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Carmine Autieri ,1,2,* Cezary Śliwa ,3 Rajibul Islam ,1 Giuseppe Cuono ,1 and Tomasz Dietl 1,4

1International Research Centre MagTop, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
2Consiglio Nazionale delle Ricerche CNR-SPIN, UOS Salerno, 84084 Fisciano (Salerno), Italy

3Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
4WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

(Received 28 September 2020; revised 27 December 2020; accepted 9 February 2021; published 29 March 2021)

Exchange coupling between localized spins and band or topological states accounts for giant magnetotransport
and magneto-optical effects as well as determines spin-spin interactions in magnetic insulators and semiconduc-
tors. However, even in archetypical dilute magnetic semiconductors such as Cd1−xMnxTe and Hg1−xMnxTe the
evolution of this coupling with the wave vector k is not understood. For instance, a series of experiments have
demonstrated that exchange-induced splitting of magneto-optical spectra of Cd1−xMnxTe and Zn1−xMnxTe at
the L points of the Brillouin zone is, in contradiction to the existing theories, more than one order of magnitude
smaller compared to its value at the zone center and can show an unexpected sign of the effective Landé factors,
opposite to that found for topological Hg1−xMnxTe. The origin of these findings we elucidate quantitatively
by combining (i) relativistic first-principles density functional calculations with the modified Becke-Johnson
exchange-correlation potential; (ii) a tight-binding approach that takes carefully into account k dependence of
the potential and kinetic sp-d exchange interactions; (iii) a theory of magnetic circular dichroism (MCD) for E1

and E1 + �1 optical transitions, developed here within the envelope function k · p formalism for the L point of
the Brillouin zone in zinc-blende crystals. This combination of methods leads to the conclusion that the physics
of MCD at the boundary of the Brillouin zone is strongly affected by the strength of two relativistic effects in
particular compounds: (i) the mass-velocity term that controls the distance of the conduction band at the L point
to the upper Hubbard d6 band of Mn ions and, thus, a relative magnitude and sign of the exchange splittings in
the conduction and valence bands; (ii) the spin-momentum locking by spin-orbit coupling that reduces exchange
splitting depending on the orientation of particular L valleys with respect to the magnetization direction.

DOI: 10.1103/PhysRevB.103.115209

I. INTRODUCTION

Dilute magnetic semiconductors (DMSs), such as
Cd1−xMnxTe and Hg1−xMnxTe, have played a central
role in the demonstrating and describing a strong and
intricate influence of the sp-d exchange interactions upon
effective mass states in semiconductors [1–3], paving the
way for the rise of dilute ferromagnetic semiconductors [4]
and magnetic topological insulators [5,6]. One of the key
characteristics of DMSs is a giant spin splitting of bands
proportional to the field-induced and temperature-dependent
magnetization of paramagnetic Mn2+ ions, M(T, H ).
In the case of high electron mobility modulation-doped
Cd1−xMnxTe/Cd1−yMgyTe heterostructures, the exchange
splitting leads to crossings of spin-resolved Landau
levels, at which the quantum Hall ferromagnet forms at
low temperatures [7]. It has been recently proposed that
magnetic domains of this ferromagnet, if proximitized by a
superconductor, can host Majorana modes [8–10]. Similarly,
Hg1−xMnxTe/Hg1−yCdyTe quantum wells of an appropriate
thickness and Mn cation concentration x � 7%, which
ensures the inverted band structure, may show a ladder of
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spin sublevels in the magnetic field, enabling the appearance
of the quantum anomalous Hall effect [11]. Interestingly,
Hg1−xMnxTe samples in either a bulk [12] or quantum well
[13] form show, in the vicinity of the topological phase
transition, magnetotransport signatures of quantized Landau
levels already below 50 mT, if the Fermi level is tuned to
the Dirac point. It has also been predicted that biaxial tensile
strain will turn the topological semimetal Hg1−x−yCdxMnyTe
into Weyl’s semimetal for nonzero magnetization of Mn spins
[14].

According to the present insight there are two exchange
mechanisms involved in the interaction Hsp-d = −Js · S be-
tween effective mass electrons in the vicinity of � and
localized spins residing on the half-filled Mn2+ d shells [15].
The first on them is ferromagnetic direct (potential) exchange
Jsd between band carriers with wave functions derived from
Mn s orbitals and electrons localized on the open Mn d shells,
usually denoted N0α, typically of the order of 0.2 eV. The
second one is the antiferromagnetic kinetic exchange between
band carriers with anion p-type wave functions and d elec-
trons, of the order of Jpd ≡ N0β ≈ −1 eV. Incorporation of
these interactions into an appropriate multiband k · p Hamilto-
nian allows one to describe satisfactorily various spectacular
magnetotransport and magneto-optical phenomena for carri-
ers near the � point of the Brillouin zone as a function of
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M(T, H ) [1–3,16], particularly if effects of strong coupling
are taken into account [17].

