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Modeling excitonic Mott transitions in two-dimensional semiconductors
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We analyze the many-particle correlations that affect the optical properties of two-dimensional semiconduc-
tors. These correlations manifest themselves through the specific optical resonances such as excitons, trions,
etc. Starting from the generic electron-hole Hamiltonian and employing the microscopic Heisenberg equation of
motion the infinite hierarchy of differential equations can be obtained. In order to decouple the system we address
the cluster expansion technique which provides a regular procedure of consistent accounting of many-particle
correlation contributions into the interband polarization dynamics. In particular, the partially taken into account
three-particle correlations modify the behavior of absorption spectra with the emergence of a trion-like peak
additional to excitonic ones. In contrast to many other approaches, the proposed one allows us to model the
optical response of 2d semiconductors in the regime when the Fermi energies are of the order of the exciton and
trion binding energies, thus allowing us to rigorously model the onset of the excitonic Mott transition, the regime
being recently studied in various 2d semiconductors, such as transition metal dichalcogenides.
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I. INTRODUCTION

Two-dimensional semiconductors, such as monolayers of
transition metal dichalcogenides (TMDs), appear to be an
ideal platform for the exploration of the excitonic com-
plexes [1]. Peculiar and appealing properties of TMDs are
largely dictated by their two-dimensional nature: suppressed
screening leads to the emergence of the tightly bound [2–4]
and at the same time strongly interacting excitons in these
structures [5,6]. The former property allows for the efficient
optical probing of the exciton structure [1,7–10], and latter
leads to the emergence of the pronounced many-particle cor-
relations. Besides that, the 2d nature of TMDs allows for the
efficient doping of these structures by means of an external
gating [11]. The most pronounced effect arising in doped
TMDs is the formation of the additional peak in photolumi-
nescence redshifted with respect to the excitonic one [12–16].

From the theoretical side, there still exists an ambiguity
in the interpretation of the origin of this peak. While some
of the researchers describe the peak as trions, tightly bound
complexes of two electrons and a hole (or vice versa) [17–24],
the other part of the community exploits the approach based
on the Fermi polarons: excitons, dressed by the sea of the
residual electrons [25–29]. Although it has been shown that
the two approaches are equivalent in the low doping limit [30],
they produce qualitatively different results in the large doping
limit [31]. Moreover, at elevated doping and thus electron
concentration the composite nature of the exciton should be
taken into account: ultimately, as the average separation be-
tween the electrons is of the order of the exciton Bohr radius,
the excitons can be no longer treated as bound pairs which
results in the onset of the exciton Mott transition, where
the exciton gas transforms to the electron-hole plasma. The
Mott transition in TMD monolayers (MLs) has been recently

explored experimentally [32]. The quantitative model of high-
density behavior of the trions in TMDs is still yet to appear.
Moreover, the experimentally relevant regime of the excitonic
Mott transition [33] still lacks adequate quantitative theoreti-
cal description.

One of the methods proved powerful for the description
of the excitons in the vicinity of the Mott transition is based
on the so-called cluster expansion technique [34–36]. Within
this approach, we start with the many-particle Hamiltonian
of electrons interacting with the classical time-dependent
electromagnetic field. This quantum problem allows for the
reformulation in terms of an infinite series of coupled dif-
ferential equations for many-particle correlations. The cluster
expansion defines the scheme of the truncation of this system
to obtain the many-body dynamics with controlled accuracy.
The cluster expansion technique has been used to quantita-
tively model the excitonic Mott transition in GaAs quantum
wells [37,38].

It has however never been used to model the high-density
trion dynamics due to both the computational complexity of
the resulting equations and the weakness of the trion response
in GaAs quantum wells.

In this paper, we apply the cluster expansion technique
for the TMD MLs to explore the effect of the high-order
many-particle correlations on the optical response of these
structures (see Fig. 1). By extending the system of equations
to capture three-particle contributions we were able to extract
the emergence of the trion peak in the optical polarizability
of TMDs starting barely from the electron-hole Hamiltonian.
We believe that the results of the paper prove that the cluster
expansion methods could be extremely useful to study the
dynamical many-body correlations in TMDs and their effect
on the transient optical properties.
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The paper is organized as follows. In Sec. II we describe
the model and a set of approximations adopted within this
work. In Sec. III we show the approach used and also the
equation of motion (EOM) for different orders. The final an-
alytical expressions and the corresponding numerical results
are presented and discussed in Sec. IV. Finally, in Sec. V we
will draw a conclusion.

Throughout the work we try to use indices i, j as sum-
mation ones, while primed indices—i′, j′—will be used as
external ones. Also, if some quantity is time-dependent, we
can demonstrate it as Q(t ), Qt , or Qt . In this case, the corre-
sponding Fourier transform is denoted by Q(ω), Qω, or Qω,
respectively.

II. DESCRIPTION OF THE MODEL

In what follows we limit ourselves to the case of just
two bands. The generalization to the case of the multiband
structure is straightforward. We also neglect the spin degree
of freedom and consider the single-valley dynamics, thus ne-
glecting the intervalley scattering. Finally, we do not consider
the electron-phonon interaction in this work. Thus, the model
Hamiltonian reads

Ĥ = Ĥ0 + V̂ , V̂ ≡ Ĥel,p, Ĥ0 = Ĥel,k + ĤI , (1)

where

Ĥel,k =
∑
λ,k

Eλ,kâ†
λ,kâλ,k = h̄

∑
i

εiâ
†
i âi, ĤI ≈ −

∑
k

E (t )dcv (â†
c,kâv,k + â†

v,kâc,k) = h̄
∑
i, j

hext
i j (t )â†

i â j, (2)

V̂ = 1

2

∑
k1, k2
q �= 0

Vq
[
â†

c,k1+qâ†
c,k2−qâc,k2

âc,k1
+ â†

v,k1+qâ†
v,k2−qâv,k2

âv,k1
+ 2â†

c,k1+qâ†
v,k2−qâv,k2

âc,k1

]

= 1

4
h̄

∑
i1, i2
j1, j2

vi1,i2, j1, j2
â†

i1
â†

i2
â j2

â j1
, where i = (λ, k), λ ∈ {c, v}. (3)

Indices c and v correspond to conduction and valence bands,
respectively. For single-particle kinetic energies we turn to
the parabolic isotropic dispersion relation. E (t ) is the electric
field strength, while dcv is effective dipole matrix element of
interband absorption. As usual, the creation and annihilation

FIG. 1. Schematic representation of the procedure employed in
the paper. The key quantity within the work is the interband po-
larization P(ω) which allows us to calculate the optical absorption.
The former in turn can be expressed via two-operator expectation
values (〈2〉t ) which enter the hierarchy of differential equations. The
Heisenberg equation together with the cluster expansion technique
allows us to regularly truncate such infinite system within the chosen
order of correlations (〈N〉c

t = 〈â1 . . . âN â†
N . . . â†

1〉
c

t ). In this paper we
partly take into account the dynamics of three-particle correlations
(〈3〉c

t ) thereby expanding the solution given by the semiconductor
Bloch equation.

operators obey the following commutation relations:

[
â†

j′1
, â†

j′2

]
+ = 0,

[
âi′1

, âi′2

]
+ = 0,[

â†
j′1
, âi′1

]
+ = δi′1, j′1 ≡ δλ1,k1;λ2,k2 ≡ δk1,k2δλ1,λ2 . (4)

For a greater versatility for each term of the Hamiltonian
one can introduce the tensor functions hext

i j and vi1,i2, j1, j2
.

The connection formulas between them and standard notation
can be found in Appendix B. Note only here that the small
potential—vi1,i2, j1, j2

—has to satisfy the following symmetry
conditions:

vi1,i2, j1, j2
= −vi2,i1, j1, j2

, vi1,i2, j1, j2
= −vi1,i2, j2, j1

. (5)

It should be marked also that during the derivation of all basic
expressions we do not specify the form of these functions.
Hence, any model reducible to this structure can be treated by
the approach used in this work. Moreover, this formalism can
be applied to systems with bosons.

Speaking about the TMD MLs, when it comes to specific
numerical calculations, the conventional Coulomb potential
in two dimensions (∼1/q) is no longer applicable [39–41].
There are two reasons of its deviation and both of them relate
to screening phenomena. The first modification is associated
with the dynamical screening caused by the presence of free
carriers. The frequency and momentum dependencies of this
effect often lead to difficulties of theoretical description. In
a such situation it is necessary to exploit some approxima-
tion. In particular, within the random-phase approximation
(RPA) the standard Coulomb potential is replaced with
some effective one given by the Lindhard formula [38,42].
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Schematically, it can be expressed as

Vq → V eff
q = Vq

1 − Vq�(q, ω)
, (6)

where �(q, ω) is free-particle polarization, described by

�(q, ω) =
∑

k

fk−q − fk

h̄(ω + iδ + εk−q − εk)
, (7)

where fk is the Fermi-Dirac distribution function. Within the
present paper we expect that effects connected with screening
caused by free carriers are incorporated automatically by tak-
ing into account many-particle correlations, and its artificial
injection into the theory via different effective potentials is
excessive. The only thing which we assume is that the dynam-
ical screening is fully developed and we deal with stationary
systems.

The second type of screening effect is associated with
dielectric properties of both substrate, superstrate, and en-
vironment which are always present in realistic physical
experiments. Due to the dimensional confinement in MLs
any inhomogeneity of surroundings leads to a significant dis-
tortion of the 2d Coulomb law in the layer. By solving the
Poisson equation in such compound structure one can obtain
some potential for MLs of a finite thickness [43]. Within the
strict two-dimensional limit, however, a such potential tends
to the well-known Rytova-Keldysh form [44–47]. The Fourier
transform of it is as follows:

Vq = 2πe2

L2

1

ε(q) q
, (8)

where ε(q) = ε0(1 + q r0). The characteristics ε0 and r0 can
be considered as phenomenological parameters of the the-
ory. They correspond to the average dielectric constant of
surroundings and effective screening length. As was just men-
tioned, the expression (8) was obtained taking the strict 2d
confinement into account. Such approximation is applicable
if the typical radius of the bonded electron-hole pairs exceeds
the lattice constant, which is realized in the case of TMD
MLs. Moreover, the Rytova-Keldysh potential turns out to be
well applicable in order to analyze the formation of dipolar
excitons and accompanied phenomena in double-layer het-
erostructures with using the different TMD MLs [48]. Thus,
as a final potential used in our numerical calculations we take
the expression (8).

As mentioned above, we aim at calculating the interband
polarization, which can be written as

P(t ) =
∑

λ, λ′ k

〈â†
λ,kâλ′,k〉t

dλ,λ′ =
∑

λ, λ′ k

Pλλ′,k(t )dλλ′ . (9)

Taking into account the two-band approximation adopted in
this work, it is necessary to consider only the following
quantity:

P̃t
k ≡ P̃(k, t ) ≡ Pvc,k(t ) = 〈â†

v,kâc,k〉t
. (10)

However, further only due to the computational reasons we
prefer to work with the following variable:

Pt
k ≡ P(k, t ) = 〈âc,kâ†

v,k〉t
≡ 〈âi′ â

†
j′ 〉t

= −P̃t
k, (11)

where we used compound indices: j′ = (v, k), i′ = (c, k).
The transition from one variable to another is trivial.

III. CLUSTER EXPANSION

As was previously mentioned, during the derivation of
dynamical equations for quantities of interest we are faced
with the infinite system of equations. In this section, we de-
scribe the procedure of the proper truncation which makes the
system closed. Also, we present the series of approximations
for the part which we treat numerically.

A. Equation of motion

In order to describe the time evolution of the arbitrary op-
erator Â one can address the microscopic Heisenberg equation
of motion (EOM). In terms of the model (1) it reads

h̄
d

dt
Â + i[Â, Ĥel,k] + i[Â, ĤI ] = −i[Â, V̂ ]. (12)

The same is true for the expectation value of operator Â
with an initial statistical operator ρ0 at an initial time: 〈A〉t =
Tr[ρ0A(t )]. Speaking about ρ0 there are no special restrictions
on its structure.

Further, we focus on the particular type of the operator Â
for which all the expressions presented in this paper are valid.
The corresponding general form can be written as

Â = âi′1
. . . âi′n

â†
j′n

. . . â†
j′1
. (13)

It is clear that with such operator in hand in the noninteracting
case (V = 0) from (12) we obtain a closed system of dynam-
ical equations which contains only one type of expectation
value. A completely different situation, however, is observed
if we are dealing with nonzero potential. In particular, the
dynamics of the two-operator expectation value—〈â†

i âi′ 〉t
—is

coupled with four-operator ones. The latter, in their turn, de-
pend already on six-operator expectation value dynamics and
so on. These steps lead us to infinite hierarchy of differential
equations. In order to solve this system, one should find a
proper way of truncation of this system. One of the options
is factorization of many-operator expectation values into the
product of dominant two-operator terms. This procedure re-
sults in the RPA that, unfortunately, does not allow one to
tackle multiparticle effects. To overcome this problem in [36]
some approach on the basis of the cluster expansion technique
(CET) presented in [35] was suggested. The main idea is
to rewrite all differential equations on expectation values in
terms of correlations. By means of the CET the expectation
value of the product of an arbitrary combination of creation
and annihilation operators b̂i can be expanded as follows:

〈b1〉t = 〈b1〉c
t ,

〈b1b2〉t = 〈b1b2〉c
t + 〈b1〉c

t 〈b2〉c
t ,

〈b1b2b3〉t = 〈b1b2b3〉c
t + 〈b1b2〉c

t 〈b3〉c
t + 〈b2〉c

t 〈b1b3〉c
t

+〈b1〉c
t 〈b2b3〉c

t + 〈b1〉c
t 〈b2〉c

t 〈b3〉c
t , . . . . (14)

For the nth-order correlations the sum extends over all disjoint
partitions of the set {b1, . . . , bn}. These expressions can be
considered as the definition of correlations. This means that in
order to obtain the n-operator correlation we have to subtract
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from the n-operator expectation value all the lower-order cor-
relations (n − 1, n − 2, . . . ). The operators in each correlation
retain their order. The sign of each term is defined by the
number of permutations of fermionic operators in order to
coincide with the initial one.

Within this work we require the conservation of the
fermionic occupation number. This automatically causes that
correlations for odd numbers of operators vanish as well as
for combinations where numbers of annihilation and creation
operators do not coincide. In particular, for two-operator ex-
pectation values we have

〈âi′ â
†
j′ 〉t

= 〈âi′ â
†
j′ 〉

c

t
, 〈â†

j′ âi′ 〉t
= 〈â†

j′ âi′ 〉
c

t
, (15)

while for four-operator ones the corresponding expansion
reads 〈

âi′1
âi′2

â†
j′2

â†
j′1

〉
t
= 〈

âi′1
âi′2

â†
j′2

â†
j′1

〉c
t
+ 〈

âi′1
â†

j′1

〉c
t

〈
âi′2

â†
j′2

〉c
t

− 〈
âi′1

â†
j′2

〉c
t

〈
âi′2

â†
j′1

〉c
t
. (16)

Through the canonical commutation relations (4) it is not
difficult to see that the correlations must meet the following
symmetry conditions:

〈. . . âi′ â
†
j′ . . .〉

c

t
= −〈. . . â†

j′ âi′ . . .〉
c

t
,〈

. . . âi′1
âi′2

. . .
〉c
t

= −〈. . . âi′2
âi′1

. . .〉c
t
,〈

. . . â†
j′1

â†
j′2

. . .
〉c
t

= −〈
. . . â†

j′2
â†

j′1
. . .

