
PHYSICAL REVIEW B 103, 115409 (2021)

Optical properties of monolayer, multilayer, and bulk BiI3 studied using time-dependent
density functional theory
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We investigate the optical property of monolayer and layered BiI3 and reveal the presence of excitons only in
the monolayer crystal. We evaluate the energy spectrum of a dielectric function by using time-dependent density
functional theory. Bulk crystal of BiI3 is an atomic layered semiconductor with the band gap corresponding to
the frequency of visible light. The numerical result for the bulk crystal is confirmed to be consistent with the
previous experimental results and does not depend on the number of layers except the monolayer. We reveal the
excitons appearing below the resonant peak associated with the interband excitation in the monolayer crystal.
The unique optical property can be directly observed in the optical absorption or differential reflectance spectrum
and distinguish the monolayer crystal from the stacked BiI3.
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I. INTRODUCTION

BiI3 is a semiconducting atomic layered material in a
rhombohedral structure [1–3] and belongs to a family of lay-
ered metal trihalides the same as CrI3, a ferromagetic insulator
[4–6]. This atomic layered material has an energy gap corre-
sponding to the visible light frequency and thus it has been
applied to optical devices: solar cells [7–9], photo detectors
[10–12], and photo galvanic devices [13]. In Refs. [14,15],
the authors investigated the optical absorption property of BiI3

with stacking faults which are errors of the stacking sequence
from the rhombohedral structure. They discovered that ex-
citons are formed in a quasi-two-dimensional space at the
stacking faults and observed as resonant peaks slightly below
the absorption edge. In experiments for a single crystal of bulk
BiI3, on the other hand, such exciton peaks are absent in the
absence of the stacking fault [16,17]. The experimental results
indicate that the stacking structure of layers is responsible for
the exciton formation.

The relation between the optical property and the stacking
structure is one of the fundamental and fascinating issues in
atomic layered materials. Recently, the methods to control the
number of layers and to fabricate heterostructures of different
layered materials have been established and applied to the
study of the optical property of atomic layered materials.
For instance, in the MoS2 family, two types of excitons,
the intralayer exciton and interlayer one, have been found
by controlling the stacking structure. Optical measurements
reveal that the former appears independently of the number
of stacking but the latter emerges only in the stacked crystals,
including van der Waals heterostructures with a proper band
alignment [18–20]. These experiments indicate that control
of the number of stacked layers could be a simple method to

change the optical property, including the exciton formation,
even in BiI3.

In this paper, we theoretically investigate the electronic and
optical properties of BiI3 by changing the number of layers.
The electric structure and the optical property are evaluated
by use of first-principles calculation. To investigate the optical
property, we calculate the dielectric function and adopt time-
dependent density functional theory (TDDFT) to compute the
quantity. TDDFT is a method to obtain the excited states in
the presence of a time-dependent electric field including the
electromagnetic wave and enables us to calculate the spectrum
of dielectric function including excitonic states by adopting
the proper exchange-correlation (XC) kernel.

II. ELECTRONIC STRUCTURE OF BiI3

BiI3 is an atomic layered material consisting of atomically
thin crystals in which Bi and I atoms are strongly bounded
by forming bonding orbitals as shown in Fig. 1(a). The layers
are weakly bounded by van der Waals interaction and stacked
in the rhombohedral sequence as shown in Fig. 1(b). The
monolayer is classified into the hexagonal crystal and has a
sublayer structure, where one sublayer of Bi is sandwiched by
two sublayers of I(1) and I(2) as shown in Fig. 1. The lattice
constant a of hexagonal structure, the intersublayer distance
[the distance between I(1) and I(2) atoms] and the interlayer
distance (the distance between two adjacent Bi sublayers)
are 7.520 Å, 1.514 Å, and 6.911 Å, respectively, where the
parameters are determined by referring to the experimental
data [3]. The lattice vectors are given by (

√
3a/2,−a/2) and

(0, a) in Fig. 1(a).
The electronic structures are investigated by using the

first-principles calculation. The energy dispersion is obtained
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FIG. 1. The schematics of crystal structure of (a) monolayer and
(b) bulk BiI3. In (a), the I atoms in the top and bottom sublayers are
represented by I(1) and I(2), respectively. In (b), the crystal structure
is depicted by using the atomic positions of Bi.

by using QUANTUM ESPRESSO [21], a numerical code in
density functional theory (DFT). We adopt the generalized
gradient approximation using the projector augmented-wave
method, the energy convergence criterion of 10−8Ry, and
the cutoff energy of 50 Ry for the plane-wave basis and
500 Ry for the charge density. The wave-number mesh is gen-
erated by using Monkhorst-Pack method with the resolution
of 11×11×1 in the first Brillouin zone. The electronic states
are described by a multiorbital tight-binding model where
the hopping parameters and the maximally localized Wan-
nier orbitals as the basis are computed by using WANNIER90
[22]. We adopt the s and p orbitals in Bi and I atoms as the
Wannier functions. We use a superposition of atomic orbitals
|p±