However, in contrast to the � point, the physics of ex-
change splittings at the L points of the Brillouin zone is
challenging: a series of magnetoreflectivity and magnetic
circular dichroism (MCD) studies, notably for Cd1−xMnxTe
[18–20], has revealed that the magnitudes of spectra split-
tings for two circular light polarizations at the L points (E1

and E1 + �1 transitions) are smaller by a factor of about
16 compared to the value at the � point, an effect not
explained by tight-binding modeling [18,21]. Furthermore,
effective Landé factors corresponding to these transitions can
show an unexpected sign [20]. The situation is also unsettled
in Hg1−xMnxTe, in which a large magnitude of spin-orbit-
driven spin splittings accounts for a controversy concerning
the actual values of the sp-d exchange integrals at the � point
[2], making their comparison to spin-splitting values at the L
points [22] not conclusive. Accordingly, it has been pointed
out that the electronic structures of II-VI DMSs have not
been as well clarified as we previously believed [20]. Among
other issues, this fact may preclude a meaningful evaluation
of the role played by interband spin polarization in mediating
indirect exchange interactions between magnetic ions. This
Bloembergen-Rowland mechanism [23] is known to play a
sizable role in p-type dilute ferromagnetic semiconductors, in
which it involves virtual transitions between hole valence sub-
bands [24,25]. Moreover, this spin-spin exchange is expected
to be particularly important in the absence of carriers in the
inverted band structure case (such as Hg1−xMnxTe), in which
both the valence and conduction bands are primarily built of
anion p-type wave functions [26,27].

In the last years, several ab initio studies of Cd1−xMnxTe
have been carried out [28–35]. However, these works have
not attempted to elucidate the origin of the anomalously
exchange-induced splittings of optical spectra corresponding
to transitions at the Brillouin zone boundary. In our work, we
determine k-dependent exchange splittings of bands for both
Cd1−xMnxTe and Hg1−xMnxTe employing the density func-
tional theory (DFT), the tight-binding approximation (TBA),
and the k · p envelope function formalism sequentially. Our
quantitative results demonstrate that competition between fer-
romagnetic and antiferromagnetic exchange interactions, the
relativistic mass-velocity term, and the spin-momentum lock-
ing by spin-orbit coupling constitute the essential ingredients
determining magnitudes of spectral splittings at the L points of
the Brillouin zone in Cd1−xMnxTe and Hg1−xMnxTe, hitherto
regarded as not understood [18–22]. Important outcomes of
our work are also as follows: the minimal tight-binding model
that describes the electronic band structure of CdTe, HgTe,
Cd1−xMnxTe, and Hg1−xMnxTe in the whole Brillouin zone
quantitatively, and the k · p Hamiltonian suitable for modeling
phenomena involving L valleys in compounds with a zinc-
blende crystal structure.

II. COMPUTATIONAL METHODOLOGY

A. Overview of theoretical approach

We aim at the determination of exchange splittings in the
whole Brilloiun zone and then of MCD spectra in two classes

of DMSs as well as at the elucidation of the origin of a
substantial reduction of MCD at the L point compared to the
zone center. This program requires consideration of spin-orbit
and sp-d exchange splittings on equal footing. Furthermore,
we would like to obtain a minimal tight-binding (TB) model
suitable for the description of phenomena, such as spin-spin
interactions, which depend on the band structure in the whole
Brillouin zone. It may appear that the accomplishment of
such goals is straightforward by modern fully relativistic DFT
implementations, notably, employing approaches developed
for alloys, such as the special quasirandom structure (SQS)
[36]. Surprisingly, however, we have encountered several
challenges.

First, as shown in Secs. III A and III B, by using general-
ized gradient approximation (GGA) with intrasite Hubbard U
for Mn d electrons, we have been able to obtain information
about main effects leading to a strong dependence of exchange
band splittings on the k vector without spin-orbit coupling
(SOC). At the same time, however, our findings confirm that
the use of this computationally effective method may lead to
qualitatively misleading information in DMS [37]. Indeed, the
GGA+U provides not only wrong values of energy gaps, but
also of exchange energies whose values are rather sensitive
to the distance of Mn d levels and bands, particularly away
from the � point. To overcome this difficulty, we have im-
plemented the modified Becke-Johnson exchange-correlation
potential (MBJLDA) [38,39] (Sec. III C), whose use is, how-
ever, more computationally demanding, particularly within
SQS.

Second, with our present expertise and computation re-
sources, we have been unable to find an effective unfolding
procedure that would allow us to tell band splittings orig-
inating from exchange interactions, SOC, and band folding
associated with a finite supercell size, particularly taking into
account that both exchange and spin-orbit splittings depend
on the k-vector and magnetization directions. By contrast, the
MBJLDA provides band structure and energy gaps in good
agreement with experimental values for both CdTe and HgTe
as well as proper positions of Mn levels in respect to bands.
Accordingly, we have used MBJLDA information to obtain
a versatile TB model (Sec. III D), to which sp-d exchange
interactions can readily be incorporated within the Schrieffer-
Wolf procedure [40] (Sec. III E). In this way, we obtain a tool
for determining the magnitudes and signs of band splittings
for any k-vector and magnetization values and directions.

Third, there is an ongoing discussion (which we recall in
Sec. III F) on how to determine optical matrix elements within
TB approaches. There is no such ambiguity within the k · p
envelope function method. We have, therefore, developed this
approach for the L point of Brillouin zone in zinc-blende
semiconductors (Appendix), which has allowed us, together
with energy values from the TB data, to determine optical
splittings of the MCD lines with no adjustable parameters
(Sec. III G).

B. Computation details

We have performed first-principles DFT calculations by
using the relativistic Vienna ab initio simulation (VASP)
package based on plane-wave basis set and projector
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augmented wave method [41]. We perform a fully relativistic
calculation for the core electrons while the valence electrons
are treated in a scalar approximation considering the mass
velocity and the Darwin terms. Spin-orbit coupling of the va-
lence electrons is included using the second-variation method
and the scalar-relativistic eigenfunctions of the valence
states [42].

