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Signatures of interfacial topological chiral modes via RKKY exchange interaction
in Dirac and Weyl systems
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We theoretically investigate the features of Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange interaction
between two magnetic impurities, mediated by the interfacial bound states inside a domain wall (DW). The
latter separates the two regions with oppositely signed inversion symmetry broken terms in graphene and Weyl
semimetal. The DW is modeled by a smooth quantum well which hosts a number of discrete bound states
including a pair of gapless, metallic modes with opposite chiralities. We find clear signatures of these interfacial
chiral bound states in spin response (RKKY exchange interaction) which is robust to the deformation of the
quantum well.
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I. INTRODUCTION

The emergence of the gapless one-dimensional (1D) chiral
modes across the interface of two nonequivalent trivial or
topological insulators has received significant attention owing
to its potential application as one-way wave propagation in
two-dimensional (2D) honeycomb photonic lattice [1,2] as
well as spin and valley selective charge transport in 2D Dirac
materials [3,4]. The underlying physics lies in the sign change
of the symmetry breaking parameter across the interface,
forming a quantum well (QW) which acts as a domain wall
(DW) separating the two insulators. The chiralities of these
interfacial modes, corresponding to the two valleys of the
Dirac materials, are sensitive to the types of broken sym-
metry. The time reversal symmetry (TRS) breaking leads to
the same chirality of the interfacial modes [1], whereas they
appear with opposite chirality for inversion symmetry (IS)
broken systems [5–7]. Such interfacial chiral modes (ICM)
have also been found in bilayer graphene [8–11] which moti-
vated proposing a bilayer graphene based Cooper pair beam
splitter with maximum efficiency [12]. Subsequently, similar
investigations were carried out in silicene [3] and surfaces
of three-dimensional (3D) topological insulators [13]. Very
recently, a pair of ICM have been revealed in 3D spin-1
topological semimetal where TRS is broken by means of light
[14].

In recent times, the intriguing topological properties of
3D Weyl semimetal (WSM) have attracted a great deal of
attention in the research community [15–20]. One major focus
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is the IS broken WSM where the valence and conduction
bands touch each other at minimum four or more topologically
protected Weyl nodes [15,18,19]. These nodes are separated
both in momentum and energy, and the low energy spectrum
which is linear around these nodes is described by the Weyl
equations. Each Weyl node of the WSM manifests definite
chirality with a total of zero as it always appears in pairs in the
momentum space [21]. The chirality property of the bulk band
and the surface Fermi arcs lead to several exotic phenomena
in WSM [22–29].

With this framework, in this article, we analytically show
the emergence of ICM in IS broken WSM. Probing these
ICM remains always challenging because of its geometric
confinement within the DW. In the present work, we also aim
to extract the direct signatures of these ICM via Ruderman-
Kittel-Kasuya-Yosida (RKKY) [30–32] exchange interaction
between two magnetic impurities placed across the DW cre-
ated in gapped graphene and in WSM with broken IS. It
is an indirect exchange interaction mediated by the conduc-
tion electrons of the host material and already investigated
extensively in different Dirac materials [33–39], topological
insulators [40], etc. RKKY exchange interaction has also been
proposed to determine the magnetic ordering in spin glasses
[41] and alloys [42] and to probe topological phase in sil-
icene [43], edge states of graphene nanoribbon [44] and 2D
topological insulators [45], decoupled edge modes in phos-
phorene [46], order of tilting in the spectrum of borophene
[47] and the Fermi arc in WSM thin films [48], etc. Sev-
eral experimental methods like single-atomic magnetometry
and magnetotransport measurement based on angle-resolved
photoemission spectroscopy (ARPES) are used to capture this
exchange interaction [49–51].

The remainder of this paper in organized as follows. In
Sec. II, we briefly revisit the appearance of ICM in graphene
due to the IS breaking mass term across the interface. In
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FIG. 1. (a) A schematic sketch of graphene, placed on the top
of a hBN substrate, is depicted. The two magnetic impurities are
placed on the DW which is denoted by the black solid line. (b) The
smooth variation of the mass term, modeled by γ (x) = γ tanh(x/L),
is shown. (c) QW of width L and height U0, defined by the hyperbolic
function, developed across the DW is symbolically illustrated.

