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The unusual electronic and optical properties of armchair and zigzag graphene nanoribbons (GNRs) subject
to in-plane transverse electric and perpendicular magnetic fields have been systematically investigated. Our
calculations were carried out within the generalized multiorbital tight-binding model based on a Hamiltonian
which takes into account hopping integrals among the (s, px, py, and pz) atomic orbitals as well as the external
electric and magnetic fields. The electronic structure consists of π bands arising from the pz orbital and σ

bands originating from the (s, px , and py) orbitals. The energy bands and optical spectra are diversified by
both the nature of the edge of the nanoribbon and the strength of the external fields. Armchair GNRs display
a width-dependent energy gap in addition to low-energy σ bands whereas the zigzag system has the unfilled
flatband with π edge states at zero energy and partially filled wide-range σ bands. An applied in-plane electric
field leads to the splitting of energy bands and shifted Fermi level thereby enriching the interband and intraband
optical conductivities. The interplay between an external magnetic field and the edge geometry gives rise to
extraordinary quantized Landau levels and special optical spectra.

DOI: 10.1103/PhysRevB.103.115408

I. INTRODUCTION

Graphene nanoribbons (GNRs), which are narrow strips
of graphene, have been receiving a considerable amount of
attention due to their acquired fundamental physical prop-
erties as well as their wide range of potential applications.
Unlike gapless graphene, GNRs open up band gaps as a
result of quantum confinement and edge effects [1–4]. The
quasi-one-dimensional nature of GNRs plays a critical role in
the exceptional characteristics, making the materials appro-
priate for use in nanoelectronics, optoelectronics, spintronics,
photodetectors, quantum devices, and others [3,5–10]. So far,
GNRs have been successfully synthesized by various meth-
ods, including lithography [1,11–13], bottom-up [14–16], as
well as unzipping carbon nanotubes [17–19]. It is worth men-
tioning that the current experiment techniques to synthesize
GNRs, such as top-down and unzipping, might miss con-
trol over the edge passivation [15,20,21]. GNRs passivated
with other atoms, such as hydrogen, oxygen, and metals on
the edge, will alter their fundamental properties as already
demonstrated by various research groups [22,23]. It is de-
sired to investigate the electronic and optical properties of
GNRs without removing the σ -edge bands by the passivation.
In our paper of GNRs, we consider the pristine zigzag and
armchair GNRs and compare our results with those reported
previously for both passivated and nonpassivated GNRs.
Our aim is threefold: (i) to comprehend the effects of an
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in-plane transverse electric field on the electronic and op-
tical properties, (ii) to explore the rich and unique orbital
quantization phenomena, one of the mainstream topics in
physical science, and (iii) to thoroughly investigate the di-
versified magneto-optical excitations accompanied by specific
selection rules.

Up to now, a large number of theoretical and experimen-
tal studies on the properties of GNRs have been performed.
Especially, the electronic and optical characteristics of GNRs
have been demonstrated to be remarkably diversified by the
ribbon width and edge types [1–4,13,24]. Theoretical calcu-
lations have suggested that the electronic structure of GNRs
displays the width-dependent energy gaps for armchair ter-
minations and partial flatbands with edge states for zigzag
structures [1–4,24]. Magnetic quantization is predicted to be
significantly suppressed by lateral confinement; Landau lev-
els (LLs) compete with quantum confinement and are only
observed for sufficiently wide GNRs [25,26]. The optical-
absorption spectra are sensitively affected by both the electric
and the magnetic fields in terms of spectral structure, intensity,
and frequency [24–26]. From an experimental point of view,
opening of energy gaps, the edge states and their depen-
dence on the lateral confinement have been verified through
measurements of temperature-dependent conductance in the
nonlinear-response regime [1], room-temperature on-off cur-
rent switching [27], and by scanning tunneling microscopy
as well as by scanning tunneling spectroscopy [28]. Optical
measurements have been conducted for GNRs [14,29,30] in
which the optical gap and the geometry-dependent shifts of
the absorption peaks are examined.
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However, previous calculations on the electronic and op-
tical properties of GNRs under electric and magnetic fields
were limited to the tight-binding model (TBM) with only one
pz orbital per atom [24–26]. Apparently, such a simple model
is not able to capture the full extent of the dynamics of the
band structure and optical-absorption spectra due to the lack
of critically dispersive σ bands connected with the shift in the
Fermi level. So far, the four-orbital energy bands, including
the π bands made of pz and σ bands made of (s, px, and py),
have been reported in the literature [23,31]. In addition to the
π bands, the σ bands located near E = 0 are important in our
understanding of the low-energy physics of GNRs. As far as
we know, there is still insufficient study of the magnetic quan-
tization and magneto-optical properties of four-orbital GNRs.
Consequently, this topic deserves a careful investigation.