〉c
t
. (17)

Thus, by means of (15) the polarization components (11)
can be expressed via correlations in a trivial way:

Pt
k = 〈âi′ â

†
j′ 〉

c

t
, i′ = (c, k), j′ = (v, k). (18)

In addition, there is another important quantity worth rewrit-
ing in terms of correlations—particle density operators:

nt
λ,k = 〈n̂λ,k〉c

t = 〈â†
j′ âi′ 〉

c

t
, i′ = j′ = (λ, k),

〈âi′ â
†
j′ 〉

c

t
= 1 − nt

λ,k. (19)

Further, we will see that taking into account some other phys-
ical assumptions only these two functions enter the EOM.
Also, within the present study we do not consider the correla-
tions higher than three-particle ones. In such situation it looks
very reasonable to introduce specific variables. For two- and
three-particle correlations they are as follows:

Dt
i′1,i

′
2, j′2, j′1

= 〈
âi′1

âi′2
â†

j′2
â†

j′1

〉c
t
, (20)

Tt
i′1,i

′
2,i

′
3, j′3, j′2, j′1

= 〈
âi′1

âi′2
âi′3

â†
j′3

â†
j′2

â†
j′1

〉c
t
, (21)

where all i′ and j′ are compound indices. Here one should
make a remark regarding the features of notation. The expres-
sions 〈â1 . . . âN â†

N . . . â†
1〉t and 〈2N〉t are used for the average

of the 2N-operator product, while 〈â1 . . . âN â†
N . . . â†

1〉
c

t and
〈N〉c

t for correlations of N th order.
Having obtained an idea about correlations, let us finally

figure out what is the benefit to work with them instead of
expectation values. The understanding could be best achieved
by comparing the structures of the EOM in both cases. Based
on the interaction form (3), following the notation in [37]

schematically for 2N-operator expectation values the differ-
ential equation can be written as follows:

h̄
d

dt
〈2N〉t = T̃N [〈2N〉t ] + Ṽ2,N [〈2N + 2〉t ], (22)

while for N-particle correlations the corresponding EOM has
the following form:

h̄
d

dt
〈N〉c

t = TN
[〈N〉c

t

] + V2,N
[〈N + 1〉c

t

]
+V1,N

[〈N + 1〉〈N〉c
t ,〈N−1〉c

t ,...,〈1〉c
t

]
. (23)

From (22) one can see that in order to obtain a closed
system one has to omit the term Ṽ2,N , but in this case we are
totally losing the information about contributions into dynam-
ics from the interaction. In the case of correlations, however,
the presence of V1,N which contains correlation of order no
higher than N allows us to construct a closed system of dif-
ferential equations without losing the interaction information
within the given order of approximation. Thus, in order to
obtain a closed system of the EOM within an N-particle
correlation approximation, we shall neglect all correlations
of order N + 1 and higher. In the next section in terms of
this schematic equation we describe all the approximations
for which analytical and partly numerical results with some
simplification are presented in this paper.

B. Series of approximations

1. Free system dynamics

First, for the completeness of the study we reproduce the
expression for free-particle polarization. The corresponding
schematic equation by means of (23) reads

h̄
d

dt
〈1〉c

t = T1
[〈1〉c

t

]
, (24)

where we omit all the contributions connected with Coulomb
interaction.

2. One-particle dynamics

Following the adopted strategy, within the one-particle cor-
relation approximation the EOM looks like

h̄
d

dt
〈1〉c

t = T1
[〈1〉c

t

] + V1,1
[〈2〉〈1〉c

t

]
. (25)

The notation 〈2〉〈1〉c
t

means that two-particle correlations enter
the corresponding equation only via the product of one-
particle correlations. Further, based on this expression, the
well-known semiconductor Bloch equation is restored.

3. Two-particle dynamics via one-particle correlations

As the next step we include into consideration two-particle
correlation dynamics; however, within this approximation
only one-particle contributions enter the corresponding EOM.
These corrections can be associated with scattering processes.
Let us note that the EOM for one-particle correlations is
already exact. Recapitulating what was said above we come
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to the following system:

h̄
d

dt
〈1〉c

t = T1
[〈1〉c

t

] + V1,1
[〈2〉〈1〉c

t

] + V2,1
[〈2〉c

t

]
,

h̄
d

dt
〈2〉c

t = K
[
T2

[〈2〉c
t

]] + V1,2
[〈3〉〈1〉c

t

]
, (26)

where operator K discards from T2 all the explicitly field-
dependent parts. In terms of two-particle correlations it
formally can be expressed as

K[〈[A, Hel,k]〉t + 〈[A, HI ]〉t ] = 〈[A, Hel,k]〉t . (27)

This operation allows us to select from the right-hand side
of the second equation in (26) only the one pure two-particle
term which totally coincides with those from the left-hand
side.

4. Two-particle dynamics

Here, in addition to the previous case, we include into the
second line of (26) two-particle correlation terms themselves.
Thus, the corresponding system reads

h̄
d

dt
〈1〉c

t = T1
[〈1〉c

t

] + V1,1
[〈2〉〈1〉c

t

] + V2,1
[〈2〉c

t

]
,

h̄
d

dt
〈2〉c

t = T2
[〈2〉c

t

] + V1,2
[〈3〉〈2〉c

t ,〈1〉c
t

]
. (28)

The second line of system (28) as will be further demonstrated
has a very different form for different types of two-particle
correlations. This feature stems from the desire to omit all the
quadratically and higher field-dependent contributions into
polarization dynamics. One of the effects appearing with in-
cluding into consideration the pure two-particle correlations
is connected with screening of the Coulomb interaction which
affects the one-particle correlations dynamics by means of a
coupled system of differential equations.

5. Three-particle dynamics via one- and two-particle correlations

In this approximation the three-particle terms are taken
into account. First, however, we omit pure three-particle con-
tributions. Here, within the linear in field approximation the
EOMs for one- and two-particle correlations are exact. Thus,
the corresponding system reads

h̄
d

dt
〈1〉c

t = T1
[〈1〉c

t

] + V1,1
[〈2〉〈1〉c

t

] + V2,1
[〈2〉c

t

]
,

h̄
d

dt
〈2〉c

t = T2
[〈2〉c

t

] + V1,2
[〈3〉〈2〉c

t ,〈1〉c
t

] + V2,2
[〈3〉c

t

]
,

h̄
d

dt
〈3〉c

t = K
[
T3

[〈3〉c
t

]] + V ′
1,3

[〈4〉〈2〉c
t ,〈1〉c

t

]
. (29)

The primed function V ′
1,3 means that only terms without mo-

mentum summation are considered. This will be discussed
later.

Within this paper we limit ourselves only by analyzing
three-particle contributions. This is motivated by the will to
obtain trion-like behavior of the absorption spectrum. More-
over, due to the noticeable numerical complexity we deviate
from the presented set of approximations at the last step
by introducing some simplifications which will be discussed
further.

IV. RESULTS

A. Analytics

Before we proceed with analytics and numerics, let us
make some assumptions, which allows to dramatically de-
crease the complexity of further computations. From now,
following the problem statement in [37] we suppose that the
analyzed systems are excited only by a homogeneous electric
field with polarization lying in the sample plane. This results
in coincidence of total momenta of annihilation and creation
operators in expectation values. In terms of one-particle cor-
relations this requirement reads as

〈âi′ â
†
j′ 〉

c

t
= δk,k′ 〈âi′ â

†
j′ 〉

c

t
, (30)

with compound indices i′ = (λ, k) and j′ = (λ′, k′). This
simplification leads to the fact that among all one-particle
correlations only P(k, t ) and n(λ, k, t ) survive in the EOM.
In the general case, the homogeneity condition is expressed as
follows: 〈

âi′1
. . . âi′n

â†
j′n

. . . â†
j′1

〉c
t

= δk1+···+kn,k
′
1+···+k′

n

〈
âi′1

. . . âi′n
â†

j′n
. . . â†

j′1

〉c
t
, (31)

with index structure similar to (30). In fact, this assumption
allows one to reduce a dimension of all integrals appearing
within calculations. Within the body of the paper we present
only the final expressions for low-order approximations. Due
to the declared interest in description of optical spectra, the
results will be presented for the k component of susceptibility
χ (ω) entering the following relation:

P̃ω
k = χ (k, ω)E (ω). (32)

It should be noted that electric susceptibility χ (ω) is one of
the most calculated quantities due to the fact that it contains
a lot of information about the optical properties of materials
including oscillator strength, absorption, refractive index, etc.
The TMDs are not an exception; there are plenty of works
where the susceptibility was analyzed by means of different
theoretical approaches (see, e.g., Refs. [49,50] and references
therein).

In this work, due to the equilibrium system requirements,
we also replace all nt

λ,k by their equilibrium values, i.e.,
Fermi-Dirac distribution functions. Moreover, from the com-
putational point of view it is quite useful to work with holes
instead of valence electrons. The corresponding relations are
as follows:

f(c,k) = 1

eβ(Eg+h̄2k2/2mc−μc ) + 1
, (33)

f(v,k) = 1

eβ(h̄2k2/2mv−μv ) + 1
, (34)

f(h,k) = 1

eβ(h̄2k2/2mh−μh ) + 1
, (35)

f(v,k) = 1 − f(h,k), (36)

where Eg is the band gap energy, β = 1/kT , mh and mv

are the hole and valence electron masses (mh = −mv , with
mh > 0), while μh and μv are the chemical potentials of
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holes and valence electrons, respectively (μh = −μv), and mc

is the conduction band electron mass. Also, we use further
f(e,k) ≡ f(c,k) and me ≡ mc. All the details of calculation can
be found in Appendix C.

1. Free system dynamics

Within this approximation the cluster expansion technique
is unnecessary. We set the potential equal to zero and derive
from Eq. (12) the following expression:

χI (k, ω) = − dcv[1 − f(e,k) − f(h,k)]

h̄[ω + iδ − (ε(e,k) + ε(h,k) )]
, (37)

where ε(e,k) and ε(h,k) are one-particle energies, defined
in (C18). This result coincides with the well-known formula
for susceptibility of noninteracting systems.

2. One-particle dynamics and semiconductor Bloch equation

From (25) by means of the cluster expansion (14) we find

χII (k, ω) = �2(k)χR
I (k, ω), (38)

where functions �II and χR
I are as follows:

χR
I (k, ω) = − dcv[1 − f(e,k) − f(h,k)]

h̄[ω + iδ − (ε(e,k) + ε(h,k) )]
, (39)

�II (k) = 1 + 1

dcv

∑
q �=k

χR
I (q, ω)Vk−q�II (q). (40)

The superscript R denotes that the energies in the denominator
of (39) contain renormalized energies in contrast to (37). It can
also be noted that �II (k) coincides with the generalized Rabi
frequency up to a factor dcvE/h̄. The details of calculation are
presented in Appendix C 2. This result coincides with answer
obtained by means of the well-known semiconductor Bloch
equation [38].

3. Multiparticle analysis

Starting from the approximation (26) the equation for
dynamics of one-particle correlations is already exact. How-
ever, it contains the terms which we do not know explicitly.
Fortunately, for these contributions some equations can be
derived.

For the susceptibility component from the first line of (26)
one can obtain by means of (C38) and (21) the following
expression:

χ (k, ω) = χR
I (k, ω)

⎡
⎣1 + 1

dcv

∑
q �=k

Vk−qχ (q, ω)

⎤
⎦ + 1

E (ω)h̄[ω + iδ − (ε(c,k) − ε(v,k) )]

×
∑

k′
2,q′ �=0

Vq′
[
Dω

(c,k−q′ ),(c,k′
2 ),(c,k′

2−q′ ),(v,k) + Dω
(c,k−q′ ),(v,k′

2 ),(v,k′
2−q′ ),(v,k)

−Dω
(c,k),(v,k′

2 ),(v,k′
2−q′ ),(v,k+q′ ) − Dω

(c,k),(c,k′
2 ),(c,k′

2−q′ ),(v,k+q′ )

]
. (41)

Within all the further calculations the structure of this equation remains the same. Only the functions D will be calculated
within the different approximation orders. In order to get an idea about the structure of functions D, from the second line of the
system (26) within the assumptions adopted in this paper we find the following equation for one of the terms in (41):

D
ω,III
(c,k−q′ ),(c,k′

2 ),(c,k′
2−q′ ),(v,k)

= FD,1(χII , k − q′, k′
2, k′

2 − q′, k, ω, {cccv}), with function FD,1 defined as (42)

FD,1(χ, k − q′, k′
2, k′

2 − q′, k, ω, {cccv}) = E (ω)

h̄
[
ω + iδ − [

ε(c,k−q′ ) + ε(c,k′
2 ) − ε(c,k′

2−q′ ) − ε(v,k)
]]

× [
χ (k, ω)Vk−k′

2

[− f(c,k′
2 ) f(c,k−q′ ) + f(c,k′

2−q′ )
[−1 + f(c,k′

2 ) + f(c,k−q′ )
]]

+χ (k′
2, ω)Vk−k′

2

[
f(c,k−q′ )

[
1 − f(c,k′

2−q′ ) − f(v,k)
] + f(c,k′

2−q′ ) f(v,k)
]

+χ (k, ω)Vq′
[

f(c,k′
2 ) f(c,k−q′ ) + f(c,k′

2−q′ )
[
1 − f(c,k′

2 ) − f(c,k−q′ )
]]

+χ (k − q′, ω)Vq′
[

f(c,k′
2 )

[−1 + f(c,k′
2−q′ ) + f(v,k)

] − f(c,k′
2−q′ ) f(v,k)

]]
. (43)

As can be seen, we introduce the superscripts for two-particle
correlations: Dω,3. This is dictated by the needs of numerical
calculations. For the approximate solution of the emergent
system of algebraic equations we develop an iterative proce-
dure. Let us briefly describe it. All the functions which we
introduce here can be found in Appendix C 3. As the first basic
step we take the solution obtained by means of Eq. (38):

χII (k, ω) = Fχ,1(χII , k, ω). (44)

As was mentioned above, this equation can be solved by the
matrix inversion approach. On the basis of this initial point,

one can iteratively find further approximations presented in
the previous section by means of the following expressions.
For N ∈ {III, IV } we have

D
ω,N
(λ1,p1 ),(λ2,p2 ),(λ3,p3 ),(λ4,p4 )

= FD,1(χII , p1, p2, p3, p4, ω, {λ1λ2λ3λ4})

+ FD,2(Dω,N−I , p1, p2, p3, p4, ω, {λ1λ2λ3λ4}),

χN (k, ω) = Fχ,1(χN , k, ω) + Fχ,2(Dω,N , k, ω), (45)
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FIG. 2. The behavior of absorption spectrum in the low-density
regime (ne = nh = 108 cm−2). Inset (a) demonstrates the deviation
of our results (En) for exciton binding energies from the hydrogenic
series of an ideal 2d system (ER

n ). The Rydberg constant R is calcu-
lated under the following condition: E5 = ER

5 . Inset (b) demonstrates
the deviation of our results ( fn/ f1) for relative oscillator strength
from the 2d hydrogenic model of excitons ( f R

n / f R
1 ).

where by definition we consider Dω,I ≡ Dω,II ≡ 0. Having
obtained the function Dω,N one can calculate the modified
solution for χN (k, ω) again by means of the matrix inversion
approach. The analysis of N = V is isolated, due to the needs
of applying some simplification. Owing to the computational
requirements, the corresponding system of equations for N =
V reads

T
ω,V
(λ1,p1 ),(λ2,p2 ),(λ3,p3 ),(λ4,p4 )

= FT,I (χII ,D
ω,III , p1, p2, p3, p4, ω, {λ1λ2λ3λ4}),

D
ω,V
(λ1,p1 ),(λ2,p2 ),(λ3,p3 ),(λ4,p4 )

= FD,III (Tω,V , p1, p2, p3, p4, ω, {λ1λ2λ3λ4}),

χV (k, ω)

= Fχ,1(χV , k, ω) + Fχ,2(Dω,V , k, ω). (46)

As was said previously, all the presented functionals F
can be found in Appendix C 3 and C 4. Also, they are put
into separate Mathematica files, which can be found in the
Supplemental Material [51].

