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In many situations, excitons—bound particle-hole pairs above an insulating ground state—carry an electric
dipole moment, allowing them to be manipulated via coupling to an electric field. For two-dimensional systems,
we demonstrate that this property of an exciton is uniquely determined by the quantum geometry of its
eigenstates, and demonstrate its intimate connection with a quantity which we call the quantum geometric
dipole. We demonstrate that this quantity arises naturally in the semiclassical equations of motion of an exciton
in an electric field, adding a term additional to the anomalous velocity coming from Berry’s curvature. In a
uniform electric field, this contributes a drift velocity to the exciton akin to that expected for excitons in crossed
electric and magnetic fields, even in the absence of a real magnetic field. We compute the quantities relevant
to semiclassical exciton dynamics for several interesting examples of bilayer systems with weak interlayer
tunneling and Fermi energy in a gap, where the exciton may be sensibly described as a two-body problem.
These quantities include the exciton dispersion, its quantum geometric dipole, and its Berry’s curvature. For a
simple example of two gapped-graphene layers in a vanishing magnetic field, we demonstrate that there is a
nonvanishing quantum geometric dipole when the layers are different, e.g., have different gaps, but vanishes
when the layers are identical. We further analyze examples in the presence of magnetic fields, allowing us to
examine cases involving graphene, in which a gap is opened by Landau level splitting. Heterostructures involving
transition metal dichalcogenides materials are also considered. In each case, the quantum geometric dipole and
Berry’s curvatures play out in different ways. In some cases, the lowest energy exciton state is found to reside at
finite momentum, with interesting possible consequences for Bose condensation in these systems. Additionally,
we find situations in which the quantum geometric dipole increases monotonically with exciton momentum,
suggesting that the quantum geometry can be exploited to produce photocurrents from initially bound excitons
with electric fields, without the need to overcome an effective barrier via tunneling or thermal excitation. We
speculate on further possible effects of the semiclassical dynamics in geometries where the constituent layers are
subject to the same or different electric fields.
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I. INTRODUCTION

Structured van der Waals materials represent one of the
richest new classes of condensed matters systems to have
emerged in recent years [1]. These systems are comprised of
single-layer materials layered upon one another, often lead-
ing to striking behaviors that are completely absent in the
constituent materials by themselves. One of the most well-
known among these is twisted bilayer graphene, in which
evidence for a rich set of many-body states has been ob-
served [2–8]. However, twisted bilayer graphene is really an
example of a much broader class of two-dimensional layered
systems. Beyond graphene, single layers of various mate-
rials such as transition metal dichalcogenides (TMDs) [9],
hexagonal boron nitride (hBN) [10], or phosphorene [11]
are currently available. By combining different such mate-
rials into heterostructures, one may search for combinations
yielding useful and/or fundamentally new physical properties
[12–16]. Among the interesting possibilities brought into play
by such systems are interlayer excitons: bound particle-hole
pairs in which different constituents reside in different layers
[17–31]. Because of the physical separation of the electron

and hole constituents, they can persist in these structures for
very long time scales (>100 nsec), allowing their evolution
over time to be detected optically [32–37]. In some situations
the excitons may Bose condense [38], or organize into peri-
odic arrays with potential optoelectronic applications [39–45].

A fundamentally interesting aspect of excitons is that they
are perhaps the simplest many-body system where quantum
geometric phases can have an impact. This arises in two ways:
because the electron and hole each reside in different bands,
the exciton as a composite object can bring the quantum
geometries of the two bands together in a nontrivial way. For
example, the band Berry’s curvatures and the quantum geo-
metric tensors [7,46–49] can have important consequences for
exciton energetics. Beyond this, an exciton state is typically
labeled by a total momentum, through which one may define
geometric phases for the exciton as a collective object. These
in turn impact the exciton equations of motion in external
electric and magnetic fields [50–55], in principle allowing one
to detect their presence.

In this paper, we will introduce a new quantum geomet-
ric quantity for two-dimensional systems which we call the

2469-9950/2021/103(11)/115422(22) 115422-1 ©2021 American Physical Society

https://orcid.org/0000-0002-1006-5196
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.115422&domain=pdf&date_stamp=2021-03-15
https://doi.org/10.1103/PhysRevB.103.115422


JINLYU CAO, H. A. FERTIG, AND LUIS BREY PHYSICAL REVIEW B 103, 115422 (2021)

FIG. 1. (a) Berry’s curvature for a single particle, such as an electron in a band structure, is usually characterized by the evolution of a
state as it is carried around a loop in its parameter space, and can be understood as an effective flux through that loop. (b) Two-particle systems
(such as an exciton—a bound state of a hole and electron, often generated by laser excitation, illustrated for a bilayer system on left) supports
a different quantum geometric measure, based on connections A(1) (A(2)) that characterize changes in the quantum state of the system as the
total momentum K changes by a small amount (�K), with plane wave phases assigned completely to the hole (bottom, middle) or the electron
(top, middle). The difference in these connections defines D, the quantum geometric dipole, which in turn dictates the exciton dipole moment.
For an exciton wave packet, when a net electric field E+ has a component parallel to D, a perpendicular drift velocity vD typically develops
(right), dynamics analogous to that expected in a magnetic field, even when is no such field.

quantum geometric dipole. The difference between this quan-
tity and the more commonly studied Berry’s curvature for
single electrons is illustrated in Fig. 1. The quantum geometric
dipole is intrinsically two-body in nature, and its physical
manifestation for an exciton appears in its electric dipole
moment. In what follows, we develop this concept and dis-
cuss its realization in interlayer excitons of several bilayer
heterostructure systems, focusing on systems where tunnel
coupling between the materials is weak. These turn out to be
attractive environments for studying the quantum geometric
dipole for a number of reasons. Among these is that they allow
one to explore the effects of differing quantum geometric
environments for each of the constituents. (Indeed, we will
see that in situations involving layers of the same material,
the interesting contributions to the quantum geometric dipole
can cancel away.) An extreme example of this is the case
where one of the materials is graphene, for which the band
Berry’s curvature vanishes, while the other material does have
single-particle curvature. In this case, it is important to impose
a magnetic field so that gaps open in the graphene spectrum,
admitting a well-defined two-body approach for the exciton
problem. Beyond this, the relative isolation of the two layers
allows in principle for different electric fields imposed within
the layers, resulting in some control over their dynamics.
Finally, when tunneling may be neglected, many-body effects
become relatively unimportant, and the excitons may be accu-
rately treated as a two-body system.

In developing this concept, most of the examples we
discuss below involve systems with a magnetic field perpen-
dicular to the layers. In fact, the connection between the dipole
moment of an exciton in a strong magnetic and its momentum
has been known for some time [56]; however, to our knowl-
edge, its quantum geometric origin has not been recognized.
Because of this, as we show below, the connection between
momentum and dipole moment in an exciton is much more
general than the strong field problem suggests. We will show
that the quantum geometric dipole dictates a dipole moment
as a function of exciton momentum in a model heterostruc-
ture of gapped graphene in zero magnetic field, as well as
for magneto-excitons in graphene/TMD heterostructures, and
TMD/TMD heterostructures.

The physical importance of the exciton dipole moment
becomes apparent when one considers the dynamics of an
exciton in an electric field E , to which the dipole moment

couples, which we demonstrate below by analyzing semiclas-
sical equations of motion. In agreement with previous studies,
we find that the exciton energy dispersion and Berry’s cur-
vature both enter these, but, importantly, in addition we find a
contribution that couples to the quantum geometric dipole. For
a uniform electric field, a nonvanishing quantum geometric
dipole/moment leads to a constant drift velocity, which in
the strong magnetic field case takes the form vD = E × B/B2.
This is the frame of reference of the exciton in which the elec-
tric field vanishes, and value of the drift velocity in this way
can be understood as an effective Lorentz invariance [57,58].
Beyond the strong field limit, however, the band environments
modify the dipole moment, so that the drift in a uniform
electric field behaves as if the magnetic field in which it is
moving is different than what is externally applied. Indeed, we
will see that even in the absence of an external applied field,
a quantum geometric dipole leads to drift motion. The basic
effect is illustrated in Fig. 1 for an exciton wave packet in a
uniform in-plane electric field E .

While the basic phenomena we describe do not require the
presence of a magnetic field, it is nevertheless interesting to
consider a system in which one is present for two reasons.
Firstly, by introducing the field the single-particle spectra for
both hole and electron break up into Landau levels, creating
gaps that allow the system to support excitons even if the
zero field system is gapless (e.g., graphene). This expands the
range of materials in which this physics could be explored.
Beyond this, we find that in the most common gapped two-
dimensional systems, strong particle-hole interactions make
the excitons relatively small, leading to small coupling be-
tween the quantum geometric dipole and an in-plane electric
field, so that the resulting exciton drift will likely be chal-
lenging to detect. By contrast, in the presence of a field the
relevant length scale becomes the magnetic length, which
is considerably larger than the zero field exciton size. We
find that the corrections to the expected drift from effective
Lorentz invariance can be considerable, allowing the impact
of the quantum geometric dipole to be more easily observed.

The presence of geometric phases may thus cause behavior
rather similar to that expected of a system in a magnetic
field, as has been pointed out for single particles projected
into individual bands with nonvanishing Chern numbers [59].
In principle, these effects may be detected by creating ex-
citons at a fixed location of a heterostructure, and using
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photoluminescence to look for drift of excitons induced by the
electric field away from the excitation location. The interlayer
excitons could be induced via a localized laser spot, for which
in-plane particle-hole pairs may relax into lower energy in-
terlayer excitons through a small residual tunneling. We also
propose using an in-plane laser beam with electric field lin-
early polarized out-of-plane, to minimize photoluminescence
from in-plane excitons which may mask the signals from the
excitons of interest.

As we show below, the change in the exciton dipole mo-
ment when the full quantum geometric structure is accounted
for—beyond the single Landau level approximation—is
considerable. These quantities also vary among different
exciton modes, suggesting that they might be spatially seg-
regated by electric fields. Beyond this, we find, within our
long-wavelength description, that the dipole moments of
magneto-excitons grow without bound as the exciton momen-
tum increases, so that electron and hole may be continuously
separated by an electric field that is antisymmetric in layer.
Such an effect could be detected as a photocurrent flowing
perpendicular to the applied field. It is also notable that in
this system, the lowest energy exciton state appears at finite
magnitude of the exciton momentum K , suggesting that a
large density of these at low temperature could form a con-
densate with a broken rotational spatial symmetry, forming
an additional ordering beyond that of the superfluid order
parameter expected of an exciton condensate.

This article is organized as follows. In Sec. II, we demon-
strate the basic idea of a quantum geometric dipole for an
exciton composed of an electron and hole in different Landau
levels. The analysis reproduces the known result [56] for
the exciton dipole moment, while demonstrating its quantum
geometric nature. We describe in Sec. III the types of model
systems considered in our study, and then derive semiclassical
equations for excitons, demonstrating the direct way in which
the quantum geometric dipole enters. This is followed in
Sec. IV by an analysis of the quantum geometric dipole and
Berry’s curvature for a simple model of two gapped graphene
layers in zero magnetic field, demonstrating that a real field is
not needed to produce the dipole physics. Section V presents
our numerical results for magneto-excitons in graphene/TMD
and TMD/TMD heterostructures. We conclude in Sec. VI
with a summary of our results, as well as some discussion
of possible geometries in which the effects discussed in this
work might be observed, and of further interesting physics
suggested by our studies. This paper also has three appen-
dices. Appendix A describes some details of our derivation of
the semiclassical equations of motion; Appendix B provides
some details of how we compute exciton wave functions and
energies, as well as Berry’s connections, quantum geometric
dipoles, and Berry’s curvatures; and Appendix C discusses ex-
citon generation by light with electric fields linearly polarized
normal to a heterostructure.

