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Heavily doped semiconductors have emerged as tunable low-loss plasmonic materials at midinfrared
frequencies. In this article we investigate nonlinear optical phenomena associated with high concentration of free
electrons. We use a hydrodynamic description to study free electron dynamics in heavily doped semiconductors
up to third-order terms, which are usually negligible for noble metals. We find that cascaded third-harmonic
generation due to second-harmonic signals can be as strong as direct third-harmonic generation contributions
even when the second-harmonic generation efficiency is zero. Moreover, we show that when coupled with
plasmonic enhancement free electron nonlinearities could be up to two orders of magnitude larger than conven-
tional semiconductor nonlinearities. Our work might open a new route for nonlinear optical integrated devices

at midinfrared frequencies.
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I. INTRODUCTION

Plasmonic nanoantennas emerged as a disruptive technol-
ogy for concentrating and controlling light at the nanoscale
thanks to their unique capabilities of field localization and en-
hancement [1-6]. Nonetheless, their widespread application
has struggled to concretize because of several shortcomings
of the main constituent of plasmonic materials: noble metals.
The use of noble metals for practical devices has been limited
due to, above all, high losses, high reflectivity, and very poor
compatibility with standard microelectronics manufacturing
processes. In this context, heavily doped semiconductors (i.e.,
with charge densities 7y ~ 10'°-10?° cm—3) have been in-
troduced as low-loss and tunable alternative materials for
plasmonics in the near-infrared (NIR), i.e., 0.8 < A < 2 um,
and in the midinfrared (MIR), i.e., 2 < A <20 um [7,8],
A being the free-space wavelength. The MIR overlaps with
the so-called molecular fingerprint region and is particularly
important for sensing applications in many fields from health-
care to security [9]. Moreover, interest in MIR devices is
growing in the context of free-space communications since
the 3-5-um and the 8-13-um regions are less affected by
atmospheric turbulence, clouds and fog than the NIR region
[10]. Because semiconductors offer the possibility of tuning
their optical response through doping or electrical and opti-
cal excitation, and some of them are also highly compatible
with silicon complementary metal-oxide semiconductor tech-
nology, their use for plasmonics may lead to breakthrough
technologies [9].

Plasmonic systems owe their properties to surface-plasmon
modes—the resonant collective oscillations of free electrons
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(FEs)—that appear in materials with a high carrier concen-
tration (i.e., metals and heavily doped semiconductors) as a
consequence of the interaction with an external light excita-
tion. Naturally, the local-field enhancement provided by these
modes especially affects optical processes whose dependence
on the field intensity is nonlinear. Indeed, this is extremely im-
portant for nonlinear optical effects since they are in general
very weak and normally require high laser intensities and long
propagation distances in macroscopic nonlinear crystals to
reach operational efficiencies. Although, recently, high-index
dielectric resonators have been used to partially overcome
these limitations [11-13], plasmonic nanoantennas made of
noble metals have been commonly used as local-field am-
plifier in hybrid systems to boost optical nonlinearity from
dielectric material placed in their vicinity [14-27]. The non-
linear response may also originate directly from the plasmonic
material itself [28-30] and, in particular, from the dynamics
of nonequilibrium FEs [31-36]. For instance, in noble met-
als, FE plasmonic nonlinearities have been shown to strongly
contribute to second-order processes [34,37,38] in the visible,
NIR, and experimental measurements in gold nanoparticle
arrays have demonstrated second-harmonic generation (SHG)
efficiencies comparable to those of nonlinear crystals when
normalized to the active volumes [39,40].

Although FE optical nonlinearities have mostly been ob-
served in metals, analogous effects may also occur in heavily
doped semiconductors. The dynamic properties of doped
semiconductors undergo, in fact, an interesting transition
from the size-quantization regime to the classical regime of
plasmon oscillations. In the former regime, semiconductor
quantum wells have enabled the strongest nonlinear suscep-
tibilities [21]. The resonant nature of electron transitions in
quantum wells, however, severely hinders their application in
ultrafast devices since it inevitably causes a slower response
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and increased decoherence. The plasmonic regime for semi-
conductors, on the other hand, unlocks a new realm of possible
ultrafast nonlinear effects [41,42] and offers several advan-
tages with respect to nonlinear plasmonics in noble metals.
To understand the advantage of using heavily doped semi-
conductors, it should be noted that within the hydrodynamic
description, third-order nonlinear effects are inversely propor-
tional to the square of the equilibrium free-carrier densities,
ie., PI(\?]Z (' nl—é (as we will show later), where Pf\?ﬁ is the