A plane-wave energy cutoff of 400 eV has been used.
For the bulk, we have performed the calculations using 8 ×
8 × 8 k-point Monkhorst-Pack grid with 176 k points in the
absence of SOC and with 512 k points in the presence of SOC
in the irreducible Brillouin zone. We use the experimental
lattice constants corresponding to a0 = 6.461 52 Å for HgTe
and 6.4815 Å for CdTe [43].

For the treatment of exchange correlation, either Perdew-
Burke-Ernzerhof (PBE) GGA [44] or the MBJLDA [38,39]
have been applied. According to the computed band structures
in GGA, the magnitudes of the band gap E0 = E (�6) − E (�8)
are 0.77 eV and −0.50 eV for CdTe and HgTe, to be compared
to experimental values at 4.2 K E0 = 1.60 and −0.30 eV,
respectively. These discrepancies reflect the well-known in-
accuracies of the GGA in the evaluation of the band gap.
Thus, to improve the tight-binding parametrization of CdTe
and HgTe band structures, the MBJLDA has been employed
to determine the hopping parameters. Our results, obtained
within this computationally more demanding approach, con-
firm that the determined magnitudes of the band gaps [45],
as well as of spin-orbit splittings, are close to experimental
values.

The effect of Mn doping in Cd1−xMnxTe and Hg1−xMnxTe
has been studied using a 4 × 4 × 4 supercell with 64 anions
and 64 cations. We use the SQS [36] to model the distribution
of cation-substitutional Mn atoms in the supercell. To create a
large SQS model, we used the MCSQS algorithm [46] within
the framework of alloy theoretic automated toolkit (ATAT)
[47]. The MCSQS method is based on the Monte Carlo sim-
ulated annealing loop with an objective function that searches
for a perfectly matching maximum number of correlation
functions for a fixed shape of the supercell along with the
occupation of the atomic site by minimizing the objective
function. The doublet, triplet, and quadruplet clusters are gen-
erated using the core dump utility of the ATAT toolkit. We
use the parameters −2, −3, and −4 for which the longest
pair, triplet, and quadruplet correlation distance to be matched
is 2.0, 1.5, and 1.0 lattice constants, respectively. To create
the best SQS structure, we produce all possible structures and
choose that for which the correlation difference with respect
to a random structure is closest to zero. The SQS calculations
have been done using a 2 × 2 × 2 k-point grid. For numerical
efficiency, we have used the SQS just in combination with the
GGA.

In our work, we focused on Mn content x = 2
64 , 4

64 , and
8

64 . Since we look for magnitudes of sp-d exchange split-
tings, the Mn magnetic moments are always ferromagnetically
aligned. The Hubbard U effects for Mn open d shell have
been included. We use the values of UMn = 3, 5, and 7 eV
[48–50] and JH = 0.15U eV for the 3d states. After obtaining
the Bloch wave functions in density functional theory, the
maximally localized Wannier functions [51,52] (MLWF) are
constructed using the WANNIER90 code [53]. We used the

Slater-Koster interpolation scheme based on Wannier func-
tions to extract electronic bands’ character at low energies.

Quantities of interest here are effective exchange energies
Jc(k) and Jv (k) calculated from k-dependent splittings of the
lowest conduction and highest valence bands, generated by
exchange interactions with Mn spins S = 5

2 , aligned by an
external magnetic field,

Jc(k) = �Ec

xS
= E↓

c − E↑
c

xS
, Jv (k) = �Ev

xS
= E↓

v − E↑
v

xS
.

(1)
According to this definition, in the weak coupling limit and for
the normal band ordering, i.e., for Cd1−xMnxTe, Jc(k = 0) ≡
N0α and Jv (k = 0) ≡ N0β, where N0 is the cation concentra-
tion, whereas α and β are s-d and p-d exchange integrals
according to the DMS literature [15,28,29]. The same situ-
ation takes place in the case of Hg1−xMnxTe with x � 0.07
[3]. However, at lower x, Hg1−xMnxTe is a zero-gap semicon-
ductor with an inverted band structure (topological zero-gap
semiconductor) for which the s-type �6 band is below the
�8 j = 3

2 multiplet forming the conduction and valence bands.
In this case, we consider the spin splitting of the �6 band
below the Fermi level as Jc. We note also that because of
antiferromagnetic interactions between Mn spins, an effective
Mn concentration xeff that contributes to the sp-d exchange
splitting of bands in a magnetic field is much smaller than
x, typically xeff � 5% for any x in relevant magnetic fields
μ0H � 6 T [54]. For random distribution of Mn over cation
sites, these antiferromagnetic interactions result in spin-glass
freezing at low temperatures [55,56].

III. RESULTS

A. GGA band structure for Cd1−xMnxTe and Hg1−xMnxTe
without spin-orbit coupling

We discuss first the electronic structure of Cd1−xMnxTe
and Hg1−xMnxTe computed with relativistic corrections in the
scalar approximation, i.e., taking into account the Darwin and
mass-velocity terms (essential in Hg1−xMnxTe) but neglecting
SOC. Such an approach allows us to extract spin splittings
solely due to the exchange interactions between host and Mn
spins, i.e., effective exchange integrals Jc and Jv for relevant
bands and arbitrary k vectors in the Brillouin zone.