II. DIPOLE MOMENT AS A GEOMETRIC QUANTITY:
THE CASE OF LANDAU LEVELS

We begin our discussion by illustrating how the dipole
moment of an exciton may be understood in terms of quantum
geometric phases using a relatively simple example, where the

exciton dipole moment is already known: magnetoexcitons in
a strong magnetic field, where the quantum states are well-
described by an electron and a hole each residing in a single
Landau level. For a single particle of charge se (s = ±1), the
Hamiltonian is given by

H (s)
one-body(r) = 1

2m∗ (p − seA)2, (1)

where m∗ is the effective mass of the carrier, e > 0 is the elec-
tron charge, p = −i �∇ (with h̄ = 1), and the vector potential
A is taken here to be B(−y/2, x/2, 0), with B a perpendicular
magnetic field. Eigenstates of this Hamiltonian take the form〈

r
∣∣ψ (s)

n,k

〉 ≡ ψ
(s)
n,k (x, y) = 1√

�
√

π2nn!Ly

e−isxy/2�2
eikye− (x−sk�2 )2

2�2

× Hn

(
x − sk�2

�

)
, (2)

where the non-negative integer n is the Landau level index,
Hn is a Hermite polynomial, and � = √

h̄/eB is the magnetic
length. The energies of these states are εn = (n + 1

2 )ωc, where
ωc = eB/m∗ is the cyclotron frequency. Because these en-
ergies are independent of k, each Landau level has a large
degeneracy, LxLy/2π�2, where LxLy is the area of the sample.
We assume the electron density is such that, in the ground
state, every Landau level is either completely filled or com-
pletely empty, so that, in the strong field limit, low-energy
excitations involve removing an electron from a filled Landau
level and placing it in an empty one. In this situation one
may reasonably model the excitation as a two-body system,
roughly analogous to a positronium “atom” in a strong mag-
netic field [56,61].

To identify the momentum of the excitation it is conve-
nient to recast the two-body states in terms of eigenstates of
magnetic translations [62]. To do this, we define real-space
translation operators along the x̂ (ŷ) direction of displacement
ax (ay). For a charge of sign s, they take the form [62]

T̂ (s)
ax x̂ = ei(px−s y

2�2 )ax , (3)

T̂ (s)
ayŷ = ei(py+s x

2�2 )ay . (4)

Writing the magnetic flux through a unit cell as �uc, and the
magnetic flux quantum as �0 ≡ e2/h, provided one chooses
�uc/�0 ≡ axay/2π�2 to be an integer, these operators com-
mute with one another, as well as with the single-particle
Hamiltonians for the electron and hole [Eq. (1)]. One
may then construct eigenstates of all three operators. For
�uc/�0 = 1, these are

〈r|n, k, s〉 ≡ φ
(s)
n,k(x, y) =

(
ay

Ly

)1/2 ∑
m

eiskxaxmψ
(s)
n,ky+m�k,

(5)

with �k = 2π/ay. The eigenvalues of these states under the
magnetic translation T̂ (s)

ax x̂ (T̂ (s)
ayŷ ) above are eikxax (eikyay ).

A. Exciton states in a strong magnetic field

With the single-particle states formulated in this way, states
of a particle-hole pair now becomes straightforward to write
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down. The Hamiltonian of the two body system is

Htwo-body = H (+)
one-body(r1) + H (−)

one-body(r2) + v(r1 − r2), (6)

where r1 and r2 are the two-dimensional hole and electron
positions (each in a different layer), and v is an interparticle
interaction. For strong fields, the single-particle energies of
the Landau levels are highly separated, and we expect each
particle to reside, to an excellent approximation, in a single
Landau level. If we specify the indices of these to be ne and nh

for the electron and hole, respectively, we are led to consider

states of the form

〈r1, r2|�K〉 =
∑

q

Cq(K)eiKxqy�
2
φ(+)

nh,q(r1)φ(−)
ne,K−q(r2), (7)

where K is the exciton momentum, the sum over q is within
the first Brillouin zone, specified by −π/ax � qx � π/ax

and −π/ay � qy � π/ay, and the phase factor eiKxqy�
2

is in-
troduced so that the expansion coefficients Cq(K), and the
summand as a whole, are periodic in the reciprocal lat-
tice defined by the magnetic translations above. The exciton
states and energies are found by computing Ene,nh (K) ≡
〈�K|Htwo-body|�K〉, and minimizing this with respect to the
parameters Cq(K). The final result takes the form

〈r1, r2|�K=K(0)−ẑ×R/�2〉 =
√

axay

LxLy

∑
q

eiK (0)
x qy�

2
eiq·Rφ(+)

nh,q(r1)φ(−)
ne,K(0)−q(r2), (8)

where K(0) lies in the first Brillouin zone of the lattice, and the sum over q is within a single Brillouin zone. The quantity
R = nxaxx̂ + nyayŷ, with nx, ny integers, is a point on the effective real space lattice; however, because of our choice of flux
through a unit cell, ẑ × R/�2 is a point on the reciprocal lattice, so K spans all possible values of momentum. The corresponding
energy of the exciton is

Ene,nh (K = K(0) − ẑ × R/�2) = εne + εnh +
∫

d2k

(2π )2
ṽ(k)Snh,nh

0,k (k,+)Sne,ne

K(0),K(0)−k(−k,−)eiK (0)
x ky�

2
eik·R, (9)

where ṽ(k) is the Fourier transform of v(r). The structure
factors

Sn,n′
q,q ′ (k, s) ≡ 〈n, q, s|e−ik·r|n′, q ′, s〉, (10)

play an important role here and in what follows, in that they
inform the exciton of the quantum geometry of the bands—
in this case, the Landau levels—in which the electron and
hole reside [47,48,63,64]. For the simple case of an electron
and hole each in their n = 0 Landau levels, and a Coulomb
interaction between the particle and hole, v(r) = e2/r (which
ignores the separation between the electron and hole lay-
ers), Eq. (9) yields the known [56,61] result E0,0(K ) = ωc −
e2

√
π
2 e−K2�2/4I0( K2�2

4 ), where I0 is a modified Bessel function.

B. Exciton dipole moment as a quantum geometric phase

Our interest at this moment is not so much in the ener-
getics of an exciton as in how its state evolves when the
momentum K changes slowly. Eq. (8) allows us to do this.
A quantitative measure of this evolution can be accomplished
by looking at scalar products of states at different momenta,
say |�K1〉 and |�K2〉. However, since these are eigenstates
of translation operators T̂ (ex)

aμ
≡ T̂ (+)

aμ
T̂ (−)

aμ
, with aμ=x (aμ=y)

representing axx̂ (ayŷ), with different eigenvalues, such scalar
products will vanish. In order to compare such wave functions
through a scalar product one needs to strip off the phase
piece of the wave function, to yield states that are periodic
under T̂ (ex)

aμ
, irrespective of the exciton momentum K [65]. In

studies of exciton Berry’s curvature, this is usually accom-
plished by identifying a center of mass coordinate rcm (in
the present case, rcm = (r1 + r2)/2, with r1 the hole posi-
tion and r2 the electron position) and working with states of
the form e−iK·rcm |�K〉, usually to compute Berry’s curvatures

[51–55,66]. However, this is not the most general possibility.
As we now show, the freedom in how the unwanted phase
is removed can be exploited to gain further information and
insight into this type of excitation.

Towards this end, we consider states periodic under trans-
lations of the more general form

|uK, α〉 ≡ e−i[αr1+(1−α)r2]·K|�K〉. (11)

This allows us to define Berry’s connections specific to the
hole and electron constituents of the exciton,

A(1)(K) ≡ i〈uK, α = 1| �∇K |uK, α = 1〉,
A(2)(K) ≡ i〈uK, α = 0| �∇K |uK, α = 0〉. (12)

These quantities can be directly related to the dipole moment
of an exciton state, d ≡ e〈�K|r1 − r2|�K〉. We recast this in
the form

d = ie[〈�K|eiK·r1 ( �∇K e−iK·r1 )|�K〉
− 〈�K|eiK·r2 ( �∇K e−iK·r2 )|�K〉] (13)

= ie[〈uK, 1| �∇K |uK, 1〉 − 〈uK, 0| �∇K |uK, 0〉] (14)

≡ e[A(1)(K) − A(2)(K)]. (15)

In this formulation, one can see that the dipole moment
is related in a direct way to a quantum geometric prop-
erty of excitons with well-defined momentum. To stress this
point, from hereon we call the quantity D(K) ≡ A(1)(K) −
A(2)(K) the quantum geometric dipole. This result is very
general: it applies to any collection of exciton states that
can be labeled by momentum. While the quantities enter-
ing its definition, A(1)(K), A(2)(K), are gauge-dependent
(i.e., under |�K〉 → eiφ(K)|�K〉 their values change), their
difference—and so the quantum geometric dipole—is easily
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seen to be gauge-invariant. This must be the case since d is in
principle measurable.

To illustrate, we compute this quantity for our example
of an electron-hole pair in a strong magnetic field. Because
we have an analytic form of the wave function [Eq. (8)], the

computation can be carried out explicitly. A key quantity in
doing so is the overlap

�α (K1, K2) ≡ 〈uK1 , α|uK2 , α〉, (16)

in terms of which we can write

A(1)(K1) − A(2)(K1) = i lim
K2→K1

�∇K2 [�1(K1, K2) − �0(K1, K2)]. (17)

Since �1 (�0) involves a plane wave factor ei(K1−K2 )·r1 (ei(K1−K2 )·r2 ) for the hole (electron) only, these can be written directly in
terms of the structure factors in Eq. (10),

�1(K1, K2) = axay

LxLy

∑
q

e−iK (0)
1x (qy−K (0)

2y )�2+iK (0)
2x (qy−K (0)

1y )�2+i(K(0)
2 −K(0)

1 )·RSnh,nh

q−K(0)
2 ,q−K(0)

1

(
K(0)

2 − K(0)
1 ,+)

(18)

and

�0(K1, K2) = axay

LxLy

∑
q

ei(K (0)
2x −K (0)

1x )qy�
2
Sne,ne

K(0)
1 −q,K(0)

2 −q

(
K(0)

2 − K(0)
1 ,−)

. (19)

In writing these we have taken K1,2 = K(0)
1,2 − ẑ × R/�2, where K(0)

1,2 lies in the first exciton Brillouin zone, and we have assumed
any additional reciprocal lattice vectors ẑ × R/�2 needed to specify the momenta are the same for both, since ultimately we
will set K2 → K1. The structure factors [Eq. (10)] are somewhat tedious to work out, but their forms may eventually be written
compactly as

Snh,nh

q−K(0)
2 ,q−K(0)

1

(�K,+) = ei�Kx ( 1
2 K (0)

2y + 1
2 K (0)

1y −qy )�2−�K2�2/4Lnh

(
�K2�2

2

)
, (20)

Sne,ne

K(0)
1 −q,K(0)

2 −q
(�K,−) = ei�Kx ( 1

2 K (0)
1y + 1

2 K (0)
2y −qy )�2−�K2�2/4Lne

(
�K2�2

2

)
, (21)

where �K ≡ K2 − K1, and Ln are Laguerre polynomials. Substituting Eqs. (20) and (21) into Eqs. (18) and (19), we arrive at

�1(K1, K2) − �0(K1, K2) = e−�K2�2/4

[
e

i
2 (K (0)

1x +K (0)
2x )�Ky�

2+i�K·RLnh

(
�K2�2

2

)
− e

i
2 (K (0)

1y +K (0)
2y )�Kx�

2
Lne

(
�K2�2

2

)]
. (22)

Finally, using Eq. (17), and remembering K = K(0) − ẑ × R/�2 one finds the quantum geometric dipole to be

D(K) = A(1)(K) − A(2)(K) = K × ẑ�2, (23)

so that the electric dipole moment of the exciton is just
d = eK × ẑ�2. Note the result is independent of the specific
Landau levels nh and ne in which the hole and the electron
reside.

