to be equal to t0
[54–56]. ni,σ is the particle number operator for an electron
with the spin σ at the site i, and 〈ni,σ 〉 is the mean value of the
number operator calculated self-consistently as [57]

〈ni,↑〉 =
∑

↑ bands

a

2π

∫ π/a

−π/a
ψ∗

i (εk )ψi(εk ) f (εk − μ)dk,

〈ni,↓〉 =
∑

↓ bands

a

2π

∫ π/a

−π/a
ψ∗

i+N (εk )ψi+N (εk ) f (εk − μ)dk,

(3)
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where a, N , and i = 1, . . . , N determine the lattice con-
stant, the number of atoms, and the atomic site in the unit
cell, respectively. Here, indices i and i + N are in regard to
wave function components corresponding to spin-up and spin-
down, respectively. f (εk − μ) is the Fermi-Dirac distribution
function where μ is the chemical potential and εk is the energy
in the wave number k. All band structure calculations are
performed at room temperature. ψα (εk ) is the wave function
of the Hamiltonian in Eq. (1) [58]. Consistently, the magneti-
zation at site i is defined by ρi = (〈ni,↑〉 − 〈ni,↓〉)μB where μB

is the Bohr magneton.
As concerns matching Bloch wave functions in contacts

and the scattering region, we first calculate total transmis-
sion and spin transmission by T (ε) = ∑M f

α=1

∑N
i=1 ψ

†
αiψαi and

Ts(ε) = ∑M f

α=1

∑N
i=1 ψ

†
αiσzψαi, respectively [57], where ψαi is

the two-component part of the eigenfunction ψα and σz is
the z component of the Pauli matrices. Then, spin-resolved
transmission is obtained by T↑(↓)(ε) = [T (ε) ± Ts(ε)]/2 [57].

Proceeding from the linear response regime, we compute
the thermospin current and Seebeck coefficient under ap-
plied temperature gradient 
T . The temperature difference
between two sides of the strained ZGNR changes the Fermi
distribution of the two contacts giving rise to the flow current.
The spin-resolved current in Landauer-Büttiker formalism is
attained by [59]

Iσ = e

h

∫ +∞

−∞
Tσ (ε)[ fL(ε, μL, TL ) − fR(ε, μR, TR)]dε, (4)

where L and R specify left and right contacts. Total charge
and spin currents are also obtained by IC = I↑ + I↓ and IS =
I↑ − I↓, respectively [52].

In the following, we determine the spin-dependent Seebeck
coefficient using [52,53]

Sσ (μ, T ) = − 1

|e|T
L1σ (μ, T )

L0σ (μ, T )
, (5)

where intermediate function Ln,σ (μ, T ) in defined as

Ln,σ (μ, T ) = −1

h

∫ +∞

−∞
(ε − μ)n ∂ f (ε, μ, T )

∂ε
Tσ (ε)dε.

Ultimately, charge and spin Seebeck coefficients are given by
Sc = (S↑ + S↓)/2 and Ss = (S↑ − S↓), respectively [52].

III. RESULTS AND DISCUSSION

The proposed device in this paper is a ZGNR with a si-
nusoidal strain across the ribbon. The applied strain induces
smaller atomic bond lengths close to the top and bottom of
sinusoidal ZGNR rather than middle ones. So the density of
atoms around the peaks is higher than the middle region. The
ZGNR is along the x direction and our proposed supercell con-
tains a whole or part of a wavelength that we investigate here.
Therefore, the density of atoms along the supercell varies
locally, creates nonuniform charge distribution, and induces
an electric field [8]. On the other hand, strain gradient can cre-
ate spatially variable pseudomagnetic field [8,16,60]. These
factors give rise to different band structures and hence reveal
new transport properties in the system. Indeed, calculations
can be based on a strained tight-binding Hamiltonian (as done

here) or on an unstrained one with pseudofields. A comparison
between the two calculation methods has been done in [8] and
shows similar results.