Motivated by recent theoretical and experimental progress
on these materials, we have explored the role played by
electric and magnetic fields on the electronic and optical
properties of four-orbital armchair and zigzag GNRs. The
interplay among the external electric, magnetic fields, and
the edge geometry yields distinctive band structures and LL
features, giving rise to peculiar interband and intraband op-
tical conductivities. We will show that, the external electric
and magnetic fields can separate the doubly degenerate σ -
edge bands differently in addition to the edge passivation
as reported previously. An E field evidently modifies the
absorption spectra through the shift of the Fermi level. On
the other hand, a B field can only change the low-frequency
spectral structures related to the weakly quantized LLs. The
interesting field-induced energy dispersion and the optical
transitions associated with them will be clearly discussed. The
comparison between our results and the previous theoretical
and experimental reports will be carried out.

The rest of this paper is organized as follows. In Sec. II, we
describe our generalized TBM which we used for calculating
the energy band structure for GNRs with armchair and zigzag
edges. Section III is devoted to numerical calculations and
discussion of the electronic and optical properties of GNRs
with armchair and zigzag edges in the absence and presence of
an in-plane electric field as well as a perpendicular magnetic
field. We summarize our results in Sec. IV.

II. METHOD

We have developed the multiorbital nearest-neighbor TBM
to investigate the electronic and optical properties of GNRs
with armchair and zigzag edges in an electric and a mag-
netic field. GNRs are composed of two equivalent sublattices,
referred to as A and B as shown in Figs. 1(a) and 1(b) for
armchair and zigzag edges, respectively. We choose x and
y directions for transverse and longitudinal directions with
respect to a nanoribbon, respectively. The primitive unit cells,
marked by the red rectangles, consist of 2N carbon atoms
where N is the number of armchair or zigzag lines. The
first Brillouin zone is determined by the requirement that
ky is within [−π/Ly, π/Ly], where Ly is the length of the
periodic primitive unit cell. The nanoribbon widths of the
armchair and zigzag GNRs are defined as Wac = Ly(N − 1)/2
(Ly = 3b with b = 1.42 Å being the C-C bond length) and
Wzz = Ly(N/2 − 1/3) (Ly = √

3b), respectively.

The Hamiltonian, including the sp2-orbital bonding and an
external electric field, is given by [32,33]

Ĥ =
∑
〈i〉,o

[εo + Vsc(x j )]Ĉ
†
ioĈio +

∑
〈i, j〉,o,o′

t
Ri j

oo′ Ĉ
†
ioĈ jo′ . (1)

In this Hamiltonian, the Ĉ†
io (Ĉjo′ ) operator could create (an-

nihilate) an electronic state with orbital o (o′) at lattice site
i ( j). Also, εo is the orbital-dependent on-site energy, t

Ri j

oo′ is
the nearest-neighbor hopping integral which depends on the
two atomic orbitals of (o, o′) and the translation vector Ri j

between two atoms. It is crucial to mention that applying a
voltage drop across the nanoribbon does not ensure a spatially
homogeneous electric field in the system [34]. Instead, a field
domain will be induced self-consistently. By neglecting an
insignificant screening contribution from edge-state electrons,
we approximate the screening by a static dielectric function
εs(qx, qy) of a quasi-one-dimensional graphene ribbon. The
statically screened potential can be written as [35]

Vsc(x j ) ≡ Vsc(x j, y = 0)

= A0 Re

{∫ ∞

−∞
dqxeiqxx j Uext (qx )

∫ ∞

−∞

dqy

εs(qx, qy)

}
, (2)

where the dimensionless constant A0 is fixed by the constraint
Vsc(W ) − Vsc(0) = −EW in which E represents the applied
uniform electric field across the width of a nanoribbon, and
W is the nanoribbon width. Here, different choices of the y
value only give rise to a phase factor. In addition, Uext (qx ) is
the Fourier-transformed external potential vext (x j ) = −eEx j ,
given by

Uext (qx ) =
∫ W

0
dx′e−iqxx′

vext (x
′)

= − ieE

q2
x

[iqxWe−iqxW + eiqxW − 1].