Sec. III, we discuss the emergence of ICM due to oppositely
signed momentum shifts in inversely broken WSM. The sta-
bility of both massless and massive interfacial modes against
the deformation of a QW is shown in Sec. IV. Section V is de-
voted to the discussion of signatures of these ICM via RKKY
exchange interaction (spin response). Finally, we summarize
and conclude in Sec. VI.

II. MODEL AND ICM IN 2D GRAPHENE

We begin by revisiting a gapped graphene Hamiltonian
[6] H2D = σ · k + γ (x)σz, with σ ≡ {σx, σy} where σi’s (i ∈
{x, y, z}) are Pauli matrices in the sublattice space and k ≡
{kx, ky} is the 2D momentum operator. The mass term γ (x) is
responsible for breaking IS, which can be practically realized
by placing the monolayer graphene on the top of a hexagonal
boron-nitride (hBN) substrate [52,53] as depicted in Fig. 1(a).
We model the mass term as γ (x) = γ tanh(x/L) so that it
smoothly changes its sign across a region, namely, DW of
width L around x = 0, shown in Fig. 1(b). The DW separating
the two regions of oppositely signed mass terms is marked by
a black solid line in Fig. 1(a). Consideration of the smoothly
varying mass term is well justified as it is a formidable task
to design a sharp boundary in reality. After decoupling the
square of the eigenvalue equation, H2D� = E�, we obtain

[
− ∂2

∂ (x/L)2
+ U

(
x

L

)]
ψi = L2

(
E2 − k2

y − γ 2
)
ψi, (1)

where i ∈ {A, B} is the sublattice index. It resembles a 1D
Schrödinger equation for the well-known Pöschl-Teller QW
of width L as [54,55]

U

(
x

L

)
= −γ L(γ L + 1)sech2

(
x

L

)
, (2)

schematically shown in Fig. 1(c). The QW effectively de-
scribes the DW with the bound state energy given as [56]

En=0 = sgn(γ )ky, (3a)

En>0 = ±
√

k2
y + 2|n|γ

L
− n2

L2
. (3b)

Note that sgn(γ ) denotes the chirality of the zeroth interfacial
bound states and the massive mode solutions are valid for
2γ L > |n|. The normalized wave function is given by [56,57]
ψn,ky (r) = [eikyy/

√
Ly]φn(x/L) with

φn(x) = An

[cosh(x)]b
Pb,b

n [tanh (x)], (4)

where Pb,b
n (x) is the Jacobi polynomial with b = γ L − n. The

normalization factor is given by

An =
√

n!b

22b

(2b + |n|)!
(γ L!)2

, (5)

with nmax < γ L. Note that the chiralities of the zeroth inter-
facial bound states, i.e., En=0 [Eq. 3(a)] at the two valleys are
opposite to each other. Even though IS symmetry breaking
does not lead to the topological phase transition, the opposite
chirality is still topologically preserved as the difference of
left and right moving chiral modes must be equal to the dif-
ference of the Chern numbers between left and right regions
separated by the DW [2,7]. Alternatively, one can break the
TRS in the two regions of the graphene where only a uni-
directional ICM emerges at the two valleys [1,2,7] and thus
RKKY exchange can arise nonlocally along the other edge
or surface in a finite system [58]. In our case, these gapless
ICM appear due to the sign change of the mass term across
the boundary. They are topologically protected by the TRS
present in the system and thus insensitive to how smooth sign
change is (even valid for abrupt change) and also other details
of the QW. However, this topological protection is absent
for n > 0 modes being sensitive to the dimension (L) and
the smoothness of the QW as clearly seen from [Eq. 3(b)].
We note that these n > 0 modes are similar to the Volkov
and Pankratov states [59] that arise at the interface between
two semiconductors or insulators with inverted mass terms
[60–62].