Figure 1 presents the electronic structure of
Cd0.875Mn0.125Te for spin up and down evaluated assuming
UMn = 5 eV. The Mn lower and upper Hubbard 3d bands
reside around 4.6 eV below and 2.5 eV above the valence band
top, respectively. Hence, in agreement with photoelectron
spectroscopy [57], an effective Hubbard energy of Mn
3d electrons is 7.1 eV for UMn = 5 eV and, of course,
would increase with the increasing UMn. At the same time,
experimental data [57] indicate that the Mn d bands reside
by about 1 eV higher with respect to host bands than implied
by our DFT results. In the whole Brillouin zone and for
both spin channels, the lowest unoccupied states consist
mainly of Cd 5s states, whereas Te 5p states give a dominant
contribution to the highest occupied bands. To estimate the
orbital contribution in DFT, we evaluate the system at the
� point, where the s states are decoupled from the p and d
states. For the (Mn,Cd)Te, the conduction band is composed
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FIG. 1. GGA band structure obtained using the MLWF for Cd0.875Mn0.125Te, UMn = 5 eV, and assuming ferromagnetic alignment of Mn
spins without spin-orbit coupling. A gray (red) dashed line in the left (right) panel depicts the spin-up (-down) channel. The interpolated Cd s,
Te p, and Mn d Wannier bands are shown by a solid green line. Zero energy is set at the valence band top.

roughly by 70% Cd s states and 30% Te s states with a minor
contribution from the impurity Mn s states for the low-Mn
concentration x in question. The conduction band at the �

point is composed roughly by 80% Te p states and 20% Cd
d states with a minor contribution from the impurity Mn d
states.

From the electronic structure of Hg0.875Mn0.125Te at UMn =
5 eV without SOC, the effective Hubbard energy of Mn 3d
electrons at the � point is 7.8 eV for UMn = 5 eV. As shown
in Fig. 2, the �6 and �8 bands are inverted in Hg1−xMnxTe,
resulting in a topological character of the compound. The
relativistic Darwin term gives a weak positive contribution to
the energy of the s bands in heavy atoms like Hg. In contrast,
the relativistic mass-velocity term provides a strong negative
energy shift, accounting for the band inversion. We can see
in Fig. 2 that the �6 band at 0.5 eV below the Fermi level,
has the spin-up component at lower energies indicating the
ferromagnetic sign of the exchange interaction with Mn spins.
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FIG. 2. GGA band structure of Hg0.875Mn0.125Te with ferromag-
netically aligned Mn spins without spin-orbit coupling and for UMn =
5 eV. Zero energy is set at the valence band top. Bands for spin up
and spin down with respect to Mn spins’ direction are shown by solid
gray and red dashed lines, respectively.

Instead, the carrier spins in the �8 bands are antiferromagnet-
ically coupled to Mn spins.

B. Spin splitting along the k path without spin-orbit coupling

To take random Mn positions into account, we have used
the SQS for determining the k dependence of exchange ener-
gies Jc and Jv . Figure 3 shows Jc(k) and Jv (k) computed for
Cd1−xMnxTe with various Mn concentrations x and UMn =
5 eV. In agreement with the experimental results [54], the val-
ues determined for the � point do not depend on x, and their
DFT values N0α = 0.28 eV and N0β = −0.63 eV describe
the sign, and also reasonably well the experimental magni-
tudes N0α = 0.22 eV and N0β = −0.88 eV [54], depicted by
horizontal lines in Fig. 3. The exchange splittings at � means
that there is a large energy difference between transitions
from the two heavy-hole subbands (or for the creation of the
heavy-hole excitons). This giant Zeeman splitting is described
by �E = xS(N0α − N0β ).

As seen, Jv remains negative (antiferromagnetic) for all k
values, and its magnitude slightly oscillates along the k path,
it reaches a maximum at � and a minimum at L for small Mn
concentrations, and between the � and X points at the highest
studied x = 8

64 = 0.125.
In contrast to Jv , Jc changes sign and is highly oscillating

along the k path: the sign of Jc is positive (ferromagnetic
potential s-d exchange) at the � point, in which the conduc-
tion band wave function has the s-type character, but becomes
antiferromagnetic away from the � point. This behavior origi-
nates from an admixture of anion wave functions to the Bloch
amplitudes uk and, thus, from a significant role of antiferro-
magnetic sp-d kinetic exchange, affected by the phase factors
exp(ik · r), known from the Kondo physics in dilute magnetic
metals [40]. In the negative sign region, the absolute value
of Jc reaches a maximum at the X points and a minimum
at the U points at small concentrations and at the L points
for x = 0.125. Such a dependence results from an increase
of sp-d hybridization and, thus, of the kinetic exchange if a
given state approaches the 3d Mn shell, in the Jc case, the up-
per Hubbard 3d6 band. In agreement with this interpretation,
exchange energies at the boundary of the Brillouin zone get
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FIG. 3. GGA values of effective exchange integrals for the con-
duction and valence bands Jc in the top panel (red lines) and
Jv in the bottom panel (green lines) for Cd1−xMnxTe compared
to experimental values at the � point, determined by exciton
magnetospectroscopy, represented by horizontal lines [54]. The ex-
perimental effective exchange integral is positive for the conduction
band and negative for the valence at the � point. The solid, dashed,
and dotted lines represent the band spin splitting for entirely spin-
polarized Mn ions with concentrations x = 2

64 = 0.031 25, 4
64 =

0.0625, and 8
64 = 0.125, respectively. The computations have been

performed neglecting spin-orbit coupling and for UMn = 5 eV.

reduced when we increase UMn because the Mn d states move
away from the relevant bands, and the hybridization between
the host bands and the 3d shells of Mn impurities becomes
suppressed.