third-order polarization vector. In gold, for example, the high
concentration of free carriers (ny ~ 10?> cm~3), leads to very
weak contributions to the third-order nonlinear polarization if
compared to contributions due to the crystal lattice nonlinear
susceptibility x ®). On the other hand, doped semiconductors
with a plasma frequency in the MIR have a much lower
charge density (ng ~ 10" cm™3) than noble metals such that
nonlinear terms may grow as much as six orders of magni-
tude, overcoming by far the lattice nonlinearities. Moreover,
semiconductors have an effective electron mass m that can
be one order of magnitude smaller than that of noble metals.
These characteristics cause also an increase in the nonlinear
active volumes, whose measure (normalized to the opera-
tion wavelength) can be linked [43,44] to the Fermi velocity

VFp X —.

The’izarge variety of semiconductors with different effective
electron mass and doping levels give access to a wide range
of possibilities to optimize and increase intrinsic nonlinear
effects. Furthermore, these quantities, unlike in metals, can
also be used to control their optical linear properties. Indeed,
assuming a Drude model, a doped semiconductor is charac-

terized by a dielectric function e(w) = €00 — wz'jﬁ, where
€0 18 the background permittivity, y is the damping rate, and
wp = \/i):'};‘; is the plasma frequency of the material, being
e and ¢, the elementary charge (absolute value) and the dielec-
tric constant of vacuum (note that hole doping is unsuitable
for plasmonics due to inter-valence-band transitions taking
place in the MIR). By choosing the semiconductor, i.e., m and
the doping level ny, is it then possible to tune the dielectric
function at will [45]. For example, one could generate an
e-near-zero (ENZ) medium to explore unconventional non-
linear optical effects [26,46]. For all these reasons, the study
of nonlinear FE dynamics in heavily doped semiconductors
seems to represent a very promising test field toward the un-
derstanding of the fundamental mechanisms of nonlinearity in
condensed matter and, therefore, in the direction of designing
innovative optical technologies.

In this article, we focus on the process of third-harmonic
generation (THG) from heavily doped semiconductors. We
use a hydrodynamic description to study the free carriers
dynamics up to third-order terms, usually neglected for noble
metals, and consider both cascaded and direct contributions.
We first investigate THG efficiency in unpatterned doped
semiconductor slabs. Interestingly, we find that cascaded THG
due to SHG signals can be as strong as direct THG contribu-
tions even when the SHG efficiency is zero, i.e., there is no
SHG in the far field. We also suggest a possible experiment
to demonstrate such an effect. We then analyze the conditions
that allow for the maximum THG efficiency and show that

FE nonlinearities can be up to two orders of magnitude larger
than intrinsic lattice nonlinearities. We finally introduce a
grating pattern on the semiconductor slab surface that allows
to strongly couple with normally incident waves and excite
local plasmons to further enhance the conversion efficiency.

II. HYDRODYNAMIC MODEL FOR THG

To model the many-body dynamics of interest, a theoretical
framework that describes not only the charge-density distribu-
tion and the nonlinear effects, but also nonlocal corrections, is
needed. Indeed, because of the fermionic nature of the carri-
ers, FE nonlinearities are intrinsically nonlocal in the sense
that the induced currents depend not only on the value of the
electric field at a given point but also, through their spatial
derivatives, on the value of the fields in the surrounding area.
In addition, the formalism should give the possibility to com-
pare FE nonlinearities to those arising from the crystal lattice
in order to solve a possible ambiguity in the origin of the non-
linear response. An appropriate representation of nonlinear
and nonlocal FE dynamics in heavily doped semiconductors
may be performed taking into consideration the quasiclassical
formalism of the hydrodynamic model in the limit of Thomas-
Fermi approximation [43,47,48]. The hydrodynamic theory
has been successfully used to describe the FE dynamics in
noble-metal systems and is then extremely relevant to describe
the behavior of heavily doped semiconductors. Furthermore,
lattice nonlinearities can be easily included into the model by
taking into consideration an intrinsic nonlinear susceptibility
as shown in the following.

