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Efficient electronic structure calculations for extended systems of coupled quantum
dots using a linear combination of quantum dot orbitals method
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We present a novel “linear combination of atomic orbitals”-type of approximation, enabling accurate elec-
tronic structure calculations for systems of up to 20 or more electronically coupled quantum dots. Using realistic
single quantum dot wave functions as a basis to expand the eigenstates of the heterostructure, our method shows
excellent agreement with full 8-band k - p calculations, exemplarily chosen for our benchmarking comparison,
with orders of magnitude reduction in computational time. We show that, to correctly predict the electronic
properties of such stacks of coupled quantum dots, it is necessary to consider the strain distribution in the
whole heterostructure. Edge effects determine the electronic structure for stacks of <10 quantum dots, after
which a homogeneous confinement region develops in the center. The overarching goal of our investigations is
to design a stack of vertically coupled quantum dots with an intraband staircase potential suitable as an active
material for a quantum-dot-based quantum cascade laser. Following a parameter study in the In,Ga;_,As/GaAs
material system, varying quantum dot size, material composition, and interdot coupling strength, we show
that an intraband staircase potential of identical transitions can, in principle, be realized. A species library we
generated for over 800 unique quantum dots provides easy access to the basis functions required for different
realizations of heterostructures. In the associated paper [Mittelstddt ef al., Phys. Rev. B 103, 115301 (2021)], we
investigate room temperature lasing of a terahertz quantum cascade laser based on a two-quantum-dot unit cell

superlattice.
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I. INTRODUCTION

The unique electronic properties of stacked quantum dots
(QDs) offer enhancements not only for optical semiconductor
devices such as lasers, optical amplifiers, and single-photon
devices, but can also be advantageous for quantum cascade
lasers (QCLs). In QCLs, amplification of radiation is real-
ized via intraband transitions of electrons running down a
staircase potential generated by a semiconductor superlattice
at an external bias. As proposed in Refs. [1-4], QD-based
QCLs can benefit from intrinsically reduced electron-phonon
scattering processes, free-carrier absorption processes, and an
intrinsically narrow gain spectrum of electronically coupled
QDs, resulting in improved temperature resilience and greatly
reduced laser threshold current densities. The advantages of
a three-dimensional confinement of carriers in QCLs are
demonstrated by several theoretical studies and experiments
on quantum cascade structures utilizing QDs [2,5-7], but
also using quantum well-based structures in strong magnetic
fields splitting the 2D subbands into a series of Landau levels
[8-11].

A realization of a QCL based on a superlattice solely
build of coupled QDs, cf. Fig. 1, however, is still lacking
mainly for two reasons. On the one hand, a precise control
over the desired structure during epitaxy, i.e., over the QD’s
size, shape, composition, and their relative vertical position
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to each other, is needed. On the other hand, to arrive at a
promising device design proposal, a rigorous simulation of
the electronic structure of stacks of QDs requires plenty of
iterations already at the modeling stage. The effort to find
suitable design parameters scales with the computational cost
for an iteration of simulating the electronic structure of a

FIG. 1. Schematic illustration of light amplification in a QD cas-
cade structure driven via an external bias. Stacks of electronically
coupled QDs build a staircase potential providing optical transitions
(blue electron densities) and states making nonradiative relaxation of
carriers efficient (green electron densities).
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realistic system of more than ten coupled QDs, as well as
calculating dozens of electronic states. However, regarding
the theoretical proposals and calculations of QD-based QCLs,
the literature is based solely on assumptions of the electronic
structure of such extended systems. Most investigations on the
electronic properties of coupled QDs within the framework
of tight-binding and 8-band k - p-models [12—16] involve just
a stack of two QDs and a few involve nine layers of QDs
calculating a maximum of 12 electronic states, where, in par-
ticular, the tight-binding models are limited by large systems
containing tens of millions of atoms.