We are interested in the origin of a large reduction in
magnitudes of exchange splittings at L compared to �, as
determined by interband magneto-optical studies. The corre-
sponding reduction factor can then be defined as

r = Jc(�) − Jv (�)

Jc(L) − Jv (L)
. (2)

As seen, the sign of r is determined by relative magnitudes
of Jc and Jv , whose values and signs at the Brillouin zone
boundary depend on a subtle competition between positive
(ferromagnetic) potential and negative (antiferromagnetic)
kinetic exchange energies. According to ab initio results pre-
sented in Fig. 3, Jc and Jv at the L points have the same
sign and similar magnitudes. This fact explains qualitatively
why the experimentally observed splitting of optical spectra

is relatively small at L compared to � [18–20]. Given our
results, the previous attempt to interpret the large value of r
was quantitatively unsuccessful because a strong dependence
of Jc on k was disregarded [21]. At the same time, our data
suggest a relatively strong dependence of Jc and Jv at L on
x. Experimental results accumulated so far do not corroborate
this expectation.

Finally, we mention the relevance of our ab initio results for
magneto-optical studies of (001)Cd1−xMnxTe quantum wells
sandwiched between Cd1−x−yMnxMgyTe barriers [58,59], in-
terpreted theoretically by a k · p model [59]. Experimental
data pointed to a reduction of exchange splittings compared
to those found for bulk samples, the behavior assigned to
effectively nonzero values of k ∼ π/d (d is the quantum
well thickness) at which splittings were probed [58,59]. Our
evaluation, making use of data in Figs. 3 and 1 for the relevant
k direction (the �-X line) indicates that the decrease of Jc

with k is consistent with the experimentally observed and
theoretically described decrease of N0α with diminishing d ,
if penetration of the wave function into barriers is taken into
account [59].

Figure 4 shows Jc(k) and Jv (k) extracted from the band
structure computations without SOC for Hg1−xMnxTe with
different values of x. In the vicinity of the zone center we
present single data points corresponding to the exchange en-
ergy of the �6 band, i.e., N0α. The trends in k dependencies
are similar to the Mn-doped CdTe. In particular, Jv stays neg-
ative in the whole Brillouin zone and Jc(k) becomes negative
away from the zone center.

On the experimental side, there are two sets of the deter-
mined N0α and N0β values, differing by more than a factor
of 2, in the case of Hg1−xMnxTe [2]. Our computational
results point to the lower values, i.e., N0α = 0.4 eV and
N0β = −0.6 eV [3,60]. Furthermore, according to experimen-
tal findings, magnetic circular dichroism at L has the same
sign for Hg1−xMnxTe as found for Cd1−xMnxTe at L and
at �, independently of Mn content x [22]. Our data suggest
the opposite sign since, according to the results in Fig. 4,
Jc(L) − Jv (L) < 0 for Hg1−xMnxTe in the relevant effective
Mn concentrations x � 6%.

In summary, the DFT results presented in Figs. 3 and 4,
obtained without taking SOC into account, have qualitatively
shown how exchange spin splitting of bands evolves with the
k vector spanning the whole Brillouin zone. This dependence
reflects (i) the k-dependent mixing between cation and anion
wave functions, which affects a relative contribution of the
potential and kinetic components to the sp-d exchange and
(ii) the energy position of a given k state with respect to the
open Mn d shells, which controls the magnitude of the k-
dependent kinetic exchange. Quantitatively, however, bands’
energy position and, thus, the magnitude of exchange splitting
depends significantly on SOC. Moreover, in the presence of
SOC, exchange splitting of a given band state changes with
the orientation of its k vector with respect to the direction of
M(T, H ). This means that, in general, exchange splitting of
particular L valleys differs, depending on the angle between
kL and M(T, H ). Furthermore, under nonzero magnetization
M(T, H ), degeneracy of states with different projections of
the orbital momentum is removed in the presence of SOC.
This results in MCD, i.e., different transition probabilities for
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FIG. 4. The values of effective exchange integrals for the con-
duction and valence bands Jc in the top panel (red lines) and Jv in the
bottom panel (green lines) for Hg1−xMnxTe compared to experimen-
tal values at the � point represented by horizontal lines [3,60]. The
sign of the experimental effective exchange integral is negative for
the valence band and positive for the conduction band at the � point.
The solid, dashed, and short-dashed lines represent the spin splitting
for x = 2

64 = 0.031 25, 4
64 = 0.0625, and 8

64 = 0.125, respectively.
The square, circle, and triangle represent an effective exchange
integral of the �6 band for x = 2

64 = 0.031 25, 4
64 = 0.0625, and

8
64 = 0.125, respectively.

two circular light polarizations σ+ and σ−. In other words,
MCD vanishes in the absence of SOC and, neglecting the
magnetic field’s direct effect on electronic states, in the ab-
sence of exchange-induced spin splittings.