The dynamical dielectric function ε2D(qxy, ω) is calculated
from the random-phase approximation as [36]

ε2D(qxy, ω) = εb − ν2D(qxy)|F (qx )|2

×
∑
c,v

∫
f irst BZ

2
dky

2π
|〈ky + qy; c|eiqyy|ky; v〉|2

× f [Ec(ky + qy)] − f [Ev (ky)]

Ec(ky + qy) − Ev (ky) − (ω + iδ)
, (3)

here εb = 1 is the background dielectric constant, ν2D(qxy) =
e2/(2ε0qxyW ) is the bare potential, qxy =

√
q2

x + q2
y , and

F (qx ) represents the dimensionless form factor which can be
computed by

F (qx ) =
∫ W

0
dx|ψ (x)|2eiqxx,

with ψ (x) as the transverse envelope function for a nanorib-
bon obtained by integrating over y. Moreover, we have
εs(qx, qy) = ε2D(qxy, ω = 0).

The parameters used in our calculations are optimized nu-
merically, following Ref. [37], so as to reproduce the energy
bands calculated previously by the first-principles method and
the TBM [23,31]. The application of an external perpendicular
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FIG. 1. Lattice structures of GNRs with (a) armchair and (b) zigzag edges for N = 150. The calculated energy bands for both pz- and (s,
px , py, pz)-orbital TBMs are presented in (c) and (d) and (e) and (f), respectively.

magnetic field is included in the calculations by adding an
extra position-related Peierls phase in the nearest-neighbor
hopping integral [25,38].

When GNRs are irradiated by an electromagnetic field,
there exist vertical optical excitations from occupied to un-
occupied states. The finite intensity of such excitations could
be determined from the absorption function [38],

A(ω) ∝ 1

(2π )2

∑
c,v

∑
m,m′

∫
f irst BZ

d2k

×
∣∣∣∣
〈
	c(k, m′)

∣∣∣∣ Ê · P
me

∣∣∣∣	v (k, m)

〉∣∣∣∣
2

× Im

[
f0[Ec(k, m′)] − f0[E v (k, m)]

Ec(k, m′) − E v (k, m) − ω − i


]
, (4)

where f0(x) = �(EF − x) with Fermi energy EF , �(x) is
the unit-step function, 〈	c(k, m′)| Ê·P

me
|	v (k, m)〉 is the veloc-

ity matrix element, and 〈	c(k, m′)| Ê·P
me

|	v (k, m)〉 is the joint
density of states. 
 is the lifetime broadening factor which
is chosen to be sufficiently small for free-standing systems
(
 = 1 meV). Previous work shows that this method could
yield highly accurate optical absorption spectra which are
consistent with experimental results [38].
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III. RESULTS AND DISCUSSION

The band structures of armchair and zigzag GNRs cal-
culated with the use of both pz and multiorbital TBMs are
presented in Figs. 1(c)–1(f) for comparison. The pz orbital
TBM gives only the π bands as demonstrated in Figs. 1(c)
and 1(d). The low-lying energy dispersion forms the parabolic
shapes, and it varies with the ribbon edges. The conduc-
tion and valence bands are symmetric about the Fermi-level
EF = 0. As for the zigzag GNRs, a flatband appears at the
Fermi level within the range of 2π/3 � ky � π . On the
other hand, the armchair structure exhibits a width-dependent
band gap between the edge bands at ky = 0 which tends to
zero as N is increased. It has been predicted by the π -band
TBMs and the first-principle calculations that an armchair
GNR is semiconducting except for N = 3p + 2 with p as a
positive integer where it becomes metallic [1–4]. The metallic
behavior of an armchair GNR has also been examined by
experimental measurements [39]. Here, the π band structures
in our model paper of GNRs with N = 150 are consistent with
those obtained in the previous works [1–4,24,25].