B. Numerics and discussion

In this section we obtain and compare the absorption
spectra for different approximations and physical parameter
values (see Fig. 2). Due to the relatively low computational
cost of obtaining χII (k, ω), we present it for a wide range
of carrier densities and temperatures. We note however that
since we did not account for the electron-phonon interaction,
the temperature here only affects the smearing of the Fermi
surface. For some relevant values of temperature and concen-

tration combinations we obtain higher-order corrections up to
χV (k, ω), where as expected the trion-like resonance manifest
itself. The detailed description of the numerical computations
can be found in Appendix D. Let us present here only the
values of some physical parameters. For the average dielectric
constant and effective screening length we choose the follow-
ing reasonable numbers: ε0 = 2 and r0 = 5 nm. As for the
effective masses of electrons and holes we stopped on the
typical values: me = 0.4m0 and mh = 0.6m0, where m0 is the
electron rest mass. The band gap energy Eg is set to 1.8 eV. All
the other parameters which are meaningless from the physical
point of view and affect only the efficiency of the calculation
procedure are defined and discussed in Appendix D.

In order to assess the correctness of the analytical calcula-
tions presented in the previous section, we analyze a number
of dependencies. First, the dependence of resonance position
on carrier concentrations is analyzed at fixed temperatures.
Next, we study the excitonic resonance behavior relative to
the doped carrier concentration. Also, some additional depen-
dencies which are usually obtained via experiments will be
presented.

1. Carrier concentration variation

In this case we fix the temperature and vary the densities.
We limit ourselves to temperatures 5 K, 100 K, and 273 K.
The corresponding dependencies are presented in Fig. 3. It
should be noted that high-temperature behavior cannot be
described without taking into account the phonons; there-
fore in the cases of 273 K and 100 K the pictures cannot
be perceived as genuine ones. Also, we considered sepa-
rately the low-density regime when the electron-hole pair
concentration is equal to 108 cm−2 Fig. 2. We compare the
calculated binding energy series with the analytical formula
for exciton energies of an ideal 2d system: −R/(n − 1/2)2.
Assuming that for large principal quantum numbers (in our
case n = 5) both dependencies have to coincide, we extract
the Rydberg constant: R = 256 meV. It should be noted that
the estimate obtained by means of analytical expression is
much greater: e4mr/2ε0 h̄2 ≈ 816 meV. It is seen that our
results deviate from this simple model dependence which is
generally accepted for TMDs [1,4,6]. For the case of 5 K, we
also obtain the drift of 1s exciton peak position with growth
of electron-hole pair concentration within the χII and χIII

approximations. The corresponding trend is depicted in Fig. 4.
The extracted estimate of slope ratio (≈0.0026 meV μm2)
is of the same order of magnitude as the number recently
obtained within the experiment [52] on TMD MLs. This
number allows one to extract the exciton Bohr radius by
means of the following relation: dE1/dnr = 2.07E1a2

B [53].
It leads to the following estimate: aB = 2.6 nm. Also, we
observe the onset of the Mott transition at the concentra-
tions with nr ≈ 10, 170, 400 for 5 K, 100 K, and 273 K,
respectively. At these concentrations the absorption peaks as-
sociated with the 1s exciton peak disappear and the system
is characterized by negative absorption coefficients. More-
over, at low temperature T = 5 K we observe the negative
absorption region in the vicinity of the second exciton state.
This is due to the fact that since we disregard the electron-
phonon interaction, the excited exciton states do not relax to
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FIG. 3. Change of absorption spectra behavior with increasing of exciton concentration in the case of three different temperature values:
273 K, 100 K, 5 K. The circled letter M indicates the vicinity of the Mott transition. The star sign as a superscript for different nr values means
that the corresponding spectrum has rescaled regions. The shaded areas demonstrate that the corresponding dependence has a rescaled region.

the ground ones. We note also that since we only consider a
single valley in our model, the results cannot be directly com-
pared to the experimentally observed exciton shifts in TMDs
since no contribution of the intervalley scattering can be
accounted for.

In Fig. 5 we plot the dependence of the difference between
exciton shifts obtained within the χII and χIII approximations.

2. Doping level variation

In this section as previously we choose the same temper-
ature values set but fix the number of hole concentration at

FIG. 4. The dependence of 1s (n = 1) excitonic peak position on
the electron-hole concentration within χII approximation. The linear
regression gives the following result for the slope ratio |dE1/dne| =
0.0026 meV μm2.

value 1010 cm−2. It is worth noting here that the picture would
change only slightly if we set the hole concentration to zero. In
particular, the peak position would remain almost unchanged.
The corresponding dependencies are depicted in Fig. 6. For
zero-valued hole concentration we calculate the behavior of
1s excitonic peak position with growth of electron density
which is presented in Fig. 7. The value of the slope ratio ex-
tracted from this dependence is equal to ≈1.0 μeV μm2. The
corresponding dependence of difference between 1s excitonic
peak position obtained within different approximations on the
electron-hole concentration is also presented in Fig. 9. We

FIG. 5. The dependence of difference between 1s excitonic peak
position obtained within χII and χIII approximations on the electron-
hole concentration ( = EχII

1 − EχIII
1 ).
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FIG. 6. Change of absorption spectra behavior with increasing of electron concentration when hole density is zero. The dependencies are
presented for three different temperature values: 237 K, 100 K, 5 K.

also obtain the dependence of the normalized peak height on
electron density which is presented in Fig. 8.

In the case when the electron concentration exceeds the
hole one it is reasonable to perform the search of trionic
states. For such analysis we choose the following set of cal-
culation parameters: T = 5 K, nh = 1010 cm−2, ne = 40nh,
δ = 6.72 meV. The results of the corresponding computa-
tions are presented in Fig. 10. The moderate scattering of
calculated points from the expected Lorenz-like behavior of
peaks is caused by the integration accuracy of corrections.

FIG. 7. The dependence of 1s excitonic peak position on the
electron concentration when hole density is equated to zero. The
linear regression gives the following result for the slope ratio:
|dE1/dne| = 0.000996 meV μm2.

The detailed description of the numerical procedure is pre-
sented in Appendix D 2. The fitting of obtained results by
means of Lorentzian functions allows us to extract the nu-
merical estimate for trion binding energy. It turns out to
be about 6 meV which is at least twice smaller than the
experimentally observed values [54,55]. This discrepancy is
mainly due to the abundance of the multivalley structure of
TMDs in our model, since it is known that the fundamental
trion state corresponds to the two electrons filling different
valleys.

FIG. 8. The behavior of peak height for 1s excitonic state. The
absorption is normalized to unity, which, however, allows us to
understand the relative change.
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FIG. 9. The dependence of difference between 1s excitonic
peak position obtained within χII , χIII , and χIV approximations on
the electron-hole concentration (23 = EχII

1 − EχIII
1 , 24 = EχII

1 −
EχIV

1 ).

FIG. 10. The behavior of absorption spectra calculated by means
of χII and χV approximations. The “LF” superscript denotes that the
corresponding dependence is constructed by means of Lorentzian
function(s) which fit the calculated points. The last in turn are de-
noted with the � symbol. The quantities X χII , X χV , and T χV are equal
to 1.6199(7) eV, 1.6174(7) eV, and 1.6116(6) eV, respectively.

V. CONCLUSION

To conclude, we have extended the cluster expansion
technique to account for the higher-order correlations and
applied it to model the optical absorption of the TMD mono-
layer. Our account of the three-particle correlations allowed
us to model the absorption peaks associated with the trion
quasiparticles. The developed technique allows us to directly
model experimentally accessible absorption spectra. The main
advantage of the proposed formalism is that despite the com-
putational complexity, it allows us to address the regime of
large electron-hole densities and large doping, when the Fermi
energy becomes comparable to the exciton and trion binding
energies and, ultimately, the exciton Mott transition.

The natural development of the presented formalism would
be to include the electron-phonon interaction as well as
spin and valley degrees of freedom. The cluster expansion
technique proved to be a powerful tool to model the absorp-
tion spectra mediated by the strong many-body correlations
present in TMD monolayers and heterostructures.
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APPENDIX A: INFORMATION ABOUT SUPPLEMENTAL
MATERIAL

All the functionals presented in this paper in terms of
correlations can be found in the Mathematica file “convo-
luted_expressions_in_terms_of_arb_mom.nb” in the Supple-
mental Material [51].

APPENDIX B: CONNECTION BETWEEN NOTATIONS

Here we present the connection formulas between two
types of notation in (2) and (3). For the model considered in
this work these expressions are as follows:

h̄hext
i j (t )

= −E (t )dcv

∑
k

[δ j,(v,k)δi,(c,k) + δ j,(c,k)δi,(v,k)],

vi1,i2, j1, j2

= 1

h̄

∑
k1, k2q �= 0

2Vq[Kron(i1, i2, j2, j1) − Kron(i2, i1, j2, j1)

+ Kron(i2, i1, j1, j2) − Kron(i1, i2, j1, j2)],
Kron(i1, i2, j2, j1)

= 1

4
[δ(c,k1+q),i1δ(c,k2−q),i2δ(c,k2 ), j2

δ(c,k1 ), j1

+ δ(v,k1+q),i1δ(v,k2−q),i2δ(v,k2 ), j2
δ(v,k1 ), j1

+ δ(c,k1+q),i1δ(v,k2−q),i2δ(v,k2 ), j2
δ(c,k1 ), j1

+ δ(v,k1+q),i1δ(c,k2−q),i2δ(c,k2 ), j2
δ(v,k1 ), j1

]. (B1)

115307-10



MODELING EXCITONIC MOTT TRANSITIONS IN … PHYSICAL REVIEW B 103, 115307 (2021)

FIG. 11. The differential equation on one-particle correlations
within free-system approximation (N = I).

These artificially long expressions are caused by the sym-
metrization conditions (5).

APPENDIX C: EOMs: SERIES OF APPROXIMATIONS

Because we are interested in the frequency spectrum, we
introduce the Fourier transform and work further with alge-
braic equations instead of differential ones. Within this paper
for the Fourier transform we accept the following definition:

P̃(k, ω) =
∫ ∞

−∞
dt P̃(k, t ) exp (iωt ),

P̃(k, t ) = 1

2π

∫ ∞

−∞
dω P̃(k, ω) exp (−iωt ). (C1)

Let us derive the general expressions which are necessary for
all the approximation orders. On the basis of (12), we derive
the dynamical equations on correlations. First, the commuta-
tor of âi′ â

†
j′ and Hel,k gives

i〈[âi′ â
†
j′ , Hel,k]〉

t
= ih̄[εi′ − ε j′]〈âi′ â

†
j′ 〉t

= ih̄[εi′ − ε j′]〈âi′ â
†
j′ 〉

c

t
. (C2)

The similar relation is true for the operator (13):

i
〈[

âi′1
. . . âi′n

â†
j′n

. . . â†
j′1
, Hel,k

]〉
t

= ih̄
[
εi′1 + · · · + εi′n − ε j′n − · · · − ε j′1

]
× 〈

âi′1
. . . âi′n

â†
j′n

. . . â†
j′1

〉
t
. (C3)

The next important contribution is caused by the presence of
the external field:

i〈[âi′ â
†
j′ , HI ]〉

t
= ih̄

∑
i, j

hext
i j [〈âi′ â

†
j′ â

†
i â j〉t

− 〈â†
i â j âi′ â

†
j′ 〉t

]

= ih̄

[∑
j

hext
i′ j 〈â j â

†
j′ 〉t

−
∑

i

hext
i j′ 〈âi′ â

†
i 〉t

]

= ih̄

[∑
j

hext
i′ j 〈â j â

†
j′ 〉

c

t
−

∑
i

hext
i j′ 〈âi′ â

†
i 〉

c

t

]

= ih̄

[∑
j

T 2
{i′ j},{ j, j′} −

∑
i

T 2
{i j′},{i′,i}

]
, (C4)

where T 2
{i′ j},{ j, j′} is defined as follows:

T 2
{i′ j},{ j, j′} = hext

i′ j 〈â j â
†
j′ 〉t

= hext
i′ j 〈â j â

†
j′ 〉

c

t
= T 2

c,{i′ j},{ j, j′}. (C5)

The commutator of HI with four- and six-operator combinations can be written by analogy:

i
〈[

âi′1
âi′2

â†
j′2

â†
j′1
, HI

]〉
t
= ih̄

[∑
j

(
T 4

{i′1 j},{ ji′2, j′2 j′1} + T 4
{i′2 j},{i′1 j, j′2 j′1}

) −
∑

i

(
T 4

{i j′2},{i′1i′2,i j′1} + T 4
{i j′1},{i′1i′2, j′2i}

)]
,

i
〈[

âi′1
âi′2

âi′3
â†

j′3
â†

j′2
â†

j′1
, HI

]〉
t
= ih̄

[∑
j

(
T 6

{i′1 j},{ ji′2i′3, j′3 j′2 j′1} + T 6
{i′2 j},{i′1 ji′3, j′3 j′2 j′1} + T 6

{i′3 j},{i′1i′2 j, j′3 j′2 j′1}
)

−
∑

i

(
T 6

{i j′3},{i′1i′2i′3,i j′2 j′1} + T 6
{i j′2},{i′1i′2i′3, j′3i j′1} + T 6

{i j′1},{i′1i′2i′3, j′3 j′2i}
)]

, (C6)

where T 4
{i′1 j},{ ji′2, j′2 j′1} and T 6

{i′1 j},{ ji′2i′3, j′3 j′2 j′1} read as

T 4
{i′1 j},{ ji′2, j′2 j′1} = hext

i′1 j

〈
â j âi′2

â†
j′2

â†
j′1

〉
t
, T 6

{i′1 j},{ ji′2i′3, j′3 j′2 j′1} = hext
i′1 j

〈
â j âi′2

âi′3
â†

j′3
â†

j′2
â†

j′1

〉
t
. (C7)

Let us note, however, that these quantities, in contrast to T 2, do not coincide with their correlation counterparts. For this purpose
one should address the cluster expansion (14).