We are interested in interpreting MCD for Cd1−xMnxTe
and Hg1−xMnxTe, taken at photon energies corresponding to
free excitons at the fundamental gap at the � point (E0 and
E0 + �0 transitions) and at the L points (E1 and E1 + �1

transitions) [18–20,22], where �0 and �1 are the spin-orbit
splitting of the valence band at the � and L points of the
Brillouin zone, respectively. Our theoretical approach con-
sidering SOC involves several steps. First, we use the DFT
calculations with SOC taken into account to determine the
parameters of a tight-binding model for CdTe and HgTe. Sec-
ond, we consider the Mn-doped case and obtained from DFT
onsite and hopping energies for Mn-d shell and its coupling
to band states in CdTe and HgTe. Third, these parameters are
incorporated into sp-d exchange Hamiltonian that takes into
account the presence of k-dependent kinetic and potential ex-
change interactions in the molecular-field and virtual-crystal

TABLE I. Energy gaps and spin-orbit splittings (in eV) at the �

and L points, where E0 = E (�6) − E (�8) and �0 = E (�8) − E (�7)
and at the L points of the Brillouin zone, where E1 = E (L1) − E (L2)
and �1 = E (L2) − E (L3) for CdTe and HgTe, as determined from
MBJLDA (our data), ETB [61], our TB model, and experimentally.
Labeling of L points is shown in Fig. 5.

CdTe
MBJLDA ETB TB Expt.

E0 1.47 1.56 1.46 1.61 (Ref. [62])
�0 0.81 0.78 0.80 0.95 (Ref. [63])
E1 3.03 4.78 2.63 3.28 (Ref. [64]); 3.46 (Ref. [65])
�1 0.49 0.47 0.49 0.6 ± 0.05 (Ref. [64])

HgTe
MBJLDA ETB TB Expt.

E0 −0.31 −0.22 −0.27 −0.30 (Ref. [62])
�0 0.70 0.72 0.59 0.91 (Ref. [66])
E1 1.89 2.75 1.53 2.12 (Ref. [20]); 2.25 (Ref. [65])
�1 0.49 0.50 0.45 0.62–0.75 (Ref. [66])

approximations suitable for Cd1−xMnxTe and Hg1−xMnxTe.
In the fourth step, we use this model to determine energies
of optical transitions at the � and L points of the Brillouin
zone. We then develop the k · p theory for the L point of the
Brillouin zone in zinc-blende semiconductors, which allows
as determining the oscillator strength for particular transitions
and two circular light polarizations. With this information, we
are in a position to compute the MCD spectra for Cd1−xMnxTe
and Hg1−xMnxTe, and validate our approach by comparison to
experimental data.

C. DFT with spin-orbit coupling and minimal
tight-binding model for CdTe and HgTe

As mentioned in Sec. II, we use MBJLDA to determine
the relativistic band structure of CdTe and HgTe with ex-
perimental lattice constants 6.48 Å for CdTe and 6.46 Å for
HgTe. To extract energy dispersions E (k) of the electronic
bands, the Slater-Koster interpolation scheme is employed.
The obtained results are shown in Fig. 5. The computed values
of energy gaps and spin-orbit splittings for CdTe and HgTe
are summarized in Table I, and show good agreement with
experimental data.

We aim to use the ab initio results for determining the pa-
rameters of the one-electron Hamiltonian in the tight-binding
approximation (TBA), which will adequately describe the
band structure and sp-d exchange splittings of bands at an
arbitrary k point of the Brillouin zone with SOC taken into
account. Similar to the previous descriptions of CdTe and
HgTe within TBA [61], we consider sp3 orbitals per atom and
the nearest-neighbor hopping. In particular, from positions of
the electronic bands at � we obtain the TBA onsite energies
and the spin-orbit splittings. Then, we use as constraints the
DFT values of the band energies at the �, X , and L points.
We create an equation system and search for the values of
the hopping energies V . If this procedure results in multiple
solutions, we select Vsp that has the same sign as the first-
neighbor hopping energy among Wannier functions. The TBA
parameters obtained in this way are shown in Table II. Since
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FIG. 5. Comparison between the Wannier bands obtained by MBJLDA (solid green line) and our tight-binding model (dashed blue lines)
for CdTe (left panel) and HgTe (right panel) taking spin-orbit coupling into account. The bands labeled L1, L2, L3, and L4 are described by
irreducible representations of the double group L6, L4,5, L6, and L6, respectively.

the atomic radius of Cd is smaller than of Hg, whereas the
bond length is greater in CdTe compared to HgTe, there are no
systematic differences in the magnitudes of the hybridizations
V between these two compounds. Figure 5 presents a compar-
ison of the band structures resulting from the MBJLDA and
our TB model.

By construction, the TB parameters collected in Table II
lead to similar band gaps and spin-orbit splittings as determine
by DFT, and displayed in Table I and Fig. 5. These parameters
describe well experimental energy gaps at both � and L. For
comparison, we present in Table I the magnitudes of band
gaps and spin-orbit splittings computed by using the tight-
binding parameters determined by Tarasenko et al. [61] in
reference to experimental data primarily at �.

TABLE II. Values of the onsite E , hopping V , and spin-orbit
splitting � energies (in eV) of our minimal tight-binding model for
CdTe and HgTe, which includes sp3 orbitals of anions a and cations
c, and the nearest-neighbor hopping. Zero energy is set at the top of
the valence band.