The connection between the dipole moment of a mag-
netoexciton in the strong field limit and its momentum is
well-known [56]; the present analysis however demonstrates
its quantum geometric nature. The presence of this dipole
moment may be understood semiclassically as a balancing of
the electric attraction between the electron and the hole, and
the magnetic force that results from the uniform motion of
the exciton in the magnetic field. We will see more generally
that excitons carry dipole moments dictated by the quantum
geometric nature of their wave functions as a function of their
momentum K. Before showing this explicitly, we consider
how their presence impacts that dynamics of excitons.

III. MODEL SYSTEMS AND SEMICLASSICAL
EXCITON DYNAMICS

In this section, we derive equations of motion for an ex-
citon wave packet, in a way that is relevant for interlayer

excitons in a two-layer system. In particular, we consider the
possibility that there may be electric fields in the individual
layers that are different, a situation that becomes possible
when interlayer tunneling is only a small perturbation, which
is the limit we have focused upon throughout this paper.
The method we follow was introduced in Ref. [50] and has
previously been applied to excitons [51]. We will see that by
focusing on the electron and hole coordinates separately one
arrives at a somewhat different result, in which the quantum
geometric dipole enters in a direct and physically intuitive
way. Before beginning this discussion, however, we need
to specify more concretely the forms of the single-particle
Hamiltonians of the exciton constituents, for the types of
systems which are the main focus of our study.

A. Single-layer Hamiltonians

The models we discuss below involve single, two-
dimensional layers in which an electron or hole resides, which
may be graphene, gapped graphene, or a TMD system. With-
out a magnetic field, at long wavelengths the wave functions
for each of these can be described by two-component spinors.
In graphene these represent amplitudes for electrons to reside
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in pz orbitals on the A and B sublattices of the honeycomb
lattice; in TMD materials the amplitudes are for different
combinations of d orbitals residing on the transition metal
sites [60]. In all these cases, the Hamiltonians can be cast into
the general form

HDirac
e (p) = �Vτ · p + mστ σz, (24)

where each component of �Vτ is a 2 × 2 matrix, τ = ±1 is
a valley index, σ = ±1 is a spin index, mστ is an effective
mass parameter, and σz is a Pauli matrix that acts on the two-
component spinor. The Hamiltonian of electrons in gapped
graphene reads

H τ
G(p) = vGτσx px + vGσy py + δσz, (25)

where vG is the Fermi velocity for electrons and the mass
parameter δ opens a gap in the spectrum. Physically this
can occur if the graphene resides on a substrate that results
in different potentials on the A and B sublattices, which
is effectively the case, for example, for graphene on hBN
with the symmetry axes of the two materials approximately
aligned [67,68]. When misaligned, or on a substrate a with
significantly different lattice parameter, the gap parameter δ

vanishes, yielding the well-known gapless Dirac point spec-
trum [69].

The effective Hamiltonian for electrons in a TMD can be
written in the matrix form [60]

H (σ,τ )
TMD ( �p) =

(
�/2 vF (τ px − ipy)

vF (τ px + ipy) −�/2 + στλ

)
, (26)

which is of the form in Eq. (24), up to an unimportant over-
all constant shift. In this case we see the mass parameter,
mστ ≡ (� − στλ)/2, has nontrivial dependence on the spin
and valley indices [60].

These single-particle Hamiltonians all describe electron
states in the vicinity of a K or K ′ point in a band structure,
and include states near a local minimum of a conduction
band. They also describe states near the top of a valence
band, upon which we perform a particle-hole transformation,
to describe a hole as a single positively charged particle. The
effective single-particle Hamiltonian for such a hole is given
by HDirac

h (p) = −HDirac
e (−p). Finally, to include the orbital

effect of an external magnetic field, we make the Peierls
substitution �p → �� = �p − q �A, where q = −e for an electron
and q = +e for a hole.

B. Semiclassical equations of motion

The analysis for semiclassical dynamics of an exciton be-
gins with a wave packet constructed from states of definite
total momentum,

|�0〉 ≡
∫

d2Kw(K)|�K〉, (27)

where |�K〉 is an exciton state with momentum K, and w(K)
is the normalized wave-packet weight, which is assumed to
be peaked around some central momentum Kc within the first
Brillouin zone, with a width that is small compared to the Bril-
louin zone size but not so narrow that any applied potentials
vary rapidly within the real-space extent of the wave packet
[70]. The integration area is confined to the first Brillouin

zone. With 〈r1, r2|�K〉 denoting the probability amplitude to
find a hole at position r1 and an electron at r2, we denote the
average positions for them for the wave packet as

R1 ≡ 〈�0|r1|�0〉, (28)

R2 ≡ 〈�0|r2|�0〉, (29)

which, using Eqs. (11) and (12), can be recast compactly in
the form

Rα =
∫

d2K[iw∗(K) �∇w(K) + |w(K)|2A(α)] (30)

with α = 1, 2. To derive equations of motion for these quan-
tities, we define an effective Lagrangian,

L = 〈�|i∂t |�〉 − 〈�|H |�〉 ≡ Lt − E (K), (31)

where, based on the discussion of the previous section, the
Hamiltonian of the system takes the form

H =
∑
i=1,2

{ �V (i) · [−i �∇ri + (−1)ie(A0(ri ) + δA(i)(ri, t ))]

+ Mi} + v(r1 − r2). (32)

Here, A0 is the vector potential from a static, spatially uniform
magnetic field, −∂tδA(i) = E (i) specifies the electric field for
the hole (i = 1) and the electron (i = 2), and �∇ × δA(i) =
δB(i) encodes an additional weak magnetic field beyond that
from A0. Mi are mass matrices which open gaps in the single
particle spectra. Note that the general form of the single-
particle Hamiltonians discussed in the last subsection dictate
how the added electric and magnetic fields are incorporated in
the system.

With L written terms of collective degrees of freedom, we
can extremize the action S = ∫

Ldt in terms of them to obtain
equations of motion. (We present some details of the how the
Lagrangian is found in Appendix A.) The collective degrees
of freedom include the momentum center of the wave packet
Kc, as well as average hole and electron positions, which may
be written in the form

R1 ≈ �∇Kcγ (Kc) + A(1)(Kc), (33)

R2 ≈ �∇Kcγ (Kc) + A(2)(Kc), (34)

where γ is the phase of the wave packet weight, w(K) =
|w(K)|e−iγ (K). Together these relations imply a constraint on
the collective degrees of freedom,

R1 − R2 = A(1)(Kc) − A(2)(Kc). (35)

We again see the intrinsic connection between the dipole
moment of the exciton and the quantum geometric dipole
of the exciton band. Since the position difference is fixed in
terms of Kc, we in fact only have two independent (vector)
degrees of freedom, which we take to be Kc and the sum
position R+ ≡ R1 + R2. In terms of these variables, as shown
in Appendix A, the Lagrangian may be written as

L = e

2

∑
μ=x,y

δA+,μK̇c · �∇Kc

[
A(1)

μ − A(2)
μ

] − e

2
δA− · Ṙ+

− 1

2
K̇c · [R+ − A(1) − A(2)] − E0(Kc ), (36)
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where δA± = δA(2) ± δA(1) and E0(K) is the exciton energy
dispersion in the absence of δA.

Minimizing S with this Lagrangian with respect to the two
free parameters yields the Euler-Lagrange equations,

d

dt

∂L
∂Ṙ+

= ∂L
∂R+

, (37)

d

dt

∂L
∂K̇c

= ∂L
∂Kc

. (38)

Specializing for simplicity to the case δB = 0, implementing
Eqs. (37) and (38), after some algebra, leads to

− Ṙ+ + e �∇Kc [δȦ+ · (A(1) − A(2) )]

= −2 �∇Kc E0(Kc) + K̇c × [ �∇Kc × (A(2) + A(1) )] (39)

and

−K̇c = eδȦ− + e �∇R+{K̇c · �∇Kc [δA+ · (A(1) − A(2) )]}.
(40)

Equations (39) and (40) are the main results of this section,
and a few comments on their forms are warranted. While
the equations involve gauge-dependent quantities (A(α)), the
combinations in which they appear are gauge-invariant. The
last term of Eq. (39) is essentially the Berry’s curvature for
the exciton, and enters as an anomalous velocity [71], which
is known to impact the dynamics of single-particle carriers in
general, as well as the dynamics of excitons [51]. The terms
involving the quantum geometric dipole D = (A(1) − A(2) ),
by contrast, are a new element. Their presence is possible
because the exciton is a two-body object, and has no analog in
the single-particle dynamics of band electrons [50].

To better appreciate the meaning of these terms, we con-
sider the situation in which the applied electric fields (and
their corresponding vector potentials) are spatially uniform.
Writing the sum and difference of the electric fields in the two
layers as E±, Eqs. (39) and (40) reduce to

Ṙ+ + K̇c × �(Kc) = 2 �∇Kc E0(Kc) − e �∇Kc [E+ · D(Kc)],

(41)

K̇c = E−, (42)

where � = �∇ × (A(2) + A(1) ) is the effective Berry’s curva-
ture for the exciton, and D is the exciton quantum geometric
dipole. Noting that the dipole moment of the exciton is d =
eD, we see that the quantum geometric dipole enters the
equations in a very natural way, coupling as one expects of
an electric dipole moment in an electric field. In situations
where the quantum geometric dipole is constant, this will have
no effect on the exciton equations of motion; however, this is
generically not the case. Thus the exciton acquires a further
quantum geometric correction to the velocity beyond that of
the Berry’s curvature.

As demonstrated in the previous section, for exciton con-
stituents confined to Landau levels, the quantum geometric
dipole is precisely linear in Kc [Eq. (23)] so that this particular
geometric contribution to the velocity has a simple interpreta-
tion. Assuming the same electric field E to be present for both
the hole and the electron, one finds | 1

2
�∇Kc [E+ · d]| = E/B ≡

vD, the expected drift velocity of a charge particle in crossed
electric and magnetic fields. While the exciton is a neutral
object, it nevertheless couples to the electric field through its
dipole moment. The anomalous contribution to the velocity is
essentially that of a frame of reference in which the electric
field vanishes [72]. (Note that this is only possible when
E < B; since Eq. (23) was derived in the strong magnetic field
limit, we can assume we are in this situation.) More generally,
we will see the quantum geometric dipole varies linearly near
Kc = 0, so that its impact on the exciton equations of motion
in an electric field is highly analogous to what one expects
when the object is in a magnetic field. Thus, from the perspec-
tive of dynamics, this quantum geometric phase renormalizes
the effective magnetic field, even introducing an effective field
where a real one is not present. We will see an example of this
in the next section.

The exciton equations of motion involve three quantities
that are specific to the particular system they are describ-
ing: the dispersion E0(K), the Berry’s curvature �, and the
quantum geometric dipole D. We next turn to computing
these, first for the instructive example of a fictitious “gapped
graphene” heterostructure, and then for magnetoexcitons in
van der Waals heterostructures.

IV. GAPPED GRAPHENE IN ZERO FIELD

As is apparent from the development above, the connection
between an exciton dipole moment and a quantum geometric
phase is not specific to systems in a magnetic field, but will
occur in any system for which there is sufficient difference in
the way that Bloch wave functions |uK, α〉 [Eq. (11)] evolve
with K when the plane wave phase is removed from either
the hole (α = 1) or the electron (α = 2). It is interesting and
instructive then to see how this plays out in a relatively simple
setting: gapped graphene. This can in principle be realized
as two graphene sheets separated by a boron nitride spacer
layer [67,68], with twist angles that are slightly different so
that each layer can have a different induced band gap.