Within the hydrodynamic formalism [49-51], the many-
body dynamics of a FE fluid can be described taking into
account two macroscopic variables, the charge-density n(r, 1),
and the current density J(r,t) = —env, where v(r,t) is
the electron velocity field. Under the influence of external
electric- and magnetic-fields E(r, ) and H(r, t), the system
can be described by the following equation:
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where [ is the magnetic permeability of vacuum and y is
the damping rate. The last term takes into account the nonlo-
cal effects due to the quantum pressure. Here, T [n] is the
kinetic-energy functional in the Thomas-Fermi approxima-
tion, whose derivative with respect to n is % = chgnz/ 3
with erp = L 3.(322)2/3 [52].

Following a perturbative approach, it is possible to write
n(r,t) = ng + nina(r, t), where njg = iV - P is the induced
charge density and nj,g < ng. Here P(r, t) is the polarization
vector, which is related to the current density through its
time derivative, i.e., P = J. Note that we assume ng to be
constant inside the semiconductor and abruptly go to zero out-
side. This is not necessarily true at the semiconductor surface
where small variations of the density might occur. We assume,
however, that these effects can be neglected. We also neglect
electron spill out and consider hard-wall boundary conditions
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[51]. Equation (1) then becomes

P+yP= E+,3V(V P)+SC +8%, (2

where time derivatives are now expressed in dot notation. This
equation is essentially constituted by the FE gas linear model,
i.e., the Drude model plus a nonlocal linear term, where g2 =

2/3 . .
190 CT ”0/ , and the second- and third-order nonlinear sources

Sr(\%ﬁ and SSﬁa respectively, whose expressions are as follows:

sﬁg_—EV.P—@PxH+—(PV-P+P-VP)
m

eny

2
—i—l’B—V(V P)?, (3a)
3 eny

Sﬁﬁ=—ﬁ(VP(PV~P+P~VP)+P.PVV.P)
en

/32

~5 7 2V(V P)’. (3b)

In deriving these equations, contributions up to the third
order have been considered. In particular, we used n~! ~

1(1 11":1) and n2/3 ~ n2/3[1 + 2n|,(1)d _ (Vlmd) 1. As it
can be noted, the nonlinear sources 1nclude both local and
nonlocal terms. In particular, second-order terms include
Coulomb, Lorentz, convective, and quantum pressure contri-
butions in that order in Eq. (3a), whereas third-order terms in
Eq. (3b) only include convective and pressure contributions.
Among all these terms, those proportional to V - P, i.e., to the
induced charge density, are surface contributions since they
enable to describe nonlinear effects originating from a region
very close to the surface of a certain material, where njpg varies
abruptly [36,53].

In the most general picture, for a single input field, THG
is the process in which a signal of frequency 3w is generated
by the interaction of a field of frequency w with a nonlinear
material. There are many ways, ideally infinite, to generate
an output at 3w. In the most common process, three photons
of energy hw combine to give a single photon of energy
3%w. In this case, the THG is usually referred to as direct
THG. Additionally the THG process can be seen as a two-step
process: first, a photon of energy 2%iw is generated by the
interaction of two photons of energy 7iw; then, this combines
to another photon of energy /iw in order to get a photon
of energy 3/iw = 2hw + hw. The THG is then the combina-
tion of two second-order nonlinear processes, namely, SHG
followed by sum-frequency generation, and the process is
commonly defined as cascaded THG. Being a combination of
second-order processes, cascaded generation is forbidden in
centrosymmetric bulk crystals, nevertheless, as we will show
later, it is allowed in heavily doped semiconductors, similar to
metals [53-55] where second-order nonlinearities arise from
FE dynamics.

In order to describe the above-mentioned process, let us
assume time-harmonic dependence of the fields, i.e., F(r, 1) =
> ;Fjme ™" with F=E, H, or P. Equation (2) with

Eq. (3) and Maxwell’s equations can be rewritten as a set of
equations for each harmonic w; as follows:

2

w*
VxVxE;—e—LE;

B - wino(P;+PL) =0, (4a)

2
npé
BV(V -P)) + (0 +iyw))P; = _OTE" +8S.,. (4b)

In writing these equations we have considered dielectric lo-
cal contributions from the semiconductor, both linear, through
the local permittivity ¢, and nonlinear, through the nonlin-
ear polarization PNL Coupling between different harmonics
occurs through the nonhnear contributions PNL and S,,. For
simplicity, we assume that the pump field is not affected by
the nonlinear process (undepleted pump approximation), i.e.,
PEIL =S,, = 0 as we expect harmonic signals to be several
orders of magnitude smaller than the pump fields. The system
of Eq. (4) reduces then to three sets of one-way coupled
equations, one for the fundamental field (FF) (j = 1), one for
the second-harmonic (SH) frequency (j = 2), and one for the
third-harmonic (TH) frequency (j = 3).