In this paper, we demonstrate a novel “linear combination
of atomic orbitals”-type of approximation, making simula-
tions of electronic properties of large systems of 20 and more
electronically coupled QDs very efficient. Our “linear com-
bination of quantum dot orbitals” method (LCQQO) works the
following way. First, a library of QDs, systematically covering
different sizes, shapes, and chemical composition profiles,
together with the associated single-particle eigenstates, is cre-
ated. Then, driven by the desired target properties, systems
of coupled QDs are virtually assembled together with the
associated Hamiltonian, which is then expanded using the
library of single-QD wave functions as a basis. The method
as implemented herein uses basis functions calculated via an
8-band k - p model including a realistic structure, strain, and
strain-induced internal fields, but can be implemented as such
on any atomistic or continuum model. The resulting LCQO
eigenstates show an excellent agreement in a side-by-side
comparison with a full 8-band k - p simulation for stacks of
two QDs and a benchmark comparison of the two methods
for an exemplarily chosen system of ten stacked QDs shows
a reduction of at least three orders of magnitude in computa-
tional time. By using the LCQO approach, we are able to take
into account the individual three-dimensional morphology of
each QD within the stack, calculate strain, and strain-induced
internal fields of the whole structure as well as interdot elec-
tronic coupling.

We show why simulating ten or more QDs is necessary to
obtain uniform conduction band energy splittings and electron
probability densities along the QD chain, highlighting the in-
fluence of strain and piezoelectric fields on the band structure
of electronically coupled QDs. A simulation of 20 QDs is,
therefore, necessary to get an intraband staircase potential of
several identical transitions as adaptable for a QD cascade
active region design.

This paper is organized as follows. After introducing the
method of calculation and a comparison to an 8-band k - p
simulation, we analyze the electronic properties of stacks of
In,Ga;_,As QDs embedded in a GaAs matrix with a focus on
conduction band intraband transitions as applicable in QCLs
based on a QD superlattice and demonstrate the necessity of
simulating the entire heterostructure. Subsequently, we pro-
vide a parameter study by varying quantum dot size, material
composition, and interdot coupling strength of stacks of QDs.
The last part shows that a uniform staircase potential of iden-
tical transitions of an exemplary QD heterostructure can be
realized and highlights the impact of applying an external
bias. In the associated paper Ref. [17], we study a QCL with
QD chains as gain material, suitable for light amplification in
the THz regime and device operation up to room temperature.

The underlying parameter studies were feasible thanks to the
orders of magnitude reduction in computation time and access
to the pre-built QD species library.

II. LINEAR COMBINATION OF QUANTUM
DOT ORBITALS METHOD

Along the lines of a linear combination of atomic orbitals
(LCAO) method, a large system M of coupled QDs is split
into subsystems [ of single QDs, so that

M = U{I | I is a single QD subsystem}, €))

for which sets of single-particle states {|@!), ..., |@!)} can
be efficiently calculated. As illustrated in Figs. 2(a) and 2(b),
these single-particle wave functions are calculated for differ-
ent QD species building a library of wave functions then used
as a basis in the LCQO approximation of the eigenstates of
the hybrid system

m

W) =D aulel) . )