μ〉 = (|pμ(R1)〉 ± |pμ(R2)〉)/
√

2 as a basis where two
atoms at R and −R are the counterpart to each other under in-
version for introducing the parity operator. In the tight-binding
model, the parity operator can be defined as a diagonal matrix
where the elements are the products of the parity of atomic
orbital Po and the sign change due to the exchange of atomic
positions Pw at R1 and R2 in the superposition.

In Fig. 2, we show the band structure of monolayer BiI3.
The electronic excitation with the smallest excitation energy
occurs at the � point. At the � point, the electronic states
have the parity eigenvalues because of the inversion sym-
metry in the crystal structure in Fig. 1(a). In Fig. 2(b), we
present the expectation value of parity. Around the � point,
the expectation value is mostly unity in amplitude and has the
same sign in the top valence and bottom conduction bands.
Therefore, the optical excitation between the two bands are
strongly suppressed around the � point because the optical
excitation is prohibited between the same parity states. At the
other high-symmetry points, the odd-parity and even-parity
components are mixed with each other. Therefore, the optical
excitation is not restricted by the parity at these wave numbers.

In bilayer BiI3, the optical excitation energy at the �

point is expected to be decreased, although the energy dis-
persion is not drastically changed from that in monolayer
crystal. In Figs. 3(a) and 3(b), we present the band struc-
ture and the parity expectation value of states, respectively.
In the presence of interlayer coupling, each band in the
monolayer crystal splits into two branches with a slight
splitting energy as shown in Fig. 3(a). At the � point, the
two branches must have the opposite parity eigenvalues be-
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FIG. 2. The electronic band structure and the parity are presented
in (a) and (b), respectively, in monolayer BiI3. In (b), the parity
expectation value is depicted by the linewidth. The parity eigenvalue
is shown at the � point for two valence bands and high energy bands.
The sign of parity expectation value is represented by red for positive
values and blue for negative values.

cause the electronic states can be represented by (|n, k, t〉 ±
|n, k, b〉)/2 at k = 0, where |n, k, t〉 (|n, k, b〉) is the elec-
tronic states in the top (bottom) monolayer crystal with
the band index of n and the wave vector of k. Therefore,
electrons on the top valence band can be excited with a
smaller excitation energy as compared with the monolayer.
This stacking-induced decrease of excitation energy at the
� point can be observed in the other layered BiI3: the trilayer
and bulk.

III. DIELECTRIC FUNCTION

In this section, we consider the dielectric function in bulk,
trilayer, bilayer, and monolayer BiI3. The dielectric function is
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FIG. 3. The electronic band structure and the parity are presented
in (a) and (b), respectively, in bilayer BiI3. In (b), the parity expec-
tation value is depicted by the linewidth. The parity eigenvalue is
shown at the � point for two valence bands and some high energy
bands. The sign of parity expectation value is represented by red for
positive values and blue for negative values.

115409-2



OPTICAL PROPERTIES OF MONOLAYER, MULTILAYER, … PHYSICAL REVIEW B 103, 115409 (2021)

an fundamental quantity associated with the optical property
of the material and directly determined by using the spectrum
of optical absorption, differential reflectance, or spectroscopic
ellipsometry. For instance, it had been computed from the
experimental data of spectroscopic ellipsometry in the case of
bulk BiI3 [17]. We calculate the dielectric function by using
TDDFT with two types of XC kernels. One is the kernel
in the random phase approximation (RPA) and the other is
the bootstrap kernel [23,24], which enables us to reproduce
the long-range behavior as 1/q2 for a small wave number q.
RPA underestimates the XC kernel for a small q which is
relevant to the exciton formation. The bootstrap kernel enables
us to provide the excitation spectrum, including the exciton
formation. Therefore, the exciton peaks can be captured by
comparing the two numerical results from the RPA and the
bootstrap kernel method.