Since the lattice symmetry is broken at the ribbon edges,
the multiorbital Hamiltonian is necessary instead of just the pz

one. As a matter of fact, the σ -edge bands come into existence
when the four (s, px, py, and pz) orbitals are included in the
calculations [23]. Interestingly, the σ -energy bands are well
separated from the π bands. They are mainly made of (s, px,
and py) orbitals, unlike the π -edge bands which consist of
only the pz orbital. Figures 1(e) and 1(f) present the low-lying
energy bands of armchair and zigzag GNRs, respectively. The
weak energy dispersion of σ bands occurs near zero energy for
armchair GNRs whereas its strong dispersion enters into much
deeper energy for the zigzag system. The σ bands are dou-
bly degenerate, corresponding to two identical ribbon edges.
The relative position of the edge σ and π bands determines
the Fermi level, whereby EF is located above or below the
π bands for the armchair and zigzag GNRs, respectively.
Our numerical calculations show that EF = −0.0615 eV for
armchair and EF = −0.3289 eV for zigzag terminations with
N = 150. Interestingly, the electronic characteristic of the
armchair GNR is gradually changed from semiconducting
to metallic when the ribbon width increases. We have con-
firmed that the armchair GNRs with N � 30 presents the
semiconducting behavior, in consistence with the previous
reports [1–4]. On the other hand, the N = 150 armchair GNR
becomes metallic as the Fermi level crosses the energy bands.
This finding might be an important reference for the future
experimental verification.

When an in-plane transverse electric field is applied across
the ribbon edges, the screened potential causes the significant
modification of the electronic structures, including the energy
dispersion and the band splitting. Figures 2(a) and 2(b) show
the band structures with a finite E field of the armchair and
zigzag GNRs, respectively. The field conspicuously narrows
the separation between the conduction and the valence π

bands for both systems. The influence due to the E field is
more visible for the π - and σ -edge bands. One of the two
degenerate edge bands remains unchanged whereas the other
is shifted upward which is a result of the band splitting. Such
an energy splitting is uniform along ky, and it becomes wider

FIG. 2. Calculated energy bands of (a) armchair and (b) zigzag
GNRs using the four-orbital TBMs in the presence of an external
in-plane transverse electric-field E0 which generates a band splitting
between two degenerate σ bands. The dotted red and green lines rep-
resent the edge bands which remain unchanged under the application
of E0.

when the field is increased. The effect due to the electric field
on the band structure gives rise to a shift in the Fermi level.
We observe that EF is shifted more upward for the larger field,
which is consistent with the electric-field-dependent energy
dispersion. We also note that the presence of the σ -edge bands
strengthens the effect of the E field on variation of the Fermi
level. It is noted that the feature of band structures under an
electric field is quite different from the passivated GNRs in
which the hybridization between the σ -edge bands near the
zero energy and the passivated atomic orbitals give rise to
the separation between the original and the newly introduced
edge bands [23]. The E -field-induced rich electronic struc-
tures significantly alter the vertical optical transitions from the
occupied to the unoccupied states which we will discuss next.
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FIG. 3. Calculated absorption spectra of (Ia) armchair GNR with
and without an E field (in V/Å). Results for pz and (s, px, py, and
pz)-orbital TBMs are represented by the dashed and solid curves, re-
spectively. The corresponding vertical transition channels are shown
in (Ib) and (Ic). Similar plots for zigzag-edge GNR are presented in
(IIa)–(IIc).