Based on the derived expressions the logic of the construction of commutators with many-operator combinations is clear. All
the aforementioned relations allow one to rewrite the left-hand side of (12) for expectation values in terms of correlations,

d

dt
〈âi′ â

†
j′ 〉t

+ 1

h̄
i〈[âi′ â

†
j′ , Hel,k]〉

t
+ 1

h̄
i〈[âi′ â

†
j′ , HI ]〉

t

= d

dt
〈âi′ â

†
j′ 〉

c

t
+ i[εi′ − ε j′]〈âi′ â

†
j′ 〉

c

t
+ i

[∑
j

hext
i′ j 〈â j â

†
j′ 〉

c

t
−

∑
i

hext
i j′ 〈âi′ â

†
i 〉

c

t

]
, (C8)

or in terms of schematic notation (24),

h̄
d

dt
〈1〉c

t = h̄
d

dt
〈âi′ â

†
j′ 〉

c

t
, T1

[〈1〉c
t

] = −h̄

[
i[εi′ − ε j′]〈âi′ â

†
j′ 〉

c

t
+ i

[∑
j

hext
i′ j 〈â j â

†
j′ 〉

c

t
−

∑
i

hext
i j′ 〈âi′ â

†
i 〉

c

t

]]
. (C9)

In the next sections we include the consideration of Coulomb interaction.
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1. Free system dynamics

First, let us reproduce free-system polarization. We set V = 0 and obtain from (C8) the following equation:

d

dt
〈âi′ â

†
j′ 〉

c

t
+ i[εi′ − ε j′]〈âi′ â

†
j′ 〉

c

t
+ i

[∑
j

hext
i′ j 〈â j â

†
j′ 〉

c

t
−

∑
i

hext
i j′ 〈âi′ â

†
i 〉

c

t

]
= 0. (C10)

For the purposes of further computations it is quite instructive to introduce the diagrammatic rules and to accompany all the
analytic expressions by their graphical counterparts. Moreover, the three-particle correlation dynamics will be derived only by
means of the powerful method of Feynman diagrams. The detailed description of the technique with explanation of prefactor and
sign choice of a diagram was presented in [36]. In this work we add only some customization. Also, we limit ourselves only by
consideration of connected graphs which appear in equations on correlations in contrast to differential equations on expectation
values where unconnected diagrams are also presented. The diagram elements are as follows:

(C11)

(C12)

where the last two graphs—external vertices—are involved in different contractions. In this notation Eq. (C10) is presented in
Fig. 11. The result of applying operator [D̂ + Ê ] is obvious. Here and further in the brackets one can see the number of terms
which correspond to a presented unlabeled diagram. For Pt

k from (18) one derives the following:

d

dt
〈â(c,k)â

†
(v,k)〉

c

t
+ i[ε(c,k) − ε(v,k)]〈â(c,k)â

†
(v,k)〉

c

t
+ i

[∑
j

hext
(c,k) j〈â j â

†
(v,k)〉

c

t
−

∑
i

hext
i(v,k)〈â(c,k)â

†
i 〉

c

t

]
= 0, (C13)

i
∑

j

hext
(c,k) j〈â j â

†
(v,k)〉

c

t
= i

(
−E (t )dcv

h̄

)∑
k′

∑
j

[δ(c,k),(c,k′ )δ j,(v,k′ ) + δ j,(c,k′ )δ(c,k),(v,k′ )]〈â j â
†
(v,k)〉

c

t

= i

(
−E (t )dcv

h̄

)[
1 − nt

v,k

]
, (C14)

i
∑

i

hext
i(v,k)〈â(c,k)â

†
i 〉

c

t
= i

(
−E (t )dcv

h̄

)[
1 − nt

c,k

]
. (C15)

Taking into account the relation (11), in terms of polarization components we obtain

h̄
d

dt
P̃t

k + ih̄[ε(c,k) − ε(v,k)]P̃
t
k + iE (t )dcv

[
nt

c,k − nt
v,k

] = 0. (C16)

Thus, we derive the dynamical equation on the polarization component in the noninteracting case. The corresponding algebraic
equation for the susceptibility component (32) is as follows:

χI (k, ω) = dcv[ f(c,k) − f(v,k)]

h̄[ω + iδ − (ε(c,k) − ε(v,k) )]
= − dcv[1 − f(e,k) − f(h,k)]

h̄[ω + iδ − (ε(e,k) + ε(h,k) )]
. (C17)

Also, instead of n we consider their equilibrium values—Fermi-Dirac distributions of carriers in valence and conductivity bands.
The one-particle energies are defined as follows:

h̄ε(e,k) ≡ h̄ε(c,k) = Eg + h̄2k2

2mc
, h̄ε(v,k) = h̄2k2

2mv

, h̄ε(h,k) = h̄2k2

2mh
. (C18)

2. One-particle dynamics

In this part we aim to derive the function V1,1[〈2〉〈1〉c
t
] from (25). For this purpose, however, we have to rewrite the commutator

of âi′ â
†
j′ and V̂ in terms of correlations. For the right-hand side of (12) we obtain

−i〈[âi′ â
†
j′ ,V ]〉

t
= −ih̄

∑
i1, i2
j1, j2

vi1,i2, j1, j2
CM1[i′, j′, i1, i2, j2, j1], (C19)

where for the convenience of the further calculations the two-operator-potential commutator was introduced:

CM1[i′, j′, i1, i2, j2, j1] = 1
4

[〈
âi′ â

†
j′ â

†
i1

â†
i2

â j2
â j1

〉
t
− 〈

â†
i1

â†
i2

â j2
â j1

âi′ â
†
j′
〉
t

]
. (C20)
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By means of the cluster expansion technique (14) the appeared difference of expectation values can be expanded as follows:〈
âi′ â

†
j′ â

†
i1

â†
i2

â j2
â j1

〉
t
− 〈

â†
i1

â†
i2

â j2
â j1

âi′ â
†
j′
〉
t
= 〈

âi′ â
†
i2

〉c
t

〈
â†

i1
â j2

〉c
t

〈
â†

j′ â j1

〉c
t
− 〈

âi′ â
†
i1

〉c
t

〈
â†

j′ â j1

〉c
t

〈
â†

i2
â j2

〉c
t
− 〈

âi′ â
†
i2

〉c
t

〈
â†

i1
â j1

〉c
t

〈
â†

j′ â j2

〉c
t

+〈
âi′ â

†
i1

〉c
t

〈
â†

i2
â j1

〉c
t

〈
â†

j′ â j2

〉c
t
− 〈

â j1
â†

j′
〉c
t

〈
â†

i1
â j2

〉c
t

〈
â†

i2
âi′

〉c
t
+〈

â j1
â†

j′
〉c
t

〈
â†

i1
âi′

〉c
t

〈
â†

i2
â j2

〉c
t

+ 〈
â j2

â†
j′
〉c
t

〈
â†

i1
â j1

〉c
t

〈
â†

i2
âi′

〉c
t
− 〈

â j2
â†

j′
〉c
t

〈
â†

i1
âi′

〉c
t

〈
â†

i2
â j1

〉c
t
+ 〈

âi′ â
†
i1

â†
i2

â j1

〉c
t

〈
â†

j′ â j2

〉c
t

+ 〈
âi′ â

†
i1

â†
i2

â j1

〉c
t

〈
â j2

â†
j′
〉c
t
− 〈

âi′ â
†
i1

â†
i2

â j2

〉c
t

〈
â†

j′ â j1

〉c
t
− 〈

âi′ â
†
i1

â†
i2

â j2

〉c
t

〈
â j1

â†
j′
〉c
t

+ 〈
âi′ â

†
i2

〉c
t

〈
â†

j′ â
†
i1

â j2
â j1

〉c
t
+ 〈

â†
i2

âi′
〉c
t

〈
â†

j′ â
†
i1

â j2
â j1

〉c
t
− 〈

â†
i1

âi′
〉c
t

〈
â†

j′ â
†
i2

â j2
â j1

〉c
t

− 〈
âi′ â

†
i1

〉c
t

〈
â†

j′ â
†
i2

â j2
â j1

〉c
t
. (C21)

Due to the symmetry properties of potential (5) and cor-
relations (17), the expression (C21) can be reduced to the
combination of 3 unique terms (grouped by means of square
brackets):〈

âi′ â
†
j′ â

†
i1

â†
i2

â j2
â j1

〉
t
− 〈

â†
i1

â†
i2

â j2
â j1

âi′ â
†
j′
〉
t

= 4
〈
â†

i2
â j2

〉c
t

[ − 〈
âi′ â

†
i1

〉c
t

〈
â†

j′ â j1

〉c
t
+ 〈

â†
i1

âi′
〉c
t

〈
â j1

â†
j′
〉c
t

]
+ 2

〈
âi′ â j2

â†
i2

â†
i1

〉c
t

[〈
â†

j′ â j1

〉c
t
+ 〈

â j1
â†

j′
〉c
t

]
− 2

〈
â j1

â j2
â†

i2
â†

j′
〉c
t

[〈
âi′ â

†
i1

〉c
t
+ 〈

â†
i1

âi′
〉c
t

]
. (C22)

This grouping will be clear later. Thus, taking into account (4)
and (15) for commutator (C19) we find

−i〈[âi′ â
†
j′ ,V ]〉

t
= −ih̄

∑
i1, i2
j1, j2

vi1,i2, j1, j2

[
1

2

〈
âi′ â j2

â†
i2

â†
i1

〉c
t
δ j′ j1

− 1

2

〈
â j1

â j2
â†

i2
â†

j′
〉c
t
δi′i1

+ 〈
â†

i2
â j2

〉c
t

[−〈
âi′ â

†
i1

〉c
t

〈
â†

j′ â j1

〉c
t

+ 〈
â†

i1
âi′

〉c
t

〈
â j1

â†
j′
〉c
t

]]
. (C23)

In terms of the schematic equation (23) we obtain the follow-
ing parts:

V1,1[〈2〉〈1〉c
t
]

= −ih̄
∑
i1, i2
j1, j2

vi1,i2, j1, j2

[〈
â†

i2
â j2

〉c
t

[ − 〈
âi′ â

†
i1

〉c
t

〈
â†

j′ â j1

〉c
t

+ 〈
â†

i1
âi′

〉c
t

〈
â j1

â†
j′
〉c
t

]]
, (C24)

V2,1
[〈2〉c

t

] = −ih̄
∑
i1, i2
j1, j2

vi1,i2, j1, j2

[
1

2

〈
âi′ â j2

â†
i2

â†
i1

〉c
t
δ j′ j1

− 1

2

〈
â j1

â j2
â†

i2
â†

j′
〉c
t
δi′i1

]
. (C25)

The expression (C24) allows us to write the equation on polar-
ization dynamics within a one-particle approximation. Hence,

for (25) we find

d

dt
〈âi′ â

†
j′ 〉

c

t
+ i[εi′ − ε j′]〈âi′ â

†
j′ 〉

c

t

+ i

[∑
j

hext
i′ j 〈â j â

†
j′ 〉

c

t
−

∑
i

hext
i j′ 〈âi′ â

†
i 〉

c

t

]

= −i
∑
i1, i2
j1, j2

vi1,i2, j1, j2

[〈
â†

i2
â j2

〉c
t

[ − 〈
âi′ â

†
i1

〉c
t

〈
â†

j′ â j1

〉c
t

+ 〈â†
i1

âi′ 〉
c

t

〈
â j1

â†
j′
〉c
t

]]
, (C26)

where the corresponding diagrammatic counterpart is de-
picted in Fig. 12. Let us obtain now the algebraic equation
for susceptibility. For P(k, t ) from (18) one has to treat
V1,1[〈2〉〈1〉c

t
]:

V1,1
[〈2〉〈1〉c

t

]
= −i

∑
q �=0

Vq
[(
nt

v,k+q − nt
c,k+q

)
Pt

k + (
nt

c,k − nt
v,k

)
Pt

k+q

]

= i

⎡
⎣Pt

k

∑
q �=k

Vk−q
(
nt

c,q− nt
v,q

)+ (
nt

v,k− nt
c,k

)∑
q �=k

Vk−qP
t
q

⎤
⎦.

(C27)

Combining the previously obtained results and keeping in
mind that P̃t

k = −Pt
k, we obtain the well-known semiconduc-

tor Bloch equation [38]:

ih̄
d

dt
P̃t

k − [h̄ε(c,k) − h̄ε(v,k)]P̃
t
k

= [
nt

c,k − nt
v,k

]⎡⎣E (t )dcv +
∑
q �=k

Vk−qP̃
t
q

⎤
⎦, (C28)

FIG. 12. The differential equation on one-particle correlations
within one-particle approximation (N = II).
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FIG. 13. The exact differential equation on one-particle correlation dynamics.

where the renormalized energies were introduced:

h̄ε(c,k) = h̄ε(c,k) −
∑
q �=k

Vk−qn
t
c,q, (C29)

h̄ε(v,k) = h̄ε(v,k) −
∑
q �=k

Vk−qn
t
v,q, (C30)

h̄ε(h,k) = h̄ε(h,k) −
∑
q �=k

Vk−qn
t
h,q. (C31)

The corresponding algebraic equation for susceptibility com-
ponent χ (k, ω) reads

h̄[ω + iδ − [ε(c,k) − ε(v,k)]]χII (k, ω)

= [ f(c,k) − f(v,k)]

⎡
⎣dcv +

∑
q �=k

Vk−qχII (q, ω)

⎤
⎦. (C32)

This equation can be rewritten:

χII (k, ω) = �II (k)χR
I (k, ω), (C33)

where in terms of electrons and holes we have

χR
I (k, ω) = − dcv[1 − f(e,k) − f(h,k)]

h̄[ω + iδ − (ε(e,k) + ε(h,k) )]
,

�II (k) = 1 + 1

dcv

∑
q �=k

χR
I (q, ω)Vk−q�II (q). (C34)

The introducing of the function � allows one to solve the
integral equation (C33) by means of the matrix inversion
approach.

3. Two-particle dynamics

The first line of the system (26) can be simply derived by
means of the expression (C25). Adding this term to (C26), we
obtain exact equation for one-particle correlations dynamics:

d

dt
〈âi′ â

†
j′ 〉

c

t
+ i[εi′ − ε j′]〈âi′ â

†
j′ 〉

c

t
+ i

[∑
j

hext
i′ j 〈â j â

†
j′ 〉

c

t
−

∑
i

hext
i j′ 〈âi′ â

†
i 〉

c

t

]

= −i
∑
i1, i2
j1, j2

vi1,i2, j1, j2

[〈
â†

i2
â j2

〉c
t

[〈
â†

i1
âi′

〉c
t

〈
â j1

â†
j′
〉c
t
− 〈

âi′ â
†
i1

〉c
t

〈
â†

j′ â j1

〉c
t

] + 1

2

[〈
âi′ â j2

â†
i2

â†
i1

〉c
t
δ j′ j1

− 〈
â j1

â j2
â†

i2
â†

j′
〉c
t
δi′i1

]]
, (C35)

or in terms of the previously introduced quantities:[
d

dt
+ i[εi′ − ε j′]

]
〈âi′ â

†
j′ 〉

c

t
= −i

[∑
j

T 2
c,{i′ j},{ j, j′} −

∑
i

T 2
c,{i j′},{i′,i}

]
− i

∑
i1, i2
j1, j2

vi1,i2, j1, j2
CM1[i′, j′, i1, i2, j2, j1], (C36)

where the corresponding graphical equation is presented in Fig. 13. Taking into account the potential form (B1), for polarization
component from (C35) the dynamical equation looks as follows:

h̄
d

dt
Pt

k + ih̄[ε(c,k) − ε(v,k)]P
t
k − i

[
nt

c,k − nt
v,k

][
E (t )dcv −

∑
q �=k

Vk−qP
t
q

]

= i
∑

k2,q �=0

Vq
[〈

â(c,k−q)â(c,k2 )â
†
(c,k2−q)â

†
(v,k)

〉c
t
+ 〈

â(c,k−q)â(v,k2 )â
†
(v,k2−q)â

†
(v,k)

〉c
t

− 〈
â(c,k)â(v,k2 )â

†
(v,k2−q)â

†
(v,k+q)

〉c
t
− 〈

â(c,k)â(c,k2 )â
†
(c,k2−q)â

†
(v,k+q)

〉c
t

]
, (C37)

while the corresponding algebraic equation for susceptibility component reads as

χ (k, ω) = χR
I (k, ω)

[
1 + 1

dcv

∑
q �=k

Vk−qχ (q, ω)

]
+ 1

E (ω)h̄[ω + iδ − (ε(e,k) + ε(h,k) )]

×
∑

k2,q �=0

Vq
[〈

â(c,k−q)â(c,k2 )â
†
(c,k2−q)â

†
(v,k)

〉c
ω

+ 〈
â(c,k−q)â(v,k2 )â

†
(v,k2−q)â

†
(v,k)

〉c
ω

− 〈
â(c,k)â(v,k2 )â

†
(v,k2−q)â

†
(v,k+q)

〉c
ω

− 〈
â(c,k)â(c,k2 )â

†
(c,k2−q)â

†
(v,k+q)

〉c
ω

]
. (C38)

All the multiparticle effects are encoded in the second and third lines of (C38). Unfortunately, the exact form of two-particle
correlations 〈âi′ â j′ â

†
l ′ â

†
s′ 〉c

ω
is unknown. However, by means of the Heisenberg equation of motion (12) and cluster expansion
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technique (14) we can derive the exact dynamical equation for two-particle correlations, which schematically looks like

h̄
d

dt
〈2〉c

t = T2
[〈2〉c

t

] + V1,2
[〈3〉〈2〉c

t ,〈1〉c
t

] + V2,2
[〈3〉c

t

]
. (C39)

Having obtained Eq. (C39), we can simply obtain the result for the currently considered (26) and further approximations by
neglecting the corresponding contributions from (C39).

