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Hydrodynamic collective modes in graphene
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Collective behavior is one of the most intriguing aspects of the hydrodynamic approach to electronic transport.
Here we provide a consistent, unified calculation of the dispersion relations of the hydrodynamic collective
modes in graphene. Taking into account viscous effects, we show that the hydrodynamic sound mode in
graphene becomes overdamped at sufficiently large momentum scales. Extending the linearized theory beyond
the hydrodynamic regime, we connect the diffusive hydrodynamic charge density fluctuations with plasmons.
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I. INTRODUCTION

Electronic hydrodynamics is quickly growing into a ma-
ture field of solid state physics [1-17]. Similarly to the
usual hydrodynamics [18], this approach offers a universal,
long-wavelength description of collective flows in interacting
many-electron systems. Such flows have been experimentally
confirmed [6] to be more efficient than the usual single-
electron (ballistic or diffusive) transport.

In graphene, hydrodynamic collective modes have been
considered by many authors [2,15,19-26]. All of them agree
that at charge neutrality, the ideal electronic fluid (i.e., neglect-
ing all dissipative processes) allows for a sound-like collective
mode (which has been referred to as either the “cosmic sound”
[20] or the “second sound” [25]) with the dispersion relation

W = v,q/V2, (1)

where v, is the quasiparticle velocity in graphene. Taking
into account dissipation changes the above dispersion relation
giving rise to damping. To the best of our knowledge, no
consensus on the latter effect has been reached so far with
several contradicting results available in the literature [15,23].

The hydrodynamic approach to electronic systems is appli-
cable in an intermediate parameter regime [1,2]. In particular,
the underlying gradient expansion is valid at length scales
much larger than the typical length scale £., describing the
energy- and momentum-conserving interaction (responsible
for equilibration of the system). At smaller length scales, one
can study more traditional collective excitations in interact-
ing many-electron systems, including plasmons [15,21,24—
42], which behavior is well established both theoretically and
experimentally.

In this paper we provide a consistent, unified calculation of
the dispersion relations of the hydrodynamic collective modes
in graphene. While the true hydrodynamics is universal (as
long as no symmetries are broken), graphene is somewhat
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unique in the sense that there are two length scales associ-
ated with electron-electron interaction that are parametrically
different in the weak coupling limit [2,25,43,44]. This allows
us to extend the results of the linearized hydrodynamic theory
[15,43,45] to the length scales smaller that £,, (going beyond
the small-momentum expansion of Ref. [15]). At that point
the sound mode (1) in neutral graphene (see Fig. 1) becomes
overdamped due to the high viscosity [3,9,46]

2
B vf,q2 (1 + qzﬁé) 1+ g%
w = - 2 —1 9 (2)
2 At 274is

where 74 is the disorder mean free time and {s is the so-
called Gurzhi length [47-51] (here v stands for the kinematic
viscosity [2,3,9,46])

Lo = /Vvgss. 3)

This mode describes energy fluctuations and is completely
decoupled from charge fluctuations. The latter are purely dif-
fusive within the hydrodynamic approach, where dissipation
is described by the momentum- and frequency-independent
coefficients, including the electrical conductivity and viscos-
ity.

Extending the linearized theory beyond the hydrodynamic
regime, we are able to connect the charge fluctuations with
the more conventional plasmons by taking into account the
frequency and momentum dependence of conductivity. At
charge neutrality we find the plasmon mode

V221 visc2 vZsx
o= B+ ) i
2 » 6420 8oy

where oy is the conductivity in neutral graphene [1,2,16,52]
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FIG. 1. Real (top) and imaginary (bottom) parts of the hy-
drodynamic sound dispersion in neutral graphene taking into
account viscosity and weak disorder, Eq. (2). The numerical val-
ues were computed with the realistic parameter values taken from
Refs. [3,9,12]; see the main text. The dispersion acquires a finite real
part at the threshold value of momentum determined by dissipation.
The mode becomes overdamped at small enough momenta, still in
the region of the growing real part. The dashed line shows the ideal
dispersion, Eq. (1).

and s is the inverse Thomas-Fermi screening length. Ne-
glecting dissipation and for small momenta, the dispersion (4)
coincides with the result of Ref. [19].

Finally, we extend our results over the whole range of
carrier densities up to the degenerate (“Fermi-liquid”) regime.
Given the weak density dependence of the kinematic viscosity
in graphene [3,9,46] the sound dispersion remains qualita-
tively similar to that shown in Fig. 1 at all doping levels.

II. HYDRODYNAMIC THEORY OF ELECTRONIC
TRANSPORT IN GRAPHENE

In this section we briefly review the hydrodynamic theory
of electronic transport in graphene.

A. Nonlinear hydrodynamic equations

The complete set of hydrodynamic equations includes the
generalized Navier-Stokes equation [16,17]

W@ +u-Vu+v;VP+ud,P+eE - ju

2 e, Wu
:vg(nAu—nHAuxeB+enE+—J xB)— , (6a)
c Tdis
the continuity equations [1,2,16]
on+V.-j=0, (6b)
ny—n
o+ V- j = == (6¢)
TR

and the generalized “heat transport” equation [53-55] (we
follow the usual approach [18] using the entropy flow equation
instead of the continuity equation for energy).

T §+V.3Pu—uj—mj1
ar T

=5j.<eE+fuxB—TV5)—T5j,.Vﬂ
c T T
3 (Vatty + Vigity = 80V - 0)?

Wu?
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TRE TR

(6d)

Here u is the hydrodynamic velocity, c is the speed of light,
and n and n; are the carrier and imbalance densities (n; ¢ is
the equilibrium value), related to the quasiparticle densities in
each of the two bands by

n=ny —n_, np=ny+n_.

The carrier density n differs from the charge density by a
multiplicative factor of the electric charge, e. Similarly, we
define the two quasiparticle currents, j and j,,

J=Jy—Jj hi=Jsti
with the electric current J = ej. We also define the two chem-
ical potentials, u and p;,

w= (s +pn-)/2,

allowing for the two independent chemical potentials for each
band out of equilibrium [53] (hence the term “imbalance”).
The remaining vector quantities in Eqs. (6) are the energy
current j, the electric field E, and the magnetic field B. The
thermodynamic quantities are the enthalpy density W, pres-
sure P, entropy density s, and temperature 7 . Finally, n and g
are the shear and Hall viscosities, tx is the recombination time
[53] [the recombination term in Eq. (6¢) agrees with Ref. [54],
whereas Ref. [53] suggests a slightly different term that is
proportional to wu; instead of the 6n;], and tzg is the energy
relaxation time [55]. In equilibrium, p; = 0.

In comparison to the usual hydrodynamics [18], the elec-
tronic system in graphene is characterized by one additional
variable describing the second band. Traditional ideal fluid is
described by two thermodynamic variables, e.g., density and
pressure, and the velocity field. As a result, in two dimensions
one needs four equations to describe the dynamics of the flow.
Two of these are given by the Euler equation, the third is
the continuity equation, while the fourth can be either the
continuity equation for energy or the adiabaticity equation
(i.e., the continuity equation for entropy). In graphene these
are Egs. (6a), (6b), and (6d) in the absence of dissipation.
The additional continuity equation (6¢) for the quasiparticle
density n; appears exactly due to the presence of the second
band, which is why the overall number of hydrodynamic
equations as well as independent variables in graphene is five.
As the additional variable one can choose either n; or the
corresponding chemical potential ;.