The optical absorption function exhibits peak- and shoul-
derlike structures, corresponding to vertical transitions be-
tween band-edge states or the multiexcitation channels. The
characteristics of the spectral structure strongly depend on
the lateral confinement as well as the frequency range, re-
ferring to the blue solid curves in Figs. 3(Ia) and 3(IIa) for
the armchair and zigzag GNRs at zero field, respectively.
For the armchair edge, the pronounced peaks correspond to
vertical transitions from the occupied valence- to unoccupied
conduction-band states as illustrated in Fig. 3(Ib). The vertical
green arrows indicate the excitations forming the threshold
peak ω1. The four-orbital TBM yields similar spectral struc-
tures compared with the single pz-orbital TBM [the dashed
blue curve in Fig. 3(Ia)] except for the disappearance of the
P1 excitation. In fact, the P1 peak corresponds to the ver-
tical transition from the highest valence state to the lowest
conduction one, and its frequency measures the finite band
gap of the armchair system. The lack of such a transition
by including the four orbitals is because of the emergence
of the σ -edge bands which repositions the Fermi level. The
zigzag-edge GNR displays remarkable differences between
the absorption spectra correlated with the single-orbital and
multiorbital model calculations. By including the (s, px, py,
and pz) orbitals, the Fermi level is significantly lowered

toward the valence bands. Therefore, the weakened absorp-
tion peaks in the low-frequency range are associated with the
multichannel vertical transitions among the valence states as
demonstrated in Fig. 3(IIb). All of these peaks are not well
separated since the closeness of electronic states in the vicinity
of EF gives rise to plenty of excitation channels with only
a slight difference in frequency. This leads to the emergence
of shoulderlike spectral structures, such as ω3 in Fig. 3(IIa).
It is worth noting that, the absorption spectra of both the
single pz-orbital and the four-orbital Hamiltonian matrices
using the Fermi energy obtained by the four-orbital TBM are
equivalent. This is consistent with the optical selection rule in
which the vertical transition between the two σ -edge bands
are forbidden.

The influence of a finite electric field on the optical-
absorption spectra is mainly attributed to the shift of the Fermi
level and the distortion of band-edge states. The solid red
curves in Figs. 3(Ia) and 3(IIa) illustrate the spectral struc-
tures of (s, px, py, and pz)-orbital armchair and zigzag GNRs
for E0 = 0.005 V/Å. An electric field brings out remarkable
changes in the spectra, including the alteration of the fre-
quency and peak intensities as well as the enhancement of
shoulderlike structures. The threshold structures ω′

1 of both
armchair and zigzag GNRs arise at lower frequency compared
with those for the zero-field spectra. They are associated with
the vertical transitions of the dense electronic states around
the new Fermi levels as demonstrated by the vertical green
arrows in Figs. 3(Ic) and 3(IIc). For armchair GNRs, the
low-frequency spectral structures are formed by excitations
within the valence bands, differing from the above-mentioned
zero-field spectrum. Furthermore, the band-edge states of the
parabolic bands are deformed or anticross due to band cou-
pling as shown in Fig. 3(Ic). These are responsible for the
lowering of spectral intensity and the emergence of shoulder-
like structures interspersed among the peaks. For zigzag GNR,
the low-frequency absorption spectrum is correlated with the
transitions among the valence bands regardless of whether an
electric field is applied or not. However, the Fermi level under
a field enters into deeper valence bands where the density of
states becomes much higher. As a result, the spectral intensity
is increased by an E field as shown in Fig. 3(IIa), in con-
trast to that of the armchair system. It is worth mentioning
that the absorption spectra of the pz orbital are also greatly
enriched by a finite potential, including the enhancement of
peaks with lower intensity and the shift of threshold structures
as shown by the dashed red lines in Figs. 3(Ia) and 3(IIa).
This is mainly attributed to the adjustment of the Fermi level
and the deformation of low-lying band-edge states under an
E field. The first few spectral peaks of the four-orbital and
pz-orbital systems are divergent due to the σ -bands-induced
slight difference in Fermi energies. The higher-frequency ab-
sorption spectra, which correspond to the vertical transitions
of the electronic states away from the Fermi level, become
more equivalent for the two models. For example, the (P′

5 and
ω′

3) peaks of the armchair GNR [Fig. 3(Ia)] are located at the
same frequency and so is the further spectral region. Similar
behavior is also true for the absorption spectrum of the zigzag
GNR, starting from the (P′

3 and ω′
3) peaks [Fig. 3(IIa)].

We now explore in detail the magnetic quantization effect
on σ -edge states by focusing on the (s, px, and py) orbitals.
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FIG. 4. Calculated ky-dependent Landau levels of GNRs with
(a) armchair and (b) zigzag edges for N = 150. Here, the doubly
degenerate σ bands are split by an applied magnetic field as shown
for B0 = 10 and 20 T.