The term that takes into account crystal lattice non-
linearities can be described using a bulk third-order
susceptibility x® as

NL 3
P, = gox P(E; - EDE;. Q)
In writing this equation we have assumed a centrosymmetric

material, which also implies x® = 0. The nonlinear source
terms due to free charges are as follows:

Su, = ——(E,V -P)) — iZ2%0 P, x H,
m m

2

w

+7‘(P1V P, +P,-VP))
2 ,32

=2 (V.-P,VV.P) (6)
3 eny

for the SHG and S,,, = S{) + S{) for the THG with
SO = —S(E,V - P, +E,V - Py)
m

—lﬂ(a)sz X H] ~|—a)|P| X H2)

0)10)2

o P,V -Pi+P,- VP, +P,V.-P, +P,- VP,)
0
132
3oV PVV PV -PIVV-Py), (7a)
en
2
w
Sﬁi):—ﬁ[VPl(P]V-P]—}—P]~VP1)
0
1 2
+P-PIVV P+ f V(V-P)’ (7b)

describing cascaded and direct THG due to FE dynamics, re-
spectively. The hydrodynamic nonlinear sources in the general
case of S,,, # 0 are reported in the Appendix.
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FIG. 1. Hydrodynamic nonlinearities in a highly doped semicon-
ductor slab: (a) a TM plane wave impinging on the slab with an angle
of incidence 6 is needed to induce a charge oscillation along the finite
thickness of the slab; (b) SHG and THG efficiencies  as a function of
the incident angle for a InP slab [doping level ny = 5.0 x 10" cm—3,
FF wavelength Agr = 10 um]; (c) THG efficiencies associated with
FE direct to FE cascaded and to lattice nonlinear contributions;
(d) nonzero component of the FF and SH fields in the vicinity of
the semiconductor surface as a function of the distance d from it.
The simulated slab is 1-pm thick.

III. HYDRODYNAMIC NONLINEARITIES IN
SEMICONDUCTOR SLABS

A. Cascaded vs direct THG

An initial step toward the understanding of nonlinear con-
version in heavily doped semiconductors is to consider a very
simple geometry, namely, a slab of a semiconductor. Since a
forcing electric field normal to the semiconductor surface is
needed to induce a charge oscillation along the finite thickness
of the slab, let us consider a transverse magnetic (TM) plane
wave impinging on the slab with an angle of incidence 6 as
depicted in Fig. 1(a).

By solving Egs. (4)—(7) we are able to calculate
SH and TH generated signals. We solved these
equations numerically using the finite-element method
within a customized frequency-dependent two-dimensional
implementation in COMSOL MULTIPHYSICS [56]. Although our
model is valid for arbitrary systems, its efficient numerical
implementation for three-dimensional systems might require
more advanced methods [57]. Our model can be applied
to many semiconductors and, in principle, our study
may be developed considering a fictitious ideal material.
Nevertheless, for the sake of a more realistic investigation,
without loss of generality, for our analysis we consider indium
phosphide (InP), a direct band-gap III-V semiconductor that
has been recently studied as a low loss plasmonic material for
the MIR region [58,59] after being introduced among many
alternative plasmonic materials few years ago [8]. InP is one
of the most common materials in optoelectronic applications
thanks to its easy integration and compatibility with the
conventional microelectronic foundry and is particularly