The entropy flow equation (6d) should be compared to the
corresponding equations in Refs. [2,53,54]. The four equa-
tions contain mostly the same terms (up to trivial notation

mr = (U4 — p-)/2,
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changes) with the following exceptions. Equation (54) of
Ref. [2] is written in the relativistic notation omitting the
imbalance mode, quasiparticle recombination, and disorder
scattering, all of which are discussed separately elsewhere in
Ref. [2]. Reference [53] was the first to focus on the imbalance
mode with Eq. (2.6) containing all the terms of Eq. (6d)
except for the viscous term. Finally, Eq. (1c) of Ref. [54]
contains all of the terms in Eq. (6d) and in addition contains
a term describing energy relaxation due to electron-phonon
scattering that is neglected in this paper (generalization of the
resulting theory is straightforward).

Weak disorder scattering is described in Egs. (6a) and
(6d) by the mean free time t4;. The disorder contribution
to the hydrodynamic equations was derived in Ref. [16] us-
ing the simplest T-approximation to the kinetic equation. A
better version of the disorder collision integral in graphene
should involve the Dirac factors suppressing backscattering
[56] which would lead to the similar approximation but with
the transport scattering time. In graphene, this brings about a
factor of 2. In this paper, we treat 74is as a phenomenological
parameter adopting the approach of Ref. [12].

The imbalance density n; appears under the assumption of
the approximate conservation of the number of particles in
each individual band. The processes that break this conserva-
tion (i.e., mix electrons and holes) involve the three-particle
scattering, Auger processes [53], and most importantly, im-
purity assisted electron-phonon coupling [57]. These effects
are described in Eq. (6¢) by the phenomenological [58,59]
recombination time [60], T, as well as the energy relaxation
time tgg in Eq. (6d).

B. Dissipative corrections to quasiparticle currents

The usual hydrodynamic flow [18] is a mass flow where
dissipative processes lead to a correction to the energy flux
as described by the thermal conductivity. Consequently the
flow is characterized by three dissipative coefficients, the ther-
mal conductivity »r and two viscosities 7 and ¢. In contrast,
electronic hydrodynamics in graphene describes an energy
flow where the quasiparticle currents acquire dissipative cor-
rections. The energy flow is proportional to the momentum
density and hence can only be affected by disorder, which
is “extrinsic” to the hydrodynamic theory. As a result, the
dissipative coefficients include the electrical conductivity o
and viscosity, while the thermal conductivity has to be com-
puted by solving the linear response equations (similarly to
the electrical conductivity in the standard theory). Within the
three-mode approximation of Ref. [16], the bulk viscosity
vanishes, ¢ = 0. In the absence of the magnetic field the
dissipative corrections are related to external bias by means
of a “conductivity matrix” [16,53,54]

8j of(eE —TV(u/T)
)= . 7
(811) ( ~TV(/T) ™
In particular, at the Dirac point u = p; = 0 the matrix b
is diagonal with the upper diagonal element defining (in the

absence of disorder) the “quantum” or “intrinsic”” conductivity
[1,2,16,53,54]

oo = 2211(0). ®)

In the hydrodynamic theory of graphene, the elements of the
matrix ¥ play the role that is equivalent to that of the ther-
mal conductivity 5 in the usual hydrodynamics. The matrix
nature of ¥ reflects the band structure of graphene. In the
case of strong recombination, the imbalance mode becomes
irrelevant, and one is left with the single dissipative coefficient
op; see Ref. [2].

1. Macroscopic currents within the three-mode approximation

Within the three-mode approximation of Ref. [16], one
defines three macroscopic currents (using W = 3iig /2)

j=nu+8j, j=mu+8j, jp=3npu, (9)
where 71, i;, and 7ig are the equilibrium values of the carrier,
imbalance, and energy densities, respectively. The linear re-
sponse theory relates the dissipative corrections §j and §j; to
the external bias by Eq. (7). The dimensionless conductivity

matrix (at B = 0) is given by [16]

S_ms'm 8.-% %y " @ (o
XX ’ XX 27~2 TTdis ’
where
L (1-2EL Z_zmr
= (_x_T el T i{) (10b)
T 3ng T 3ng T

with dimensionless densities [see Eq. (15a) below]
i = Lip(—e™) — Lio(—€"), i =x°/2+7m°/6,

fig = —Liz(—¢€") — Liz(—e™),

x=u/T, T =2TIn[2cosh(x/2)], (10¢)
and dimensionless scattering rates
=N -1 -1 3
g, ') o3 (10d)
1, 1y Yoo alNTEY

where ‘L'Jl are the scattering rates that can be obtained by

solving the kinetic equation within the three-mode approxi-
mation [15,16,25,44]. The zeros in the matrix (10d) are the
manifestation of energy and momentum conservation, which
is also responsible for the vanishing dissipative correction to
the energy current in the absence of the magnetic field [16].
The three dimensionless elements of the matrix T are shown
in Fig. 2 as a function of x = /T .

The resulting matrix elements of the conductivity ¥ are
shown in Fig. 3 as functions of x = /T . As discussed below,
the numerical precision of the present calculation is insuffi-
cient to track the exponential corrections to the scattering rates
in the degenerate regime. Hence, the decay shown in the inset
in Fig. 3 might be an artifact.

2. Dimensionless scattering rates

In the degenerate regime all scattering rates (i.e., the matrix
elements ti;') coincide (up to exponentially small corrections)
approaching the limiting value

i (w>T) — 81°/3. (11)

At o = 0, the off-diagonal elements 1‘1_21 (0) = 0, while the
diagonal elements tl.l.’l (0) determine the diagonal elements of
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FIG. 2. Dimensionless scattering rates comprising the matrix T
tl_ll, tl_zl, 12_21 (blue, black, and green, respectively). The red dashed
line indicates the “Fermi-liquid” limit, Eq. (11).

the conductivity matrix, o and o7; see below. For small x < 1
the dimensionless “scattering rates” ¢;; have the form [45] (see
Fig. 4 for illustration)

! ! of 1 1 1 3
E:W—i_x (@—m@>+0(x ),  (12a)
% - t% + 06, (12b)
! ! of 1 1 1 ;
0 (@‘mg)JrO(x ). (12¢)

For unscreened Coulomb interaction, the dimensionless quan-
tities ti(;.)’l’z) are just numbers without any dependence on
any physical parameter. Numerically, one finds the following

|
2r ™

FIG. 3. Matrix elements of ». The blue, red, and green
curves correspond to Xy, |X2|, |Xx|, respectively (notice that
¥, = —Xj3). The inset shows the log plot of X,;, where the red
and blue lines indicate the exponential decay, while the green line is

the power law ~x~2.
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FIG. 4. Dimensionless scattering rates close to charge neutrality.
The blue, black, and green curves correspond to tl_ll s 11_21 s 12_21, respec-
tively. The red dashed lines indicate the leading behavior close to
charge neutrality (11).

values (neglecting the small [52] exchange contribution):

(V)" ~ 3463, (1) ~ 545,

(D) 572, (9) ~ 1973, (1) ~5.65.