k=1

where {|g)} = U{l¢})} and the {|¢;")} are partially su-
perimposed. In this way, the number of coefficients
{ai(r), ..., a,(r)} in the variational problem of finding the
eigenstates of M is reduced to m = |M|xn, where |M| is the
number of coupled QDs and » is the number of single-particle
states used as basis functions per QD. The number of coeffi-
cients m is therefore independent of the number of grid points
of the |g0,1(” ). We note that the amount of basis functions » for
each QD is not necessarily a constant and could, for example,
be the number of bound states for each QD in a system
composed of QDs differing in size or material composition.
When creating the basis for the LCQO method, the goal is
to approximate the eigenstates of the heterostructure as best
as possible with a limited set of basis functions, which is
achieved by using realistic single QD wave functions. To find
the eigenstates of M, we adopt the Rayleigh-Ritz variational
principle for the energy functional [18]. Using the expansion
in Eq. (2),
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where H denotes the hybrid system’s Hamiltonian. Notably,
the system Hamiltonian H contains not a mere superposi-
tion of the electrostatic potentials of the QD subsystems,
which would be an oversimplification for systems of QDs,
cf. Sec. III B, but instead considers the strain distribution in
M. Since the strain state and the resulting piezoelectric fields
in the QD heterostructure strongly depend on the actual QD
configuration as well as geometry and material composition
of the individual QDs, the Hamiltonian has to be generated
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FIG. 2. Schematic illustration of the LCQO-method for a system of two QDs. (a) A library of basis functions for different QD species
(A, B, ...) is created. (b) The heterostructure is formed using the library’s QDs as building blocks (M = A U B), whereby the subsystems are
partially superimposed. The system’s Hamiltonian is generated, considering the strain distribution and resulting piezoelectric potentials in the

in the hybrid system M. (c) The eigenstates of the heterostructure |y

individually for each unique assembly. Varying the energy
functional in Eq. (4) with respect to the expansion coefficients
d¢;/da};, and minimizing the energy, leads to the generalized
eigenvalue problem

Hy -+ Hm\ (q S Sim\ [

H,, -+ H,,/) \an Soi <+ Spm/ \dm

)
that yields m eigenvalues ¢; and corresponding eigenvectors
la;), containing the coefficients a; of the LCQO eigenfunc-
tions |y, cf. Fig. 2(c).

So far, the LCQO method is universal and could be imple-
mented on top of any atomistic or continuum model used to
calculate the electronic states of the single QDs. In the present
work, we exemplarily use an established 8-band k - p model,
including strain-induced internal fields up to second-order
piezoelectricity, to calculate the single-particle wave functions
of the individual QDs, see Refs. [19-21] and the Supplemental
Material in Ref. [22] for details; also see Refs. [23-37] and
references therein. Within the 8-band k - p model, the LCQO
basis is expanded according to

8
lot) = ol (6)

o=1

with the complex-valued envelope-function coefficients by,
and the atom-like Bloch functions |£,). The LCQO eigenfunc-
tions in Eq. (2) are then given as

8
[0 = "d Y b ) (7)
o=1

=1

A performance benchmarking of the LCQO method compared
to a full 8-band k - p calculation for exemplary systems of two
and ten QDs is provided in Fig. 3. The benchmark reveals
already for the calculation of 20 single-particle states in a
stack of ten QDs a reduction of at least three orders of magni-
tude in computational time for the LCQO method compared
to a full 8-band k - p calculation. Since the calculation time
for the k - p method increases strongly with the number of
states, it is impractical to calculate more states, while with
the LCQO method, 50 and more eigenstates can be calculated
very effectively.

LCQO
i)

are expanded in the union of the basis {|g{")} := {l¢})} U {l¢/)}.

III. RESULTS

We investigate the electronic structure of vertically coupled
In,Ga;_,As/GaAs QDs, with the goal to design a heterostruc-
ture with an intraband staircase potential suitable for a
QD-QCL active region. A decisive advantage of the LCQO
method is that a library of basis functions for realistic single
QDs can be prepared to facilitate a parameter series of coupled
QD systems, cf. Fig. 2. We created such a species library
for over 800 In,Ga;_,As/GaAs QDs varying in size, verti-
cal aspect ratio AR, (height & divided by the base diameter
dp), and material composition, within experimentally realistic
limits. In agreement with transmission electron microscopy
(TEM) investigations in Refs. [38,39], the In,Ga;_,As QDs
are modeled as truncated pyramids with a sidewall inclina-
tion of 40°, embedded in a GaAs matrix. With the exception
of the parameter series in Sec. III C, results are presented
for a model QD with a base diameter of 20.8 nm, and a
height of 2.8 nm (AR, = 0.135), along with experimental re-
ports in Refs. [40-43]. In comparison to the literature, our
model QD has a slightly smaller AR, to account for material
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FIG. 3. A comparison of calculation time between the 8-band
k - p-simulations (red squares) and the LCQO method (blue circles).
Empty and filled symbols denote a stack of two and ten QDs, re-
spectively. The total calculation time #,, is normalized to an LCQO
simulation, calculating two states in a stack of two QDs. The simula-
tions were performed on AMD Opteron 6274 processors, where the
k - p-simulations were parallelized using four threads.
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FIG. 4. Evolution of the energetic positions of the p-to-s transi-
tions for a stack of two identical QDs as a function of (a) barrier
width and (b) material composition for the k - p model (red squares)
and the LCQO model (blue circles). Semifilled circles and squares
distinguish the p, and p,-to-s transitions.