To proceed further, we added an e-e Hubbard interaction
to our sinusoidal SZGNR and found fascinating results. In-
terestingly, a gap opens, and high spin polarization appears
in specific widths of our designed structure in the presence
of the e-e interaction. Also, the edge magnetization varies by
the strength of strain that we will discuss later. We plot the
spin-resolved low-energy spectrum of our SZGNR in Fig. 2
for λ = 20 nm, hm = 1 nm, and widths W = λ, λ/2, λ/4, and
λ/5. These amounts of λ and hm create the maximum value
of strain 5% in atomic bond lengths of defined strain. Fig-
ure 2(a) shows the low-energy band structure of the SZGNR
with W = λ in the absence of the Hubbard interaction. As we
expect, there is no gap around the Fermi level and no splitting
between the two types of spin. This result is similar to reports
of previous works on strain in zigzag nanoribbons [27]. The
importance of the e-e interaction is revealed in the four di-
agrams shown in Figs. 2(b)–2(e). A band gap is opened by
assuming the existence of the e-e interaction in the system, as
seen in Figs. 2(b)–2(e). Figures 2(b) and 2(c) are related to the
SZGNR with complete and half wavelength in the width of the
ribbon, respectively. In the two later cases, up and down spin
states are degenerate due to the same magnitude of strain near
two edges of the nanoribbon. It is worth mentioning that if any
other nonuniform strain profile induces different stretching
around the two edges, spin splitting may occur in the band
structure; meanwhile an out-of-plane sinusoidal strain is a
choice consistent with experiments [8] and accompanied by
more efficient results. Indeed, the A and B sublattices near the
two edges have similar bond lengths, and nonuniform strain
could not stretch two zigzag edges differently. Therefore,
edge magnetization does not change in widths W = λ, λ/2
by applying sinusoidal strain. These results for edge states
are the same as constant strain along the y direction. Any-
way, high spin splitting is observed for the SZGNR with
W = λ/4 and λ/5 in Figs. 2(d) and 2(e). This splitting be-
tween spin states is in a way that the bands of one type of
spin move upward, while the other type moves downward
in the band structure similarly to the spin semiconducting
phase. Indeed, by ignoring the interaction between electrons,
no gap appears even by applying nonuniform strain in the
system.

Our calculation shows that the highest spin polarization
occurs for W = λ/4, and it is reduced for larger or smaller
widths. This is owing to the most difference between amounts
of strain in two edges of the ribbon. Each atomic sublattice
near two edges of the ribbon experiences a different strain that
causes spin-polarized edge states. Experimentally, periodic
ripples with various wavelengths from 2 nm to several tens
of nanometers are observed in the graphene sheet [61]. How-
ever, here we investigated sinusoidal modulation across the
nanoribbon. Moreover, when W = λ energy bands of spin-up
and spin-down are degenerate, while W = λ/4 corresponds to
the highest spin polarization, so W = N (λ + λ/4) could cause
approximately the same behavior in the band structure with
N = 1, 2, . . .. This can also be used in experiment.

Furthermore, if an in-plane strain is taken into account sim-
ilar to [8], the bond lengths near the edge located at the crest
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FIG. 2. Low-energy band structure of SZGNR with zero Hubbard interaction in (a) width W = λ and nonzero Hubbard interaction in
(b) W = λ, (c) W = λ/2, (d) W = λ/4, (e) W = λ/5. Here, λ = 20 nm, hm = 1 nm equivalent to maximum strain ε = 5%.

would be larger than the other edge when W = λ/4. So again,
different strain profiles near the edges lead to the spin splitting
in the band structure. Anyway, such nonuniform strain could
induce remarkable spin splitting, although the spin polariza-
tion usually happens by applying an electric or magnetic field
on the system [62,63]. For example, the in-plane transverse
electric field induces different spin-dependent band gaps for
two types of spin [62,64]. However, in our defined struc-
ture, spin-dependent bands move oppositely in the edge band
structure. Hence, their band gap is the same, approximately.
Furthermore, by comparing Fig. 2(b) to Fig. 2(e), it has been
found that the spin gap is increased by decreasing the width
of the SZGNR from W = λ to W = λ/5 in a particular wave-
length. Therefore, the e-e interaction with inhomogeneous

strain in the ZGNR generates a spin semiconductor phase with
a tunable spin-dependent band gap.