Note that these values are slightly different from those listed in
Ref. [45]. The reason for this is the use of different numerical
methods. In the case of screened interaction, the quantities

0,1,2) .
L depend on the screening length.

3. Conductivity matrix close to charge neutrality
Close to charge neutrality we expand the matrix m

01 = M(0) + 611 + O(*)

with
~ 1 0
m(o) = <0 81)’ (13)
where ¢ (z) is the Riemann’s zeta function and
4
b4

Sj=1————— ~0.28
! 162¢(3)In2

The leading-order correction is given by
X
54¢(3)In2
X( —16x1n%2 27¢(3) —47%1n2
).

27¢(3) — 47%1n2 2712)6[45% + 7;2{1(1;)2 1

s =

The matrix éxx can be expanded in the same way, using the
expansion of the scattering rates (12):

éxx = Axx(o) + Séxx + O(X3),

where

= _n b0 s 14
8x)c(o) - 2T 1n2|:( 0 ,[2—21 + fdism ( )
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FIG. 5. Matrix elements of the dimensionless conductivity )
for small x = u/T. The blue, green, and red curves correspond to
211, X1, | Xaal, respectively. The dashed lines indicate the leading
behavior close to charge neutrality.

and
2

~

T+ ~lsm,

~ T
S, i
2T In2 %

8
= )
81n22

X 1 X (1)
5T = x i 8(1111)2W Vi
- X 1 x .
1/t;,

M 20
Iy 8In2 ty

with

Combining the above matrices, one finds the leading correc-
tions to the conductivity matrix in the vicinity of the Dirac
point; see Fig. 5.

Equations (6) and (7) reviewed in this section represent a
close set of hydrodynamic equations describing the electronic
flows in graphene in the intermediate (“hydrodynamic”) tem-
perature window [1,2]. So far, these equations were mostly
studied within linear response (nonlinear phenomena were
discussed, e.g., in Ref. [15]). The hydrodynamic collective
modes are also obtained by linearizing the hydrodynamic
equations.

III. LINEARIZED HYDRODYNAMIC THEORY AT B =0

In this section we discuss the linearization of the hydrody-
namic theory in graphene suitable for a discussion of the bulk
collective modes in the absence of the magnetic field, which
is the primary focus of this paper.

Within linear response one considers small deviations of
hydrodynamic quantities from their equilibrium values. At
equilibrium, the stationary fluid is characterized by vanish-
ing macroscopic currents and homogeneous thermodynamic
quantities. Equilibrium quantities are most conveniently ex-
pressed in terms of the equilibrium values of temperature and
chemical potential:

w =i, T=T, nr =0, x=pn/T, (15a)
_ NT? _ ~ NT? _
n=rn= i, np=n; = iy,
2nv§ ! ! 2711)3 !

ip, W=3P, s=—x——.

Finally, the electric potential is homogeneous as well:

The values ji, @, and T are determined by the environment in
which the system is placed or, in other words, by the boundary
conditions.

Once the system is subjected to a weak external voltage and
temperature gradient, the hydrodynamic velocity u acquires
a nonzero value and thermodynamic quantities become inho-
mogeneous. To the lowest (linear) order, one introduces small
inhomogeneous fluctuations of the equilibrium quantities (not
all being independent)

T =T+6T,

ny =iy + ony,

(16a)
(16b)

» =0+,
P=P+5P

u=p+du,

n=n+én,

as well as small values for those quantities that vanish in
equilibrium

u, M- (16¢)

The macroscopic currents have the form (9). Within linear
response, the nonequilibrium corrections (9) [in general given
in Eq. (7)] may be expressed as

3j o (—eVotr +xVoT
. )| =X , 16d
(511) < =V ) (16d)
where T is evaluated at equilibrium and
1
8¢ =dp+ —éu (16e)
e

is the electrochemical potential. Here we used the fact that p;
and V8T are both assumed to be small, so that their products,
e.g., u; V38T, have to be neglected.

The same corrections can be expressed in terms of the
density fluctuations rather than the chemical potentials [15]

AN T2 L, Véi — 2LV 5ii
N s (BY - s (I T Y e
3j; 0 T Vén, — 3EVong
with dimensionless fluctuations of the densities and pressure
[cf. Egs. (25) and (26)] defined as
NT? NT?

= 2 2
2nvg Vg

on

ofi;, 6P = —=éig,

T vz
(16g)
the quantity 7 is related to the equilibrium compressibility
[15,16,43,45]

(Sﬁ, 811] =

on N . Z
I NT 7o m2coshts,  (16h)
ofi Zﬂvg 2T
and finally
S — fﬁgx‘xl, s =3 (161)

The expressions (16d) and (16f) are completely equivalent;
however, one has to be careful with the electric field. Indeed,
electrical conductivity is typically measured as a response
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FIG. 6. Real part of the sound dispersion in moderately doped, gated graphene in the presence of both weak disorder and viscosity. Left
pane: results for n = 10'2 cm~2. Right panel: same for n = 10! cm~2. The right panel also shows the zero mode Eq. (38).

to the “total” electric field and not to the “external electric
field.” The total electric field includes the so-called Vlasov
self-consistency [1,2,15,16,43] taking into account the electric
field induced by the density fluctuations. The latter can be
obtained using Poisson’s equation

8 J
Ey = —erdzr/—n(r)

. (17a)
=7

This relation simplifies in gated structures, where [60,61]

Ey = —gV(Sn(r). (17b)

Here C = ¢/(4nd) is the gate-to-channel capacitance per
unit area, d is the distance to the gate, and ¢ is the dielec-
tric constant. This approximation neglects the long-ranged
(dipole-type) part of the Coulomb interaction (screened by the
gate) and is valid as long as the charge density n(r) varies on
length scales much longer than d.

Linearizing the hydrodynamic equations (6) we find

3P ~ 3Pu
—28tu+V8P = nAu + enE — 5 ,(18a)

Ug UgTdis
odn+nV-u+V-5§j=0, (18b)
odn; +n;V-u+V.5j, =—dn;/t, (18¢)
20,6P + 3PV -u = —28P/ 1. (18d)

Notice that the linearized “thermal transport” equation (18d)
is completely equivalent (within linear response) to the conti-
nuity equation for the energy flow; see Refs. [1,2,15,16,43].
The energy relaxation term in Eq. (18d) was derived in
Ref. [55].

At this point one has to choose the set of independent vari-
ables. Based on the form of the linearized equations (18), one
can choose én, dny, and §P. Together with the two components
of u one has five variables for five differential equations (18).
This set was used in Ref. [43] to discuss collective modes in
the electronic fluid.

An alternative choice based on the form of dissipative
corrections (16d) may include §¢, uy, and §T. These variables
were chosen in Ref. [53] for the discussion of the role of the
imbalance mode in thermoelectric effects. Indeed, using the
thermodynamic relation [2,16,18,53]

dP =ndu + njduy + sdT, (19)

in the linearized Navier-Stokes equation (18a), one finds

3—f(a, + 1) )u = nAu— eAVe — i Vi — PG,
Vg T

(20)
where we combine the electric and chemical potential into
the electrochemical potential (16e). Given that the densities
and pressure are given by known functions of the chemical
potentials and temperature [see Eqs. (15a)], it’s a matter of
simple algebra to express the rest of Egs. (18) in terms of 6¢,
i, and 8T.