We thus begin with a two-body Hamiltonian of the form

H (r1, r2) = [
v1

( − i∂x1σx − i∂y1σy
) + δ1σz

] ⊗ 1 + 1

⊗ [
v2

( − i∂x2σx − i∂y2σy
) − δ2σz

] + v(r1 − r2),

(43)

where r1 is the hole position, r2 the electron position, v is the
attractive electron-hole interaction, and the matrices act on the
wave function amplitudes for the graphene A and B sites. Note
in writing this, we have implemented a particle-hole transfor-
mation for the hole degree of freedom as described above,
H (hole)

one-body(k) = −H (electron)
one-body (−k), accounting for the differing

sign signatures for the gap parameters, δ1 and δ2. If both layers
are composed of graphene then the Fermi velocities, v1 and
v2, should be the same, but we allow them here to be different
for further generality. Note that this model also describes the
low-energy physics of other materials, such as topological in-
sulator surface states [46,73], with spinor amplitudes referring
to spin states, or TMD materials [60].

We wish to find minimum energy states of Eq. (43), subject
to the constraint that they involve only positive energy states

115422-7



JINLYU CAO, H. A. FERTIG, AND LUIS BREY PHYSICAL REVIEW B 103, 115422 (2021)

of the single-body Hamiltonians for the electron and hole. To
accomplish this, we change variables, writing

R = β1r1 + β2r2, (44)

r = r2 − r1, (45)

with the constraint β1 + β2 = 1. The values of β1,2 are for
now arbitrary and will be chosen for convenience in what
follows. Since the total K is a constant of motion, the exciton
wave function can be written as

�K = eiK·RuK(r). (46)

We expand the relative wave function uK(r) in the form

uK(r) = 1√
LxLy

∑
q

Cq(K)ψe(q, K)ψh(q, K) eiqr, (47)

where LxLy is the sample area. The (positive energy) single-
particle wave functions appearing in this expression have the

forms

ψh(q, K) =
(

cos θ1
2

sin θ1
2 eiφ1

)
, ψe(q, K) =

(
sin θ2

2

cos θ2
2 eiφ2

)
,

(48)

with energies Ee =
√

δ2
2 + v2

2 (β2K + q)2 and Eh =√
δ2

1 + v2
1 (β1K − q)2 , and the angular parameters are given

by θi = tan−1 vi|βiK+(−1)iq|
δi

and φi = tan−1 βiKy+(−1)iqy

βiKx+(−1)iqx
.

Minimizing 〈�K|H |�K〉 subject to the constraint that the
wave function is normalized, one finds the coefficients Cq(K)
must obey an eigenvalue equation. For this particular case, it
turns out to be useful to absorb a phase into these coefficients,
writing χ̄ (q, K) = eiφ2(q,K)Cq(K). In terms of this the eigen-
value equation is

[Ee(q, K) + Eh(q, K)]χ̄ (q, K) + 1

LxLy

∑
q′

V̄ (q, q′, K)χ̄ (q′, K) = E (K)χ̄ (q, K), (49)

where the projected interaction has the form

V̄ (q, q′, K) = ṽ(q − q′)〈ψe(q, K)|ψe(q′, K)〉〈ψh(q′, K)|ψh(q, K)〉ei[φ2(q,K)−φ2(q′,K)] (50)

with ṽ the Fourier transform of the particle-hole interaction. Note that because we are working with spatially separated layers,
we have neglected any effects of exchange interactions.

To make further progress, we consider excitons of relatively low total momentum K , and moreover assume χ̄q(K) is only
significant for small values of q for such excitons, which we find self-consistently to be the case. With considerable algebra, one
may show

V̄ (q, q′, K) ≈ ṽ(q − q′)
[

1−
(

v2
1

8δ2
1

+ v2
2

8δ2
2

)
(q−q′)2 + i

(
v2

1

4δ2
1

+ v2
2

4δ2
2

)
ẑ · (q × q′) + i

(
v2

1

4δ2
1

β2− v2
2

4δ2
2

β1

)
ẑ · (K × (q−q′))

]
.

(51)

In the same approximation,

Ee(q, K) + Eh(q, K) ≈ δ1 + δ2 + q2

2

(
v2

1

δ1
+ v2

2

δ2

)
+ K · q

(
β2

v2
1

δ1
− β1

v2
2

δ2

)
+ K2

2

(
β2

2
v2

1

δ1
+ β2

1
v2

2

δ2

)
. (52)

Equations (51) and (52) admit a special case where explicit
solutions can essentially be written down: δ1 = δ2 ≡ δ. In
this case, one may choose βi to cancel terms linear in K
in these equations, and K2 enters only as a constant energy
shift in the eigenvalue equation. The energy disperses quadrat-
ically with total momentum, with a curvature independent
of the internal state of the exciton. Moreover, the amplitude
χ̄ solving the eigenvalue equation does not depend on K.
In the remainder of this section, we focus on this special
case.

With the form of the wave function we have used
in Eq. (46), we can consider the Berry’s connection in
a more standard approach [51–55], in which we iden-
tify the plane wave part of the wave function with the
center coordinate, in this section written as R. Thus one
takes

A(K) = i〈uK| �∇K|uK〉, (53)

with |uK〉 the ket corresponding to the state in Eq. (47). Be-
cause χ̄ is independent of K, using Eq. (48), one can obtain a
rather simple formal expression for A,

A(K) =
∑

q

|χ̄ (q)|2
[

sin2 θ2

2
�∇φ2 − sin2 θ1

2
�∇φ1

]
. (54)

This quantity, however, is not quite what we want: we need
the appropriate Berry’s connections that can be formed into
the quantum geometric dipole. To do so we consider states of
the form

u(α)
K (r1, r2) = e−iK·[αr1+(1−α)r2]�K

= eiK·[(β1−α)r1+(β2+α−1)r2]uK(r), (55)

which are the real space representations of the kets defined in
Eq. (11). Using β1 + β2 = 1, we then have

u(α=0)
K = e−iβ1K·ruK(r), u(α=1)

K = eiβ2K·ruK(r). (56)
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Writing

U (q, K) ≡ Cq(K)ψe(q, K)ψh(q, K), (57)

we obtain

A(1) = i〈uK, α = 1| �∇K|uK, α = 1〉

= 1

LxLy

∑
q,q′

∫
d2rU †(q, K)ei[β1K−q]·r �∇Ke−i[β1K−q′]·rU (q′, K)

= A(K) + i
1

LxLy

∑
q,q′

U †(q, K)U (q′, K)
∫

d2rei[β1K−q]·r �∇Ke−i[β1K−q′]·r

= A(K) + iβ1

∑
q

U †(q, K) �∇qU (q, K). (58)

A similar manipulation yields an analogous expression for A(2), and using β1 + β2 = 1, one finds

A(1) − A(2) = i
∑

q

U †(q, K) �∇qU (q, K). (59)

For δ1 = δ2 = δ, taking β1 = v2
1

v2
1+v2

2
and β2 = v2

2

v2
1+v2

2
, we reach an expression analogous to Eq. (54),∑

q

U †(q, K) �∇qU (q, K) = −i
∑

q

{
iχ̄∗(q)∇qχ̄ (q) + |χ̄ (q)|2 sin2 θ2

2
∇qφ2(q, K) − |χ̄ (q)|2 sin2 θ1

2
∇qφ1(q, K)

}
. (60)

To make further progress, it is necessary to have an explicit expression for the amplitude χ̄ . In order to obtain qualitative
results, we model the relative exciton wave function as a 1S state of the hydrogen atom, with an effective mass μ = m∗/2 where
m∗ = 2δ

v2
1+v2

2
. Thus we take

ϕ1S = 2
√

2

a0
√

π
e−2r/a0 ⇒ χ̄ (q) =

√
2π

a0(
1 + q2a2

0
4

) 3
2

(61)

with a0 = h̄2

e2μ
. (Comparison with results from Ref. [48] indicate that this expression is quite reasonable.) Note that in this model

the first term on the right hand side of Eq. (60) vanishes, so that the form of the quantum geometric dipole comes out rather
similar to the standard Berry’s connection, Eq. (54), in the gauge we use. After some algebra one can write an explicit integral
form for Eq. (59),

A(2)(K) − A(1)(K) = a0

2π
(ẑ × K̂ )

∫
dkdζ

cos ζ

2

[(
1√

1 + β2k2
− 1

)(
1(

1 + 1
4

(
k2 + β2

2 K2 − 2β2kK cos ζ
))3

)

−
(

1√
1 + β1k2

− 1

)(
1(

1 + 1
4

(
k2 + β2

1 K2 + 2β1kK cos ζ
))3

)]
. (62)

Figure 2 shows an illustration of the quantum geometric
dipole and Berry’s curvature for a representative set of param-
eters. Note that for small values of K the quantum geometric
dipole is linear in K , and is directed perpendicular to K. This
form is exactly as was found for excitons in a strong magnetic
field, and, according to the considerations of Sec. III B, indi-
cates that we expect the exciton to drift perpendicular to an
applied electric field, precisely as if the object were immersed
in a perpendicular magnetic field—although, in this example,
no real field is present.

Our formulation of the quantum geometric dipole and
Berry’s curvature also have interesting behaviors when δ1 =
δ2 and v1 = v2; i.e., when the layers are identical. In this
case β1 = β2, and one easily sees that the quantum geometric
dipole vanishes. This situation applies if we consider the quan-
tum geometric dipole of an exciton in a single layer gapped

graphene system: excitons in this simpler system do not carry
a dipole moment. Physically, the definition of exciton Berry’s
curvature we use allows for the coupling to electric fields that
differ for the two constituents [cf. Eq. (42)], for which we
expect to have a nonvanishing response. Note this situation
is realizable in principle for interlayer excitons, but could not
occur (at least for electric fields that vary slowly in space) in
a single-layer system. We thus see that heterostructures can
yield interesting quantum geometric behavior which is absent
in single-layer systems.

V. MAGNETOEXCITONS IN HETEROSTRUCTURES

We now turn to investigating properties of interlayer
excitons in graphene/TMD heterojunctions, as well as het-
erojunctions of different single-layer TMD materials. The
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Ωz(K)= ẑ ·∇ × (A(2)(K)+A(1)(K))Ω
z
(a

2 0
)

A(2)(K)−A(1)(K)≡D(K)·(ẑ×K̂)

FIG. 2. (Top) Magnitude of quantum geometric dipole D =
A(2) − A(1) for two different gapped graphene layers, with β1 = 0.4
(see text). (Bottom) Berry’s curvature for the same system.

method we follow parallels much of the development in
Sec. II: we adopt trial wave functions for the exciton
generically that are analogous to Eq. (8),

�K =
∑
nq

Cn(K)eiq·ReiK (0)
x qy�

2 �φ(h)
nh,q,σh,τh

(r1)

⊗ �φ(e)
ne,K(0)−q,σe,τe

(r2), (63)

where the full momentum K = K(0) − ẑ × R/�2, has been
broken up into a part that lies in the first Brillouin zone, K(0),
and a reciprocal lattice vector, −ẑ × R/�2, where R is a direct
lattice vector, as discussed in Sec. II. The vector n ≡ (n1, n2)
represents the set of possible Landau level indices the hole
(n1) and the electron (n2) may have (i.e., the set of levels
which are not Pauli-blocked by other carriers.) The wave
functions �φ(h)

nh,q,σh,τh
(r1) and �φ(e)

ne,K(0)−q,σe,τe
(r2) are eigenstates

of the single-particle Hamiltonians for the hole and electron,
respectively, with the hole of spin σh residing in valley τh, and
the electron of spin σe residing in valley τe.

To find the exciton energies and wave functions, we min-
imize the energy 〈�K|H |�K〉 with respect to the coefficients
Cn(K), subject to the constraint that |�K〉 is normalized. The
procedure is conceptually analogous to what was described in
Sec. II, although the details are considerably more involved.
At the end of the analysis one finds an eigenvalue equation
for the exciton energies and wave functions that can be solved
numerically. From the latter, the quantum geometric dipole
and Berry’s curvature may be ascertained.