interesting for our analysis because of its very small effective
electron mass m = 0.078m, [8], m, being the electron mass.
MIR properties of undoped InP can be described through a
constant linear permittivity £,, = 9.55 [8] and a nonlinear
dispersionless bulk permittivity x® = 1.0 x 107'% m?/V?,
a value that corresponds to the highest among most common
semiconductors [60]. The damping rate y is in general
dispersive in the MIR [45], although its dispersion is expected
not to have effects on the nonlinear generation from the slab.
Indeed, here, the important parameter to be considered is the
real part of the dielectric function, that does not vary sensibly
with y. Conversely, in the case of a resonant structure,
such as the grating described later, y becomes important
because it affects width and amplitude of the resonance
and, as a consequence, the FF enhancement. However, what
matters in this case is the value of y around the resonance
rather than its dispersion. For all these reasons, we consider
in this article a dispersionless y = 10 ps~'. The pump
peak intensity considered is Iy = 10 W/um? (1 GW /cm?)
in all cases, and it corresponds to an input electric-field
Ey = 8.7 x 107 V/m, a value that can be obtained with a
commercial difference-frequency generation source based
on ultrafast laser pulses, focused with a lens objective at
the diffraction limit at A = 8 um, and that is also close
to the estimated breakdown field of heavily doped InP.
The THG efficiency has been obtained by normalizing
the power of the generated signal to the input power at
the fundamental frequency n = Ig/ly, where I is the
generated intensity. Since we are considering third-order
nonlinearities, /g is expected to be proportional to I3 as
a consequence 1 will scale with Ig. The simulated slab is
1-pm thick.

Figure 1(b) shows SHG and THG efficiencies as a func-
tion of the incident angle 6 for an InP slab with doping
level of np = 5.0 x 10" cm™ excited by a FF oscillating
at Apr = 10 um. As one would expect for a centrosymmet-
ric material, the SHG signal at normal incidence is zero
whereas it peaks at larger angles 6 ~ 72°, similar to SHG
from noble metals [61,62]. The THG efficiency, on the other
hand, gives a nonzero contribution also at normal incidence,
whereas increasing for large angles, peaking at 6 ~ 77°. As
can be inferred by Eq. (7b), direct FE contributions are zero at
normal incidence since V - P; is identically zero for 6 = 0.
Hence, it would be logical to think that the contributions
shown in Fig. 1(b) are due to the lattice nonlinearities since
also the SHG is zero. In order to clarify this point, in Fig. 1(c)
we plot the THG efficiencies associated with each contribu-
tion. Surprisingly the FE cascaded THG signal is not zero at
normal incidence, moreover, it is comparable to the lattice x ©*’
contribution. How 1is it possible to obtain a cascaded effect
from a signal that is apparently zero? To understand this, we
plot in Fig. 1(d) the nonzero component of the FF and SH
field in the vicinity of the semiconductor surface. It can be
observed indeed that the SH field has a nonzero longitudinal
component that follows the profile of the square FF amplitude.
This component is induced by the Lorentz term in Eq. (6)
inside the semiconductor. However, because the vacuum does
not support longitudinal modes, such a component cannot be
coupled to the far field. On the other hand, a SH longitudi-
nal component in the semiconductor combines back with the
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FIG. 2. THG efficiency n of a highly doped InP slab as a function of the incident angle 6 and of the wavelength Agr of the FF, calculated
taking into account distinct nonlinear sources: (a)—(c) are obtained considering only FE direct contributions; (d)—(f) refer to the FE cascaded
THG; (g)—(i) to the THG originating from background lattice third-order susceptibility x®. In each column a different value (highlighted
with a dotted white line) of the screened plasma wavelength XP (i.e., a different doping level) is considered. In (a), (d), and (g) Xp ~4 (ny =
5.0 x 10" cm™3); in (b), (e), and (h) A, =~ 6 pm (19 = 2.3 x 10" cm~?); and in (c), (), and (i) A, =~ 9 um (np = 1.0 x 10" cm™3).

magnetic field associated with the FF [through the Lorentz
term in Eq. (7a)], finally resulting in a transverse electric-field
component at the TH. A similar contribution is also given by
one of the convective terms. Indeed, a THG cascaded contri-
bution can be generated through an apparently zero SHG.

Although this effect can be easily observed with numeri-
cal simulations, it is not that simple to differentiate between
cascaded and direct contributions in an experimental setup.
Let us anticipate, however, that it is indeed possible to take
advantage from this process and experimentally demonstrate
this peculiar phenomenon by properly tuning the frequency
with respect to the natural ENZ frequency of doped semicon-
ductors as we will show below.

B. Hydrodynamic vs crystalline lattice contributions

Having clarified the nature of cascaded effects, let us now
focus on spectral properties of the THG process. For a given
material characterized by an effective-mass m and a fixed
doping level ny, the nature of its optical response depends on
the frequency of the external electromagnetic field. That is, the
doped semiconductor has a metallic behavior for frequencies
below the plasma frequency, whereas it behaves, such as a
dielectric for higher frequencies.