interdiffusion in real systems since experiments show QDs
exhibiting a composition gradient with a decreasing indium
content, which, in turn, results in a confinement region smaller
than the QDs geometry. As basis functions per QD, we cal-
culate the five lowest Kramers-degenerate electron states (ten
states per QD), which is the number of bound electrons in the
model QD. This base size results in an excellent agreement of
the energy eigenvalues and envelopes, as shown below for the
states in a stack of two QDs. In addition, the Supplemental
Material [22] shows that already with a base of n = 10 the
energy eigenvalues ¢; of the lowest four Kramers-degenerated
orbitals converge against the values of the full k - p calcula-
tion within a 0.1% error. To solve the eigenvalue problem in
Eq. (5), we use a standard linear algebra package (LAPACK)
with a finite-difference grid resolution of two monolayers
(MLs) of GaAs (5.6503 A), equally in the case of the fullk - p
calculations.

A. Direct comparison between LCQO and a full
8-band & - p calculation

We compare the results of LCQO and full 8-band k -
p calculations for stacks of two identical In,Ga;_,As QDs.
Figure 4 shows the evolution of the two intraband transi-
tions [, ) — [5,) in the system as a function of QD

¥, |2

S
3

8-band k - p-model

LCQO

s, [?

separation (coupling strength) and material composition for
both methods. The eigenstates |y, ) and [v,) have an odd
(p-like) and even (s-like) symmetry [21], respectively, allow-
ing optical transitions in agreement with parity selection rules.
The LCQO method results and full 8-band k - p calculations
are indicated by blue circles and red squares, respectively. In
Fig. 4(a), the separating barrier width b is varied between 2
and 36 MLs in steps of 2 MLs, for two In; cGagpoAs QDs,
mapping the transition from strong to vanishing interdot cou-
pling. Figure 4(b) shows the influence of an increasing gallium
content up to 50% (in steps of 10%) on the transition energies
at a constant barrier width of 16 MLs. The methods agree
well in both series and produce similar transition energies with
deviations <4 meV, smaller than the overall tuning range. The
physical origin of the global minimum around b = 10 MLs
in Fig. 4(a) will be discussed in detail in Sec. III C. Figure 5
shows the probability density |;|? for the first four Kramers-
degenerate electron states for b = 16 MLs calculated using
the full 8-band k - p (top) and LCQO method (bottom). Both
probability density and symmetry of the eigenstates found
using the LCQO method are in excellent agreement with the
full 8-band k - p results. Overall, the LCQO method maps the
electronic structure of coupled QDs excellently and provides
realistic results comparable to a full k - p calculation.