We next turn to the results of these calculations. Readers
interested in further details of the eigenvalue equation, as well
as in some discussion of our numerical approaches, may find
these in Appendix B.

A. Graphene on TMD

We first discuss the behavior of an exciton in which the
electron resides in a graphene layer while the hole resides in a
TMD layer. For concreteness, we take the TMD to be MoS2,
although we do not expect qualitatively different results for
other TMDs. Both materials are honeycomb lattices, but the
lattice constant for MoS2 is considerably smaller than that of
graphene (0.318 nm versus 0.246 nm) [69,74]. In this situation
the tunneling between the two layers is likely to be quite small,
but we assume it is sufficient that luminescence from electrons
and holes in different layers recombining may be detected.
Note that in the absence of a magnetic field, radiation from
electrons and holes recombining from these two different ma-
terials is challenging to detect due to the semimetallic nature
of (ungapped) graphene [75–77]; the gap provided by the field
however renders the graphene insulating in the situations we
consider here.

Electrons and holes may be introduced into the layers
through tunneling, direct excitation by light, or by simply
injecting them into the individual layers. Note that because
of the large lattice mismatch, one does not expect direct
excitation into exciton states by light absorption: since light
absorption conserves momentum, one or both carriers will be
far from a K or K ′ when the particle-hole pair is created, so
that they will be effectively unbound. In TMD heterostruc-
tures it is known that injected electrons and holes rapidly relax
into exciton states, which are then long-lived; we assume the
situation is similar for the structure we consider here [37].

Because the field-free graphene spectrum is gapless, it is
important to introduce the magnetic field. In this situation (see
Appendix B) the Landau level spectrum of graphene provides
gaps into which the Fermi energy can be placed, allowing
us to consider the situation in which an extra particle in the
graphene and a hole in the TMD can be usefully analyzed
as a two-body problem. (Note that in general the center of
the Landau level gap below which states are occupied in the
graphene layer does not align with the center of the TMD
energy gap; however in principle these can be aligned by a
perpendicular electric field. For simplicity we assume here,
and in the examples that follow, that these gap centers are
indeed energetically aligned.) The situation in this combi-
nation of materials is particularly interesting in that, in zero
field, the electronic structure of graphene near (but not pre-
cisely at) the Dirac point carries no Berry’s curvature, whereas
TMDs near their valley maxima have strong curvatures that
depend on the carrier spin [60]. Such interlayer excitons thus
allow us to explore a situation in which an curvature effects
due to band structure comes in through only one of the two
constituents.

Figure 3 illustrates representative results for a magnetoex-
citon in a graphene-MoS2 heterostructure. In this example
there is a hole with spin such that it lies in the highest
energy MoS2 valence band of the K ′ valley, and an elec-
tron in the K ′ valley of graphene. Panel (a) shows the
energy dispersions for the three lowest-lying excitons of this
structure. One surprising notable feature is a minimum at
momentum |K|� ≈ 0.45/�. Because of the long-wavelength
treatments we adopt for our single-particle Hamiltonians, the
exciton ground state is rotationally degenerate. An interesting
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FIG. 3. Properties of magneto-exciton in a graphene/TMD heterostructure. Hole is assumed to be in the K ′ valley of the TMD. (a) Energy
dispersions for three lowest levels (in units of eV) as a function of exciton momentum |K|. (b) x̂ component of the addition to the quantum
geometric dipole beyond the single Landau level result, δDx , as a function of K. The full quantum geometric dipole is given by D = δD +
K × ẑ�2. (c) δDx vs exciton momentum K for Kx = 0. [(d)–(f)] Berry’s curvatures of low-lying excitons as a function of momentum K for three
lowest exciton levels. TMD parameters chosen as appropriate for MoS2 [60]. Magnetic field is taken as B = 10 T, layer separation is 0.71 nm.
A dielectric constant of 4 is assumed for the Coulomb interaction. Calculations performed retaining Landau levels with index |n| � 50 for the
hole and |n| � 50 for the electron.

possibility to consider in this context is what would happen
should enough excitons be created at low temperature that
they Bose condense. The resulting state will spontaneously
break not just a U(1) symmetry associated with exciton num-
ber [78,79], but a second U(1) symmetry associated with
rotations. Because of the quantum geometric dipole, this
would be detectable as a macroscopic dipole moment devel-
oping in the system.

Panels (b) and (c) illustrate the deviation of the quantum
geometric dipole δD from the single Landau level results
presented in Sec. II, K × ẑ�2. This computed correction is ori-
ented along K̂ × ẑ and adds to the single Landau level result,
enhancing the exciton dipole moment. One interesting con-
sequence of this is that, in a uniform electric field, according
to the semiclassical equations of Sec. III B, excitons will drift
faster than naively expected. The correction is considerable:
for the lowest level, our computed quantum geometric dipole
at 10 T is roughly 70% larger than the single Landau level
result, which is quantitative only at much stronger fields. It is
also notable that the slopes of the quantum geometric dipole
corrections for higher energy excitons are smaller than those
of lower energy, and can even change sign with increasing
energy at fixed K (not shown). This impacts the speed at
which they drift in an electric field. We discuss the impact of
these quantum geometric dipole enhancements on semiclassi-
cal motion of the excitons in further detail below.

Panels (d), (e), and (f) illustrate the Berry’s curvature for
the lowest three levels. In general, we find some structure
near K = 0 for the exciton levels, but a tendency to vanish
for larger |K| (not shown in figures). The distinctions among
the different exciton levels become most noticeable at small

momentum, where for example the Berry’s curvature for the
lowest level is strongly peaked, whereas for the next two levels
the structure is relatively subtle. These differences impact the
semiclassical motion of the excitons in an electric field, which
we will discuss in the next section.

We also present results for an exciton in which the hole
resides in the K valley in Fig. 4. (Because the wave functions
in graphene are so similar in the two valleys, the results are
independent of which valley the electron is in.) The main dif-
ference between the single-particle hole states is the absence
of an n = 0 level in the K , whereas one is present in the K ′

FIG. 4. Energy dispersion for a graphene/TMD heterostructure.
Parameters are as in Fig. 3, except hole is in the K valley. Energy is
in units of eV.
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(a) Energy dispersion for hole in K valley, in units of eV.

0 1 2 3 4 5 6
0

0.05

0.1

0.15

level 1

level 2

level 3

(b) Energy dispersion for hole in K valley, in units of eV.

FIG. 5. Energy dispersion for exciton in a graphene/gapped graphene heterostructure, with electron and hole in different valleys. Hole
is assumed to be in the gapped graphene, and gap parameter is chosen as 111.4 meV. Magnetic field is 10 T, interlayer separation 0.71 nm.
Dielectric constant for Coulomb interaction taken to be 4. Calculation retains states with Landau level index |n| � 30 for both carriers.

valley. Although the states formally reside in linear combina-
tions of the two orbitals, over the relevant range of energies
for the parameters of this system, the hole states reside largely
on opposite orbitals for each of the two valleys. Moreover, the
set of states associated with each of these orbitals includes a
full set of harmonic oscillator wave functions for each value of
single-particle momentum k, so that the states are essentially
the same as those of scalar particles. Thus the main effect of
the single-particle Berry’s curvatures is to shift the energy
dispersions, as is apparent in comparing the dispersions in
Fig. 4 to those of Fig. 3 [47,48]. The shapes of the dispersions
are only subtly different. The quantum geometric dipole and
Berry’s curvature (not shown) are nearly identical to those of
Fig. 4 as well, with only subtle quantitative differences. Thus
we expect to obtain similar dynamical behavior for excitons in
both valleys, although the thermal populations of the K valleys
should be smaller than those of the K ′ valleys due to their
higher energies.

B. Gapped graphene on gapless graphene

To illustrate the effects of a more involved wave function
structure, we briefly discuss numerical results for excitons in
heterostructures composed of a gapped graphene layer placed
upon an ungapped graphene layer. The former is set to have an
energy gap of 111.4 meV, which is the same energy difference
as that between the first excited Landau level in ungapped
graphene and its zero energy state for the magnetic field
we adopt (10 T). Although somewhat artificial, this example
allows us to see how the exciton behaviors change across
valleys when the effect of the spinor structure of the wave
function comes into play, in contrast to the situation for the
TMD materials discussed above, where for the relevant range
of energies the single-particle wave functions were essentially
those of scalar particles. Note that gapped graphene can in
principle be prepared by aligning it on an hBN substrate,
although the resulting gap is considerably smaller than what
we use here.

Figure 5 presents the energy dispersion for the two val-
leys. Panel (a) shows results for the hole residing in a K
valley, and panel (b) shows them for the hole in the K ′ valley.
In addition to the overall energy shift, one sees significant
differences in the shapes of the energy dispersion curves be-
ginning in the second exciton level. This behavior is in marked
contrast to what we found for the graphene/TMD structures
above.

Figure 6 illustrates the quantum geometric dipole correc-
tion for the hole in the two different valleys. In both cases, the
resulting contribution to the drift velocity from this changes
sign at small momentum. The overall scale of the correction
for lowest level for the hole in the K valley is approximately
twice that when it is in the K ′ valley, an effect again arising
from the differing wave function structures. It is interesting to
note that, if both layers have the same gap (not shown), one
finds that the quantum geometric dipole correction vanishes.
From the perspective of the quantum geometric dipole, this
again emphasizes that heterostructures offer a more interest-
ing environment for excitons than is the case for structures
involving a single material.

Figure 7 shows the exciton Berry’s curvature. For the K
valley [panel (a)], the curvature for the exciton ground state
(�(ex)

1 ) has a “Mexican hat” shaped surface. By contrast, the
ground state exciton Berry’s curvature for the K ′ valley [panel
(b)] has a simpler bowl shape. The rich variety of behav-
iors apparent in the Berry’s curvatures for different exciton
modes, and their differences across valley, emerge from the
evolution of the Landau level wave functions with energy. It
is interesting to notice that these behaviors are more involved
than is typically found in single-particle Berry’s curvatures
associated with a zero-field band structure.

C. TMD/TMD heterostructure

As a final example, we consider magnetoexcitons in a
heterostructure involving two different TMD materials, using
parameters corresponding to MoS2 and MoSe2 [60]. In this
case, we find qualitatively similar results for all combinations
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FIG. 6. Correction to quantum geometric dipole δD beyond the single Landau level result ( �K × ẑ�2) for a graphene/gapped graphene
heterostructure, with hole in the gapped graphene, for three lowest exciton levels. Parameters are those of Fig. 5. Left plots show x̂ component
of δD vs momentum K. Right plots illustrate |δD| ≡ δDx assuming momentum points in ŷ direction. This correction enhances the single
Landau level result when its values is positive.

of valley indices of the hole and electron, and show explicit
results for just one of these. There are several features in these
results which are in contrast to what we have found in our
previous examples. Figure 8 illustrates the dispersions for the
lowest three levels at low momentum. Here a surprising result
is the presence of a narrow, shallow minimum in the lowest ex-
citon level, requiring many Landau levels to resolve. Although
our results in this case are not perfectly converged with respect
to the number of Landau levels retained, we find that the
position of the minimum remains relatively constant once it
forms, and that it deepens as we increase our cutoff in Landau
level index. By extrapolation, we estimate that the depth of
the minimum relative to the energy at zero momentum to be
≈1.8 meV. As in the case of the graphene/gapped graphene
structure above, this suggests a sufficiently large density of
such excitons at low temperature would condense into a state
of finite momentum. However, prior to such condensation the
excitons must fall thermally into the minimum, requiring a
temperature corresponding to the energy difference of this

scale, ∼20 K. Whether this can be accomplished under con-
ditions where a large number of excitons is being generated
depends on specific experimental conditions, and is a question
for further study.