In Fig. 2 each map plot reports the simulated reflected THG
efficiency 7, of a slab of doped semiconductor as function
of the FF incident angle 6, and wavelength Agg, for different
conditions. Specifically, each row refers to the THG efficiency
obtained considering a distinct nonlinear source: SS; (FE
direct), S (FE cascaded), and wjuoPh- (lattice) respec-
tively. Each column refers to a different level of doping, and,
as a consequence, to a different screened plasma frequency
Dp > wp/ \/Eoo-

As discussed in the Introduction, a higher ng is predicted
to correspond to smaller hydrodynamic effects and, thus, to a
smaller THG efficiency for a given ratio ‘fu—': For instance, if

one considers the FE direct contribution, when Apg = Xp =
2mc

G, 1 goes from a peak of the order of 10~% in Fig. 2(a)
to a maximum of 107° in Fig. 2(c), i.e., the efficiency is
between 10 and 100 times bigger for a doping five times
smaller. Instead, for a given level of doping, an increase in
the efficiency is expected when there are the most favor-
able energetic condition for the enhancement of the fields
involved in the process. Peaks of the efficiency are, hence,
predicted for Apg = ):P and App = 35\}, in all cases, namely,
when the FF and the generated field are at the ENZ condition,
respectively. These features can be clearly seen in all plots
of Fig. 2 when the FF is at the ENZ condition. However,
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FIG. 3. (a) THG efficiency n of a highly doped InP slab as a
function of the incident angle 6 and of the wavelength Agp of the FF,
calculated for A, ~ 4 (ny = 5.0 x 10" ecm™?) taking into account
all the nonlinear sources; (b) THG efficiency as function of the
background permittivity for the three distinct nonlinear contributions
with ng = 5.0 x 10" em™3, m = 0.1m,, Agz = 1.8%,,and 6 = 40°.

when the generated signal is at the ENZ condition (only pos-
sible for the first column for App ~ 12 um), there is a sharp
peak only for the FE direct THG [Fig. 2(a)]. In the case of
the cascaded process, there is not a clear maximum of 7,
probably because an enhancement of the generated field is
not so effective for the overall efficiency if the other fields
involved in the process are not enhanced as well. The same
happens for the lattice nonlinearities because of the limited
interaction of the input field with the slab in the metallic
regime of the material since these contributions originate in
the bulk.

A maximum of the efficiency for Agp = ZXP is by contrast a
unique feature expected only for the cascaded THG. It corre-
sponds to the enhancement of the field generated through the
SHG when it is at the ENZ condition. The aforementioned
peculiarity represents a crucial clue for the experimental
demonstration of cascade effects in heavily doped semicon-
ductors, and can be clearly seen in Figs. 2(d) and 2(e) for
Arr 2~ 8 and App >~ 12 um, respectively.

A very important characteristic that emerges from Fig. 2
is the order of magnitude of the FE THG compared to that
arising from lattice nonlinearities. Indeed, although we used
a very high value of x®, third-order hydrodynamic contribu-
tions can be the most important in the portion of the MIR we
considered. This could be expected in the metallic regime of
the material far from the screened plasma wavelength where
the interaction of the pump with the bulk crystal lattice is hin-
dered. However, for the smaller level of doping the efficiency
of THG is higher for the hydrodynamic direct process than for
the lattice even at ENZ. This represents a remarkable predic-
tion toward the application of heavily doped semiconductor
for nonlinear plasmonics.

C. What to expect from experiments

At this point of the discussion, it is interesting to wonder
what kind of results one should expect from an experiment.
Let us now consider all the nonlinear sources at once to show
what it is expected in a more realistic setup. The results
are reported in Fig. 3(a) in the case of Xp ~4 um (ny =
5.0 x 10" cm™3). Unsurprisingly, in Fig. 3(a) one can see all
the main characteristics of the three nonlinear sources, which

appear separately in the first column of Fig. 2, combined in
a single plot. If our model is accurate enough in describing
nonlinearities in heavily doped semiconductors, an interesting
way to demonstrate our predictions, taking into consideration
Fig. 3(a), seems to look for a very peculiar trend of the THG
efficiency at wavelengths close to 2)1p and to SXP. Comparing
Figs. 3(a) and 2(d), it is clear that the peak at ZXP can only be
caused by a cascaded generation. A similar reasoning seems
to make sense for the peak at 3%, when considering the FE
direct THG.