III. ICM IN 3D WEYL SEMIMETAL

Here, we explore the appearance of ICM in IS broken 3D
WSM. The IS broken WSM hosts four inequivalent Weyl
nodes in the momentum space. The interfacial modes in a
3D topological hetererojunction have been considered pre-
viously with an inverted mass term [60,61] which changes
sign across the interface and opens mass gaps on the both
sides of the interface, i.e., a junction is made between two
insulating phases. The ICM for electromagnetic waves has
also been predicted in a TRS broken WSM [63]. However,
in this work we consider an interface between two IS broken
WSMs with oppositely signed momentum shifts instead of
mass. Note that the momentum shift does not open any gap,
unlike the previous studies [60,61], and hence the topological
character of the Weyl nodes still persists. The low energy
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effective Hamiltonian for one of these Weyl nodes reads as
[64]

H3D = kxτx + (ky − k0)τy + [kz − β(x)]τz, (6)

where ki’s are the momentum operators, k0 is the system
parameter, and τi’s are the Pauli matrices acting on the spin
basis with i ∈ {x, y, z}. Here, β(x) is the IS breaking term
and, unlike graphene, it does not open any gap but shifts
the Weyl nodes along the kz direction, which is evident from
the energy dispersion as εk = √

k2
x + (ky − k0)2 + (kz − β )2.

The gapless Weyl nodes are topologically protected even af-
ter the IS or TRS symmetry breaking perturbation, provided
translational symmetry is preserved. Following the same pre-
scription as in graphene, we consider the IS breaking term as
β(x) = β tanh(x/L) which smoothly changes its sign across
the interface. After squaring the eigenvalue equation, H3D� =
E�, we arrive at[

− ∂2

∂x2
+ (β(x) − kz )2−τy

∂β(x)

∂x

]
� = [E2 − (ky − k0)2]�.

(7)
It can be decoupled as[

− ∂2

∂ (x/L)2
+ V

(
x

L

)]
ψ j

= L2
[
E2−β2 − k2

z − (ky − k0)2
]
ψ j, (8)

where j denotes spin index and

V

(
x

L

)
= −βL(βL + 1)sech2

(
x

L

)
+ 2kzβL2 tanh

(
x

L

)
.

(9)
This is the well-known Rosen-Morse potential [65,66] which
exhibits a minimum for |2kzL| < (βL + 1), indicating a re-
gion of kz favoring the QW rather than the potential barrier.
Note that the first term is exactly similar to Eq. (2) with β

replaced by γ . By drawing the analogy with the Rosen-Morse
QW solution, we obtain the bound state solutions with the
energy eigenvalues as

En=0 = sgn(β )(ky − k0), (10a)

En>0 = ±
√(

2nβ

L
− n2

L2

)[
1 −

(
kzL

βL − n

)2]
+ (ky − k0)2,

(10b)

where the zeroth solution yields the ICM (En=0) and the other
solutions represent the massive modes (En>0) in WSM. This is
one of the main results of our paper. The corresponding eigen-
states are given by ψn,ky,kz (r) = [ei(kyy+kzz)/

√
LyLz]φ̃n(x/L)

with

φ̃n(x) = An
e−ax

[cosh(x)]b
Pb−a,b+a

n [tanh(x)], (11)

where b ± a = √
(β ± kz )2 + (ky − k0)2 − E2

n . This reduces
to b = β and a = kz for the zeroth ICM. The normalization
factor is given as follows:

An =
√

n!

22b

(2b + n)!

[(b + a + n)!(b − a + n)!

b2 − a2

b
, (12)

with nmax < βL − L
√

βkz. Interestingly, the above band
structure boils down to that of graphene [see Eq. (3)] or, in

other words, the bound state solutions for the Rosen-Morse
QW reduce to the Pöschl-Teller QW solutions for kz = 0.
Note that the zeroth ICM are immune to the details of interface
and can be obtained directly from the abrupt interface, as
discussed later. One can also find solutions for the other three
Weyl nodes in a similar way.

IV. STABILITY OF ICM

Now, we discuss the stability of the ICM against the de-
formation and abruptness of the QW. So far, our results are
based on a smooth QW for both graphene and WSM. In
reality, the QW may not be ideally described by the hyperbolic
function because of the weak deformation which might arise
from the asymmetry in the smoothness of the IS breaking
term on both sides of the interface. Such weak deformation
can be taken into account by considering q-deformed hyper-
bolic functions, introduced by Arai [67] as sinhq(x) = (ex −
qe−x )/2 and coshq(x) = (ex + qe−x )/2 with 0 < q < 1. This
follows qsech2

q(x) + tanh2
q(x) = 1, cosh2

q(x) − sinh2
q(x) = q,

and d
dx tanhq(x) = qsech2

q(x). Hence, we model our inversion
breaking term by a q-deformed hyperbolic function as γ (x) =
γ tanhq(x/L) which yields the q-deformed Rosen-Morse po-
tential given as