The typical behavior of the Landau bands (LBs) is sensitively
dependent on the ribbon edges. This reflects in the inter-
play between the magnetic field and the lateral confinement.
Figures 4(a) and 4(b), respectively, show, the quantized LBs
of armchair and zigzag GNRs. An external magnetic field
lifts the degeneracy of the σ -edge bands due to asymmetri-
cal confinement with respect to the edge line for the same
direction of two Lorentz forces acting on electrons, leading
to two distinct nondegenerate bands. This phenomenon is
more perceptible for ribbons with zigzag edges compared
with the armchair ones. The ky-dependent LBs of the σ -
edge bands change greatly with the field strength, referring
to the red (B0 = 10 T) and green (B0 = 20 T) curves. The
energy splitting between the two σ -edge bands Eg strongly
depends on ky, the magnetic-field strength, and the edge

types. The effect of B0 on Eg is stronger for a larger mag-
netic field. Interestingly, the σ -edge states at kyLy = nπ (n
is an integer) remain doubly degenerate without splitting
even under the influence of the magnetic field. This is be-
cause at these special momentum states, the two Lorentz
forces with equal magnitude but opposite directions point
to the same side of the edge confinement and, therefore,
they balance each other out. Nevertheless, their energy can
still vary with B0. Especially, for the armchair-edge system,
there exists band crossing behavior in the vicinity of ky = 0
as illustrated in the zoom-in inset of Fig. 4(a). It is noted
that the separation of the two degenerate σ -edge bands by
a magnetic field is unlike that caused by an electric field in
terms of energy dispersion and ky-dependent band splitting.
Therefore, one might predict remarkable differences in the
influence between the two fields on the optical absorption
spectra.

The magnetic quantization of the σ -edge bands is signif-
icantly modified by varying the ribbon width. In fact, the
inner side of the edge confinement is weakened for increasing
ribbon width, leading to a stronger asymmetry or a larger split-
ting of two σ bands. This phenomenon is demonstrated for
armchair and zigzag GNRs in Figs. 5(a) and 5(b), respectively,
for chosen N and B0 = 10 T. The separation between the
two degenerate σ -edge bands (nac = 1, nac = 2) in Fig. 5(a)
and (nzz = 1, nzz = 2) in Fig. 5(b) becomes clearer for wider
ribbons. Interestingly, the degenerate states at kyLy = nπ are
barely affected by the ribbon width and so is the band crossing
of armchair edge systems near ky = 0 [a close look is inserted
in Fig. 5(a)]. The effect of the ribbon width on zigzag GNRs
in Fig. 5(b) becomes stronger than that on the armchair system
because of an enlarged scale. It is interesting to note the
σ -edge bands are moved away from zero energy for both arm-
chair and zigzag GNRs with sufficiently large ribbon width.
This conclusion also holds true for the infinite width, i.e., a
graphene sheet as demonstrated previously [40,41]. As a mat-
ter of fact, the (s, px, and py) orbitals only have a minor im-
pact on the low-energy band structures of wide GNR systems.

The dependence of the Landau wave-function distribution
of the σ -edge states on the multiorbitals of A and B sublattices
is presented in Figs. 6(a) and 6(b) for the armchair GNRs
and Figs. 6(c) and 6(d) for the zigzag ones. The Landau
states of the σ -edge bands exhibit some unique features which
are different from those of the π bands. Both the magnetic-
field-separated Landau edge bands present the wave-function
probabilities that are peaked at kyLy = 2nπ bound states.
The width of the wave-function mode in Fig. 6(a) is much
smaller than the magnetic length, but it varies with the ribbon
width or edge confinement. Each Landau band is attributed
to one of the two ribbon edges. The cases with nac = 1 and
nzz = 1 in Figs. 6(a) and 6(c) show the finite-amplitude modes
localized at the left edge (ky = 0) whereas the nac = 2 and
nzz = 2 modes are localized at the right edge (kyLy = 2π ).
Interestingly, the Landau wave functions of the A atom on the
left-hand side of the ribbon-edge (nac = 1, nzz = 1) resemble
those of the B atom on the right-hand side of the ribbon-edge
(nac = 2, nzz = 2). These unique characteristics are closely
related to the asymmetric geometry of GNRs, particularly, the
positions of the A and B atoms on the two ribbon edges as
illustrated in Figs. 1(a) and 1(b).
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FIG. 5. Calculated dispersion relations of σ -edge bands as func-
tions of wave-number ky for both (a) armchair and (b) zigzag GNRs.
nac/nzz = 1 and 2 denote the lower and upper nondegenerate Landau
bands of the σ -edge states. Here, the strong dependence of dispersion
on the ribbon width is shown for various values of N .