There is no the equation of motion for the correlations themselves. However, one can apply the Heisenberg EOM (12) to
four-operator expectation value and after that by means of the cluster expansion (14) derives the similar equation for two-particle
correlations. From (16) we have〈

âi′1
âi′2

â†
j′2

â†
j′1

〉c
t
= 〈

âi′1
âi′2

â†
j′2

â†
j′1

〉
t
− 〈

âi′1
â†

j′1

〉c
t

〈
âi′2

â†
j′2

〉c
t
+ 〈

âi′1
â†

j′2

〉c
t

〈
âi′2

â†
j′1

〉c
t
. (C40)

It is reasonable to consider the following expression:[
d

dt
+ i

[
εi′1 + εi′2 − ε j′2 − ε j′1

]]〈âi′1
âi′2

â†
j′2

â†
j′1
〉c

t

=
[

d

dt
+ i

[
εi′1 + εi′2 − ε j′2 − ε j′1

]]〈
âi′1

âi′2
â†

j′2
â†

j′1

〉
t

− 〈
âi′1

â†
j′1

〉c
t

[
d

dt
+ i

[
εi′2 − ε j′2

]]〈
âi′2

â†
j′2

〉c
t
− 〈

âi′2
â†

j′2

〉c
t

[
d

dt
+ i

[
εi′1 − ε j′1

]]〈
âi′1

â†
j′1

〉c
t

+ 〈
âi′1

â†
j′2

〉c
t

[
d

dt
+ i

[
εi′2 − ε j′1

]]〈
âi′2

â†
j′1

〉c
t
+ 〈

âi′2
â†

j′1

〉c
t

[
d

dt
+ i

[
εi′1 − ε j′2

]]〈
âi′1

â†
j′2

〉c
t
. (C41)

In (C41) we know everything about the second and third lines [instead of derivatives for one-particle correlations we can
use (C36)]. Thus, we have to handle the following part:[ d

dt
+ i

[
εi′1 + εi′2 − ε j′2 − ε j′1

]]〈
âi′1

âi′2
â†

j′2
â†

j′1

〉
t
. (C42)

To understand what we have to obtain as output let us look back at Heisenberg equation:

h̄
d

dt
〈A〉t + i〈[A, Hel,k]〉t = −i〈[A, HI ]〉t − i〈[A,V ]〉t . (C43)

In fact, the left-hand side of(C43) coincides with (C42) up to h̄. Therefore, we have to calculate now two expectation values of
the commutators [A, HI ] and [A,V ]. The first one is trivial(we already found it for the considered type of quantity A):

−i
〈[

âi′1
âi′2

â†
j′2

â†
j′1
, HI

]〉
t
= −ih̄

[∑
j

(
T 4

{i′1 j},{ ji′2, j′2 j′1} + T 4
{i′2 j},{i′1 j, j′2 j′1}

) −
∑

i

(
T 4

{i j′2},{i′1i′2,i j′1} + T 4
{i j′1},{i′1i′2, j′2i}

)]
, (C44)

where T 4 can be expressed via correlations as follows:

T 4
{i′1 j},{ ji′2, j′2 j′1} = hext

i′1 j

〈
â j âi′2

â†
j′2

â†
j′1

〉
t
= hext

i′1 j

[〈
â j âi′2

â†
j′2

â†
j′1

〉c
t
+ 〈

â j â
†
j′1

〉c
t

〈
âi′2

â†
j′2

〉c
t
− 〈

â j â
†
j′2

〉c
t

〈
âi′2

â†
j′1

〉c
t

]
, (C45)

while to calculate the second average within the used formalism we have to address to cluster expansion. For the two-particle
case this gives:

−i〈[A,V ]〉t = −i
〈[

âi′1
âi′2

â†
j′2

â†
j′1
,V

]〉
t

= −i
1

4
h̄

∑
i1, i2

j1, j2

vi1,i2, j1, j2

[〈
âi′1

âi′2
â†

j′2
â†

j′1
â†

i1
â†

i2
â j2

â j1

〉
t
− 〈

â†
i1

â†
i2

â j2
â j1

âi′1
âi′2

â†
j′2

â†
j′1

〉
t

]

= −i
1

4
h̄

∑
i1, i2

j1, j2

vi1,i2, j1, j2

[
4
〈
âi′1

â†
j′2

〉c
t

〈
âi′2

â†
i2

〉c
t

〈
â†

i1
â j1

〉c
t

〈
â†

j′1
â j2

〉c
t
+ 4

〈
âi′1

â†
i1

〉c
t

〈
âi′2

â†
j′2

〉c
t

〈
â†

i2
â j1

〉c
t

〈
â†

j′1
â j2

〉c
t

+ 4
〈
âi′1

â†
j′2

〉c
t

〈
â j2

â†
j′1

〉c
t

〈
â†

i1
âi′2

〉c
t

〈
â†

i2
â j1

〉c
t
− 4

〈
âi′2

â†
j′2

〉c
t

〈
â j2

â†
j′1

〉c
t

〈
â†

i1
âi′1

〉c
t

〈
â†

i2
â j1

〉c
t
− 4

〈
âi′1

â†
j′1

〉c
t

〈
â j2

â†
j′2

〉c
t

〈
â†

i1
âi′2

〉c
t

〈
â†

i2
â j1

〉c
t

+ 4
〈
âi′2

â†
j′1

〉c
t

〈
â j2

â†
j′2

〉c
t

〈
â†

i1
âi′1

〉c
t

〈
â†

i2
â j1

〉c
t
− 4

〈
â j1

â†
j′1

〉c
t

〈
â j2

â†
j′2

〉c
t

〈
â†

i1
âi′1

〉c
t

〈
â†

i2
âi′2

〉c
t
− 4

〈
âi′1

â†
j′1

〉c
t

〈
âi′2

â†
i2

〉c
t

〈
â†

i1
â j1

〉c
t

〈
â†

j′2
â j2

〉c
t

− 4
〈
âi′1

â†
i1

〉c
t

〈
âi′2

â†
j′1

〉c
t

〈
â†

i2
â j1

〉c
t

〈
â†

j′2
â j2

〉c
t
+ 4

〈
âi′1

â†
i1

〉c
t

〈
âi′2

â†
i2

〉c
t

〈
â†

j′1
â j1

〉c
t

〈
â†

j′2
â j2

〉c
t
− 4

〈
âi′1

â†
i2

â†
j′1

â j2

〉c
t

〈
â j1

â†
j′2

〉c
t

〈
â†

i1
âi′2

〉c
t
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+ 4
〈
âi′1

â†
i2

â†
j′1

â j2

〉c
t

〈
âi′2

â†
i1

〉c
t

〈
â†

j′2
â j1

〉c
t
− 4

〈
âi′1

â†
i2

â j2
â†

j′2

〉c
t

〈
â j1

â†
j′1

〉c
t

〈
â†

i1
âi′2

〉c
t
+ 4

〈
âi′1

â†
i2

â j2
â†

j′2

〉c
t

〈
âi′2

â†
i1

〉c
t

〈
â†

j′1
â j1

〉c
t

+ 2
〈
â j1

â†
j′1

〉c
t

〈
â j2

â†
j′2

〉c
t

〈
â†

i2
âi′1

â†
i1

âi′2

〉c
t
− 2

〈
â†

i2
âi′1

â†
i1

âi′2

〉c
t

〈
â†

j′1
â j1

〉c
t

〈
â†

j′2
â j2

〉c
t
− 4

〈
â j1

â†
j′2

〉c
t

〈
â†

i1
âi′1

〉c
t

〈
â†

i2
âi′2

â†
j′1

â j2

〉c
t

+ 4
〈
âi′1

â†
i1

〉c
t

〈
â†

i2
âi′2

â†
j′1

â j2

〉c
t

〈
â†

j′2
â j1

〉c
t
− 4

〈
â j1

â†
j′1

〉c
t

〈
â†

i1
âi′1

〉c
t

〈
â†

i2
âi′2

â j2
â†

j′2

〉c
t
+ 4

〈
âi′1

â†
i1

〉c
t

〈
â†

i2
âi′2

â j2
â†

j′2

〉c
t

〈
â†

j′1
â j1

〉c
t

+ 2
〈
âi′1

â†
i1

〉c
t

〈
âi′2

â†
i2

〉c
t

〈
â j1

â†
j′1

â j2
â†

j′2

〉c
t
+ 2

〈
â j2

â†
j′1

â j1
â†

j′2

〉c
t

〈
â†

i1
âi′1

〉c
t

〈
â†

i2
âi′2

〉c
t
+ 2

〈
âi′2

â†
j′2

〉c
t

〈
â†

i2
â j1

â†
j′1

â j2

〉c
t
δi1,i′1

− 4
〈
âi′1

â†
j′1

â j2
â†

j′2

〉c
t

〈
â†

i2
â j1

〉c
t
δi1,i′2 + 2

〈
âi′2

â†
j′1

〉c
t

〈
â†

i1
â j2

â j1
â†

j′2

〉c
t
δi′1,i2

− 4
〈
âi′2

â†
j′1

â j2
â†

j′2

〉c
t

〈
â†

i1
â j1

〉c
t
δi′1,i2

− 2
〈
âi′1

â†
j′1

〉c
t

〈
â†

i1
â j2

â j1
â†

j′2

〉c
t
δi2,i′2 − 2

〈
âi′1

â†
j′2

〉c
t

〈
â†

i1
â j2

â†
j′1

â j1

〉c
t
δi2,i′2 − 2

〈
âi′2

â†
j′2

〉c
t

〈
â†

i2
âi′1

â†
i1

â j2

〉c
t
δ j1, j′1

+ 2
〈
âi′2

â†
j′1

〉c
t

〈
â†

i2
âi′1

â†
i1

â j2

〉c
t
δ j1, j′2 − 4

〈
âi′1

â†
i2

âi′2
â†

j′2

〉c
t

〈
â†

i1
â j1

〉c
t
δ j′1, j2

+ 2
〈
âi′1

â†
j′2

〉c
t

〈
â†

i2
â†

i1
âi′2

â j1

〉c
t
δ j′1, j2

+ 4
〈
âi′1

â†
i2

âi′2
â†

j′1

〉c
t

〈
â†

i1
â j1

〉c
t
δ j2, j′2 − 2

〈
âi′1

â†
j′1

〉c
t

〈
â†

i2
â†

i1
âi′2

â j1

〉c
t
δ j2, j′2 − 2

〈
â†

i1
âi′2

â j2
â†

j′1
â j1

â†
j′2

〉c
t
δi′1,i2

− 2
〈
âi′1

â†
i1

â j2
â†

j′1
â j1

â†
j′2

〉c
t
δi2,i′2 − 2

〈
â†

i2
âi′1

â†
i1

âi′2
â j1

â†
j′2

〉c
t
δ j′1, j2

− 2
〈
â†

i2
âi′1

â†
i1

âi′2
â†

j′1
â j1

〉c
t
δ j2, j′2

]
= −ih̄

∑
i1, i2

j1, j2

vi1,i2, j1, j2
CM2[i′1, i′2, j′2, j′1, i1, i2, j2, j1]. (C46)

Thus, we know all the necessary expressions in terms of correlations for equation (C41). Let us present for completeness of the
study, despite the cumbersomeness of all expressions, all terms entering (C41) via correlations:

−〈
âi′1

â†
j′1

〉c
t

[
d

dt
+ i

[
εi′2 − ε j′2

]]〈
âi′2

â†
j′2

〉c
t

= +i

[∑
j

〈
âi′1

â†
j′1

〉c
t
T 2

{i′2 j},{ j, j′2} −
∑

i

〈
âi′1

â†
j′1

〉c
t
T 2

{i j′2},{i′2,i}

]

+ i
∑
i1, i2

j1, j2

vi1,i2, j1, j2

〈
âi′1

â†
j′1

〉c
t

CM1[i′2, j′2, i1, i2, j2, j1], (C47)

−〈
âi′2

â†
j′2

〉c
t

[
d

dt
+ i

[
εi′1 − ε j′1

]]〈
âi′1

â†
j′1

〉c
t

= +i

[∑
j

〈
âi′2

â†
j′2

〉c
t
T 2

{i′1 j},{ j, j′1} −
∑

i

〈
âi′2

â†
j′2

〉c
t
T 2

{i j′1},{i′1,i}

]

+ i
∑
i1, i2

j1, j2

vi1,i2, j1, j2

〈
âi′2

â†
j′2

〉c
t

CM1[i′1, j′1, i1, i2, j2, j1], (C48)

〈
âi′1

â†
j′2

〉c
t

[
d

dt
+ i

[
εi′2 − ε j′1

]]〈
âi′2

â†
j′1

〉c
t

= −i

[∑
j

〈
âi′1

â†
j′2

〉c
t
T 2

{i′2 j},{ j, j′1} −
∑

i

〈
âi′1

â†
j′2

〉c
t
T 2

{i j′1},{i′2,i}

]

− i
∑
i1, i2
j1, j2

vi1,i2, j1, j2

〈
âi′1

â†
j′2

〉c
t

CM1[i′2, j′1, i1, i2, j2, j1], (C49)

〈
âi′2

â†
j′1

〉c
t

[
d

dt
+ i

[
εi′1 − ε j′2

]]〈
âi′1

â†
j′2

〉c
t

= −i

[∑
j

〈
âi′2

â†
j′1

〉c
t
T 2

{i′1 j},{ j, j′2} −
∑

i

〈
âi′2

â†
j′1

〉c
t
T 2

{i j′2},{i′1,i}

]

− i
∑
i1, i2
j1, j2

vi1,i2, j1, j2

〈
âi′2

â†
j′1

〉c
t

CM1[i′1, j′2, i1, i2, j2, j1], (C50)
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and the last one is

[
d

dt
+ i

[
εi′1 + εi′2 − ε j′2 − ε j′1

]]〈âi′1
âi′2

â†
j′2

â†
j′1
〉

t
= 1

h̄
[−i〈[A, HI ]〉t − i〈[A,V ]〉t ]

= −i

[∑
j

(
T 4

{i′1 j},{ ji′2, j′2 j′1} + T 4
{i′2 j},{i′1 j, j′2 j′1}

) −
∑

i

(
T 4

{i j′2},{i′1i′2,i j′1} + T 4
{i j′1},{i′1i′2, j′2i}

)]

− i

⎡
⎢⎢⎣∑

i1, i2j1, j2

vi1,i2, j1, j2
CM2[i′1, i′2, j′2, j′1, i1, i2, j2, j1]

⎤
⎥⎥⎦. (C51)