Beyond the behavior of the lowest level, it is notable that
the first two excited exciton levels are nearly degenerate.
This is an interesting feature of this particular combination
of materials. Because of the gaps in the spectra, the Landau
levels in each of the conduction and valence bands with signif-
icant weight in the wave functions are nearly equally spaced.
Moreover, because the Fermi velocities associated with the
materials are very similar, that spacing is the same across
materials. At the noninteracting level, this results in a sin-
gle lowest energy particle-hole pair, two (nearly) degenerate
levels for the next level, three (nearly) degenerate levels for
the third, etc. With interactions added, these degeneracies are
slightly lifted. At higher energies, Landau levels deviate from
equal spacing, and we expect to lose this clustering of the
exciton modes.

FIG. 7. Exciton Berry’s curvature for lowest four exciton levels in a graphene/gapped graphene heterostructure, with hole in one or the
other valley of the gapped graphene. Parameters are those of Fig. 5.
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FIG. 8. MoS2/MoSe2 heterostructure exciton dispersion in units
of eV. Parameters for noninteracting Hamiltonian are those of
Ref. [60]. Hole in K ′ valley of MoS2, electron in K ′ valley of
MoSe2. Layer separation assumed at 0.71 nm, and Coulomb di-
electric screening constant is 4. Main panel illustrates results when
Landau levels of index |n| � Nc are retained for both carriers, with
Nc = 50. (Inset) Evolution of lowest level energy dispersion at small
momentum with varying Nc.

Figure 9 illustrates corrections to the exciton quantum ge-
ometric dipoles for the lowest energy levels. Interestingly the
corrections near K = 0 are quite small for the lowest energy
exciton, so that the deviation from the simple result for strong
fields is relatively difficult to detect. However, the quantum
geometric effects introduced through the electron and hole
band structures are much more evident in the higher energy
exciton states. Note also that the sign of the corrections varies
in going from the second to third highest modes, in spite of
their near degeneracy in energy.

Finally, Fig. 10 illustrates the Berry’s curvatures for the
lowest exciton modes. Interestingly these have very pro-
nounced peaks near zero momentum, significantly larger in
magnitude than our corresponding results for the other het-
erostructures discussed above. Together with the quantum
geometric dipole results, this suggests that the semiclassical
dynamics in an electric field will show band structure quantum
geometric effects that are dominated by Berry’s curvature
[51]. Note also that the signs of these curvatures are differ-

FIG. 9. Correction to exciton quantum geometric dipole beyond
single Landau level contribution for MoS2/MoSe2 heterostructure.
Parameters are same as in Fig. 8.

ent for different modes near zero momentum. The striking
differences in results for the different modes suggests the
interesting possibility that excitons in lower and higher energy
modes might be separated out spatially using electric fields,
due to the significant differences in their quantum geometric
dipole and Berry’s curvature. We consider this possibility in
our discussions below.

VI. DISCUSSION AND SUMMARY

A. Exciton dynamics in electric fields

As a final discussion, we turn to a qualitative analysis of
the semiclassical exciton dynamics for some of the systems
discussed above in static, uniform electric fields. These are
governed by Eqs. (41) and (42). Preliminary to this, we briefly
consider how excitons might be formed, and where one might
look for signatures of the exciton dynamics based upon this.

Light impinging normally upon the sample plane excites
intralayer excitons, which in many TMD heterostructures
quickly relax into lower energy interlayer excitons [17–19]. In
such situations a collection of interlayer excitons created in a
spot of initial size determined by a laser will distort with time
due to imposed, in-plane electric fields. In general excitons
flow away from the central spot, distorting it in a way that
can be detected in photoluminescence (PL). By examining the
spatial structure of the PL spectrum, in particular its electric
field dependence, one may learn about the trajectories that the
interlayer excitons have followed. In principle, spatial- and/or
time-resolved PL spectra measurements [33,36,37,80] reflect
the dynamics of different exciton modes.

If the interlayer tunneling is too slow, then intralayer
particle-hole pairs may recombine before interlayer excitons
form in significant numbers. In such cases, an alternative is
to directly create electron-hole pairs using light with elec-
tric field polarized normal to the plane. We demonstrate in
Appendix C that, provided there is some nonvanishing tunnel-
ing between the layers, this perturbation generates interlayer
excitons. In materials where this creates few intralayer ex-
citons [81], this geometry has the advantage of eliminating
a potentially large source of extraneous luminescence. An
interesting geometry in this context is to consider excitation
by a narrowly focused laser in the sample plane, for which
excitons would be generated along a line. Exciton dynamics
due to electric fields could then be probed by looking for PL
perpendicularly away from this line.

A further possible geometry involves using van der Waals
materials that do couple strongly when directly atop one an-
other, but with a mesoscopic strip of hBN separating them so
that a region of the two layers is essentially uncoupled. In this
case one may excite excitons at one edge of the hBN region
with a laser, and look for signals of excitons drawn across the
hBN region by an electric field on the other edge.

For the remainder of this section, we assume that interlayer
excitons can be created at a fixed location in a structure and
consider how electric fields impact their dynamics.

Consider first the simplest situation, in which the electric
fields in the two layers are collinear [Fig. 11(a).] When the
fields in both layers are the same, K̇c = 0 and the exciton
dynamics are determined by Eq. (41) with no contribution
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FIG. 10. Exciton Berry’s curvature for MoS2/MoSe2 heterostructure. Parameters are same as in Fig. 8.

from the Berry’s curvature. Moreover, if the exciton is in its
energetic ground state, �∇Kc E0(Kc) = 0 and the spatial dynam-
ics is determined solely by the quantum geometric dipole. The
exciton will drift perpendicular to the electric and magnetic
fields. Deviations of this drift motion from what is expected
from vD = E × B/B2 drift in crossed fields yields a direct
measure of the quantum geometric dipole. (Note that further
drift may also occur due to density or temperature gradients.
However this motion should be insensitive to the electric field
[82].) In an ideal case, where this drift is ballistic, the exciton
center moves at a speed |Ṙ+/2| ∼ e(E+/2)| �∇KcD(Kc)|, where
E+/2 is the common electric field in the two layers and D
is the quantum geometric dipole. For the example of the
graphene/MoS2 heterostructure, for the ground state exciton,
with magnetic field at 10 T and an electric field of 1 V/cm, the
resulting speed is ≈1.7vD ∼ 17 m/s. Using a the intervalley
scattering time for a TMD heterostructure [33] as a rough
estimate of a scattering time (40 ns), this means the exciton
could travel ∼7 μm before scattering, well within currently
available spatial resolutions (∼0.1 μm [83]). If one creates
excitons in higher energy modes, for the graphene-MoS2 het-
erostructure the speed and resulting distance are reduced (see
Fig. 3), again by an amount that is well within experimental
resolution.

Suppose instead one could stabilize a situation with con-
stant E−. Equation (42) requires that the exciton momentum

FIG. 11. (a) Heterostructure with collinear applied electric fields
in each layer. A laser spot creates excitons at a location in the
structure. Unequal electric fields in the two layers can cause exci-
ton dipole moments to grow without bound, unbinding holes and
electrons along trajectories perpendicular to the fields. This could
be detected as a photocurrent by contacts with separation orthogonal
to the electric fields. (b) Heterostructure with noncollinear applied
electric fields.

Kc eventually grows without bound. Because of the magnetic
field, the centers of the electron and hole in this situation be-
come highly separated (large dipole moment) and the electron
and hole unbind. Since D is generally perpendicular to Kc,
the dissociation motion is along a direction perpendicular to
the electric fields. This situation is particularly interesting for
the generation of photocurrents: in the absence of a magnetic
field, the electric field must be large enough that the exciton
can ionize. In the present case they separate even at small
electric fields provided the exciton dynamics remains ballis-
tic. Scattering by impurities or phonons, or a non-negligible
moiré potential, impacts this result, so that in practice the time
required to separate carriers must be smaller than some scat-
tering time, setting a lower limit on the value of E− that can
ballistically separate carriers. Finally, in addition to separation
of the exciton constituents, the tendency for magnetoexcitons
to have constant Berry’s curvature at large K (cf. Fig. 3)
means the center coordinate of the exciton will develop an
anomalous constant component perpendicular to E−, even as
the component parallel to it accelerates due to the �∇Kc E0(Kc)
term. In the geometry illustrated in Fig. 11(a), the velocity
contributions to Ṙ+ from both the Berry’s curvature and the
quantum geometric dipole are collinear. The two contributions
can instead be orthogonal if E+ ⊥ E−, allowing the two con-
tributions to be separated. In principle this could be achieved
with a geometry such as illustrated in Fig. 11(b).

Clearly there are many considerations beyond the simple
estimates above needed to predict the precise form of a PL
spectrum for even a simple geometry. While such modeling is
beyond the scope of this work, it is interesting to note that
among these are the effects of interexciton repulsion. This
could be modeled as an antisymmetric field E− that would
point radially outward from an initial excitation spot. From
Eq. (42), this means K̇c will also point radially outward, so
that Ṙ+ acquires a spiraling component as the initial collection
of excitons begins to spread. The presence of the dipole term
in Eq. (41) allows excitons to travel away from the initial exci-
tation spot in a partially controllable way (through the choice
of E+), improving the prospects of observing the effects of
dynamics in PL.

B. Summary and outlook

In this work, we have introduced a new quantum geo-
metric quantity, the quantum geometric dipole. The concept
applies specifically to two-body systems, and exploits dif-
ferent choices in how a plane wave component of a wave
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function can be removed, to yield a continuum of possibilities
for comparing wave functions at different wave vectors K
via a scalar product. Differences among these scalar prod-
ucts are gauge-invariant quantities, and we demonstrated that
one particular choice is directly proportional to the average
displacement vector between the two constituents of the wave
function. In the case of two oppositely charged particles, this
yields the dipole moment as a function of K.

Excitons in two-dimensional semiconductors represent one
class of relevant systems. We largely focused our attention
on double layer heterostuctures in magnetic fields, with hole
and electrons residing in different layers. The presence of a
magnetic field opens Landau level gaps in the layer spectra
so that systems with graphene constituents can be considered.
Such heterostructures are particularly interesting because the
holes and electrons may reside in bands with very different
Berry’s curvatures, allowing one to examine how these impact
results for the excitons as a whole.

An examination of exciton wave packet dynamics demon-
strated that, in addition to the exciton dispersion as a function
of momentum, both Berry’s curvature and the quantum geo-
metric dipole enter into the equations of motion. The latter
two couple to uniform electric fields in the layers in simple
ways. We then examined the relevant quantities for a few rep-
resentative systems: gapped graphene (in zero field), graphene
on a TMD surface (along with a simpler gapped graphene
model of the latter), and TMD surfaces of different materials.
In some cases, we found that the energy dispersions had their
lowest energies at a nonvanishing |K|, even for the lowest
energy exciton states. In a strong magnetic field, the quantum
geometric dipole implies an exciton dipole moment with a
well-known form, but the effects of band structure for weaker
fields results in considerable corrections to this. Our calcu-
lations for systems in magnetic fields show that the quantum
geometric dipole increases in magnitude to large values, while
the Berry’s curvature tends to vanish, at large momentum. In
our zero field example, these both vanish at large momen-
tum. By examining results for a gapped/gapless graphene
heterostructure, we found that differing orbital structures of
wave functions with energy will lead to significant differ-
ences in relevant quantities with respect to which valleys
the constituents reside in. Orbital structures that remain rela-
tively constant are largely insensitive to the choices of valley,
although an overall shift in the exciton dispersions can be
sizable.