The orbital compositions of the Landau wave functions are
not equivalent. The LBs of the σ -edge bands only have finite
modes on the (s, px, and py) orbitals but vanishing amplitudes
on the pz orbital, which is opposite from those of the π bands.
This is consistent with the zero-field energy dispersion in
Fig. 1. The role played by each orbital in determining the
probability amplitude of the wave function depends on the
ribbon edges. As for armchair edge GNRs, the weights of LB
wave functions on the (s, px, and py) orbitals which the A
and B atoms also contribute on the same order, although the

FIG. 6. Calculated position dependence in the probability func-
tion |	|2 of σ -edge bands at ky = 2nπ/Ly for (a) nac = 1 and
(b) nac = 2 LBs of armchair GNRs with N = 150. Similar plots for
zigzag GNRs are presented for (c) nzz = 1 and (d) nzz = 2 LBs. Eight
displayed columns capture the modes of (s, px, py, and pz) orbitals
on both A and B sublattices.

py orbitals have slightly higher mode amplitudes compared
with the other two. On the other hand, the zigzag edge system
presents a much more visible fluctuation of the LB wave-
function probability due to the orbitals. In this case, the wave
function of each LB is only dominated by the py orbital of
either the A (nzz = 1) or the B (nzz = 2) atom. In contrast, the
contribution from px orbitals to the Landau wave functions
becomes negligible. The dependence of the LL wave-function
distribution on distinct orbitals is critical in understanding the
inter-LB optical transition which we discuss in the rest of this
paper.

We now focus our attention on the magneto-optical prop-
erties of GNRs. For this, we calculate the absorption spectra
of GNRs in the absence and presence of a magnetic field
as shown in Figs. 7(a) and 7(b) for armchair and zigzag
GNRs, respectively. We observe that the low-energy magneto-
optical transitions are mainly attributed to the π bands. The
reason for this is twofold: (i) The transition between the π

and the σ bands is forbidden, and (ii) there is no vertical
transition between the two degenerate σ -edge bands. The
absorption function exhibits the peak and shoulderlike struc-
tures. Overall, the spectral intensity is increased at higher
transition frequency ω due to superposition of high-energy
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FIG. 7. Calculated optical-absorption spectra with B0 = 0 and
B0 = 10 T are presented for (a) armchair and (b) zigzag GNRs with
N = 150. The vertical transition channels are displayed in the insets
of (a) and (b).

side tails of the density of states for different transitions. A
magnetic field of B0 = 10 T only has significant impact on
the low-frequency peak intensity. As a matter of fact, the
higher-frequency peak intensity becomes equivalent to those
in the absence of B0. It has been predicted that the spectral
intensity could be enhanced by increasing the magnetic-field
strength or the ribbon width since the absorption peaks are
mainly contributed from the π bands [25].

An applied magnetic field can shift the location of peaks,
modify the spectral intensity, and create new absorption struc-
tures due to asymmetry in edge channel confinement. The
optical thresholds of both the armchair [ω′

0 in Fig. 7(a)] and
the zigzag GNRs [ω′

1 in Fig. 7(b)] are generated by the finite
field. The former is revealed as a relatively low shoulderlike
structure which is correlated with the vertical transition be-
tween the valence band-edge states of the n = 2 and n = 3
LBs as indicated by the vertical green arrow in the inset of
Fig. 7(a). On the other hand, the latter appears as a prominent
peak, corresponding to the multichannel vertical transitions
among the LBs of n = (1–6) as illustrated in the inset of
Fig. 7(b). In addition to the thresholds, the other B0-induced
extra spectral structures include the special peak ω′

2 of arm-
chair GNR and the shoulderlike structures (ω′

7, ω′
8, and ω′

10)
of zigzag GNR. Nevertheless, they are not the dominant struc-

FIG. 8. Calculated Drude contributions to the optical conductiv-
ity for (a) armchair and (b) zigzag GNRs for zero and finite electric
or magnetic fields.

tures of the spectra which might not be observable in optical
measurements.