Thus, for two-particle correlations one obtains

[
d

dt
+ i

[
εi′1 + εi′2 − ε j′2 − ε j′1

]]〈
âi′1

âi′2
â†

j′2
â†

j′1

〉c
t

= −i

[∑
j

[ − 〈
âi′1

â†
j′1

〉c
t
T 2

{i′2 j},{ j, j′2} − 〈
âi′2

â†
j′2

〉c
t
T 2

{i′1 j},{ j, j′1} + 〈
âi′1

â†
j′2

〉c
t
T 2

{i′2 j},{ j, j′1} + 〈
âi′2

â†
j′1

〉c
t
T 2

{i′1 j},{ j, j′2}

+ T 4
{i′1 j},{ ji′2, j′2 j′1} + T 4

{i′2 j},{i′1 j, j′2 j′1}
] −

∑
i

[ − 〈
âi′1

â†
j′1

〉c
t
T 2

{i j′2},{i′2,i} − 〈
âi′2

â†
j′2

〉c
t
T 2

{i j′1},{i′1,i}

+ 〈
âi′1

â†
j′2

〉c
t
T 2

{i j′1},{i′2,i} + 〈
âi′2

â†
j′1

〉c
t
T 2

{i j′2},{i′1,i} + T 4
{i j′2},{i′1i′2,i j′1} + T 4

{i j′1},{i′1i′2, j′2i}
]]

− i

⎡
⎢⎢⎢⎣

∑
i1, i2
j1, j2

vi1,i2, j1, j2

[ − 〈
âi′1

â†
j′1

〉c
t

CM1[i′2, j′2, i1, i2, j2, j1] − 〈
âi′2

â†
j′2

〉c
t

CM1[i′1, j′1, i1, i2, j2, j1]

+ 〈
âi′1

â†
j′2

〉c
t

CM1[i′2, j′1, i1, i2, j2, j1] + 〈
âi′2

â†
j′1

〉c
t

CM1[i′1, j′2, i1, i2, j2, j1] + CM2[i′1, i′2, j′2, j′1, i1, i2, j2, j1]
]
⎤
⎥⎥⎦. (C52)

One can simplify each term in (C52):

∑
j

[ − 〈
âi′1

â†
j′1

〉c
t
T 2

{i′2 j},{ j, j′2} − 〈
âi′2

â†
j′2

〉c
t
T 2

{i′1 j},{ j, j′1} + 〈
âi′1

â†
j′2

〉c
t
T 2

{i′2 j},{ j, j′1} + 〈
âi′2

â†
j′1

〉c
t
T 2

{i′1 j},{ j, j′2} + T 4
{i′1 j},{ ji′2, j′2 j′1} + T 4

{i′2 j},{i′1 j, j′2 j′1}
]

=
∑

j

[
hext

i′1 j

〈
â j âi′2

â†
j′2

â†
j′1

〉c
t
+ hext

i′2 j

〈
âi′1

â j â
†
j′2

â†
j′1

〉c
t

]
=

∑
j

[
T 4

c,{i′1 j},{ ji′2, j′2 j′1} + T 4
c,{i′2 j},{i′1 j, j′2 j′1}

]
, (C53)

where we introduce

T 4
c,{i′1 j},{ ji′2, j′2 j′1} = hext

i′1 j

〈
â j âi′2

â†
j′2

â†
j′1

〉c
t
. (C54)

This definition is being expanded to arbitrary correlations. Similarly for i summation one can find

∑
i

[ − 〈
âi′1

â†
j′1

〉c
t
T 2

{i j′2},{i′2,i} − 〈
âi′2

â†
j′2

〉c
t
T 2

{i j′1},{i′1,i} + 〈
âi′1

â†
j′2

〉c
t
T 2

{i j′1},{i′2,i} + 〈
âi′2

â†
j′1

〉c
t
T 2

{i j′2},{i′1,i} + T 4
{i j′2},{i′1i′2,i j′1} + T 4

{i j′1},{i′1i′2, j′2i}
]

=
∑

i

[
T 4

c,{i j′1},{i′1i′2, j′2i} + T 4
c,{i j′2},{i′1i′2,i j′1}

]
. (C55)
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Finally, for a sum with the potential we obtain 15 unique contributions (as previously, they are grouped by means of square
brackets):⎡
⎢⎢⎢⎣

∑
i1, i2
j1, j2

vi1,i2, j1, j2

[ − 〈
âi′1

â†
j′1

〉c
t

CM1[i′2, j′2, i1, i2, j2, j1] − 〈
âi′2

â†
j′2

〉c
t

CM1[i′1, j′1, i1, i2, j2, j1]

× 〈
âi′1

â†
j′2

〉c
t

CM1[i′2, j′1, i1, i2, j2, j1] + 〈
âi′2

â†
j′1

〉c
t

CM1[i′1, j′2, i1, i2, j2, j1] + CM2[i′1, i′2, j′2, j′1, i1, i2, j2, j1]
]
⎤
⎥⎥⎥⎦

=
∑
i1, i2
j1, j2

vi1,i2, j1, j2

[[〈
âi′1

â†
i1

〉c
t

〈
âi′2

â†
i2

〉c
t

〈
â†

j′1
â j1

〉c
t

〈
â†

j′2
â j2

〉c
t
− 〈

â j1
â†

j′1

〉c
t

〈
â j2

â†
j′2

〉c
t

〈
â†

i1
âi′1

〉c
t

〈
â†

i2
âi′2

〉c
t

]

− [〈
âi′1

â†
i2

â†
j′1

â j2

〉c
t

(〈
â j1

â†
j′2

〉c
t

〈
â†

i1
âi′2

〉c
t
− 〈

âi′2
â†

i1

〉c
t

〈
â†

j′2
â j1

〉c
t

)] − [〈
âi′1

â†
i2

â j2
â†

j′2

〉c
t

(〈
â j1

â†
j′1

〉c
t

〈
â†

i1
âi′2

〉c
t
− 〈

âi′2
â†

i1

〉c
t

〈
â†

j′1
â j1

〉c
t

)]
− [〈

â†
i2

âi′2
â†

j′1
â j2

〉c
t

(〈
â j1

â†
j′2

〉c
t

〈
â†

i1
âi′1

〉c
t
− 〈

âi′1
â†

i1

〉c
t

〈
â†

j′2
â j1

〉c
t

)] − [〈
â†

i2
âi′2

â j2
â†

j′2

〉c
t

(〈
â j1

â†
j′1

〉c
t

〈
â†

i1
âi′1

〉c
t
− 〈

â†
j′1

â j1

〉c
t

〈
âi′1

â†
i1

〉c
t

)]
− 1

2

[〈
â†

i2
âi′1

â†
i1

âi′2

〉c
t

(〈
â†

j′1
â j1

〉c
t

〈
â†

j′2
â j2

〉c
t
− 〈

â j1
â†

j′1

〉c
t

〈
â j2

â†
j′2

〉c
t

)] + 1

2

[〈
â j2

â†
j′1

â j1
â†

j′2

〉c
t

(〈
â†

i1
âi′1

〉c
t

〈
â†

i2
âi′2

〉c
t
− 〈

âi′1
â†

i1

〉c
t

〈
âi′2

â†
i2

〉c
t

)]
− [〈

âi′2
â†

j′1
â j2

â†
j′2

〉c
t

〈
â†

i1
â j1

〉c
t
δi′1,i2

] + [〈
âi′1

â†
j′1

â j2
â†

j′2

〉c
t

〈
â†

i1
â j1

〉c
t
δi2,i′2

] − [〈
âi′1

â†
i2

âi′2
â†

j′2

〉c
t

〈
â†

i1
â j1

〉c
t
δ j′1, j2

]+[〈
âi′1

â†
i2

âi′2
â†

j′1

〉c
t

〈
â†

i1
â j1

〉c
t
δ j2, j′2

]
− 1

2

[〈
â†

i1
âi′2

â j2
â†

j′1
â j1

â†
j′2

〉c
t
δi′1,i2

] + 1

2

[〈
â†

i1
âi′1

â j2
â†

j′1
â j1

â†
j′2

〉c
t
δi2,i′2

]
− 1

2

[〈
â†

i2
âi′1

â†
i1

âi′2
â j1

â†
j′2

〉c
t
δ j′1, j2

] + 1

2

[〈
â†

i2
âi′1

â†
i1

âi′2
â j1

â†
j′1

〉c
t
δ j2, j′2

]]
. (C56)

Combining all the above obtained contributions, for each term from (C39) we find

h̄
d

dt
〈2〉c

t = h̄
d

dt

〈
âi′1

âi′2
â†

j′2
â†

j′1

〉c
t
, (C57)

T2
[〈2〉c

t

] = −ih̄
[
εi′1 + εi′2 − ε j′2 − ε j′1

]〈
âi′1

âi′2
â†

j′2
â†

j′1

〉c
t
− ih̄

[∑
j

[
T 4

c,{i′1 j},{ ji′2, j′2 j′1} + T 4
c,{i′2 j},{i′1 j, j′2 j′1}

]

−
∑

i

[
T 4

c,{i j′1},{i′1i′2, j′2i} + T 4
c,{i j′2},{i′1i′2,i j′1}

]]
, (C58)

V1,2
[〈3〉,〈1〉c

t

] = −ih̄
∑
i1, i2
j1, j2

vi1,i2, j1, j2

[[〈
âi′1

â†
i1

〉c
t

〈
âi′2

â†
i2

〉c
t

〈
â†

j′1
â j1

〉c
t

〈
â†

j′2
â j2

〉c
t
− 〈

â j1
â†

j′1

〉c
t

〈
â j2

â†
j′2

〉c
t

〈
â†

i1
âi′1

〉c
t

〈
â†

i2
âi′2

〉c

t

]]
, (C59)

V1,2
[〈3〉〈2〉c

t

] = −ih̄

⎡
⎢⎢⎢⎣

∑
i1, i2
j1, j2

vi1,i2, j1, j2

[ − [〈
âi′1

â†
i2

â†
j′1

â j2

〉c
t

(〈
â j1

â†
j′2

〉c
t

〈
â†

i1
âi′2

〉c
t
− 〈

âi′2
â†

i1

〉c
t

〈
â†

j′2
â j1

〉c
t

)]

− [〈
âi′1

â†
i2

â j2
â†

j′2

〉c
t

(〈
â j1

â†
j′1

〉c
t

〈
â†

i1
âi′2

〉c
t
− 〈

âi′2
â†

i1

〉c
t

〈
â†

j′1
â j1

〉c
t

)] − [〈
â†

i2
âi′2

â†
j′1

â j2

〉c
t

(〈
â j1

â†
j′2

〉c
t

〈
â†

i1
âi′1

〉c
t
− 〈

âi′1
â†

i1

〉c
t

〈
â†

j′2
â j1

〉c
t

)]
− [〈

â†
i2

âi′2
â j2

â†
j′2

〉c
t

(〈
â j1

â†
j′1

〉c
t

〈
â†

i1
âi′1

〉c
t
− 〈

â†
j′1

â j1

〉c
t

〈
âi′1

â†
i1

〉c
t

)] − 1

2

[〈
â†

i2
âi′1

â†
i1

âi′2

〉c
t

(〈
â†

j′1
â j1

〉c
t

〈
â†

j′2
â j2

〉c
t
− 〈

â j1
â†

j′1

〉c
t

〈
â j2

â†
j′2

〉c
t

)]
+ 1

2

[〈
â j2

â†
j′1

â j1
â†

j′2

〉c
t

(〈
â†

i1
âi′1

〉c
t

〈
â†

i2
âi′2

〉c
t
− 〈

âi′1
â†

i1

〉c
t

〈
âi′2

â†
i2

〉c
t

)] − [〈
âi′2

â†
j′1

â j2
â†

j′2

〉c
t

〈
â†

i1
â j1

〉c
t
δi′1,i2

]

+ [〈
âi′1

â†
j′1

â j2
â†

j′2

〉c
t

〈
â†

i1
â j1

〉c
t
δi2,i′2

] − [〈
âi′1

â†
i2

âi′2
â†

j′2

〉c
t

〈
â†

i1
â j1

〉c
t
δ j′1, j2

] + [〈
âi′1

â†
i2

âi′2
â†

j′1

〉c
t

〈
â†

i1
â j1

〉c
t
δ j2, j′2

]]
⎤
⎥⎥⎥⎦, (C60)
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FIG. 14. The exact differential equation on two-particle correlation dynamics.

V2,2
[〈3〉c

t

] = −ih̄

⎡
⎢⎢⎢⎣

∑
i1, i2
j1, j2

vi1,i2, j1, j2

[
−1

2

[〈
â†

i1
âi′2

â j2
â†

j′1
â j1

â†
j′2

〉c
t
δi′1,i2

] + 1

2

[〈
â†

i1
âi′1

â j2
â†

j′1
â j1

â†
j′2

〉c
t
δi2,i′2

]

− 1

2

[〈
â†

i2
âi′1

â†
i1

âi′2
â j1

â†
j′2

〉c
t
δ j′1, j2

] + 1

2

[〈â†
i2

âi′1
â†

i1
âi′2

â j1
â†

j′1

〉c
t
δ j2, j′2

]]
⎤
⎥⎥⎥⎦. (C61)

This exact equation on two-particle correlations dynamics has the following diagrammatic notation, which presented in Fig. 14.
These results allow us to obtain the second line of the system (26):[

d

dt
+ i

[
εi′1 + εi′2 − ε j′2 − ε j′1

]]〈
âi′1

âi′2
â†

j′2
â†

j′1

〉c
t

= −i

⎡
⎢⎢⎢⎣

∑
i1, i2
j1, j2

vi1,i2, j1, j2

[[〈
âi′1

â†
i1

〉c
t

〈
âi′2

â†
i2

〉c
t

〈
â†

j′1
â j1

〉c
t

〈
â†

j′2
â j2

〉c
t
− 〈

â j1
â†

j′1

〉c
t

〈
â j2

â†
j′2

〉c
t

〈
â†

i1
âi′1

〉c
t

〈
â†

i2
âi′2

〉c
t

]]
⎤
⎥⎥⎥⎦, (C62)

which corresponds only to the first diagram of the right-hand side in Fig. 14. Thus, due to the possible combinations of zone
indices {λ1, λ2, λ3, λ4} we have 16 unique equations. The corresponding expressions for arbitrary momenta can be found in
the Supplemental Material [51] as a Mathematica file. Here, we present the most relevant ones for the goals of the current
approximation. The interesting combinations can be easily identified based on (C38). Taking into account all the adopted
homogeneous approximations (31) and (30) we immediately see that such two-particle correlations on the basis of Eq. (C62)
can be expressed in terms of Pt

k and nt
λ,k and consequently via of χ (k, ω). As usual, having obtained the differential equation

we find the corresponding Fourier transform. For one of the terms entering (C38) from (C62) we derive

h̄

[
d

dt
+ i[ε(c,k−q′ ) + ε(c,k′

2 ) − ε(c,k′
2−q′ ) − ε(v,k)]

]
〈â(c,k−q′ )â(c,k′

2 )â
†
(c,k′

2−q′ )â
†
(v,k)〉

c

t

= i
[
Pt

kVk−k′
2

[
nt

c,k′
2−q′

[
nt

c,k′
2
+ nt

c,k−q′ − 1
] − nt

c,k′
2
nt

c,k−q′ + P
t,†
k′

2−q′P
t
k−q′

]
+Pt

k′
2
Vk−k′

2

[
nt

c,k−q′
[
1 − nt

c,k′
2−q′ − nt

v,k

] + nt
c,k′

2−q′n
t
v,k − P

t,†
k′

2−q′P
t
k−q′

]
+Pt

kVq′
[
nt

c,k′
2
nt

c,k−q′ + nt
c,k′

2−q′
[
1 − nt

c,k′
2
− nt

c,k−q′
] − P

t,†
k′

2−q′P
t
k′

2

]
+Pt

k−q′Vq′
[
nt

c,k′
2

[ − 1 + nt
c,k′

2−q′ + nt
v,k

] − nt
c,k′

2−q′n
t
v,k + P

t,†
k′

2−q′P
t
k′

2

]]
. (C63)