Vq(x) = −qβL(βL + 1)sech2
q(x) + 2kzβL2 tanhq(x). (13)

Interestingly, noting the analogy with the solutions of the
q-deformed Rosen-Morse potential [68], we find that the en-
ergy spectrum does not depend on q. Hence, we confirm that
not only the massless ICM but even the massive modes are
robust to such deformation of the QW. This robustness of
the ICM elevates the potential for application and thus highly
enhances the importance of the present work. Similarly to the
Rosen-Morse QW for WSM, the deformed Pöschl-Teller QW
corresponding to the gapped graphene also yields bound state
solutions that do not depend on the degree of deformation
[69]. Therefore, ICM in both graphene and WSM are robust
to such deformation of the QW.

Furthermore, we show that the zeroth (En=0) ICM can be
even directly obtained by considering an abrupt interface. We
model the abrupt interface as β(x) = −β[2�(x) − 1], where
�(x) is a Heaviside step function. The eigenvalue equation
can be decoupled to write[

− ∂2

∂x2
−2βδ(x)

]
ψ j = [(ky − k0)2 + (kz−β(x))2 − E2]ψ j,

(14)
which is a 1D delta-function QW problem. By employing the
appropriate boundary condition across the interface at x = 0,
we obtain an equation to determine the energy dispersion as∑

η=±

√
(ky − k0)2 + (kz + ηβ )2 − E2 = 2β, (15)

satisfying the interfacial bound states E = sgn(β )(ky − k0),
which is exactly the same as Eq. 10(a).

The wave functions corresponding to the ICM are �+ ∝
exp(−x/l+) for x > 0 and �− ∝ exp(x/l−) for x < 0, where
l± = |kz ± β|−1 are the localization lengths of the ICM, which
is not symmetric with respect to the interface. Here we quickly
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comment that in graphene, the localization length is |γ |−1 and
thus is symmetric about the interface.

Note that the IS breaking WSM Hamiltonian is considered
in real spin space, hence it is interesting to examine how
the spin configuration responds to the sign changes of the
momentum shift across the interface. Using the eigenstates
for the ICM across the interface, we find the spin polariza-
tion for three components as �†τx� = 0, �†τy� = sgn[E0 +
(kz − β sgn(x))] and �†τz� ∝ [1 − sgn(x)], which indicate
that the spin polarization across the interface exhibits a sharp
discontinuity along the direction of the momentum shift. For
graphene, we can immediately conclude that the pseudospin
polarization possesses similar discontinuity.

V. SIGNATURES OF ICM IN RKKY EXCHANGE
INTERACTION

To investigate the signature of ICM via a response function
in graphene and WSM, here we evaluate the RKKY exchange
interaction between two magnetic impurities, mediated by
the bound states of the QW. Numerous works on the RKKY
exchange interaction have been carried out so far concerning
Dirac materials [33–39,43,70,71], where exchange interaction
takes place via bulk conduction electrons and bound states,
formed inside a circular QW in graphene [72]. It is noteworthy
to mention here that the RKKY exchange interaction via the
bound states of a QW formed in a metallic heterostructure
was considered by several groups in the early 1990s [73,74].
However, the study is still lacking as far as the signature of
ICM in graphene and WSM are concerned.

For our computation, we employ the formalism (based on
first quantized language) already developed in Refs. [73,74]
for QWs, and very recently used in the case of graphene
[72]. The total Hamiltonian in the presence of two magnetic
impurities can be written as

H = H2D(3D) + �
∑

i

s(ri ) · Si, (16)

where s(ri ) is the spin of the conduction electrons at position
ri and Si is the spin of the magnetic impurity. The first part
of the Hamiltonian represents the Hamiltonian of the 2D or
3D system under consideration and the second term corre-
sponds to the direct exchange interaction of the conduction
electrons, of strength �, with the magnetic impurities. In the
perturbative limit of �, the second-order contribution to the
ground-state energy can be obtained as [74]

�E = −
(

�

nc

)2 ∑
i, j

Jex(ri, r j )Si · Sj, (17)

where (�/nc)2Jex(ri, rj) is the RKKY exchange interaction
between the impurity spins i and j located at positions ri and
r j respectively, and nc is the conduction electron density. The
RKKY interaction strength can be expressed in terms of the
wave functions of the unperturbed Hamiltonian as [73]

Jex(ri, rj)= 1

2

∑
Eξ > μ

Eξ ′ < μ

ψ∗
ξ ′ (ri)ψξ (ri)ψ∗

ξ (rj)ψξ ′ (rj) + H.c.