B. Impact of hydrostatic strain and piezoelectricity
on stacks of electronically coupled QDs

The lattice mismatch of 0.4 A between InAs and GaAs
results in a highly strained heterostructure. In a simplified
picture, the electronic states of the coupled QDs shift linearly
with the hydrostatic strain e, [36]. Figure 6(a) depicts the
hydrostatic strain distribution for three exemplary systems
of In; (GagpAsQDs: a single QD and stacks of two and
ten QDs, with a separating barrier width of » = § MLs. The
larger lattice constant of InAs leads to a compressive strain
within the single QD in Fig. 6(a). Subsequent stacking of
QDs results in a cumulative compressive strain for the QDs
in the center, while strain relaxation mainly occurs at the
top and bottom of the stack. For the stack of ten QDs, the
strain distribution is more or less uniform in the stack’s central
region, cf. shaded area in Fig. 6. This is also reflected in
the distribution of the piezoelectric potential ¢ in Fig. 6(c).
For a single QD, the piezoelectric potential vanishes inside

‘wpy‘z

oo
/—
P

[¥p.|*

-
=

FIG. 5. Probability densities of the first four Kramers-degenerated electron states (isosurface at 90%) for the 8-band k - p model and the
LCQO method, respectively. The system considered is a stack of two identical In; (GagoAs QDs with a barrier width of b = 16 MLs showing
binding and antibinding s-type orbitals, |1, |* and |, |?, respectively, followed by p-type orbitals |y, |* and |, |*, respectively.

115302-4



EFFICIENT ELECTRONIC STRUCTURE CALCULATIONS ...

PHYSICAL REVIEW B 103, 115302 (2021)

Single QD Two QD stack

Ten QD stack

Ch [%]

?&HK_\M[\MHHHHMHMM(

O NHHRRUYR

1,100 |- -
1,000 |-

900

Ve [meV]

800 - s

) W

700 |-

600 | H

il e

Z 160—(6)
2 - .
~ 0| J
8 120 |
s
(%3] | 4 |
.

807 | | | | ]

80 100 120 140 160 80

Distance z [ML] Distance z [ML]

T
1
1
|
|
|
|
|
|
1
1
1
|
|

100 120 140 160 180 60 80 100 120 140 160 180 200 220 240 260

—-50 0 50 100
Piezoelectric potential ¢ [MV]

FIG. 6. Diagrams illustrating the hydrostatic strain, piezoelectricity, and the conduction band edge for a single QD and stacks of two
and ten identical In; ¢GagoAs QDs. Here, the barrier width is set to » = 8 MLs and the wetting layer is omitted. (a) The distribution of the
hydrostatic strain e, and (b) the conduction band edge evolution Vcg. (c) The corresponding distribution of the piezoelectric potential within
the (001)-plane trough the center of the QD stacks. The |1/;(z)|> show the probability densities of the first three Kramers-degenerate electron

states.

the QD and shows a quadrupole-like distribution outside the
QD, with inverted polarity at the top and bottom interfaces.
As a result, the superimposed single QD potentials cancel
each other out in the central region of the stack and are
amplified at both ends of the chain, cf. Fig. 6(c). Fundamen-
tally, the vanishing piezoelectric field inside the QDs and the
symmetry of the quadrupole-like potential are linked to the
first- and second-order piezoelectricity, as shown in Ref. [21].
Both the inhomogeneous strain distribution and the resulting
piezoelectricity impact the electronic structure by shifting the
conduction band edge Vg, cf. solid black line in Fig. 6(b).
In the uniform central region, we expect to find cascades of
electron states, delocalized over neighboring QDs, suitable
to generate the staircase potential required for a QCL active
region. The probability densities |1/;(z)|?> for the three lowest
Kramers-degenerate electron states are shown in Fig. 6(b)
exemplarily. As expected, the density of the first two states
is localized within the QDs at the QD-chain edges, having
the lowest Vg potential. The third state’s density (red) is