For more clarification, we plot the low-energy band struc-
ture of the SZGNR for different sets of W and λ in Fig. 3.
Figures 3(a)–3(c) besides Fig. 2(b) correspond to a given
width W = 20 nm and maximum strain ε = 5% but differ-
ent values of λ. Figures 3(d) and 3(e) are in regard to the
different strain wavelengths when W = λ/4 and ε = 5%. Fig-
ures 3(b), 3(d) and 3(e) along with Fig. 2(d) show slight
increase in spin splitting of the band structure by enhancing λ

when the maximum strain is constant ε = 5% and W = λ/4.
On the other hand, these band structures illustrate the effect of
the SZGNR width in constant strain when W = λ/4. Here,
increasing the ribbon width is equivalent to increasing the

FIG. 3. (a)–(c) Low-energy band structures of SZGNR with indicated values of λ and for given ribbon width W = 20 nm and ε = 5%.
They correspond to hm = 2, 4, 5 nm, respectively. (d), (e) Band structure of SZGNR with different ribbon widths and strain wavelengths when
W = λ/4 and ε = 5%, corresponding to hm = 2, 3 nm, respectively. In all parts U = t0.
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FIG. 4. The effect of strain magnitude on low-energy band structure of SZGNR and corresponding magnetizations with λ = 20 nm, width
W = λ/4, and U = t0. (a) Maximum strain ε = 5%, (b) ε = 10%, (c) ε = 18%, and (d) ε = 0. They are corresponding to equivalent values
hm = 1 nm, hm = 1.5 nm, hm = 2 nm, and hm = 0, respectively.

strain wavelength and leads to less band gap. Indeed, reducing
the ribbon width enhances the coupling between edge states,
or in other words raises the e-e interaction effect [65]. This
effect also occurs in other sets of W and λ that can be seen
by comparing plots Fig. 2(c) and Fig. 3(a) for W = λ/2 or
Fig. 2(e) and Fig. 3(c) for W = λ/5. In the rest of this paper,
we perform our calculation on the case of W = λ/4 due to its
most spin polarization compared to other widths of SZGNRs.
We investigate the low-energy band structure and spin magne-
tization of the designed system under different magnitudes of
strain in the following. To this purpose, we assume λ = 20 nm
and W = λ/4 in the SZGNR. Figure 4 shows the effect of
increasing strain on edge states. First, we apply the sinusoidal
strain with hm = 1 nm in Fig. 4(a), which produces maximum
strain ε = 5% in bond lengths. As seen, the spin degeneracy is
broken in the presence of our defined nonuniform strain and
Hubbard interaction. Besides, the two edges show different
magnetization, and therefore the system exhibits a small spin
polarization. The changes are in a way that one edge shows
larger magnetization rather than another one. The spin density
decays from the ribbon’s edges to the middle, and the edges
have more contribution relative to the bulk.

Second, by increasing maximum strain in bond lengths to
ε = 10% (this is equivalent to hm = 1.5 nm) in Fig. 4(b),

spin polarization is enhanced. In contrast, the spin band gap
decreases. Then, we raise the strain to ε = 18% and see
similar changes to those seen in Fig. 4(c). Again, the spin
gap decreased, and spin polarization increases. Also, a sub-
stantial difference between the spin distribution of two edges,
about δρ = 0.06μB, is observed in the case of Fig. 4(c) where
ρ = 0.26μB at the upper edge that is related to down spins.
This difference for Figs. 4(a) and 4(b) is δρ = 0.02μB and
δρ = 0.04μB, respectively. Ultimately, we plot the edge states
of the ZGNR with W = 5 nm in the absence of strain in
Fig. 4(d). As we expected there is no spin polarization in this
case. As a result, the defined strain profile could induce spin
splitting and finite magnetization in SZGNRs. Also, compar-
ing magnetization in panels (a)–(c) in Fig. 4 shows that there
is more variation of edge polarization in the higher values
of strain. So, enhancing strain could increase the magnetic
effects of the system and decreases the band gap.