All of these terms are responsible for scattering processes which generate two-particle correlations. According to our interest to
determine the polarization dynamics within the linear in field approximation, we omit all the contributions which are quadratic

FIG. 15. The diagrammatic representation of semiconductor-Bloch equation by means of which χII (k, ω) can be computed.
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FIG. 16. The diagrammatic representation of equations on D
ω,III
(λ1,p1 ),(λ2,p2 ),(λ3,p3 ),(λ4,p4 ) and χIII (k, ω), respectively.

or higher in the external field. Hence, the corresponding Fourier transform looks as

〈
â(c,k−q′ )â(c,k′

2 )â
†
(c,k′

2−q′ )â
†
(v,k)

〉c
ω

= D
ω,III
(c,k−q′ ),(c,k′

2 ),(c,k′
2−q′ ),(v,k)

= FD,1(χII , k − q′, k′
2, k′

2 − q′, k, ω, {cccv}),

FD,1(χ, k − q′, k′
2, k′

2 − q′, k, ω, {cccv}) = E (ω)

h̄[ω + iδ − [ε(c,k−q′ ) + ε(c,k′
2 ) − ε(c,k′

2−q′ ) − ε(v,k)]]

× [χ (k, ω)Vk−k′
2
[− f(c,k′

2 ) f(c,k−q′ ) + f(c,k′
2−q′ )[−1 + f(c,k′

2 ) + f(c,k−q′ )]]

+χ (k′
2, ω)Vk−k′

2
[ f(c,k−q′ )[1 − f(c,k′

2−q′ ) − f(v,k)] + f(c,k′
2−q′ ) f(v,k)]

+χ (k, ω)Vq′[ f(c,k′
2 ) f(c,k−q′ ) + f(c,k′

2−q′ )[1 − f(c,k′
2 ) − f(c,k−q′ )]]

+χ (k − q′, ω)Vq′ [ f(c,k′
2 )[−1 + f(c,k′

2−q′ ) + f(v,k)] − f(c,k′
2−q′ ) f(v,k)]], (C64)

where we took into account (32) and (11). For the second term with different zone indices combination we find

〈
â(c,k−q′ )â(v,k′

2 )â
†
(v,k′

2−q′ )â
†
(v,k)

〉c
ω

= D
ω,II
(c,k−q′ ),(v,k′

2 ),(v,k′
2−q′ ),(v,k)

= FD,1(χII , k − q′, k′
2, k′

2 − q′, k, ω, {cvvv}),

FD,1(χ, k − q′, k′
2, k′

2 − q′, k, ω, {cvvv}) = E (ω)

h̄[ω + iδ − [ε(c,k−q′ ) + ε(v,k′
2 ) − ε(v,k′

2−q′ ) − ε(v,k)]]

× [χ (k − q′, ω)Vk−k′
2
[ f(v,k′

2 )[1 − f(v,k) − f(v,k′
2−q′ )] + f(v,k) f(v,k′

2−q′ )]

+χ (k′
2 − q′, ω)Vk−k′

2
[ f(v,k)[−1 + f(c,k−q′ ) + f(v,k′

2 )] − f(c,k−q′ ) f(v,k′
2 )]

+χ (k, ω)Vq′[ f(c,k−q′ ) f(v,k′
2 ) + f(v,k′

2−q′ )[1 − f(c,k−q′ ) − f(v,k′
2 )]]

+χ (k − q′, ω)Vq′[ f(v,k′
2 )[−1 + f(v,k) + f(v,k′

2−q′ )] − f(v,k) f(v,k′
2−q′ )]]. (C65)

The two remaining terms in (C38) can be derived easily by performing the momentum shift (k → k + q) in the already calculated
expressions.

By the direct substitution of these expressions into (C38) we come to the system of multidimensional integral equations,
obtaining an exact numerical solution for which is a huge challenge. In order to somehow tackle the problem, we can construct
some iteration scheme. Let us describe it. Within the two-particle approximation dynamics each step of the procedure contains
two operations. First, we find the answer for many-particle correlations (D, T, . . . ); after that we construct the solution for the
one-particle counterpart (χ ). As a starting point for susceptibility we choose (C33) (see Fig. 15):

χII (k, ω) = Fχ,1(χII , k, ω),

Fχ,1(χ, k, ω) = χR
I (k, ω)

[
1 + 1

dcv

∑
q �=k

Vk−qχ (q, ω)

]
, (C66)

Dω,1 ≡ Dω,2 ≡ 0. (C67)

As the next step one can find the susceptibility component with higher precision as follows (see Fig. 16):

D
ω,III
(λ1,p1 ),(λ2,p2 ),(λ3,p3 ),(λ4,p4 ) = FD,1(χII , p1, p2, p3, p4, ω, {λ1λ2λ3λ4}), (C68)

χIII (k, ω) = Fχ,1(χIII , k, ω) + Fχ,2(Dω,III , k, ω), (C69)

115307-20



MODELING EXCITONIC MOTT TRANSITIONS IN … PHYSICAL REVIEW B 103, 115307 (2021)

FIG. 17. The diagrammatic representation of equations on Fourier transform of Dω,IV and χIV (k, ω), respectively.

Fχ,2(Dω, k, ω) = 1

E (ω)h̄[ω + iδ − (ε(c,k) − ε(v,k) )]

∑
k′

2,q′ �=0

Vq′
[
Dω

(c,k−q′ ),(c,k′
2 ),(c,k′

2−q′ ),(v,k)

+Dω
(c,k−q′ ),(v,k′

2 ),(v,k′
2−q′ ),(v,k) − Dω

(c,k),(v,k′
2 ),(v,k′

2−q′ ),(v,k+q′ ) − Dω
(c,k),(c,k′

2 ),(c,k′
2−q′ ),(v,k+q′ )

]
. (C70)

With these expressions the system (26) can be considered as a completely covered one.
As the next step, say to describe the system (28), we have to include the pure two-particle correlations into the right-hand side

of their own dynamical equations. The formal equation for the susceptibility component in this case looks like

χIV (k, ω) = Fχ,1(χIV , k, ω) + Fχ,2(Dω,IV , k, ω). (C71)

Thus, in order to move forward, one has to define the form of the functions Dω,IV . The general structure of the corresponding
exact function is highly transparent:

Dω
(λ1,p1 ),(λ2,p2 ),(λ3,p3 ),(λ4,p4 ) = FD,1(χ, p1, p2, p3, p4, ω, {λ1λ2λ3λ4}) + FD,2(Dω, p1, p2, p3, p4, ω, {λ1λ2λ3λ4})

+ FD,3(Tω, p1, p2, p3, p4, ω, {λ1λ2λ3λ4}). (C72)

It is quite obvious that FD,2 stems from (C58) and (C60), while FD,3 is derived from (C61). It should be noted that without
exceeding the two-particle approximation the computation of the term FD,3 has to be equated to zero. Following the suggested
iterative scheme, for Dω,IV we obtain (see Fig. 17)

D
ω,IV
(λ1,p1 ),(λ2,p2 ),(λ3,p3 ),(λ4,p4 ) = FD,1(χII , p1, p2, p3, p4, ω, {λ1λ2λ3λ4})

+ FD,2(Dω,III , p1, p2, p3, p4, ω, {λ1λ2λ3λ4}). (C73)

Thus, the last function which we have to derive is FD,2. These functions for arbitrary zone indices and momenta combinations
are presented in the Supplemental Material [51] as a Mathematica file. To get an idea about the structure of this function,
however, we demonstrate here only one particular case. Let us analyze first the contributions connected with the external field.
For the particular zone indices from[

d

dt
+ i

[
εi′1 + εi′2 − ε j′2 − ε j′1

]]〈
âi′1

âi′2
â†

j′2
â†

j′1

〉c
t

= − i

[∑
j

[
T 4

c,{i′1 j},{ ji′2, j′2 j′1} + T 4
c,{i′2 j},{i′1 j, j′2 j′1}

] −
∑

i

[
T 4

c,{i j′1},{i′1i′2, j′2i} + T 4
c,{i j′2},{i′1i′2,i j′1}

]]
(C74)

for combination {c, c, c, v} we have[
d

dt
+ i[ε(c,k−q) + ε(c,k2 ) − ε(c,k2−q) − ε(v,k)]

]
〈â(c,k−q)â(c,k2 )â

†
(c,k2−q)â

†
(v,k)〉

c

t

= i

h̄
dcvE (t )[−〈â(c,k−q)â(c,k2 )â

†
(c,k2−q)â

†
(c,k)〉

c

t
− 〈â(c,k−q)â(c,k2 )â

†
(v,k2−q)â

†
(v,k)〉

c

t

+〈â(c,k−q)â(v,k2 )â
†
(c,k2−q)â

†
(v,k)〉

c

t
+ 〈â(v,k−q)â(c,k2 )â

†
(c,k2−q)â

†
(v,k)〉

c

t
]. (C75)

The structure of the other 15 equations is similar. All of them can be schematically written as follows:

{{cccc}, {−{cccv},−{ccvc},+{cvcc},+{vccc}}}, {{cccv}∗, {−{cccc},−{ccvv},+{cvcv},+{vccv}}},
{{ccvc}, {−{ccvv},−{cccc},+{cvvc},+{vcvc}}}, {{cvcc}, {−{cvcv},−{cvvc},+{cccc},+{vvcc}}},
{{vccc}, {−{vccv},−{vcvc},+{vvcc},+{cccc}}}, {{ccvv}, {−{ccvc},−{cccv},+{cvvv},+{vcvv}}},
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{{cvvc}, {−{cvvv},−{cvcc},+{cvcc},+{vccc}}}, {{vvcc}, {−{vvcv},−{vvvc},+{vccc},+{cvcc}}},
{{cvvv}∗, {−{cvvc},−{cvcv},+{ccvv},+{vvvv}}}, {{vvvc}, {−{vvvv},−{vvcc},+{vcvc},+{cvvc}}},
{{vvcv}, {−{vvcc},−{vvvv},+{vccv},+{cvcv}}}, {{vcvv}, {−{vcvc},−{vccv},+{vvvv},+{ccvv}}},
{{vcvc}, {−{vcvv},−{vccc},+{vvvc},+{ccvc}}}, {{cvcv}, {−{cvcc},−{cvvv},+{cccv},+{vvcv}}},
{{vccv}, {−{vccc},−{vcvv},+{vvcv},+{cccv}}}, {{vvvv}, {−{vvvc},−{vvcv},+{vcvv},+{cvvv}}}. (C76)

We marked the combinations that are interesting for the purposes of the present work by a star sign. Also, some functions are
in boldface type. It turns out that only these correlations possess the field-independent (via polarization) contributions when we
include into consideration the terms connected with Coulomb interaction. For example, Eq. (C62) for {c, c, c, c} reads as

h̄

[
d

dt
+ i

[
ε(c,k−q′ ) + ε(c,k′

2 ) − ε(c,k′
2−q′ ) − ε(c,k)

]]〈
â(c,k−q′ )â(c,k′

2 )â
†
(c,k′

2−q′ )â
†
(c,k)

〉c
t

= i
[
Vk−k2

[ − nt
c,k

[ − 1 + nt
c,k−q′

]
nt

c,k2−q′ + nt
c,k2

[ − nt
c,knt

c,k2−q′ + nt
c,k−q′

[ − 1 + nt
c,k + nt

c,k2−q′
]]]

−Vq′
[ − nt

c,k

[ − 1 + nt
c,k−q′

]
nt

c,k2−q′ + nt
c,k2

[ − nt
c,knt

c,k2−q′ + nt
c,k−q′

[ − 1 + nt
c,k + nt

c,k2−q′
]]]]

. (C77)

Keeping in mind the presence of E (t ) as a multiplier in (C75) as well as the adopted limitation of analyzing only linear in field
effects one can conclude that for such boldface combinations it is enough to consider only constant contributions with their
subsequent substitution into the equations for {c, c, c, c} and {c, v, v, v}. The deriving of the steady-state solution from (C77) is
obvious:

DIII
(c,k−q′ ),(c,k′

2 ),(c,k′
2−q′ ),(c,k)

= 〈
â(c,k−q′ )â(c,k′

2 )â
†
(c,k′

2−q′ )â
†
(c,k)

〉c = 1

h̄
[
ε(c,k−q′ ) + ε(c,k′

2 ) − ε(c,k′
2−q′ ) − ε(c,k) + iδ

]
× [Vk−k2 [− f(c,k)[−1 + f(c,k−q′ )] f(c,k2−q′ ) + f(c,k2 )[− f(c,k) f)c,k2−q′ ) + f(c,k−q′ )[−1 + f(c,k) + f(c,k2−q′ )]]]

−Vq′[− f(c,k)[−1 + f(c,k−q′ )] f(c,k2−q′ ) + f(c,k2 )[− f(c,k) f(c,k2−q′ ) + f(c,k−q′ )[−1 + f(c,k) + f(c,k2−q′ )]]]]. (C78)

Thus, combining Eqs. (C60) and (C74) and applying the Fourier transform within the linear in the external field approximation,
we come to the following relation:

FD,2(Dω, k − q′, k′
2, k′

2 − q′, k, ω, {cvvv})

= 1

h̄
[
ω + iδ − [

ε(c,k−q′ ) + ε(v,k′
2 ) − ε(v,k′

2−q′ ) − ε(v,k)
]]

× [
dcvE (ω)

[
D(c,k−q′ ),(c,k′

2 ),(c,k′
2−q′ ),(c,k) − D(c,k−q′ ),(v,k′

2 ),(c,k′
2−q′ ),(v,k) − D(v,k−q′ ),(c,k′

2 ),(c,k′
2−q′ ),(v,k)

]
+

∑
q′′

Vq′′
[
Dω

(c,k−q′+q′′ ),(c,k′
2 ),(c,k′

2−q′ ),(v,k+q′′ ) f(c,k−q′ ) − Dω
(c,k−q′+q′′ ),(c,k′

2−q′′ ),(c,k′
2−q′ ),(v,k)

[ − 1 + f(c,k′
2 ) + f(c,k−q′ )

]
+Dω

(c,k′
2+q′′ ),(c,k−q′ ),(c,k′

2−q′+q′′ ),(v,k)

[ − f(c,k′
2 ) + f(c,k′

2−q′ )
] + Dω

(c,k′
2 ),(c,k−q′+q′′ ),(c,k′

2−q′+q′′ ),(v,k)

[ − f(c,k−q′ ) + f(c,k′
2−q′ )

]
−Dω

(c,k−q′+q′′ ),(c,k′
2 ),(c,k′

2−q′ ),(v,k+q′′ )[ f(v,k)] + Dω
(c,k′

2+q′′ ),(c,k−q′ ),(c,k′
2−q′ ),(v,k+q′′ )

[ − f(c,k′
2 ) + f(v,k)

]
+Dω

(c,k−q′ ),(c,k′
2 ),(c,k′

2−q′+q′′ ),(v,k−q′′ )

[ − 1 + f(c,k′
2−q′ ) + f(v,k)

]
+ [

Dω
(c,k−q′ ),(c,k′

2 ),(c,k−q′′ ),(c,k′
2−q′+q′′ ) + Dω

(c,k′
2+q′′ ),(c,k−q′ ),(c,k+q′′ ),(c,k′

2−q′ ) − Dω
(c,k−q′+q′′ ),(c,k′

2 ),(c,k+q′′ ),(c,k′
2−q′ )

]
Pω

k

− [
Dω

(c,k−q′ ),(v,k′
2+q′′ ),(c,k′

2−q′ ),(v,k+q′′ ) + Dω
(c,k−q′ ),(v,k′

2+q′′ ),(c,k′
2−q′+q′′ ),(v,k) − Dω

(c,k−q′+q′′ ),(v,k′
2−q′′ ),(c,k′

2−q′ ),(v,k)

]
Pω

k′
2

+ [
Dω

(c,k′
2 ),(v,k−q′+q′′ ),(c,k′

2−q′ ),(v,k+q′′ ) + Dω
(c,k′

2 ),(v,k−q′+q′′ ),(c,k′
2−q′+q′′ ),(v,k) − Dω

(c,k′
2+q′′ ),(v,k−q′−q′′ ),(c,k′

2−q′ ),(v,k)

]
Pω

k−q′

−Dω
(c,k−q′ ),(c,k′

2 ),(c,k′
2−q′ ),(c,k)P

ω
k+q′′ + Dω

(c,k−q′ ),(v,k′
2 ),(c,k′

2−q′ ),(v,k)P
ω
k′

2+q′′ − Dω
(c,k′

2 ),(v,k−q′ ),(c,k′
2−q′ ),(v,k)P

ω
k−q′+q′′

]
+Vq′

∑
q′′

[[ − Dω
(c,k−q′ ),(v,q′′ ),(v,−q′+q′′ ),(v,k) + Dω

(c,q′′ ),(c,k−q′ ),(c,−q′+q′′ ),(v,k)

][
f(c,k′

2 ) − f(c,k′
2−q′ )

]
+ [

Dω
(c,k′

2 ),(v,q′′ ),(c,k′
2−q′ ),(v,q′+q′′ ) − Dω

(c,q′′ ),(c,k′
2 ),(c,k′

2−q′ ),(c,q′+q′′ )

][
Pω

k − Pω
k−q′

]]
+Vk−k′

2

∑
q′′

[[ − Dω
(c,q′′ ),(c,k′

2 ),(c,−k+q′′+k′
2 ),(v,k) + Dω

(c,k′
2 ),(v,q′′ ),(v,−k+q′′+k′

2 ),(v,k)

][
f(c,k−q′ ) − f(c,k′

2−q′ )
]

− [
Dω

(c,k−q′ ),(v,q′′ ),(c,k′
2−q′ ),(v,k−k′

2+q′′ ) + Dω
(c,q′′ ),(c,k−q′ ),(c,k−k′

2+q′′ ),(c,k′
2−q′ )

][
Pω

k − Pω
k′

2

]]]
. (C79)
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FIG. 18. The exact differential equation on three-particle correlation dynamics.