In addition to the interband transition, the Drude conduc-
tivity related to the intraband contribution is an important
part of the optical conductivity at low frequencies. We have
employed Drude’s formula for the conductivity based on the
Kubo formula from Ref. [42] to calculate the intraband con-
ductivity of GNRs. In order to verify the accuracy of our
physics model, we first computed the real and imaginary
parts of the conductivity for graphene. It turns out that our
numerical results are in excellent agreement with the previous
experimental and theoretical studies [43,44]. In Figs. 8(a) and
8(b), we plot the calculated Drude tails for both armchair
and zigzag GNRs at zero electric and magnetic fields and at
finite electric/magnetic fields. The intraband transition only
makes a remarkable contribution to the optical conductivity at
zero frequency. Both the width and the intensity of the Drude
tail strongly depend on the number of occupied energy bands
across the Fermi surface. For N = 150 GNRs, the Drude
contribution is greatly enhanced by an electric field in the
armchair-edge system, which is consistent with the significant
shift of EF . Explicitly, the electric-field-induced shift of Fermi
energy leads to the crossing between the Fermi level and a
large number of the energy bands as demonstrated in Fig. 2(a).
As a result, the Drude conductivity which comes from the
intraband transitions is much larger for E0 = 0.005 V/Å than
that of the zero field. As for the zigzag GNR, the number of
energy bands crossing the Fermi level are comparable for the
zero field and E0 = 0.005 V/Å, therefore, the Drude conduc-
tivities of both cases are quite similar, referring to Fig. 8(b).
On the other hand, a finite magnetic field can reduce the Drude
conductivity of both the armchair and the zigzag GNRs as
shown by the red lines in Figs. 8(a) and 8(b). The field splits
the two σ -edge bands which pulls the Fermi level toward the
zero energy where the density of electronic states is lowest.
As a result, the intraband excitation for B0 = 10 T is relatively
weaker compared with that of the zero-field case.

IV. CONCLUDING REMARKS

In this paper, we have investigated the electronic and opti-
cal properties of GNRs with armchair and zigzag edges using
the TBM as well as the absorption function. By comparing our
results for the single pz and four-orbital Hamiltonian matrices,
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we were able to understand the significance of the σ -edge
bands for the low-energy physics of GNRs. The contribution
from the (s, px, and py) orbitals to the electronic and optical
properties of GNRs is mainly attributed to the emergence of
the doubly degenerate σ -edge bands as well as the shift of the
Fermi level.

We have also observed that an applied in-plane transverse
electric field could alter the energy dispersion which, in turn,
modifies the interband optical transition and Drude conduc-
tivity. The presence of an external electric field results in the
splitting of energy bands, distortion of band-edge states, and
a shift of the Fermi level. These result in crucial changes in
the optical conductivity, alteration of the amplitude, and fre-
quency of absorption peaks as well as the width and intensity
of the Drude tail and enhancement of shoulderlike structures
of the absorption spectra.

Finally, we carried out a careful investigation of the
quantized Landau bands and the magneto-optical properties,
mostly focusing on the effect of the σ -edge states. The charac-

teristics of the Landau bands depend sensitively on the ribbon
edge types, their widths, and the magnetic-field strengths. A
magnetic field could split the two degenerate σ -edge bands
to create a kx-dependent band splitting between them. By
analyzing the wave functions of these two σ -edge states, we
demonstrated that each of them is attributed to one of the
two ribbon sides. The low-energy magnetoabsorption spectra,
which are governed by the π bands, exhibit peak and shoul-
derlike structures. The spectral intensity is greatly affected by
the frequency, ribbon width, edge type, as well as the field
strength.
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