A. Time-dependent density functional theory

In this section, we briefly review TDDFT to clarify the mi-
croscopic effects incorporated in the calculation of dielectric
function ε(q, ω) in a weak irradiation. The dielectric function
is defined by using the response function χ as

ε−1(q, ω) = 1 + ν(q)χ (q, ω), (1)

where ν(q) is the bare Coulomb potential and the atomic unit
is adopted. In TDDFT, electronic states ψ j (r, t ) are assumed
to be described by time-dependent Kohn-Sham equation as

i
dψ j

dt
(r, t ) =

(
−∇2

2
+ u[ρ](r, t )

)
ψ j (r, t ), (2)

where the time-dependent potential u[ρ](r, t ) includes a func-
tional of charge density and the time-dependent external
potential uext (r, t ):

u[ρ](r, t ) = uext (r, t ) +
∫

d3r′ ρ(r′, t )

|r − r′| + uxc[ρ](r, t ). (3)

Here, the last term is the XC potential and it is also a func-
tional of ρ(r, t ). In the case of weak external field, the linear
term of the deviation of charge density δρ(r, t ) = ρ(r, t ) −
ρ0(r) from the ground-state density ρ0 is dominant and can be
approximated by

uxc[ρ](r, t ) =
∫

dt ′
∫

d3r′ fxc(r, r′, t − t ′)δρ(r′, t ′), (4)

where fxc is the XC kernel defined by the functional derivative
of fxc = δuxc/δρ[ρ0]. Thus, the potential term in time-
dependent Kohn-Sham equation can be rewritten as

u[ρ] = u0[ρ0] + uext +
∫

dt ′
∫

d3r′V δρ, (5)

where u0[ρ0] is the Coulomb potential due to ρ0(r) and V
represents the potential due to δρ(r, t ) as

V (r, r′, t ) = δ(t )v0(r − r′) + fxc(r, r′, t ). (6)

with the Coulomb potential v0(r) = 1/|r|. Here, the first
term describes the change of the classical potential, i.e., the
Coulomb interaction, due to the deviation of charge density
and the second term represents the other microscopic effects.
The potential V introduces the effect of excited electrons

and the form of XC kernel fxc is related to the considerable
microscopic correlation effects.

The dielectric function ε(q, ω) is a fundamental quantity
related to the optical property, e.g., the optical absorption
coefficient is given by α = (ω/c)ε2 with ε2 = Im[ε]. The rep-
resentation of ε including the correlation effects in a periodic
solid is given as

ε−1(q, ω) =1 + v0(q)χ (q, ω)

=1 + χ0(q, ω)v0(q)
1

1 − V (q, ω)χ0(q, ω)
, (7)

where χ and χ0 represent the response function of the interact-
ing and noninteracting Kohn-Sham systems, respectively. In
this paper, we consider two approximations to the XC kernel,
the RPA fxc = 0 and the bootstrap kernel:

fxc = ε−1(q, ω = 0)

χ0(q, ω = 0)
. (8)

The RPA includes only the Coulomb potential and ignores
any microscopic effect. The bootstrap kernel reproduces the
behavior in the long wavelength limit fxc = αxc/q2 and en-
ables the dielectric function to have poles attributed to bound
excitons [23].

In this section, we present the numerical results of band
structure and dielectric function. The band structure and the
dielectric function are calculated by using DFT and TDDFT,
respectively. Moreover, TDDFT calculation is performed by
RPA and use of bootstrap kernel. Both the calculations are
performed by using the linearized augmented plane wave code
of ELK [25]. We adopt the local density approximation and
include the effect of spin-orbit coupling. The cutoff of basis
is set by RMT|G| � 7 with the averaged muffin-tin radius
RMT and the reciprocal vector G. In TDDFT calculations,
two empty orbitals are included per atom and spin, and the
Fermi-Dirac type smearing is applied with the energy width
of 13 meV. The wave number sampling is 72×72×1 for
the monolayer and bilayer and 30×30×12 for bulk. Here,
30×30×1 can achieve the convergence even in the mono-
layer and bilayer cases but the finer mesh only eliminate
small noises.

B. Bulk

We start with the numerical result of dielectric function in
bulk BiI3 and discuss the accuracy of TDDFT by compar-
ing with the experiment [17]. In Fig. 4, we show the band
structure and the imaginary part of dielectric function ε2(ω),
where the real part can be obtained by using Kramers-Kronig
relation. The band structure indicates the indirect semicon-
ducting property of bulk BiI3. The minimum energy of the
conduction band occurs at the � point but the valence band
has the maximum energy between the � and K points. The
DFT calculation provides an indirect gap of 1.59 eV. We also
present the excitation energy at several high-symmetry wave
numbers: 1.63 eV at the � point, 2.36 eV at the K point, and
2.28 eV at the M point.