While the choice of the thermodynamic variables is a mat-
ter of taste, there is an important distinction between static and
dynamic response [2]. Static linear response equations contain
only the electrochemical potential ¢. However, the dynamic
part of Eq. (18d) contains the chemical potential only. Conse-
quently, one has to be careful considering response functions
that depend on time and spatial coordinates at the same time.
In this case, an additional equation (17) describing Vlasov
self-consistency has to be taken into account [15].

IV. COLLECTIVE MODES AT B =0

Collective modes in the electronic fluid were consid-
ered within the same approach in Ref. [15], see also
Refs. [2,44,62]. These are the eigenmodes of the linearized
equations (18). The most convenient choice of variables for
this task is the density-pressure variables, dn, dny, and 6P, and
the velocity u. The dissipative corrections to the currents are
given by Eq. (16f) and the electric field in Eq. (18a) is the total
electric field.

Now, it is convenient to solve linear differential equations
with the help of the Fourier transform. Using the standard
convention
—iwt+iqr

dwdq
Q)¢

we rewrite Egs. (18) in the dimensionless form

u(t,r) = u(w, q),

N R AN 1_ _~en i _
<a) + l—fdis gV — gqénE — qngcSn = genﬁo, (21a)
. . 27~
w8n—nq~v—ﬁq 8j =0, (21b)
- N 27 .~
(w+7)8n,—n1q-v——q~81,:0, (21c)
TR N
i 3
(a) + ~—)8ﬁE —Zhgg-v=0,  (21d)
TRE 2
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where

G=14/2T), ®=w/Q2T), Vv=ulv, (22a)

t; =2Tt; (j=dis, R, RE), &)= v,E T2, (22b)
the dimensionless Gurzhi length is defined so that
(22¢)

J

gl = qtc,

and the self-consistent Vlasov potential is given by

Finally, the dimensionless form of the dissipative corrections to the macroscopic currents is given by

0

()

_ g(ego - quq(Sﬁ)

N eNT e/C, gated,
V, = Vs, V, = 22d
4 mv2 s (@) {2ne/q, Coulomb, (22d)
iqgs (o0 — i
‘mz—x<a~ g, ) @3)
coshz fif — 35000

The collective modes can now be found by analyzing the system of Eqgs. (21). For convenience, it can be written in the matrix

form
~ | i2ng ¥ =) 2733},
 + N (E“V‘I+ IHZCOSh%) NlIn2cosh 5
21§ 5 = ~ 0 21§,
N (ZZIV‘I + 1n2c0sh§) o+ T + NlIn2cosh 5
0 0
~Y7 7

_ing* THAHEhLi

. — - ~
3N g In2cosh 3 q Si ZE N1 o
_ing® TSy s~ o 2me 5
3N g In2cosh 3 nq gfll = N 22161&)
~ i ~ n
O+ 5, —2"Eq : i ?s
5 25 v Zeil
g - 143222 6 0
3 (Cl) + Tais ) E
(24

Dispersion relations of the collective modes are given by the zeros of the determinant of the matrix in the left-hand side of (24)

1+ 3 i | 2ng%h, 273 (< - % i 1+ PR\ &
o+ i) (o =+ L2l ST || | P T s
(w+l Tais ot n +Nln2cosh§ “TTN " "+ln2cosh)2—‘ et N\ 3
| 2@E, [ §Vh 5 2§ TS, R
NIn2cosh3 | 6fi \ Nln2cosh3 = %Trg g
2@ (o oo Ta i R AN s
B B[ ) e ) -
N ( 2 q+1n2005h§ w+%RE @+ i 2
52V 772 7 ; ~2 N/ . D
qven© (| i 2w g%, - i i2mg-%5,
N = T NI codh £ —t+t5—5])=0. 25
6 (CL)_‘_T,'RE—i_ZVIIlZCOSh%r w+‘fR+Nln2c()Sh% (25)

The first line in Eq. (25) is the factor determining the
dispersion of the transverse fluctuations of the velocity field.
Under our assumptions this mode is completely decoupled
from the rest of the system and remains diffusive for all values
of the carrier density. This might change if one considers long-
range disorder [63], where it was argued to induce vortical
flow near charge neutrality.

The rest of the equation is best solved numerically. In
Fig. 6 we present the results of a numerical calculation of
the real part of the dispersion for the two values of the
carrier density, n = 10'>cm™2 and n = 10! cm~2. Equation
(25) was solved using the typical values of the effective cou-
pling constant [12,64] o, = 0.23, disorder scattering time [12]
;) = 1 THz, kinematic viscosity [3,46] v = 0.2m?/s, and
temperature 7 = 300 K. The result is qualitatively similar to
that shown in Fig. 1, therefore we postpone the discussion
until after we have considered the two limiting cases where
the dispersion can be obtained analytically; see Eq. (2).

A. Collective modes in neutral graphene

At charge neutrality, the linearized equations (21) can be
simplified using the fact that the “conductivity matrices” X

(

and ¥’ are block-diagonal (here we take into account weak

disorder)
T = el2<(60 01051>, T = ?12(%0 2,) (26)
As a result, the dissipative corrections (23) simplify
8j = 5005 - elf’l%aﬁ, (27a)
8j; = —%[Sﬁ, — %5%5} (27b)

Using the explicit form of the equilibrium quantities [16],
we rewrite Egs. (21) in the form

9:(3 1+ G2
goiy — 2O )(5) 4% G) —0, (28a)
2 Tais
27'rq2c70 2oy
O+ S = -E, 28b
(w+lelen2 TN (28b)
i i2mjz(n 2 i47T3q201(3171E
o+ — iy — —f.v— — LE
(‘”+ P e2N1n2) e Y T 3 BN In2
(28¢)
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[ 9¢ (3

2(5)+ ;)ME ISP
TRE 2

Combining Egs. (28a) and (28d) to exclude the velocity,

one finds

1+ g2 ‘
q25ﬁ5=2(5)+i—+q G)(G)Jr;)aﬁE,

Tdis TRE

(28d)

yielding the spectrum (2) [in dimensionless units; in Eq. (2)
we have neglected the weak energy relaxation]

@ 11+ @n 1N 1+
o=\=—-"|——-"—) - i— — —.
2 4 Tais TRE 2743 2%gE

(29)
In the absence of dissipation this is the so-called “cosmic
sound” wave [2,15,20] with the linear dispersion (1).
Same conclusions can be reached using the general form
Eq. (25). At charge neutrality, Eq. (25) factorizes

1 ~222 . ~2 1 ~222
|:<6)+i$><&)+ —)- q—](@ﬂ&)
Tis TrE 2 Tdis

i 2migo; 2miG*oy ( - 1
O+ — i Vi+ — ) |[=0.
X<w+fR+Nezln2>|:w+ Ne? q+ln2

(30)

Here the first factor yields the spectrum (29), the last factor de-
scribes the transverse fluctuations of the velocity field, while
the remaining two correspond to the charge and imbalance
modes.

The sound mode (29) is the energy wave not involv-
ing charge density fluctuations [since neither Eq. (28a) nor
Eq. (28d) contains 47i]. Consequently, the sound spectrum is
not affected by the Vlasov self-consistency (17).