CdTe HgTe

Es(a) −8.7752 −9.1555
Es(c) −0.9526 −3.1156
Ep(a) −0.2669 −0.1742
Ep(c) 4.8663 4.3691
Vssσ −1.2431 −1.2569
Vs(a)p(c)σ 1.6379 1.7229
Vs(c)p(a)σ 1.5463 1.4834
Vppσ 2.0139 2.2132
Vppπ −0.9875 −0.9830
�a 0.8025 0.5915
�c 0.2925 1.0824

D. Tight-binding parameters from DFT for
Cd1−xMnxTe and Hg1−xMnxTe

We are interested in evaluating Slater-Koster parameters
associated with the presence of open 3d shells of Mn in
Cd1−xMnxTe and Hg1−xMnxTe, i.e., hopping energies be-
tween Mn 3d orbitals and 5sp3 states of the nearest-neighbor
Te anions as well as energetic positions of Mn d levels. For
this purpose, we use supercells with 2 × 2 × 2 unit cells,
each containing one Mn atom. The GGA+U technique is em-
ployed with UMn = 5 eV and JHund = 0.75 eV as well as with
the PBE exchange functional. Since in such alloys, no E (k)
dependencies can be derived, we extract the Slater-Koster
parameters V directly from the hopping energies among the
relevant Wannier functions, which means that their accuracy
is presumably of the order of 20%. The magnitudes of deter-
mined parameters are shown in Table III. A lower position (by
about 0.3 eV) of d levels in HgTe compared to CdTe originates

TABLE III. The DFT values of onsite and hopping energies (in
eV) for Mn 3d orbitals (t2g and eg) and the nearest-neighbor Te 5s
and 5p states for Cd1−xMnxTe and Hg1−xMnxTe. Zero energy is set
at the top of the valence band.

Cd1−xMnxTe Hg1−xMnxTe

Et2g↑ −4.702 −4.997
Et2g↓ 2.198 1.821
Eeg↑ −4.525 −4.858
Eeg↓ 2.665 2.293
Vsd ↑ σ −1.081 −1.232
Vsd ↓ σ −1.949 −1.957
Vpd ↑ σ −0.488 −0.364
Vpd ↓ σ −0.957 −0.987
Vpd ↑ π 0.253 0.187
Vpd ↓ π 0.844 0.854
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from the valence band offset between these two compounds
[67,68]. The spin-up Mn states are more localized and the
hopping energies V related to d ↑ are smaller. On the other
hand, noticeable dissimilarities in hopping energies of the two
compounds are caused by differences in the bond length and
in the participation of cation orbitals to the s-like and p-like
wave functions.

E. Tight-binding model with sp-d exchange interaction

We now present and discuss the tight-binding Hamil-
tonian with four sp3 orbitals per atom containing a term
describing giant Zeeman splitting of bands in the presence
of spin-polarized Mn ions. This splitting is brought about
by (i) the kinetic exchange resulting from spin-independent
hybridization between Mn 3d shells and band states derived
from the 5s and 5p orbitals of the four neighboring Te an-
ions; (ii) direct (potential) exchange coupling of electrons
residing on the open Mn 3d shell to band carriers visiting
Mn 4s or 4p orbitals. Our approach is developed within the
molecular-field and virtual-crystal approximations, and gener-
alizes previous descriptions of DMSs within TBA [69,70] by
taking into account the k dependence of the kinetic exchange
according to

H(k) = HTB(k) + Hsp-d (k). (3)

Within our model HTB(k) is a 16 × 16 matrix, with onsite
energies of s and p cation and anion orbitals on the diag-
onal; k-dependent hopping tmn(k) between orbitals m and
n of the nearest-neighbor (NN) cation-anion pairs, and the

intra-atomic spin-orbit term involving p-type orbitals of the
cation and anion, respectively,

〈m, s|HTB(k)|n, s′〉 = Enδmn + tmn(k) + �a(c)

3

∑
α

I ′α
mnσ

α
ss′ ,

(4)
where tmn(k) is the total hopping energy to the four NN atoms
in the zinc-blende lattice including k-dependent phase factors:

tmn(k) =
∑

Rm∈n.n.(Rn )

Vmn(Rm − Rn) exp[ik · (Rm − Rn)]. (5)

The Slater-Koster interatomic matrix elements (dependent on
the direction cosines of the vector from the location Rn of
the orbital n to the location Rm of the orbital m) are denoted
as Vmn(Rm − Rn), and their values for various combinations
of orbitals (ssσ , spσ , ppσ , ppπ ) are given in Table II. The
intra-atomic spin-orbit splitting energies of the anion (cation)
p states are denoted by �a(c), respectively, the orbital momen-
tum operator I ′α

βγ in the Cartesian basis (α, β, γ = x, y, z) can
be written using the Levi-Civita symbol εαβγ as I ′α

βγ = −iεαβγ ,
and (σα )α=x,y,z stand for the set of Pauli matrices.