To progress further, we apply a thermal gradient between
two sides of our designed SZGNR in this section to study
the thermoelectric current and Seebeck effect. The proposed
structure for this purpose is the SZGNR with λ = 20 nm and
W = λ/4 with the three strain values given in Figs. 4(a)–4(c).
The corresponding spin-polarized thermocurrents are plotted
in Fig. 5 as a function of temperature. Interestingly, the pure

FIG. 5. Spin-resolved, charge, and spin currents in SZGNR with λ = 20 nm, width W = λ/4, and U = t0 for (a) ε = 5%, (b) ε = 10%,
and (c) ε = 18%, under applied 
T = 20 K. The currents are in regard to the band structures of panels (a)–(c) in Fig. 4, respectively.
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FIG. 6. Charge and spin Seebeck coefficient against chemical potential in SZGNR with λ = 20 nm, W = λ/4, and U = t0 for (a) ε = 5%,
(b) ε = 10%, and (c) ε = 18% under applied 
T = 20 K. The currents are in regard to the band structures of panels (a)–(c) in Fig. 4,
respectively.

spin current is found in a wide range of temperatures for
these three systems with different strain values. The band
structure is symmetric for inversion of electrons and holes in
the energy window around the Fermi energy corresponding
to the considered temperatures. Here, the parts of bands that
participate in the current show symmetry features. This en-
ergy range is about −0.25 eV to 0.25 eV at T = 300 K by
considering the variation of the Fermi-Dirac distribution. As
seen in Fig. 5(a), in the case of ε = 5% up and down spin
currents appear from T = 60 K and have the same magnitude
and opposite directions to 300 K in temperature difference

T = 20 K. This leads to zero charge current and also a
high spin current that flows from left to right of the sample.
At room temperature, the induced pure thermospin current
reaches 60 nA. Here, spin-up carriers are holes that flow
from left to right, and electrons carry spin-down that move
inversely. They are equal, so there is no net charge current in
the system. By increasing the strain in Figs. 5(b) and 5(c), we
observe that a pure spin current exists, and it begins in lower
temperatures. Smaller band gaps around the Fermi level could
produce current at lower temperatures. This is owing to the
existence of involved bands in low temperatures (due to the
effect of Fermi distribution). Figure 5(c) shows that pure spin
current goes up to 160 nA at room temperature. Generally, by
increasing the strain’s strength, the spin gap decreases, and
therefore the spin current increases. This magnitude is more
than ten times larger than previous works on GNRs and carbon
nanotubes with vacancy [59,66].

Figure 6 shows spin and charge Seebeck coefficients
against chemical potential μ at T = 300 K corresponding to
band structures in Fig. 4, respectively. In all strains, the spin
Seebeck coefficient has a peak at μ = 0, while the charge
Seebeck is zero at this point. This peak is sharper and has
a larger value for cases with a higher strain than seen in
Figs. 6(a)–6(c). This peak for the case of ε = 5% has the
value Ss = 450 μV/K that is relatively large and comparable
to other reported values for ZGNRs [67–69] and carbon chains

[53]. The value of the spin Seebeck is dependent on the energy
gap, and by increasing the strength of the strain, the spin gap
decreases, and therefore the spin Seebeck slightly decreases,
but the flat plateau increases. In this regard, the SZGNR
with ε = 18% shows an approximately flat plateau around
μ = 0 similarly to armchair and zigzag graphene nanoribbons
with structural defects [59,66]. Moreover, by increasing or
decreasing the chemical potential, Ss is reduced and Sc has
nonvanishing values.

IV. CONCLUSION

In summary, we applied a sinusoidal-shaped inhomoge-
neous strain across a zigzag edge graphene nanoribbon. We
described its effect on the low-energy band structure of the
GNR using the tight-binding method and mean-field Kane-
Mele Hubbard model. Then we calculated the thermoelectric
properties of the GNR in the presence of a temperature gradi-
ent in the framework of the linear response regime. The results
showed that the simultaneous presence of Hubbard interaction
and nonuniform strain (that are barely considered in studies)
in the GNR could lift the spin degeneracy and produce spin-
semiconducting behavior with a tunable spin gap. Generally,
for creating the spin effect by strain, the nonuniform strain
could induce different effects on both edges of the zigzag
nanoribbon. In detail, two different sublattices near the zigzag
edges feel different strains that cause a spin filtering effect
in the presence of e-e interaction. Furthermore, as we expect,
the larger strain produces higher spin polarization and, finally,
higher values for spin current. Therefore, the SZGNR exhibits
spin-up and spin-down currents with opposite flow directions
and, therefore, pure spin current in a wide range of temper-
atures. Besides, high values of the spin current and Seebeck
coefficient are found at room temperature, even in low values
of strain compared to other reported values for ZGNRs. These
findings will be useful for designing stretchable electronics
and spin-based thermoelectric devices.
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