already delocalized within the QD-chains central region and
provides an s-type orbital constituting a “ground state” within
a staircase-potential buildup at a certain applied external bias.
The energetic sequence of the orbitals, as they occur in cou-
pled QDs, depends decisively on the coupling strength and
thus on the interdot distances. To illustrate this, we inves-
tigate the orbital symmetry of the lowest conduction band
states in two coupled QDs as a function of the barrier width.
Figure 7(a) shows the evolution of the energetic position &;
of the lowest Kramers-degenerate electron states for the stack
of two QDs discussed in Fig. 4(a). For strong QD coupling,
cf. shaded area in Fig. 7(a), we find the conventional single-
QD sp-/p-/ p-type orbital sequence, with the binding s-type
orbital as the ground state, providing the two optically ac-
tive intraband transitions investigated throughout this work.
With the increasing separation of the QDs, the antibinding
s-type orbital is lowered in energy, until for b = 12 MLs, the
orbital sequence is changed to s,-/s,-/p-/p-type. Above a
specific separation (b = 36 MLs for the QDs considered), the
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FIG. 7. Evolution of the state’s absolute energy and hydrostatic
strain. (a) Energetic position of Kramers-degenerate electronic states
&; as a function of the separating barrier width b in a pair of two
In; ¢GapoAs QDs. Filled and semifilled circles denote the binding
sp-, antibinding s,-, and p-type orbitals (black, blue, and green),
respectively. (b) Maximum negative hydrostatic strain ej ., as a
function of the barrier width b for an isolated pair of coupled QDs
(blue) and the two central QDs in stacks of 4 to 14. The dotted line
represents the hydrostatic strain within a single QD.

two s-type orbitals are no longer hybridized and each can be
associated with one of the electronically uncoupled QDs. A
remaining energy difference is due to different strain states
and long-range piezoelectric fields in both QDs. Figure 7(b)
compares the hydrostatic strain state of an isolated system of
two coupled QDs with the two QDs in the center of stacks of 4
to 14 QDs. A clear difference is visible in the strong coupling
regime. The hydrostatic strain shows a maximum for the two
QDs in the central region of the stacks of four and six QDs
and then decreases again with the number of QDs building the
QD chain. This is due to the lattice being deformed irregularly
at the edges of the QD chain, where the relaxation of the
hydrostatic strain occurs. In all cases, the hydrostatic strain
state of a single QD is recovered for separations b > 36 MLs.

C. Intraband transition energies as a function of QD size,
material composition, and coupling strength

In this section, we explore the influence of interdot cou-
pling strength, QD material composition, and QD size on
the intraband transition energies for a stack of ten model
QDs. Based on the knowledge from the preceding section,
we investigate the electronic properties of the homogeneous
central region of the QD stack that is eligible for a staircase
potential with constant energy spacings. In this regard, ten is
the minimum number of coupled QDs for the edge effects
to be converged, leading to a flat conduction band edge and
constant hydrostatic strain within the two central QDs, cf.
shaded area in Fig. 6. In Fig. 8, the evolution of the p-to-s
intraband transition energies in the central QD pair is shown
as a function of separating barrier width b [Fig. 8(a)] and QD
material composition [Fig. 8(b)], as well as QD size [Figs. 8(c)
to 8(e)], where height, base diameter, and vertical aspect ratio
are kept constant, respectively, for b = 16 MLs. For strongly
coupled QDs, we observe a red-shift of the transition energies
with increasing barrier width, up to a global minimum at b ~
8 MLs, which coincides with the change in orbital sequence
discussed above. With increasing gallium content, the transi-
tion energy shows a maximum at Ing gGagAs for the p,-to-s
and a monotonic decrease for the p,-to-s transition. This is
due to a Vg conduction band potential in the QDs increasing
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FIG. 8. Evolution of the transition energy Aegj; of the p-to-s
intraband transitions for the two central QDs in a stack of ten
identical QDs as a function of (a) barrier width b, (b) QD mate-
rial composition, and (c)—(e) size for a constant base diameter d,,
height &, and aspect ratio AR,, respectively. Except for (b) and red
symbols in (e), In; 0Gag gAs/GaAs QDs are considered and separated
by b = 16 MLs. The red semifilled circles in (e) show the transition
energies for Ing sGay s As/GaAs QDs at a constant aspect ratio.