Eξ − Eξ ′
,

(18)

FIG. 2. Jex is depicted as a function of μ for (a) graphene and
(b) WSM with x = 0 and y = 10L. Here, μ and Jex are normalized
by γ and γ L2 (graphene) or βL2 (WSM), respectively.

where, in the wave function ξ = n, ky (n, ky, kz) for 2D (3D)
and μ is the chemical potential. Although ideally one should
take summation over all the energy states inside as well as
outside of the QW, we restrict ourselves only to the states
inside the QW as we aim to extract the signature of gapless
ICM close to the undoped situation.

Note that our calculation is valid in the perturbative limit
of � [see Eq. (17)] where the second-order contribution to
the ground-state energy contains the information of RKKY
exchange interaction between the impurity spins which break
the translational symmetry only locally. Hence, only electrons
within a limited wavelength range near the Fermi energy are
scattered, resulting in a density modulation around the im-
purity. Therefore, the band structure of graphene as well as
WSM will not be significantly modified by such density os-
cillations in the presence of the impurities. Also, they cannot
influence the topological character of the bulk as well as ICM
in 2D graphene and 3D WSM.

In Fig. 2(a) we show that the RKKY exchange interac-
tion strength for 2D graphene as a function of the chemical
potential μ for three different values of the parameter γ L.
We restrict μ to be within the energy window where only
gapless ICM appear. We find that the exchange interaction
exhibits an oscillatory nature which is immune to the values
of γ L. This oscillatory nature is quite usual where RKKY
interaction is mediated by the bulk states [33,36]. Though the
zeroth energy (En=0) contribution does not depend on γ L, the
exchange interaction smoothly enhances via the probability
wave function with the enhancement of the IS breaking term.
Interestingly, unlike other systems, the behavior of Jex with
μ is nondecaying due to the linearity of the ICM. On the
other hand, we have checked that contributions arising due to
the massive modes (En>0) are significantly smaller than that
of ICM (∼10−3). Therefore, the RKKY exchange interaction
is mainly dominated by the gapless modes, indicating direct
signatures of ICM.

The contribution to the exchange interaction Jex is mainly
dominated by the ICM for which an analytical approximate
form can be obtained as Jex ∝ Ci[(kc − μ)y], where kc is the
momentum cutoff and Ci(x) is the cosine integral which, for
long distances, can be approximated as

Ci(ζ ) 	 1

ζ

[
sin(ζ ) − cos(ζ )

ζ

]
. (19)

Therefore, the long distance behavior is exclusively related
to the linear dispersion of the ICM, which resembles the
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FIG. 3. Jex is demonstrated, in the case of WSM, as a function
of (a) x/L and (b) y/L for various values of βL at μ = 0. The
normalization of Jex is the same as in Fig. 2.

RKKY exchange interaction behavior along the edge modes in
topological spin Hall liquid [75]. On the other hand, along the
direction of QW width, the long distance limit is not desired
as it is restricted by the QW width. However, a short distance
limit might be further simplified by setting tanh(x) 	 x and
cosh(x) 	 1, which yields Jex ∝ [Pb,b

n (x)]4 for graphene and
Jex ∝ e−4ax[Pb−a,b+a

n (x)]4 for WSM, indicating a relatively
faster decay in the latter case.

To further reinforce our results for the signatures of the
ICM in RKKY interaction, we extend our study for the 3D
system, i.e., IS broken WSM, presented in Fig. 2(b). The
behavior of the RKKY exchange interaction as a function of μ

is oscillatory in WSM and the profile is very similar to that of
graphene but with an enhanced amplitude. This enhancement
of Jex can be attributed to the prefactor of Eq. (12) appearing
due to the third dimension of the WSM irrespective of the
value of βL. Unlike graphene, the width of the QW has to be
maintained quite large so that the bulk states which are gapless
in either sides of the QW do not penetrate into the well. In
WSM it has always been a challenging task to separate the
surface modes from the bulk states as both are gapless, but in
our case a segment of the surface states can only pass through
the QW where bulk states are not allowed, which might be
useful in probing surface modes in WSM. Note that here the
zeroth ICM are a segment of the entire surface states which
enclose the WSM.