With Eq. (C79) we finish the present section. We note only here that all analytical computations were automated within
Mathematica and are shared as part of the Supplemental Material [51].

4. Three-particle dynamics

As was mentioned above, in order to derive the EOM for three-particle correlation dynamics we address the diagrammatic
method. The differential equation on three-particle correlation dynamics in terms of diagrams is presented in Fig. 18. Following
the diagrammatic rules in [36] we obtain 99 unique terms for the right-hand side of the differential equation on three-particle
correlation dynamics. The grouped terms given by the same unlabeled graph can be found in the Supplemental Material [51].
Here we present only the expression which corresponds to the 1d diagram:[

d

dt
+ i

[
εi′1 + εi′2 + εi′3 − ε j′3 − ε j′2 − ε j′1

]]〈
âi′1

âi′2
âi′3

â†
j′3

â†
j′2

â†
j′1

〉
t

= −i
∑
i1, i2
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[ [
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〉c
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〉c
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〉c
t

〈
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〉c
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〉c
t

〈
â†
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âi′2

â†
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â j2

â†
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â†
j′2

〉c
t

〈
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â j1

〉c
t

〈
â†
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â†

i2
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â j1

〉c

t

]
− 〈
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〈â†

j′1
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〈â†

j′2
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â j1

〉c
t

]
+ 〈
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â†
i2

〉c
t
〈â†
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â j2

â†
j′2

â†
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〈âi′2

â†
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. (C80)

Based on this equation we expect to detect the trion-like features in absorption spectra. Taking into account the contributions
from all diagrams is a huge computational challenge. Therefore, we maximally simplify the problem to the consideration of
only the 1d diagram. This diagram does not contain the momentum summation. However, the three-particle correlations enter
the differential equation on two-particle ones with the double summation sign, while the last in turn appears in equation on
one-particle correlations also with two summation signs. It results in eight-dimensional integration in momentum space. In
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FIG. 19. The diagrammatic representation of equations on one-, two-, and three-particle correlations within the adopted approximation
which needs to obtain χV behavior.

terms of diagrams, the last approximation which we consider in this article is shown in Fig. 19. Thus, we have to obtain the
analytical expressions for the first diagram of the right-hand side of the first line in Fig. 19 and also for the last graph from the
right-hand side of the second line when the particular set of momenta arguments is determined. In terms of the previously used
functions this diagram containing the pure three-particle correlation bubble partly corresponds to FD,3 from (C72) which in turn
appeared from (C61). This function is used further in order to calculate Dω,V . To get an idea about the expression structure we
demonstrate here one of the four relevant combinations. This term reads as follows:

FD,3(Tω, k − q′, k′
2, k′

2 − q′, k, ω, {cccv})

= − 1

h̄[ω + iδ − [ε(c,k−q′ ) + ε(v,k′
2 ) − ε(v,k′

2−q′ ) − ε(v,k)]]

×
⎡
⎣∑

q′′,k′′
2

Vq′′
[
Tω

(c,k′′
2 ),(c,k−q′ ),(c,k′

2 ),(c,k′
2−q′ ),(c,k′′

2+q′′ ),(v,k−q′′ ) + Tω
(c,k′′

2 ),(c,k−q′ ),(c,k′
2 ),(c,k′

2−q′−q′′ ),(c,k′′
2+q′′ ),(v,k)

−Tω
(c,k′

2+q′′ ),(c,k−q′ ),(c,k′′
2 ),(c,k′′

2+q′′ ),(c,k′
2−q′ ),(v,k) + Tω

(c,k−q′+q′′ ),(c,k′
2 ),(c,k′′

2 ),(c,k′′
2+q′′ ),(c,k′′

2−q′ ),(v,k)

+Tω
(v,k′′

2 ),(c,k′
2 ),(c,k−q′ ),(v,k+q′′ ),(v,k′′

2−q′′ ),(c,k′
2−q′ ) − Tω

(v,k′′
2 ),(c,k′

2 ),(c,k−q′ ),(v,k′′
2+q′′ ),(v,k),(c,k′

2−q′−q′′ )

+Tω
(v,k′′

2 ),(c,k′
2+q′′ ),(c,k−q′ ),(v,k′′

2+q′′ ),(v,k),(c,k′
2−q′ ) − Tω

(v,k′′
2 ),(c,k−q′+q′′ ),(c,k′′

2 ),(v,k′′
2+q′′ ),(v,k),(c,k′

2−q′ )

]⎤⎦. (C81)

Further we include into the equation on χV only the following difference:

FD,3(Tω, k − q′, k′
2, k′

2 − q′, k, ω, {cccv}) − FD,3(Tω, k, k′
2, k′

2 − q′, k + q′, ω, {cccv}), (C82)

believing that a such combination plays a dominant role when the density of electrons is much higher than its counterpart for
holes. This expression allows us to understand for which combinations of zone indices we have to calculate functions T. The
equation on three-particle correlations even within the considered approximation (only the 1d diagram) is dramatically lengthy.
In such a situation we left only the terms which are no higher than ∼D · f , where f is the Fermi-Dirac distribution. We supply
the files where these functions can be found.

APPENDIX D: NUMERICS

In this section we specify all the analytical results in the
case of two-dimensional systems (D = 2).

1. Basic formulas and Bloch equation

First, we have to define the summation over the momentum
space. It can be replaced by the integral evaluated in polar
coordinates. Thus, in two dimensions for arbitrary function
g(k) we use

∑
k

g(k) =
(

L

2π

)2 ∫ 2π

0
dϕ

∫ ∞

0
g(k) k dk, (D1)

where throughout the computations for simplicity we assume
L = 1. Among the several quantities which have to be calcu-
lated, the first ones are chemical potentials of electrons and
holes. For this purpose, one can address the following simple
consideration:

n =
∑

k

fk. (D2)

Taking into account (D1) and keeping in mind that each sum-
mation contains an extra factor connected with spin structure,
we come to the following answer which leads to the well-
known expression

μe = kbT ln(eh̄2βπne/me − 1) + Eg,
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FIG. 20. The behavior of real part of matrix coefficients M̂−1
i, j − δi j for different values of frequency ω. This matrix was used to calculate

the absorption in Fig. 10. The values of physical parameters including temperature and carrier densities can be found also there.

μh = kbT ln(eh̄2βπne/mh − 1). (D3)

This simple expression, of course, does not take into account
the intrinsic features of a particular semiconductor and does
not pretend to give a highly accurate numerical estimate for
chemical potential. In order to tackle the internal structure of
a sample one needs to address the more sophisticated relation.
For example, in case of TMD MLs such a dependence was
obtained recently (see, e.g., Appendix B in Ref. [56]). At this
step the authors of the present paper decide not to complicate
the consideration even more, believing that Eq. (D3) contains
the main features of 2d semiconductors. It should be noted
also that in practice we use some finite value kmax as the
upper limit in momentum integration at (D1). This number
is extracted by means of the following procedure. First, we set
some starting value, say kin, where both carrier densities are
x times smaller than at the origin (k = 0). Then, we calculate
χII (kin, ω); if the obtained number is not equal to zero (within
the machine precision) we increase the value of kin by some
reasonable factor and again analyze χII (kin, ω). We repeat
these steps till the moment when we obtain χII (kin, ω) = 0.
The corresponding value of kin we accept as the final one.
This allows us to apply the matrix inversion approach as the
first step of the iteration procedure suggested in this work.
Thus, the final expression which explains how to interpret the

summation sign for the first step of the chosen procedure is

∑
k

g(k) = 1

4π2

Nk−1∑
j=0

Wi

∫ 2π

0
dϕ g(ki, ϕ), (D4)

where weight functions Wi and points ki depend on the par-
tition of the interval [0, kmax]. In order to achieve the better
convergence we choose the points of the Gauss-Legendre
quadrature support. Taking into account the interesting inter-
val the corresponding functions can be expressed as follows:

ki = (ZL,i + 1)
kmax

2
, Wi = kiWL,i

kmax

2
, (D5)

where ZL,i is the ith root of the Legendre polynomial PNk ,
while weights are given by the formula

WL,i = 2(
1 − Z2

L,i

)[
P′

Nk
(ZL,i )

]2 . (D6)

With these expressions in hand the system of equations (40)
can be rewritten as follows:

Nk−1∑
j=0

Mi, j�II, j = 1,

�II, j ≡ �II (k j ), for i = 0, . . . , Nk − 1, (D7)
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FIG. 21. The behavior of imaginary part of matrix coefficients M̂−1
i, j for different values of frequency ω. This matrix was used to calculate

the absorption in Fig. 10. The values of physical parameters including temperature and carrier densities can be found also there.

Mi, j = δi, j + (δi, j − 1)

dcv

1

4π2
Wjχ

R
I (k j, ω)

×
∫ 2π

0
dϕ V

(
k2

i + k2
j + 2kik j cos ϕ

)
, (D8)

where dcv is effective dipole moment, which we have taken
equal to 1 nm. The matrix obtained can be reversed. This

allows one to find all �II, j as

�II = M̂−1 EII , EII = (1, . . . , 1). (D9)

Having obtained the solution for �II , we can easily find the
value of χII (ω) as

χII (ω) = dcv

2π

Nk−1∑
j=0

χ2(k j, ω) = dcv

2π

Nk−1∑
j=0

�2, jχ
R
I (k j, ω).

(D10)

FIG. 22. The behavior of imaginary and real parts of EV,i elements.
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Depending on the charge carrier density the convergence is
observed when Nk is varying from 300 to 600. The obtained
points χ2(k j, ω) are stored for the needs of the further calcu-
lations.

2. Beyond the Bloch approximation

In order to obtain the correction (C68) for (C69), we have
to perform the double summation, which includes essentially
χII (k, ω) from the previous step. Instead of direct summation
we compute the four-dimensional integrals by means of the
Monte Carlo technique. This choice is dictated by the fol-
lowing reason. The extremely cumbersome integrand leads
to the difficulties with analysis of the problematic regions in
momentum space where we have to place a greater focus.
The replacement of summation by the adaptive Monte Carlo

scheme allows us to overcome this problem and often reduce
the number of points in order to achieve the required accuracy.
However, as can be noted, for performing of the integration
one has to know the continuous χ dependence on momentum
over the entire interval, not only in the separate points. For
this purpose we construct the piecewise linear interpolation
which gives the opportunity to highly accurately reconstruct
the χII (ω) behavior with many fewer points (the value of Nk)
than was necessary for the initial calculations when the matrix
inversion method is used (the reduction from 600 to 60 points
in momentum space for a specific value of ω).

Returning to the calculation of χIII , first, we have to cal-
culate (C68). The result of calculations is used for (C70) and
consequently for (C69). In terms of � one has to solve the
following system of equations which is modified as compared
with (D7):

Nk−1∑
j=0

Mi, j�III, j = 1 + F� (Dω,III , ki, ω), �III, j ≡ �III (k j ), for i = 0, . . . , Nk − 1, (D11)

F� (Dω, k, ω) = − 1

E (ω)dcv[1 − f(e,k) − f(h,k)]

∑
k′

2,q′ �=0

Vq′
[
Dω

(c,k−q′ ),(c,k′
2 ),(c,k′

2−q′ ),(v,k)

+Dω
(c,k−q′ ),(v,k′

2 ),(v,k′
2−q′ ),(v,k) − Dω

(c,k),(v,k′
2 ),(v,k′

2−q′ ),(v,k+q′ ) − Dω
(c,k),(c,k′

2 ),(c,k′
2−q′ ),(v,k+q′ )

]
, (D12)

with the same Mi, j from (D8). The new vector �III can be found by means of an equation similar to (D9):

�III = M̂−1 EIII , EIII,i = 1 + F� (Dω,III , ki, ω), for i = 0, . . . , Nk − 1. (D13)

As is easily seen, such equation can be generalized for N = IV,V :

�N = M̂−1 EN , EN,i = 1 + F� (Dω,N , ki, ω), for i = 0, . . . , Nk − 1, and N = III, IV,V. (D14)

Thus, in order to obtain one point in ω space, we need to calculate all EN,i. In this regard, it would be reasonable to analyze the
behavior of matrix M̂. The behavior of real and imaginary parts of M̂−1

i, j is presented in Figs. 20 and 21, respectively. First, the
relative structure of the matrix element behavior almost does not depend on the frequency value; the maximum value is located
within the unchanged vicinity. Second, these figures allow us to recognize which components of EN,i are of prime importance.
Speaking about the vector EN itself, we present the typical behavior of its real and imaginary parts for the most computationally
expensive case: N = V . These dependencies are shown in Fig. 22. Having analyzed both objects—M̂−1 and E—it is easy to
conclude that there is no need to calculate all the points i = 0, . . . , Nk − 1 in momentum space. In particular, the most expensive
approximation from the computation point of view—N = V —demands only the knowledge of EV,i for i no higher than ≈140.
We also exclude (replace EN,i by pure unity) the contributions i, the relative accuracy of which is worse than 0.4. The number
of such contributions is always around 10% and most of them are sitting in the tail. Taking them into account moderately
affects only the height of the trionic peak, leaving, however, its position unchanged. This fact—the partial accounting of EN,i

contributions—crucially decreased the computational time. In the case of N = V (eight-dimensional integration) the number of
Monte Carlo evaluations for each couple (ki, ω j ) is 1.5 × 109. In such a dramatic situation we address the GPU opportunities
and gVEGAS—the GPU implementation of the well-known Monte Carlo algorithm [57].
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