with the gallium content and also leading to a reduced energy
splitting of the p-type orbitals. Figures 8(c) and 8(d) show a
monotonic blue- and red-shift for an increasing QD height for
a constant base diameter, i.e., an increasing aspect ratio and
a decreasing aspect ratio at constant height, respectively. An
energetic red-shift can be achieved by increasing QD size at
constant aspect ratio [Fig. 8(e)], with the red symbols show-
ing Ing 5Gag sAs QDs, shifting the transitions further to lower
energies and decreasing the splitting of the p-type orbitals,
cf. Fig. 8(b). We discuss the global minimum in Figs. 8(a) and
4(a) by considering the impact of barrier width and hydrostatic
strain on the energy of the intraband transitions. Figures 9(a)
and 9(b) depict the energies of the p-to-s transitions as a
function of barrier width for a stack of two QDs, wherein
Fig. 9(a) strain, as well as piezoelectric fields, are neglected
and in Fig. 9(b) strain is included but piezoelectricity is omit-
ted. With neglected strain and piezoelectricity, the transition
energies show a monotonous decrease with increasing barrier
width (red-shift). This is linked to the increasing volume of
the orbitals, cf. black diamonds in Fig. 9(a) since, with in-
creasing separation of the QDs, a growing part of the electron
densities is located in-between the QDs. The density’s volume
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FIG. 9. Evolution of the energies Ag;; of the p-to-s intraband
transitions in a stack of two identical QDs as a function of barrier
width b (red semifilled squares). (a) The transition energies omitting
strain as well as piezoelectricity and the volume v; of the correspond-
ing binding s-type and the p-type orbitals (black filled and semifilled
diamonds). v; is the volume of the orbital i at which the electron
density is > 0.1% of its maximum value. (b) The transition energies
including strain but neglecting piezoelectricity. Vg depicts the depth
of the QDs potential well measured in the mid of the top QD, i.e., the
minimum of the conduction band edge. The transition energies were
calculated using the 8-band k - p model.

decreases again for b > 32 MLs, as the QDs decouple and the
electrons more localized. The inclusion of strain into the tran-
sition energies calculation already shows the global minimum,
cf. Fig. 9(b). With increasing barrier width, the depth of the
QDs potential well AVcg, cf. black triangles in Fig. 9(b), is
increasing as the hydrostatic strain decreases, cf. Fig. 7(b),
resulting in a blue-shift of the transition energies. This ef-
fect dominates for barrier widths of b > 8 MLs, whereas in
the strong coupling regime, the red-shift resulting from an
increasing volume of the electron orbitals is prevailing.

D. Intraband staircase potential design

In this section, we show that an intraband staircase po-
tential of subsequent, identical intraband transitions can be
realized in such stacks of QDs. In Fig. 10, the conduction
band staircase potential for the two central QDs in a stack of
ten QDs at various external biases are shown, illustrating its
influence on the state’s energy and delocalization. The colored
lines show the probability densities of the Kramers-degenerate
electron states exhibiting a maximum within the two central
QDs, whose p-to-s transition energies correspond to the dis-
cussion in the previous Sec. III C and Fig. 8. Figures 10(a)
and 10(b) show the Vg band structure without and with an
external bias of E.q = 24 kVem™', respectively, which has
basically three effects on the staircase potential: With increas-
ing external bias, the energetic distances of the s- and p-type
orbitals between the adjacent QDs, i.e., interdot s-to-s or
p-to-p transition, depicted by the solid blue and dashed green
lines, respectively, are increasing. In contrast, the energies
of the p-to-s intradot transitions remain almost constant; see
Fig. 11 for an evolution of the intradot transition energies as
a function of the external bias. A third effect is the increasing
localization of the states with the bias. Figure 10(c) shows the
staircase potential at an external bias of Eey = 72 kVem ™,
where the probability densities of the s- and p-type orbitals
are almost completely located in their respective QDs.