D. The influence of the semiconductor background permittivity

Hitherto, we considered a well-defined material, however,
it is interesting to study how the hydrodynamic nonlinear
sources are influenced by the material physical properties
other than the doping level ny, even if the actual physical
parameter cannot be varied in the experiments as is the case
for the background permittivity . In Fig. 3(b) we show
the THG efficiency n as function of the &, for the three
THG contributions with all other variables unchanged. The
trend of hydrodynamic THG efficiencies in Fig. 3(b) might
be intuitively understood thinking to the interaction of light
with the slab from the point of view of Snell’s law. Indeed, the
refractive index increases with the square root of €. This also
defines the angle of refraction of a light inside a material (the
higher the refractive index, the smaller the angle of refraction).
Therefore, for a given angle of incidence, a higher e, causes
the transmitted FF at the interface air/semiconductor to be
closer to normal incidence when propagating inside the slab.
However, we know from the previous paragraphs that surface
contributions are hindered at normal incidence, so, the FE
direct THG efficiency due only to surface contributions [see
Eq. (7b)] becomes smaller when increasing e+,. Conversely,
the Lorentz term is maximum at normal incidence, and it is
then favored for higher ¢o. As a consequence, taking into
account Eq. (7a), the cascaded THG efficiency has a very pe-
culiar trend caused by a balance between surface and Lorentz
contributions. Indeed, in Fig. 3(b), the FE cascaded contri-
bution curve has the same decreasing trend as the FE direct
contribution one for very small values of €., i.e., far from
normal refraction where surface contributions are dominant
with respect to the Lorentz term. It reaches a minimum where
the contributions considered are of the same order and finally
grows steadily with e,, when the Lorentz contribution be-
comes the most relevant (closer to normal refraction). Instead,
for background lattice nonlinearities, n is higher for lower
€00 Simply because of the higher transparency of the material.
As a consequence, one should expect relatively higher hydro-
dynamic nonlinear contributions when considering a material
with a lower background permittivity, such as the conductive
indium tin oxide [48].

IV. A RESONANT PATTERN

The analysis developed so far was useful to understand
some fundamental properties of hydrodynamic nonlineari-
ties. From the point of view of technology, however, it is
perhaps more interesting to apply our model to a nanopat-
terned semiconductor slab with a geometrical resonance in
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FIG. 4. Optical properties of a InP grooves array for THG:
(a) schematics of the geometry; (b) linear spectra of the structure
at normal incidence when ny = 1.2 x 10" cm™ (X, = 8.3 um),
d =900, a =150, and 7 = 400 nm, the thickness of the slab on
which the grooves are carved is H = 3 pum; (c) and (d) electric- and
magnetic-field enhancements in correspondence of the resonance; (e)
overlap integral as a function of the FF wavelength Agg; (f) THG
efficiency as a function of Agr in the proximity of the resonance for
the three distinct nonlinear contributions, FE direct, FE cascaded,
lattice, and for their combination (all).
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the MIR. To this aim, we take now into consideration an
infinite array of parallel subwavelength grooves (a grating) as
depicted in Fig. 4(a). This system supports plasmonic reso-
nances and allows to couple virtually all incident energy into
the active material [63—65] at normal incidence. In Fig. 4(b)
we report the simulated linear spectrum of the pattern we
designed in order to have a resonance in the MIR for a
TM-polarized excitation. Once the material properties have
been fixed, the electromagnetic characteristics of the pattern
can be designed as function of the array period d and of
the dimension of the grooves, the aperture a, and the height
h [see Fig. 4(a)]. The material considered is again InP and
its doping level is np = 1.2 x 10! cm™3 (Xp = 8.3 um). The
pattern produces a resonance around A, = 10.6 um where
the reflectance is almost zero [see Fig. 4(b)]. In Figs. 4(c) and
4(d) we report the electric- and magnetic-field enhancements
in correspondence of the resonance. The fields are confined
and enhanced into the grooves. This means that approxi-
mately all the pump energy impinging on the structure is
coupled inside the material and localized in a much smaller
volume.