Other modes are diffusive. Since Eqgs. (28a) and (28d)
are independent of the density fluctuations &7 and &7i;, the
diffusive modes can be read off Eqgs. (28b) and (28c).

The electric charge density fluctuations are decoupled from
the rest of the variables. Restoring the dimensionful units
and using the explicit form (5) of the conductivity at charge
neutrality [1,2,16,19,43,44,52,62,65] we can write the corre-
sponding dispersion as

2
0= —iDoq2(1 + er(q)%), Dy = LI gy
op 2 711 + Tais

In a gated structure the mode is diffusive with the diffu-
sive coefficient containing a correction due to the Vlasov
self-consistency. In the case of the long-range Coulomb inter-
action the dispersion is still purely imaginary, with w ~ iq at
small g.

Similarly, the imbalance mode is characterized by the dif-

fusive spectrum
w:—iD,qz—i, Dlzlw, (32)
R 2 t08; + Tais
which is gapped by the recombination processes.

The hydrodynamic theory outlined in Sec. Il is justified by
the gradient expansion and hence for momenta smaller than a
certain scale defined by the electron-electron interaction

Vg

qehydro <1, OKE_T .

ehydro ~

Assuming an ultra-clean sample with 745 — oo (where en-
ergy relaxation due to supercollisions [55] may be neglected,
TRe > Tgis), the expression under the square root in Eq. (29)
yields

vzqz 1+ q2g2 2 v2q2 -
g2 . ( e &) N g2 [1 _quzﬁydro - 0(t3)]:
1S

where A is a numerical coefficient. As a result, within the
region of applicability of the hydrodynamic theory the viscous
term should be neglected. The resulting dispersion acquires a
simple form [15]

2,2 :
veqm 1 o
> )
2 4Tdis ZTdis

(33)

illustrated in Fig. 7. Now, keeping the viscous term to the
leading order, but neglecting disorder scattering [23] yields
an expansion

2,2 2
Veq voq ivg
=(1-—=)-—=. 34
¢ ﬁ( 4”;,2:) 2 B9

Similar expression was obtained in Ref. [23] based on the
phenomenological collision integral (which did not take into
account graphene-specific collinear scattering singularity).
However, the viscosity-induced correction to the real part was
positive indicating a tendency towards an indefinite growth of
the dispersion instead of the decrease towards zero implied
in Egs. (1) and (29) and illustrated in Figs. 1 and 6. The
sign of the correction in Eq. (34) is, in fact, dictated by the
dissipative nature of viscosity, which represents an additional
decay mechanism and hence affects the dispersion similarly to
weak disorder; see Eq. (33). Indeed, both terms, rd_isl and qu,
enter the dispersion equation [following from the first term in
Eq. (30)] on equal footing.

As shown in Refs. [15,43,45,66] the linearized theory (18)
has a wider applicability range due to the kinematic peculiar-
ity of the Dirac fermions in graphene known as the “collinear
scattering singularity” [1,2,15,44]. In the weak coupling limit,
the linear response theory is valid at much shorter length
scales
Vg

Leon ~ =
2
o; T|Inayl

qeco]l < la < Ehydro' (35)
At the same time, the viscous term is the result of the gradient

expansion that is justified at smaller momenta
qehydro < la

which formally restricts us to small values of vg/vg, such that
the result (29) should be expressed in terms of the expansion
(34). Moreover, the imaginary part of the sound dispersion
becomes comparable to the real part at glnyaro ~ 1, such that
the decline of the dispersion at larger ¢ shown in Figs. 1 and 6
is unlikely to be observable anyway. Nevertheless in Figs. 1,
6, and 10 we show the sound dispersion in the whole range of
momenta to illustrate the analytic structure of our results.

For realistic model parameters, the dispersion (29) shown
in Figs. 1 and 6 is overdamped practically over the whole
range of momenta. In the limit of large 74;s and small viscosity,
the dispersion (29) approaches the ideal sound dispersion (1)

115402-8



HYDRODYNAMIC COLLECTIVE MODES IN GRAPHENE

PHYSICAL REVIEW B 103, 115402 (2021)

Rel[w] /(2T)
0.05t 40
20
003 5 P "
0.01f
0 007 002 003 004 vgq/(2T)

Im[w] (2T)

vgq/(2T)
0.01 0.02
-0.002

-0.004

-0.006

FIG. 7. Real (left panel) and imaginary (right panel) parts of the sound dispersion in neutral graphene neglecting viscosity. The dashed line

represents the ideal “cosmic sound” dispersion (1).

if
(VeTais) ' K g < Lg'.

However, taking into account the numerical prefactors and
realistic parameter values leads to Figs. 1 and 6, where the
actual dispersion strongly deviates from Eq. (1).

B. Collective modes in the degenerate regime

In the opposite limit of the degenerate regime, ;> T, the
matrix in the left-hand side of Eq. (24) simplifies to

0] 0 0 —iiq

0 w + i 0 —q

0 0 @+ —3iipq . (36)
—-qVys 0 ~1 (@+itEE)

such that Eq. (25) factorizes again

| + 202 . )
{@[(@H—iq G)(&w—f )—q—]
Tais TRE 2
DY =2 .
V.
_GVgen (@+;)}
6l TRE

; =272
(a+ =) (@+iM> ~ 0. 37)
R Tdis
The transverse velocity fluctuations remain decoupled with
the same diffusive dispersion. The imbalance mode is no
longer diffusive: if created, any imbalance density fluctuations
decay exponentially in agreement with physical intuition.
The charge and energy densities are now coupled by the
self-consistent Vlasov field. The corresponding dispersion can
be found by equating the expression in curly brackets in
Eq. (37) to zero. This leads to a cubic equation that can
be solved exactly, but the analytic solution is cumbersome
and not physically transparent. Instead, we focus on the limit
TRe > Tgis solving the equation perturbatively. Neglecting
energy relaxation yields two modes, one being a flat zero
mode and another the “sound mode” (29) renormalized by
the Vlasov self-consistency. To the leading order in energy
relaxation, the zero mode in a gated structure acquires the
diffusive dispersion

i v
w=—-— > —> (38)
TRE (3¢ + 2 C)v;q° + 4 Crgp Ty
where the Thomas-Fermi screening length is given by
» = Nagkr = Ne*p/v;. (39)

In the case of the long-range Coulomb interaction, the factor
27 C should be replaced with the momentum ¢. Physically,
Eq. (38) describes energy diffusion appearing due to Vlasov
self-consistency that couples charge and energy fluctuations.

Similarly to the above limit of neutral graphene, these
results can be obtained from a direct analysis of the linearized
hydrodynamic equations (21). In the degenerate regime (1 >
T or x > 1), Egs. (21) can be simplified by noticing that only
one band contributes. For electron doping, n ~ n;, while the
dissipative corrections to the currents vanish [16]

SJ(T <« ) =8j(T «p)=0.