Our analysis above suggests further interesting directions
for study. Among these are understanding the effects of the
full moiré band structure on exciton behavior, the effects
of interexciton interactions, many-body behavior beyond the
simple two-body approximation adopted in this study, and
more detailed modeling of exciton distributions and their re-
sponses to electric fields. Beyond these, a further direction
becomes relevant for a sufficiently high density of optically
generate excitons: at low temperature, there is the possibility
that they will Bose condense [38]. Indeed, finite densities of
excitons in these systems could be induced by an interlayer
bias: a perpendicular electric field impacts the single particle-
energies of the hole and the electron separately, shifting the
entire excitation curve up or down. If part of the exciton curve
becomes negative, one expects charge transfer between the

layers to create a finite density of excitons, again opening the
possibility of Bose condensation [78,79,84]. When the lowest
exciton dispersion has its minimum at finite momentum, such
condensation occurs into a state with finite electric dipole mo-
ment. Coherent dynamics of these condensed excitons offers
unique possibilities to observe quantum geometric properties
of their band structure [51].

The presence of an in-plane dipole moment associated with
magnetoexcitons in these systems is highly reminiscent of an
XY model with dipolar interactions, the “dipolar XY ” model.
The relatively long-range interactions of dipolar interactons
makes this system distinct from the more standard XY model.
It is believed to have an ordered “ferromagnetic” groundstate
(really ferroelectric for excitons) and a Berezinskii-Kosterlitz-
Thouless transition to a dipole disordered state [85,86]. The
Bose-condensed state thus has two-broken continuous sym-
metries, one associated with the dipole direction and another
with the condensate phase. In the exciton system, the dynam-
ics of these order parameters are coupled in a nontrivial way
because of the relation between electric dipole moment and
the momentum into which the excitons condense, suggesting
that thermal disordering of this system may be quite unique.

Quantum geometric phases are at the root of this coupling.
Studies of such excitons, particularly as realized in certain het-
erostructure systems, offer unique windows into the effects of
these phases on the quantum physics of many-body systems.
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APPENDIX A: DERIVATION OF EFFECTIVE
LAGRANGIAN

As discussed in the main text, the general form for the
Lagrangian is

L = 〈�|i∂t |�〉 − 〈�|H |�〉 ≡ Lt − E (K), (A1)

where the state |�〉 in the absence of external fields is given
by |�0〉, Eq. (27). Due to the additional fields, Eq. (27) is
modified to [50]

〈r1, r2|�〉 ≈ e−ieδA(2) (R2,t )·r2+ieδA(1) (R1,t )·r1〈r1, r2|�0〉. (A2)

It is assumed that the fields encoded in δA(i) vary slowly over
the real space size of the wave packet. Assuming for simplic-
ity that the electric and addition magnetic field are spatially
uniform, we can write δA(i)(r, t ) = −E (i)t + 1

2δB × r. With
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some algebra one finds

E (K) = E0(K) − e

2
δB · 〈�|(r1 − R1) · �V (1)

− (r2 − R2) · �V (2)|�〉, (A3)

where E0(K) is the energy of the exciton at momentum K
(in the state |�K〉) in the absence the electric and additional
magnetic fields.

Note that in this formulation, the instantaneous energy
E (K) has no dependence on the electric fields; these instead
appear in Lt , as we now show. Using Eqs. (27) and (A2), and
the definition in Eq. (31), one may write

Lt = e〈�0|δȦ(2)(R2, t ) · r2 − δȦ(1)(R1, t ) · r1|�0〉
+ i

∫
d2Kw∗(K)∂tw(K), (A4)

where Ȧ indicates a time derivative of A. Writing w(K) =
|w(K)|e−iγ (K,t ), and assuming the time-dependent part of the
phase γ varies slowly in space, one finds

Lt ≈ eδȦ(1) · R1 − eδȦ(2) · R2 + ∂tγ (Kc, t ). (A5)

Our goal is to treat R1, R2, and Kc as collective degrees
of freedom and write down equations of motion for them.
Formally this is accomplished by writing [71] an action S =∫

dtL and minimizing with respect to the these parameters.
Thus, up to total derivative terms which will not impact the
equations of motion, one may rewrite Eq. (A5) as

Lt ≈ −eδA(1) · Ṙ1 + eδA(2) · Ṙ2 − K̇c · �∇Kcγ (Kc). (A6)

As discussed in the main text, Eqs. (33) and (34) imply a
constraint, Eq. (35), so that R1 and R2 are not independent.
Using these equations, and adopting R+ = R1 + R2 and Kc

as our independent degrees of freedom, the Lagrangian may
be cast in the form

L = Lt − E (Kc)

= e

2

∑
μ=x,y

δA+,μK̇c · �∇Kc

[
A(1)

μ − A(2)
μ

] − e

2
δA− · Ṙ+

− 1

2
K̇c · [R+ − A(1) − A(2)] − E0(Kc ), (A7)

where we have defined δA± = δA(2) ± δA(1), as presented in
Eq. (36) in the main text.

APPENDIX B: EIGENVALUE EQUATION FOR EXCITONS

In this Appendix, we provide a more detailed presentation
of the eigenvalue equations we solve to compute the properties
of interlayer magnetoexcitons.

1. Single- and two-particle wave functions

Our single-particle Hamiltonians are assumed to be gener-
ically of the form in Eq. (24), or simple variants of this that
incorporate the effects of spin, which is of particular interest
in the TMD case [60]. To proceed we will require energies
and wave functions of these Hamiltonians in the presence
of a magnetic field. For both types of systems, these have
been worked out previously; for completeness we review the
relevant results.

To introduce an orbital magnetic field into the Hamiltonian
of Eq. (24) for an electron, one makes the Peierls substitution
p → � = p + eA, where A is the vector potential for a uni-
form magnetic field. Note that for e > 0, the vector potential
has been added as appropriate for a negatively charged parti-
cle. The simplest case is that of graphene [87,88]. Its positive
energy states have the form

�ξ (e)
nkτ=+1 =

(
α

(g)
n,σ,τ=1ψ

(−1)
n−1,k

β
(g)
n,σ,τ=1ψ

(−1)
n,k

)
,

�ξ (e)
nkτ=−1 =

(
α

(g)
n,σ,τ=−1ψ

(−1)
n,k

β
(g)
n,σ,τ=1ψ

(−1)
n−1,k

)
, (B1)

where α
(g)
n,σ,τ = τ/

√
2, β

(g)
n,σ,τ = 1/

√
2 for n � 1; for n =

0, α
(g)
n=0,σ,τ=1 = 0, β

(g)
n=0,σ,τ=1 = 1, α

(g)
n=0,σ,τ=−1 = 1, and

β
(g)
n=0,σ,τ=1 = 0. The wave functions ψ

(s=−1)
nk are given by

Eq. (2), and the energies of these states are ε(e)
n = √

2nvG/�.
The Landau level wave functions for TMD materials near

the K and K ′ points are somewhat more involved, but also may
be written explicitly [89]. We first consider single-particle
wave functions for an electron in the conduction band (pos-
itive energy states), for which

�ψ (e)
n,k,σ,τ=+1 =

(
α

(e)
n,σ,τ=1ψ

(−1)
n−1,k

β
(e)
n,σ,τ=1ψ

(−1)
n,k

)
,

�ψ (e)
n,k,σ,τ=−1 =

(
α

(e)
n,σ,τ=−1ψ

(−1)
n,k

β
(e)
n,σ,τ=−1ψ

(−1)
n−1,k

)
, (B2)

where σ denotes the spin state of the electron. In these ex-
pressions, n � 1. In addition, there is an n = 0 Landau level
for positive energy states in the K ′ (τ = −1) valley. In these
expressions σ = ±1 indicates the spin state of the electron.
The coefficients α(e), β (e), as well as explicit expressions
for their energies ε(e,TMD)

n,σ,τ , are provided at the end of this
Appendix. Depending on the material hosting the electron,
the wave functions ξ (e) or ψ (e) play the role of ψ (s=−1) in
Eq. (5) to form states with good two-dimensional momentum
quantum numbers.

In addition to these wave functions for the electron, we
require a basis of states for the hole. In the examples we
present, we assume the hole lies among the negative energy
states of a TMD material. In the two-body approximation,
we have adopted, the hole is modeled as positively charged
particle residing in a linear combination of the particle-hole
conjugates of these states. Thus their wave functions are com-
posed from states of the form

�ψ (h)
n,k,σ,τ=+1 =

(
α

(h)
n,σ,τ=1ψ

(+1)
n,k

β
(h)
n,σ,τ=1ψ

(+1)
n−1,k

)
,

�ψ (h)
n,k,σ,τ=−1 =

(
α

(h)
n,σ,τ=−1ψ

(+1)
n−1,k

β
(h)
n,σ,τ=−1ψ

(+1)
n,k

)
, (B3)

with corresponding energies ε(h)
n,σ,τ which are taken as positive.

Again the integers n � 1, but in addition, there is an n = 0
state, this time in τ = +1 valley. We again relegate details
of the coefficients α(h), β (h) and the single-particle energies
ε(h)

n,σ,τ , to the end of this Appendix.
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Since we are ultimately interested in geometric phases re-
lated to changes in momentum, we wish to recast these states
in forms that are eigenstates of magnetic translations, Eq. (3).
This is accomplished by taking linear combinations precisely
of the form in Eq. (5), yielding states with well-defined
two-dimensional momenta q, which we write in the form
�φ(h)

nh,q,σ,τ for the hole, and �φ(e)
ne,q,σ,τ for the electron. Note that

in these studies the hole states involve linear combinations
of �ψ (h)

n,k,σ,τ
, while the for the electron we will consider wave

functions involving either �ξ (e) or �ψ (e), depending on whether
it resides in graphene or a TMD material.

Our trial wave functions for the exciton generically are
analogous to Eq. (8),

�K =
∑
nq

Cn(K)eiq·ReiK (0)
x qy�

2 �φ(h)
nh,q,σh,τh

(r1)

⊗ �φ(e)
ne,K(0)−q,σe,τe

(r2), (B4)

where the full momentum K = K(0) − ẑ × R/�2, has been
broken up into a part that lies in the first Brillouin zone, K(0),
and a reciprocal lattice vector, −ẑ × R/�2, where R is a direct
lattice vector, as discussed in Sec. II. The vector n ≡ (n1, n2)
represents the set of possible Landau level indices the hole
(n1) and the electron (n2) may have (i.e., the set of levels which
are not Pauli-blocked by other carriers.)

2. Eigenvalue equation and Berry’s connections

In analogy with Eqs. (6) and (43), the Hamiltonian of
the two-body system has the form H = H (+)(r1) ⊗ 1 + 1 ⊗
H (−)(r2) + v(r1 − r2), and we wish to minimize 〈�K|H |�K〉
with respect to the coefficients Cn(K), subject to the constraint
that |�K〉 is normalized. This leads to the equation

∑
n′

{
1

(2π )2

∫
d2k ′̃v(k′)S(h),n1,n′

1
q,q+k′ (k′)S(e),n2,n′

2

K(0)−q,K(0)−(q+k′ )(k
′)eik′ ·R + ε

(h)
n′

1
+ ε

(e)
n′

2

}
Cn′ = E (K)Cn, (B5)

where ε(h,e)
n are the single-particle energies for the hole and electron. The structure factors,

S(h),n,n′
q,q′ (k) = 〈

φ(h)
n,q,σ,τ

∣∣e−ik·r∣∣φ(h)
n′,q′,σ,τ

〉
, S(e),n,n′

q,q′ (k) = 〈
φ(e)

n,q,σ,τ

∣∣eik·r∣∣φ(e)
n′,q′,σ,τ

〉
, (B6)

are linear combinations of those appearing in Eq. (10), with weights that are easily read off from the various wave functions. For
every value of K, Eq. (B5) provides us with a discrete matrix equation to solve that yields the energies and wave functions of the
exciton states a particle-hole pair supports at a given momentum.