In Fig. 4(f), we report the reflected THG efficiency n at
normal incidence of the grooves array as function of the
wavelength of the FF App, considering the same processes
analyzed for the slab: FE direct, FE cascaded, lattice, and

all nonlinear sources combined. The pump peak intensity of
the TM plane wave impinging on the structure is the same as
before in the case of the slab, Iy = 10 W/um? (1 GW /cm?).
A very important feature is the possibility to get FE direct
THG even at normal incidence thanks to the plasmonic be-
havior. As it can be noted, all the curves as expected reach
a peak approaching the resonance. Their trend is influenced
by the overlap between the fundamental and the generated
fields, estimated calculating the overlap integral for the bulk
contribution f xDE,|*E, - E} dV and reported in Fig. 4(e)
(note that the exact overlap integral should take into account
the specific expressions for all nonlinear sources). The peak
efficiency of FE contributions is several orders of magnitude
higher than in the case of the slab, and it always surpasses
that of intrinsic lattice nonlinearities. There, the maximum
value was around 107° for the direct process and smaller for
the cascaded, instead, here we get a value larger than 10~*
for the first process and bigger than 1073 for the cascaded.
Consequently, for the grooves array the efficiency is, at least,
10? times larger for the FE direct THG and more than 10*
times higher for the cascaded THG with the same pump
intensity; whereas the THG due to the lattice increases just
by a factor of 10. Therefore, although we have considered
a material with very high third-order nonlinear susceptibility
x®, we predict that FE contributions will overcome by far
conventional semiconductor nonlinearities in THG processes
in the MIR.

V. CONCLUSIONS AND PERSPECTIVES

We have used a hydrodynamic model to describe FE non-
linear optical dynamics in heavily doped semiconductors.
In particular, by deriving nonlinear hydrodynamic terms up
to the third order, we have investigated FE contributions
to the THG process. Contrary to noble metals at optical
frequencies, the heavily doped semiconductor TH response
is predicted to be strongly driven by hydrodynamic non-
linearities. We have found, in fact, that such nonlinearities
might generate THG signals up to two orders of magnitude
larger than conventional semiconductor nonlinearities when
combined with plasmonic field enhancement. Moreover, we
have showed that cascaded contributions, which are very
often neglected, might be extremely important, even when
one of the constituent signals appear to be negligible. Al-
though in most realistic experiments it would be impossible
to differentiate cascaded effects from conventional nonlinear
signals, we have proposed a simple method to experimentally
verify our findings. Field-effect gated devices and optical
generation of free carriers both characteristics of semicon-
ductors could provide a route for tunable nonlinear optical
systems on semiconductor-based photonic integrated circuit
platforms. We believe that these results could open new
avenues for integrated nonlinear optics at MIR frequencies
and beyond.

APPENDIX: HYDRODYNAMIC NONLINEAR SOURCES

In Sec. II, we derived the system of equations Eq. (4)
and, assuming S,, = 0, we reported in Eqs. (6) and (7) only
the nonlinear sources S,, and S,,. However, in the most

115305-7



DE LUCA, ORTOLANI, AND CIRACI

PHYSICAL REVIEW B 103, 115305 (2021)

general case S,,, # 0. It means that, for high input intensities,
the nonlinear field produced may be converted back to the

J

FF. Taking into account Eq. (3) this may happen through
difference-frequency generation of the second order,

S0t o =~ (E]V Py + EV - P}) =i~ 2 (w,Py x H} — P} x Hy)
w12 * * * *
+ o P,V 'Pl +P2-VP1 +P1V'P2+P1 -VP,)
0
2 g " «
—ZZ(V.P,VV.P{ +V.PVV .Py), (A1)
3 eny

through difference-frequency generation of the third order,

2
w
8o n-o-o =~ 5 (V- POV - P{ + P} - VP]) + P - P{V(V - Py)]
0
w13

—i—W[(V “P})(P3V - P} +P; - VP} + PiV - P; + P} - VP3) + 2P; - P{V(V - P¥)]
0

1 2
- VI(V -PHAV - P3)], A2
52z VIV POV - Po)) (A2)
eventually, third-order effects may also occur as Kerr-type nonlinearities,
3) wi? * *
S ot = —m[(V PP - VP) + P -PV(V - P))]
w2
+ﬁ[(v -P)(P; - VP} + PV - P, + P} - VP) + 2P| |’V(V - P))]
0
1 p? 5
+oo— VIV PRV P, (A3)
9 e’ny

where all the variables and the constants have been intro-
duced in Secs. I and II. As described in Sec. II, in deriving

(

these equations we assumed time-harmonic dependence of
the fields.
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