As a result, one of Eqs. (21) is redundant.
Assuming a gated structure and substituting the explicit
form of equilibrium densities, we find

. 3 o~ 2
|:<&) + ;>X_ + iquyi|v — g = ie(go — lqgéﬁ)x—

Tdis 2 4 ’
(40a)
@i — (x*/2)§-v =0, (40b)
2(5) + ;)gﬁg —&3/2)3-v =0. (40¢)
TRE

Combining Egs. (40a) and (40c) one finds the cosmic sound
mode [2,15,20] damped by disorder and viscosity (back to
dimensionful units and for Tz > Tgis)

_ | ue (14 5) - (L+¢>)°  i(l+8e)
h 2 2nC 472 2Tais
(41)
This is clearly the same mode as Eq. (29), albeit with the
velocity renormalized by the capacitive screening.
Long-range Coulomb interaction modifies the screening
contribution to the sound mode (41)

w =

B2 -0 S R Y
2 q 4sz15 2fdis '

(42)
Taking the naive limit ¢ — 0 (and x — o0) in Eq. (42), one
arrives at the spectrum similar to the usual two-dimensional
plasmon [15,67]

1 1
+ [zvigx— —-. (43)

1
2
ZTdis 28 4-'L’diS

w(qg K ») = —
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FIG. 8. Sound dispersion in strongly doped graphene neglecting both weak disorder and viscosity. Left panel: the result for the Coulomb
screening, resembling the 2D plasmon for very low g. Right panel: same for a gated structure. The dashed line represents the ideal “cosmic

sound” dispersion (1).

The dispersion (43) is meaningful if the following conditions
are met:

glc < 1, q < vxqrg> 1.

At the same time, for the hydrodynamic approach to be valid
at all, the gradients are supposed to be small on the scale that
is defined by the electron-electron interaction

v

8
qehydro <1, ehydro ~ Olg_T

These conditions to be consistent if (using the explicit form of
physical quantities in the degenerate regime)

VerTgis > 1 = Nogutgs > 1,

b < vpxtg, = Noguta(Tra)’ > 1,
providing a possibility to observe the dispersion (43) in a
parametrically defined range of wave vectors.

The eigenvectors of the “flat zero mode” and the sound
mode mix the charge, energy density, and velocity fluctua-
tions. In that sense, the mode (43) is not a true plasmon,
even though its dispersion is identical with that of the usual
plasmon in two dimensions. Moreover, the dispersion (43)
resembles the plasmon dispersion only in an intermediate
interval of rather small g, while the true plasmon exists at large
values of g.

The above dispersion can be illustrated numerically as
follows. Using the same typical values rd_isl =1THz, v =
0.2m?/s (the kinematic viscosity varies only weakly with
the carrier density [46]), and T = 300K, as well as the typ-
ical value of the coupling constant [12,64] «, = 0.23 and
the parameters characterizing the external gate in a typical
graphene-on-boron nitride structure [3], the dielectric con-
stant of the hexagonal boron nitride € = 4.4 and the graphene
to gate distance d = 80 nm, we plot the two dispersions (41)
and (42) in Figs. 8-10. In Fig. 8 we show the two dispersions
(41) and (42) in the absence of both weak disorder and viscos-
ity. The effect of the screening can be summarized as follows.
In a gated structure screening leads to a slight (for the realistic
parameter values chosen above) change of slope of the sound
mode dispersion. In contrast, Coulomb screening leads to a
plasmon-like square-root dispersion for the smallest values of
momentum, which soon turns into a linear dispersion with
the same slope as the “cosmic sound” of the ideal fluid, but

slightly (again, for the realistic parameter values) shifted up-
wards. Taking into account dissipative processes washes out
qualitative differences between different types of screening.
The results are also qualitatively the same for strongly doped
and neutral graphene. In Fig. 9 we show the results for the dis-
persion in the presence of weak disorder, but still neglecting
viscosity. Qualitatively, the results for both types of screening
are similar with the only difference being that the real part of
the dispersion in the case of the Coulomb screening is shifted
upwards relative to the ideal sound dispersion, similarly to the
left panel in Fig. 8, while in the case of the gated structure the
resulting straight line at large enough ¢ has a slightly larger
slope than 1/+/2.

Once viscosity is taken into account, the curves in Fig. 10
strongly resemble the results in neutral graphene; cf. Fig. 1.
The results for gated graphene show only insignificant numer-
ical differences from the curves in Fig. 1, while in the case of
the Coulomb screening the real part of the dispersion appears
at a smaller value of ¢ and exceeds the ideal spectrum (repre-
sented in all figures by the dotted line) in a small intermediate
range of g.

V. HYDRODYNAMIC COLLECTIVE MODES AND
PLASMONS

The hydrodynamic approach is applicable in the long-time
and long-wavelength limit [1,2,45,68], i.e., at momenta that
are small compared to the typical “equilibration” length scale
Lhydro- At higher momenta (and frequencies), the system is
not in equilibrium. In this regime (sometimes referred to [27]
as “collisionless”), the electronic fluid exhibits well-known
collective excitations, the plasmons. In two dimensions and
in the absence of impurity scattering (tg;; — 00) the plasmon
dispersion in the degenerate electron gas has the form [27]

w= Zezuq(l + y%) (44)

where y is a numerical coefficient (see below). The “proper”
way to derive Eq. (44) is to evaluate the Lindhard function
within the random phase approximation (RPA), which would
lead [27] to the coefficient y = 3/4. An attempt to derive the
plasmon dispersion from a macroscopic (hydrodynamic-like)
theory leads to the same form (44), but with a different value
for y. This discrepancy is well known and can be attributed
to the failure of the hydrodynamic description at high fre-
quencies and momenta [27]. As a result, one concludes that
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FIG. 9. Real and imaginary parts of the sound dispersion in strongly doped graphene in the presence of weak disorder, but neglecting
viscosity. Top panels: the result for the Coulomb screening. Bottom panels: same for a gated structure. Dashed lines represents the ideal

“cosmic sound” dispersion (1).

the hydrodynamic collective modes have nothing to do with
plasmons simply because they belong to a different parameter
regime. In this section we extend these arguments to Dirac
fermions in graphene and establish the relation between the
above hydrodynamic modes and plasmons.

A. Degenerate regime

The case of graphene is special because of the kine-
matic peculiarity known as the “collinear scattering singu-
larity” [1,2,15,16,19,43,44,62,660] leading to the existence
of the two parametrically (in the weak coupling limit)
different length scales associated with electron-electron inter-
actions, £eoit < £hyaro- In an intermediate momentum range,

Z}Tyldro Lg K Z&)lu, the hydrodynamic theory of Sec. II breaks

down, while the linear response theory of Ref. [43] is still
valid. Remarkably, the macroscopic equations of the latter the-
ory are identical with the linearized hydrodynamic equations,
so that the collective modes in the two parameter regimes
coincide.