Several comments are in order. First, in this formulation, the number of states at a given K(0) will be equal to the product
of the number of R vectors and the number of Landau level pairs (for particle and hole) retained. The energy E (K) may be
represented in an extended zone scheme by plotting the energy of an eigenvalue for a given R at K(0) − ẑ × R/�2. Because we
are not including any periodic potential or tunneling in our model Hamiltonian, dispersions for neighboring R’s will always
connect in a continuous fashion [71]. Secondly, in general the integral appearing in Eq. (B5) must be evaluated numerically, and
in practice this turns out to be the limiting step in our numerical diagonalization scheme. Finally, the number of Landau level
pairs retained impacts the accuracy of our solutions. For most cases, we are able to obtain quantitative results for the lowest few
exciton dispersions with sufficiently large numbers of these. However, for the case of TMD/TMD heterostructures, our results
are semi-quantitative, although the shapes of the exciton dispersions as well as the computed curvatures are qualitatively correct.

The eigenvalues in Eq. (B5) provides one element of what is needed in the equations of motion in Sec. III B. Beyond this we
need to compute the quantum geometric dipole and the Berry’s curvature. These are obtained from the wave functions using the
Berry’s connections, A(1) and A(2). For the wave functions as we have written them, one finds after some algebra

A(1) = i
∑

n

C∗
n (K) �∇KCn(K) − Kxŷ −

∑
n,n′

C∗
nCn′

[ − D(h)
n1,n′

1
x̂ − isgn(n′

1 − n1)D(h)
n1,n′

1
ŷ
]
δn2,n′

2
, (B7)

A(2) = i
∑

n

C∗
n (K) �∇KCn(K) − Kyx̂ −

∑
n,n′

C∗
nCn′

[ − D(e)
n2,n′

2
x̂ + isgn(n′

2 − n2)D(e)
n2,n′

2
ŷ
]
δn1,n′

1
, (B8)

with

D(μ)
n,n′ ≡

(
α(μ)

n α
(μ)
n′

√
max(n, n′) − 1

2
+ β (μ)

n β
(μ)
n′

√
max(n, n′)

2

)
(δn′,n+1 + δn′,n+1). (B9)

In this last equation, μ is either h or e for the electron or
hole, but the α and β coefficients must actually be drawn
from Eqs. (B1), (B2), or (B3), depending on what material
the carrier is residing in. (For brevity, we have suppressed the
σ and τ indices in these coefficients.)

As mentioned above these are gauge-dependent quantities.
Their difference yields the (gauge-independent) quantum geo-

metric dipole, which may be evaluated straightforwardly from
the numerical solutions of Eq. (B5). Note that in forming
this difference, the first terms of Eqs. (B7) and (B8) cancel,
while the second terms combine to give the single Landau
level quantum geometric dipole, with an associated drift ve-
locity in an electric field that can be understood completely in
terms of a simple velocity boost to a frame in which the field
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vanishes. The last terms give the corrections to this coming
from nontrivial structure in the wave functions; if the electron
and hole states are each confined to a single Landau level, this
contribution vanishes.

Calculation of the Berry’s curvature is more involved
because it involves a curl of the sum of these quantities.
Our numerical diagonalizations do not typically yield re-
sults that vary smoothly with K, creating a barrier for
differentiation. We circumvent this problem in a standard
way: instead of evaluating the Berry’s curvature directly, we
evaluate its flux through a grid of small plaquettes, and di-
vide by the plaquette area. Each of the fluxes are formally
equal to a line integral around a plaquette boundary, and
for small plaquettes these are well-approximated in terms of

(the logarithm of) products of overlaps between wave func-
tions on the plaquette corners [65]. The results converge to
the Berry’s curvature in the limit of very small plaquette
size.

3. Coefficients for TMD wave functions

Finally, we provide the remaining details of the wave func-
tions used in our calculations involving TMD materials and
gapped graphene. The wave functions have the same form in
both these cases, given by Eq. (B2), but with λ set to zero for
gapped graphene. For Landau levels with n �= 0 and in the K
valley (τ = +1), the α and β coefficients are

α
(e)
n,σ,τ=1 = β

(h)
n,σ,τ=1 = Nnσ+

√
2nvF h̄

�
, (B10)

β
(e)
n,σ,τ=1 = α

(h)
n,σ,τ=1 = Nnσ+

(
− � − σλ

2
+

√(
� − σλ

2

)2

+ v2
F h̄2

�2
2n

)
, (B11)

Nnσ+ =
(

4n

(
vF h̄

�

)2

+ (� − σλ)2

2
− (� − σλ)

√(
� − σλ

2

)2

+ v2
F h̄2

�2
2n

)− 1
2

. (B12)

For this valley, there are no n = 0 states.
In the K ′ valley, the states have the coefficients

α
(e)
n,σ,τ=−1 = β

(h)
n,σ,τ=−1 = Nnσ−

⎛⎝� + σλ

2
+

√(
� + σλ

2

)2

+ v2
F h̄2

�2
2n

⎞⎠, (B13)

β
(e)
n,σ,τ=−1 = α

(h)
n,σ,τ=−1 = −Nnσ−

√
2nvF h̄

�
, (B14)

Nnσ− =
(

4n

(
vF h̄

�

)2

+ (� + σλ)2

2
+ (� + σλ)

√(
� + σλ

2

)2

+ v2
F h̄2

�2
2n

)− 1
2

, (B15)

For this valley, these expression apply for n � 0.
The energies of these various states are given by the single

expression

ε(e,h)
n,σ,τ = ±στλ

2
+

√(
� − σλτ

2

)2

+ v2
F h̄2

�2
2n, (B16)

where the upper sign corresponds to the electron, and the
lower to the hole. Again, for gapped graphene, this same
expression applies, with λ → 0.

APPENDIX C: EXCITON GENERATION WITH
PERPENDICULAR ELECTRIC FIELD

In this Appendix, we show that is possible to create in-
terlayer electron-hole pairs in a heterojunction made of two
semiconductor monolayers by using light with the electric
field polarized normal to the layers.

The quantum geometric properties of interlayer excitons
arise in part from the constituent monolayer band-structures.
In order to minimize changes in these due to interlayer ef-
fects, we focus on heterostructures with weak tunnel coupling
between the layers. This could occur for two TMD semicon-
ductors separated by one or more layers of hBN. Moreover

this is also the case for some specific materials, for example a
heterojunction made of MoS2 and WS2 monolayers. The band
structure of MoS2 and WS2 are well described by Hamiltoni-
ans of the form of Eq. (26) with appropriate parameters [60],
yielding energies

ε±
n (τ, σ, k) = 2τλn

2
±

√(
δn − στλn

2

)2

+ v2
nk2. (C1)

The band structure for this heterostructure is essentially the
superposition of the constituent semiconductor bands, shifted
with respect to one another by an offset of � = 220 meV
[90]. The optically minimal energy gap involves a hole in the
valence band of WS2 and an electron in MoS2, with energy
∼1.45 eV. In this structure, although the tunneling between
the layers leaves the MoS2 and WS2 bands nearly unaltered,
it does not vanish, allowing for the creation of interlayer
electron-hole pairs [18,91]. These pairs can be created by
sending light with the electric field polarized in the plane of
the heterostructure; however this geometry generates several
intra-layer excitons which could mask the physics of the in-
terlayer excitons. We therefore propose the use of light with
the electric field perpendicular to the layers.
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Suppose the two semiconductors, n = ±1, are separated by a distance d . The incident electromagnetic field has the electric
field E polarized perpendicular to the bilayer and the momentum parallel to the layers. Since the wavelength of the light is very
long compared to the lattice spacing in each layer, we treat the electric field as uniform in space and oscillatory in time. This
gives a time dependent perturbation of the form

V (t ) = eE d

2

∑
τ,σ

(N̂1,c(τ, σ ) − N̂1,v (τ, σ ) − N̂−1,c(τ, σ ) + N̂−1,v (τ, σ )) cos ωt ≡ �̂ cos ωt (C2)

with

N̂n,c(τ, σ ) =
∑

k

c†
n(τ, σ, k)cn(τ, σ, k) and N̂n,v (τ, σ ) =

∑
k

v†
n (τ, σ, k)vn(τ, σ, k). (C3)

Here, c†
n(τ, σ, k) (v†

n (τ, σ, k)) creates an electron (hole) in layer n, in the valley τ , with spin σ and momentum k. We are
interested in the optical absorption that conserves both spin and valley index and therefore in what follows we omit these indices
unless necessary.

The absorption rate can be written formally using Fermi’s golden rule,

� = 2π
∑

f

|〈 f |�̂|i〉|2δ(E f − Ei − h̄ω) , (C4)

with | j〉 and Ej eigenstates and eigenvalues respectively of the system. We assume the system is initially in the ground state |i〉.
If we completely ignore interlayer tunneling then � vanishes since �̂ does not change particle number in each layer. For this
reason, we include tunneling perturbatively. To first order,

|i〉 ∼= |i〉0 +
∑
j �=i

0〈 j|ĤT |i〉0

E (0)
j − E (0)

i

| j〉0, (C5)

where |i〉0 and E (0)
i represent eigenvectors and eigenvalues in the absence of tunneling. The creation operators in the presence of

tunneling become

v†
n (k) → v†

n (k) + tvv

E−
−n(k = 0) − E−

n (k = 0)
v+

−n(k) + tcv
E+

−n(k = 0) − E−
n (k = 0)

c−n(k),

c†
n(k) → c†

n(k) + tcc

E+
−n(k = 0) − E+

n (k = 0)
c+
−n(k) + tcv

E−
−n(k = 0) − E+

n (k = 0)
v−n(k), (C6)

where we have neglected the wavevector dependence in the denominators. In these expressions tcv , tcc and tvv are real parameters
that can be obtained from ab initio calculations. For MoS2-WS2 heterojunctions they are of order several meV [18,91].

The nonvanishing contributions from the number operators acting on the initial state of the system (vacuum) are

N̂n,c|i〉 =
∑

k

c†
n(k)

tcv
E+

−n(k = 0) − E−
n (k = 0)

v
†
−n(k)|i〉,

N̂n,v|i〉 =
∑

k

v†
n (k)

tcv
E−

−n(k = 0) − E+
n (k = 0)

c†
−n(k)|i〉. (C7)

Taking into account the spin and valley indices, for the MoS2-WS2 system the resulting optical absorption becomes

�̂ ≈ 2π (eEd )2t2
cv

∑
k

[
1

(δ1 + δ−1 − λ−1 − � + O(k2))2
δ(δ1 + δ−1 − λ−1 − � + O(k2) − h̄ω)

+ 1

(δ1 + δ−1 + λ−1 − � + O(k2))2
δ(δ1 + δ−1 + λ−1 − � + O(k2) − h̄ω)

+ 1

(δ1 + δ−1 − λ1 + � + O(k2))2
δ(δ1 + δ−1 − λ1 + � + O(k2) − h̄ω)

+ 1

(δ1 + δ−1 + λ1 + � + O(k2))2
δ(δ1 + δ−1 + λ1 + � + O(k2) − h̄ω)

]
. (C8)

In this analysis, we have assumed that the two materials are perfectly stacked upon one another. This is possible because
MoS2 and WS2 have nearly the same lattice parameter (mismatch less that 0.0013%). Interestingly, if one of the semiconductors
is rotated with respect to the other, the twist induces a modulation of the hopping amplitude between the semiconductor layers,
and the tunneling between the layers involves a momentum transfer [91,92]. Thus a measurement of the exciton absorption
resonance as a function of twist angle allows one to directly observe the exciton dispersion [18]. It is interesting to note that, for
small rotation angles, only three transfer momentum are relevant for each valley so that the final exciton state generated in the
process we describe will in fact be an equal, coherent admixture of states with momenta related by C6 symmetry. We assume, as
in other such heterostructures, that this state quickly relaxes to, up to thermal fluctuations, the ground state of the exciton.
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