a b
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— pitype
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2 900
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840 Spriype 880
140 160 180 140 160 180
Distance z [ML] Distance z [ML]
1,090 — ——
1,050 (c)
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~ =
2 930 sp-typé J
Lu 890 | mrTT T e T -
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Distance z [ML]

FIG. 10. The Vg band-structure staircase potential for the two
central QDs in a stack of ten identical In; (Gag oAs/GaAs QDs sepa-
rated by b = 16 MLs at various external biases E.y. Gray lines and
shaded areas depict the calculated conduction band-edge and barrier
material, respectively. Colored lines show the |¥;(z)|? of the s- and
p-type Kramers-degenerate electron states for the QDs in the central
region, showing a maximum probability density. (a) The staircase
potential without an external bias. (b) The staircase potential at
E.q = 24 kVem ™. Solid blue and dashed green lines depict the s;-
and p-type orbitals discussed in Sec. III C. (c) the staircase potential
at Eq = 72 kVem™! showing four central QDs.

Lastly, we examine the electronic structure of an exem-
plary stack of 20 coupled QDs under external bias and show
that transition energies can be engineered to provide optical
gain in the infrared spectral range. Figure 12 shows a zoom
into the relevant conduction band region for a stack of 20
identical Ing gGag,As/GaAs QDs with a height of 5 MLs and
a diameter of 36 MLs as discussed in Sec. III, separated by
b = 8 MLs, at an external bias of E. = 32kVem™'. For the

0 20 40 60
E.z [kVem™1]

FIG. 11. Evolution of the energy Agj; of the p-to-s intra-
band transitions for the two central QDs in a stack of ten
In; ¢Gag As/GaAs QDs separated by barriers of b = 16 MLs as a
function of external bias E.,;.
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FIG. 12. The Vg band-structure staircase potential for a stack of
20 identical InggGag,As/GaAs QDs with basis lengths and heights
of 14.7nm and 2.8 nm, respectively, at an external bias of E. =
32kVem~!. The barrier width is set to 8 MLs. Wavy arrows indicate
possible intraband transitions. A plot of the full band-structure stair-
case potential is provided in the Supplemental Material [22].

chosen number of QDs, at least seven transitions at an energy
of ~17.2meV are present in the stack’s central part. After
edge effects are converged, suitable transitions scale with the
QD-chain length, i.e., the gain. Carriers subsequently occupy
the ground state within a QD and an excited state of the
adjacent QD, building pairwise electronically coupled QDs
along the chain. The orbitals show an s-type symmetry within
a QD. These transitions within coupled QDs, like the p-to-s

transitions in Fig. 8, can be tuned using barrier width, mate-
rial composition, and external bias allowing, for example, an
effective relaxation via LO phonons. To achieve population
inversion, however, an additional p-to-s or s-to-p transition
within the staircase potential is required. Due to the compar-
atively low intradot transition energies close to the materials
LO-phonon energy, cf. Fig. 8, this transition could be achieved
rather than a diagonal transition across an additional barrier. A
suitable QCL band-structure design based on coupled two-QD
unit cells, enabling population inversion as well as providing a
wavelength within the far-infrared, is developed and discussed
in the associated paper Ref. [17].

IV. CONCLUSION

We developed a novel method for calculating excited
states in electronically coupled QD systems based on QD
single-particle wave functions, enabling and accelerating the
calculation of the band structure of QD stacks consisting of
20 and more QDs, including dozens of electronic states at
a affordable computational cost. Facilitated by the LCQO
method, we investigated the evolution of conduction band
states as a function of various QD parameters, which is a
prerequisite for developing suitable active regions of QD-
QCLs. With this, we demonstrated an exemplary staircase
potential with equally distributed energy transitions and prob-
ability densities at an external bias. Our methodology paves
the way for developing an active region of a QCL based
on a QD superlattice, exploiting the intrinsic advantages of
QDs, which can lead to low threshold current densities and
elevated operating temperatures, with particular significance
in the far-infrared spectral range.
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