In the degenerate regime and in the absence of magnetic
field, the linear response theory [43] reduces to the single
macroscopic equation describing the dynamics of the electric
current J (here p is the charge density)

Relw] /(2T) Im{w] /2T)
0.05 0.03
-0.02
0.03 -0.04
-0.06
0.01
-0.08
2T
0 0.03 0.06 oos  Vodlt )
Re[w] /(2T) Im{w] /2T)
0.05 0.03
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0.03
-0.04
0.01 -0.06
vgq/(2T)

0.03 0.06 0.09

2 2
oJ v, Vg on 5 J
— 4+ =Vp—vAJ— =—¢E =——, 45)
ot 2 2 0 Tdis
Q
0.06 o0 e9/2D)
2
15
1
05
2T
0 0.03 0.06 oos  /09/2T)
Q
1.5
0.06 o0s 9T
1
05
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FIG. 10. Real and imaginary parts and the quality factor Q = Re w/Im w of the sound dispersion in strongly doped graphene in the presence
of both weak disorder and viscosity. Top panels: the result for the Coulomb screening. Bottom panels: same for a gated structure. Dashed lines
represent the ideal “cosmic sound” dispersion (1).
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which is essentially the generalized Ohm’s law. To obtain
the plasmon dispersion, we introduce the Vlasov field [cf.
Eq. (17)] and use the continuity equation. In the case of
Coulomb interaction, the standard algebra [27] leads to the
following equation:

a)(l + ¢z —
where D = vérdis/2 and o = vé(Bn/&u)rdis/Z are the dif-

fusion coefficient and the Drude conductivity. The resulting
spectrum has the form

ia)tdis) = —iDq2 —i2nogq,

(1+42)°  i(1+46)
4szis ZTdis )

o= [2ug(1+L)- (46)
»

The spectrum (46) is exactly the same as Eq. (42). For a clean
system (745 — 00), the expansion for small ¢ — 0 yields
the form (44) with the “wrong” coefficient, y = 1/2. At the
same time, the leading term (neglecting the correction for
q < ») agrees with the standard Fermi liquid result even in
the presence of disorder [67] (neglecting viscosity).

The expression (46) is valid for momenta up to ¢_;,, but
in fact it becomes overdamped already at momenta of order
Ehyldro At larger momenta, ¢ 3> €., the quasi-equilibrium
description breaks down, and the true plasmons emerge with
the dispersion (44). By that time the spectrum (46) becomes
purely imaginary (see Fig. 10), and hence the two modes
are not connected. Similar conclusions have been reached
in Ref. [24], where it was argued that Coulomb interaction
precludes the appearance of hydrodynamic sound in Fermi
liquids.

B. Two-fluid hydrodynamics

Let us slightly digress and consider the curious case
of the two-fluid hydrodynamics [49,50,69] in compensated
semimetals. Following Ref. [49] we assume that the full
electronic systems comprises two weakly coupled fluids, one
consisting of electrons and another of holes. This means that
the length scales €., and £, describing intraband electron-
electron scattering are much smaller than the interband
scattering length ¢,,. In that case, the system is described
by two equations similar to Eq. (45) with an extra interband
scattering term

9 2 2 9 o
LA U TR U L Lo
dt 2 2 0u
—_Jo _ M’ 47)
Tdis 27,
where ¢, = —e > 0, e, = e < 0, j, denotes the quasiparticle

currents, and «’ denotes the other constituent. For simplic-
ity we assume the system to be electron-hole symmetric
(Eee = Zhh)~

Combining the two currents into the linear combinations,

j=1Jj.—Jj,and j, =j,+ j,, we find the decoupled (in the
absence of the magnetic field) equations
a . 2 8 . .
NS L S R BT
at 2 ou Tdis Teh
3j, () Ji
Y Wy, —vaj, = -1 48b
ot + 5 Vi T VA T (48b)

Combining these equations with the two continuity equa-
tions (6b) and (6¢), we find a sound-like mode

oo [ (1@ 1N i+ i
2 2Tdis 2‘L’R 2Tdis 2‘L’R
(492)

and a plasmon-like mode

2
(g (1+¢%5)  i(1+4°2,)
°=1"2 T a4 W
where
a is Le,
= Znezﬂ, T, = M, Lx = /VTx.
ou Tdis + Ten

In the hydrodynamic parameter range, both modes (49)
are well defined. The expression under the square root in
Eq. (49a) can be rewritten as

2
WO o) Fee T @le) 101 1N
2 Tais TR 2 2\ lais  Lr

Here 7, < Tdis, Tee <K Tg by the assumptions of the hydro-
dynamic regime and g¢,. < 1 under the assumption of the
gradient expansion in the hydrodynamic theory (here we
consider a generic semimetal and hence do not have the
aforementioned scale separation specific to graphene, hence
we cannot extend the argument beyond the validity region of
the gradient expansion). Therefore apart from the small gap
due to the interplay between disorder scattering and recombi-
nation processes, the sound mode is well defined within the
hydrodynamic range of momenta.

Similar arguments can be extended to the plasmon-like
mode (49b). Assuming a clean system, T, < Tdis, T« —> Tehs
one finds under the square root in Eq. (49b)

<U_2)<q%_ qzz — _q4€fe — L)
> .

Typically, the Thomas-Fermi screening radius is smaller then
the electron-electron scattering length, »¢,, >> 1. Hence, the
mode (49b) is also well defined. Here the electron-hole scat-
tering yields the (small) gap in the dispersion similarly to the
disorder scattering in Eq. (46).

C. Graphene at charge neutrality

Utilizing the scale separation in graphene (see above), we
can approach the question of the collective modes from the
standpoint of the linear response theory of Ref. [43]. Here,
instead of formulating the hydrodynamic equations (6), we
turn to the macroscopic equations describing the behavior of
the three inequivalent currents in the system, j, j;, and j:

aj 2 21n2
Sy gyt ttorp = T (50a)
ot 2 Tdis Tl
5,
aj; g Yiv Ji Ji— 2;2(J3E)T
Yiy Zeyy, NP pj, = - JL I OT 50
ot + 2 ! T JE Tdis T2281 ( )
jg U; JE
—— + =Vng —VvAj, = —— 50c
or + ) ng —VAjg - (50¢)

115402-12



HYDRODYNAMIC COLLECTIVE MODES IN GRAPHENE

PHYSICAL REVIEW B 103, 115402 (2021)

where y; is a numerical prefactor. At charge neutrality, the
viscous term vanishes from Eq. (50a) in contrast to the two-
fluid model; see Eq. (49a). In graphene, the electron and hole
subsystems are strongly coupled (£,, = £, ~ £.,) forming a
single fluid, where the electric current is not affected by vis-
cous effects because of electron-hole symmetry. Viscosity still
affects neutral quasiparticle and energy flows in agreement
with the hydrodynamic approach, where the hydrodynamic
velocity in neutral graphene describes the flow of energy.

Similarly to the hydrodynamic regime (Sec. IV A), the
energy and charge decouple completely. Combining Eq. (50c)
with the continuity equation for the energy density (18d)—
that is equivalent to the linearized heat transport equation
(6d)—we recover the sound mode (2).

On the other hand, combining Eq. (50a) with the continuity
equation (6b) we find

2 1 1 v , 2

o +io| —+ — )= =q¢ + (4In2)eTq, (G20
Tiis  Til 2

leading to the plasmon-like spectrum. For large enough fre-

quencies, @ > T, I Td_isl’ and small momenta, ¢ — 0, the

resulting dispersion coincides with the leading behavior of the

true plasmon dispersion established in Ref. [19]:

@ = /2(In2)a,q, (52)

where the last equality is expressed in terms of the dimen-
sionless variables (22a), also used in Ref. [19]. Note, that
at large momenta, where the first term in the left-hand side
of Eq. (51) dominates, the resulting dispersion resembles the
cosmic sound (1), contradicting the result of Ref. [19], where
the dispersion in the large-g limit also becomes linear, but
without the extra +/2.