Finally, we investigate the behavior of Jex for WSM as a
function of x, the distance from the center of the DW, and
y, the separation between the two impurities. We present our
corresponding results in Fig. 3. In Fig. 3(a), we observe that
the contribution of the bound states to the exchange interac-
tion amplitude is maximum at x = 0 and decays exponentially
with x following the hyperbolic form of the potential of the
QW. This can also be understood following the decay of the
probability of the wave functions. This phenomenon is true
for all βL. However, the rate of decay is much faster for
higher βL. Here, we set μ = 0 to consider only the En=0

ICM. As we increase βL, the exchange interaction increases
following the envelope of |ψn=0|2 and, thus, it further confirms
the contributions arising solely due to ICM within the DW.
In case of graphene, the RKKY interaction with “x” and “y’
behaves in a very similar fashion, except for a small mismatch
in decay rate which can be easily understood from the absence
of the e−ax term in the graphene ICM wave function.

Furthermore, when we increase the distance between the
two impurities placed along the y axis, the magnitude of Jex

decreases with an oscillatory envelope as shown in Fig. 3(b).
This behavior of Jex with the distance between the two impu-
rities is very similar to the results for RKKY interaction via
bulk states of any doped electronic system [37,39]. Also, with
the enhancement of the IS breaking term, βL, there is a rise
in the strength of RKKY interaction following the envelope
of |ψn=0|2. Note that, along both x and y directions, Jex ex-
hibits antiferromagnetic RKKY exchange (Jex < 0) at μ = 0
as the En=0 ICM carries two propagating modes with opposite
chiralities resulting in backscattering with antiferromagnetic
character.

VI. SUMMARY AND CONCLUSIONS

To summarize, in this article, we have identified the emer-
gence of ICM in IS broken graphene (2D) and WSM (3D).
We also explore the chiral bound state mediated RKKY ex-
change interaction between two magnetic impurities placed in
them. The two magnetic impurities are localized inside a DW
separating the two regions, with oppositely signed IS breaking
Semenov mass terms in graphene and momentum shifting in
WSM. We model the DW by a hyperbolic potential well. Most
interestingly, in the undoped case (μ = 0), we have found
clear signatures of the ICM (En=0) of the gapped graphene
and WSM in the RKKY exchange interaction due to their
dominating contributions compared to the other bound states
(En 
=0) of the QW localized within the interfacial region. For
any condensed matter system, it is always a challenging task
to isolate surface states from the bulk states. In our case, the
unique ICM are completely separated from the bulk due to
the finite size of the QW engineered in both graphene and
WSM.

In recent times, a few proposals have been put forwarded
to extract the contributions of the Fermi arcs which appear
across the interface between the WSM and vacuum via RKKY
exchange interaction [48,76]. The contributions of the bulk
states are inevitably present in those studies when the impu-
rities are located at two opposite surfaces. In contrast, in our
case, the RKKY exchange interaction is separated from the
bulk states, bearing the contributions of only the ICM confined
inside the DW.

From the practical point of view, TRS and IS broken
WSM can be realized in TaAs, TaP [77,78]. Magnetic adatoms
(Fe, Co, etc.) can be implanted in materials to induce mag-
netic moments in them [79]. An atomically precise map of
the magnetic coupling between individual adatoms in pairs
can be revealed in terms of spin-resolved differential con-
ductivity following the investigation by Zhou et al. on the
RKKY interaction by depositing Co adatoms on a Pt (111)
surface [50]. They extracted the out-of-plane components of
the time-averaged magnetization, both in absence and pres-
ence of an external magnetic field, to find the interaction
strength. For our model, the RKKY exchange interaction
strength Jex can also be measured in the similar way after
successfully depositing adatoms on graphene and/or WSM.
The distance-dependent behavior of Jex can be found by
maintaining different distances between the two impurities.
Spin-dependent scanning tunneling spectroscopy [50,80] can
be used to measure dI/dV to identify the signature of ICM
close to μ = 0.
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