In Fig. 1(b), we show the energy spectrum of ε2 calculated
by RPA and use of the bootstrap kernel, and that computed
from the experimental data in the inset [17]. Although the
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FIG. 4. The band structure and energy spectrum of ε2 of bulk
BiI3. The inset is the experimental data in Ref. [17].

spectrum indicates the slight blueshift, it is qualitatively in
good agreement with the experiment. The two calculation
methods also provide the qualitatively same result with a
slight enhancement of ε2 for the bootstrap kernel. The qual-
itative agreement indicates that the microscopic correlation

effect does not produce the excitonic bound state. The lowest
and small peak at ω � 2 eV is associated with the direct
excitation at the � point with �E� according to the previous
work by use of DFT [26]. The mismatch of the DFT gap and
the excitation energy is attributed to the underestimation in
the DFT calculation. A large peak occurs in both the RPA and
bootstrap cases at 2.32 eV and corresponds to the excitation at
the K and M points. The peak is attributed to the conventional
direct excitation between the valence and conduction bands by
the photon absorption. The agreement among the experiment
and the two numerical results implies the validity of TDDFT
in the optical property of BiI3.

C. Monolayer, bilayer, and trilayer BiI3

In Fig. 5, we present the numerical results of dielectric
function in monolayer, bilayer, and trilayer BiI3 by using
TDDFT. In these results, the lowest edge of the spectrum is
larger than the energy gap at the � point in the DFT band
structure. This is attributed to the underestimation of energy
gaps caused by the DFT calculation. Since the band structures
are similar to each other among these layers, these spec-
tra have peaks at the same frequencies indicated by vertical
lines. These peaks also appear in the spectrum for bulk BiI3

as shown in Fig. 4. Especially in the case of bilayers and
trilayers, ε2 shows the same profile as the spectrum in the
bulk crystal even though the amplitude of ε2 increases with
the number of layers due to the increase in the number of
electronic states. In bilayer and trilayer BiI3, the RPA and
the bootstrap kernel provide similar results which have the
same characteristics, e.g., the edge of spectrum and the peak
positions, except for the amplitude. This is consistent with
the similar electronic band structure in bilayer, trilayer, and
bulk. The enhancement of amplitude by the bootstrap kernel
has been reported in some previous papers [23,27]. The result
about bilayer BiI3 is also in a good agreement with previous
theoretical work [26]. The numerical calculation indicates that
BiI3 shows a similar optical property regardless of the number
of layers, except the monolayer crystal. In the monolayer
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FIG. 5. The dielectric function calculated by use of the bootstrap kernel (upper panels) and RPA (lower panels).
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FIG. 6. The dielectric function in monolayer BiI3 calculated by
use of the bootstrap kernel in two k-meshes. Here �kx is the shift of
the origin from the � point in the meshes.

system, on the other hand, the two calculation methods derive
qualitatively different results. The RPA result is in good agree-
ment with the previous work by use of DFT calculation [28].
However, by using TDDFT, we find two sharp peaks indicated
by E1 and E2 below the peak at 2.32 eV in Fig. 5. These
large peaks are strongly suppressed in the RPA result and thus
they indicate the exciton formation because the suppression
of peak is a characteristic feature of excitons [29]. The peaks
are not changed with the size of the supercell. Actually, they
remain in the spectrum calculated by using twice the unit
cell as shown in Fig. 1(a). To analyze the electronic states
associated to the exciton peaks, we calculate ε2 in the k mesh
of 7×7×1 with the wave-number shift of �kx, which is the
shift of origin from the � point in the unit of mesh as shown
in Fig. 6. The sparse k-mesh is insufficient for the convergence

and enables us to avoid electronic states around a specific
high symmetry point by using the k shift for confirming the
effect of these states to ε2. Here, the K point is not included in
both meshes, the � point is referred to only in the mesh with
�kx = 0, and the M point is included only in the shifted mesh
as a reference wave number. Since the peaks can be found
only in the absence of the shift, the electronic states at the
� point are responsible for the resonant peaks. The frequen-
cies of exciton peaks correspond to the excitation energy �E�

in the case of bulk BiI3. Thus, the absence of such excitation
due to the parity (see Sec. II) enables the excitonic states to be
stabilized only in the monolayer crystal.

IV. CONCLUSION

We studied the optical property of BiI3 by use of TDDFT
with two types of XC kernel, RPA and bootstrap kernels, to
identify the exciton peak. In the case of bulk BiI3, TDDFT
provides good agreement with the experimental data about
the dielectric function. In the bilayer and trilayer crystals, the
dielectric function ε2 shows a similar energy spectrum to that
in the bulk crystal regardless of the kernel. Thus, the electronic
property of Bil3 dose not change with the number of layers
except the monolayer crystal. In monolayer BiI3, on the other
hand, we found a different optical property from the stacked
crystals. TDDFT reveals the presence of large exciton peaks
which are absent in stacked materials. The unique spectrum of
ε2 suggests the drastic change of optical properties in mono-
layer BiI3 in comparison with stacked crystals.
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