Considering the limit 7, — oo in Eq. (49b), we arrive at
the same result [in graphene at the charge neutrality point,
vf,%/Z = (41n2)e?T, while viscosity does not affect charge
transport]. In the absence of disorder, the two-fluid model
considered in Sec. VB describes the electron and hole sub-
systems as being weakly coupled (similarly to the effect of
Coulomb drag [70], but without spatial separation). Charge
density fluctuations are correspond to the out-of-phase motion
of electrons and holes. In the absence of the electron-hole
scattering (t, — 00), charge transport is effectively decou-
pled from the in-phase (imbalance) mode and hence Eq. (48a)
becomes equivalent to Eq. (50a) yielding the same plasmonic
mode.

Rewriting Eq. (51) in the form

w=+@In2)e’Tqg =

1 1 v?
ia)(—ia) + —+ —) =24+ (4In2)’Tyq,
Tais  Til 2

we express the plasmon dispersion in the form closely resem-
bling Eq. (31)
o (w)q?
= —]——
e2on/ou

where instead of the static conductivity (5) we find the optical
conductivity [45]

on
[1 + eVs(q)—],
o

2¢*T In2 1

o(w) = - — —-
T —iw + T+ Ty

In the hydrodynamic regime o (w — 0) — op and we recover
the diffusive mode (31).
Resolving Eq. (51) we find the full plasmon dispersion

. v2
w=—is T % o 42y —
27435 T11 2

(Tais + T11)?
4‘l"(izis‘l"lzl
53)
To analyze the two modes—the plasmon and sound—
together, we rewrite the above dispersion in dimensionless
units (22a). The plasmon dispersion takes the form

) S g 1 a2ln2y’
Op =2 D) T+ o e _(Zfdis + 271,4)
i/ 1 ag21n2
= , 54
2<fdis + T A ) (4

where the constant A ~ (.12 determines the quantum conduc-
tivity at charge neutrality [1,2,16,52]

og = Aez/otf,.

At the same time, the sound dispersion (1) in the dimension-

less units is given by
e 1 B3 1 i1
&5 = __|:~ + 2] ——|:~—+ 3
2 255 9 B)ag 2 Tais 93y
(55)

where the constant B = 0.45 determines the shear viscosity in
neutral graphene [1,2,16,17]

n(u=0)= BT2/(Ol§,v§).

In pure graphene (7455 — ©0) in the weak coupling limit
(ag — 0), the regions where the two dispersions are real over-
lap: the plasmon dispersion (54) is real for § > aZ,, while the
sound dispersion (55) is real for § <« ocﬁ. Weak disorder does
not yield any qualitative changes.

The linear response theory, Eqgs. (50), is applicable at
length scales larger than £, the graphene-specific scale
[see Eq. (35)], reflecting the collinear scattering singularity.
In dimensionless units, £} ~ a§| In o, |, which in the weak

27 B§? }

coll
coupling limit greatly exceeds Zgy'dm ~ oz;, which determines
the applicability of the hydrodynamic theory of Sec. II. In
the limit 745 — o0, the real part of the sound dispersion (55)

vanishes when

.. 9%@3) , 2
q =40 ﬁnB g ¢

Here the large numerical coefficient may mask the difference
between the two length scales £pydro and £con for all but the
lowest values of o,. We illustrate the resulting dispersions in
Fig. 11, where we use a model value oy = 0.1 to keep the two
length scales well separated. Even though §j is of the same or-
der of magnitude as £, the imaginary part of the dispersion
becomes comparable to the real part at a significantly lower
value of §. At that point the mode becomes overdamped and
essentially disappears. Adding realistic disorder renders the
mode completely overdamped; see the right panel in Fig. 11.
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FIG. 11. Comparison between the plasmon mode (54) and the sound mode (55) within the linear response theory. Solid curves show the
real part of the dispersion, dashed curves the absolute value of the imaginary part. The dotted line shows the ideal “cosmic sound” dispersion
(1). The plasmon dispersion is shown in blue, the sound in red. The distinction between the two modes is clearly defined by their frequencies
that are much higher for the plasmon mode. Left panel shows the dispersion for a clean sample; right panel the same for the typical value
;! = 1 THz. The coupling constant is taken at a model value o, = 0.1, hence, no renormalization of the velocity v, is taken into account
strongly underestimating viscosity. The real part of the sound dispersion vanishes at § &~ 0.54, which is similar to the applicability limit of

—1
coll*

the linear response theory, ¢

The imaginary part exceeds the real part at a lower value of §, such that the mode becomes overdamped

and disappears still within the applicability region of the theory. In the presence of disorder (right panel) the sound model is completely

overdamped; see Fig. 1 for more realistic values.

VI. SUMMARY

In this paper we described electronic collective modes in
graphene based on the hydrodynamic approach and compared
the results with the more general linear response theory. Our
results generalize the discussion of these issues reported in
Ref. [15] within the small momentum expansion. Given the
universality of hydrodynamics, the results for the collective
modes in the hydrodynamic regime are applicable to other
semimetals (where the momentum density represented by u
is effectively decoupled from the charge transport unless the
system is doped far away from charge neutrality), while the
three-mode approximation used to derive the linear response
theory discussed in Sec. V is specific to the linear spectrum in
graphene.

Our main results are illustrated in Figs. 1 and 11. The
former shows the dispersion of the sound mode in the hydro-
dynamic regime with the viscous damping and weak disorder
taken into account. Using the typical experimental values of
the viscosity and disorder scattering time, we find that the
sound mode in real graphene is strongly damped, making it
difficult to observe the ideal “cosmic sound” dispersion (1)
experimentally.

In Fig. 11 we illustrate the sound and plasmon modes in
neutral graphene obtained within the linear response theory of
Ref. [43] (extended beyond the stationary and uniform fields).
Both modes are evaluated with the “bare” parameter values
(ignoring, e.g., the renormalization of quasiparticle spectrum
in graphene [46,71]) for clarity. Effectively, this approach
strongly underestimates the kinematic viscosity and hence the
sound mode in Fig. 11 is much more pronounced than in
Fig. 1.

The plasmon mode (54) is characterized by higher frequen-
cies that the sound mode (55) and hence is not accessible
within the standard hydrodynamic approach of Sec. II. The

connection between the two calculations can be made by
allowing for the frequency-dependent (optical) conductivity
in Egs. (25) and (31). Reducing the dissipative coefficients
in the hydrodynamic theory to frequency-independent con-
stants (following the standard approach of Ref. [18]) leads
to the diffusive behavior of the collective charge fluctuations;
see Eq. (31). Similarly, all other hydrodynamic collective
modes (except for the sound mode) are characterized by
purely imaginary spectra. This should be contrasted with
the linear response theory, Eqgs. (50), that allows for the
frequency-dependent conductivities leading to the real plas-
mon dispersion (54), as well as a third (neutral) collective
mode following from Egs. (50b) and (6¢). The fact that these
additional (to the sound) modes can be reached within the
linear response theory and connected to the hydrodynamic
description should be attributed to the scale separation in
graphene (due to the kinematic peculiarity of Dirac fermions
[1,2,16,44,62]); see Eq. (35). All other qualitative conclusions
of the paper are valid in a wider class of semimetals. The
obtained collective modes can be observed using the by now
standard plasmonics experiments; see Refs. [30-38].
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