The exchange interaction is taken into account in
the molecular-field and virtual-crystal approximations: the
weight, by which Mn spin polarization affects the band split-
tings, is described by the vector X = xeffS, where xeff = x and
S = 5

2 if all Mn ions are spin polarized, and the direction
of S is imposed by the external magnetic field. Hence, the
vector X is related to Mn spin magnetization according to
M = −gMnN0X , where gMn = 2.0 and N0 is the cation con-
centration. Then, the relevant sp-d exchange Hamiltonian, to
be added to the TB Hamiltonian, assumes the form

〈m, s|Hsp-d (k)|n, s′〉 = −1

2

∑
α

X ασ α
ss′

[
1

S

∑
d

(
1

Ed↑ − Ek
− 1

Ed↓ − Ek

)
tmd (k)tdn(k) + 〈m|J4s-3d P̂sc + J4p-3d P̂pc|n〉

]
. (6)

The first term in the brackets was given by Schrieffer and
Wolff [40], and accounts for the kinetic exchange; this con-
tribution is k dependent [via Ek and tmd (k)tdn(k)], and may
be nondiagonal. In this term, the d index runs over the t2g

and eg orbitals of Mn, the matrix of hoppings is defined as in
Eq. (5), but this time takes into account the matrix of hoppings
between cation d orbitals and NN anion s and p orbitals,
as given by Schrieffer and Wolff’s canonical transformation
that is equivalent to the second-order perturbation theory.
Accordingly, as input parameters one should adopt the values
unperturbed by the sp-d hybridization. To this end, as Ed↑,↓
we take Eeg↑,↓, as eg states hybridize weakly in the tetrahedral
case [28], and as Vnd spin average values of Vpdσ and Vpdπ

in Table III. If relevant d and k states cross, higher-order
perturbation theory is necessary [71].

The second term in Eq. (6) describes intra-Mn direct (po-
tential) exchange J4s-3d and J4p-3d between electrons residing
on 3d and 4s or 4p Mn states, respectively; P̂sc and P̂pc are the
projectors on cation s and p states. This ferromagnetic poten-
tial exchange assumes the canonical Heisenberg form −Js · S.
According to spectroscopic studies, J4s-3d = 0.392 eV and
J4p-3d = 0.196 eV for free Mn+1 ions [72]. The values of

potential exchange are reduced in compound semiconductors
by admixtures of anion orbitals to the Bloch wave functions
taken into account within TBA and, possibly, also by screen-
ing (neglected here).

By incorporating Eq. (6) into the TB Hamiltonian we ob-
tain k-dependent splittings of bands for a given direction of
Mn magnetization M, from which the magnitudes of sp-d
exchange energies J , i.e., band splittings divided by Sxeff can
be determined, as defined in Eq. (1). Table IV shows the
magnitudes of J for conduction and valence bands at the
� and L points of the Brillouin zone, relevant to interband
magneto-optical transitions E0, E0 + �0, E1, and E1 + �1, re-
spectively. These values have been obtained for xeff = 0.0625
and making use of the TB parameters determined from DFT
and collected in Tables II and III. Particular J values have been
determined by independent diagonalization of the TB Hamil-
tonian containing Ek in the kinetic exchange term [Eq. (6)]
corresponding to the band extremum in question, computed
by diagonalizing the TB Hamiltonian without sp-d exchange.

The theory reproduces the signs and magnitudes of ex-
change energies at � properly. Furthermore, computed data
point to a substantial difference in the exchange energy for
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TABLE IV. Exchange energies J (k) (in eV) for the conduction
and valence bands at the � and L points of the Brillouin zone
computed for Cd1−xMnxTe and Hg1−xMnxTe with xeff = 0.0625 em-
ploying tight-binding parameters displayed in Tables II and III. In
the DMS nomenclature, J (�6) and J (�8) correspond to N0α and
N0β, respectively. Since for the L2 and L3 case the values of J are
anisotropic, we show in this table the data are for the magnetization
vector M ‖ [111] and for the [111] L valley. Labeling of L bands is
shown Fig. 5.

Cd1−xMnxTe Hg1−xMnxTe

Band TB Expt. TB Expt.

�6 0.32 0.22 (Ref. [54]) 0.30 0.40 (Ref. [3])
�8 −0.78 −0.88 (Ref. [54]) −0.74 −0.60 (Ref. [3])
�7 0.24 0.29 (Ref. [63]) 0.22
L1 −0.36 −0.22
L2 −0.41 −0.35
L3 −0.42 −0.33

the conduction band at L compared to �, disregarded in pre-
vious theories of MCD at the L point of the Brillouin zone
in Cd1−xMnxTe [21]. A negative sign and a relatively large
magnitude of this exchange energy obtained for Cd1−xMnxTe,
Jc(L1) = −0.36, results from a substantial contribution of
the antiferromagnetic kinetic exchange brought about by the
proximity of the L1 band to the Mn upper Hubbard band,
the effect described by Eq. (6) and anticipated by ab ini-
tio results shown in Fig. 3. The role of kinetic exchange is
smaller in Hg1−xMnxTe, where Jc(L1) = −0.22 eV, because
the relativistic mass-velocity term, large at Hg atoms, shifts
downward the conduction band in Hg1−xMnxTe. This shift
makes that the �6 band is below the �8 band in Hg1−xMnxTe
with low Mn content x, so that the material becomes a topo-
logical semimetal.

In the case of the L2 and L3 valence bands, SOC results
in spin-momentum locking that diminishes spin splitting in
valleys oblique to the magnetization direction. According
to Eqs. (A64)–(A66), the corresponding geometric factor is
given by cos[∠(kL, M)] for the L2 band; the formulas in
the Appendix can be used for deriving geometry-dependent
reduction factors for the two remaining valence bands. Thus,
as noted previously [21], a meaningful MCD theory for E1

and E1 + �1 transitions requires the evaluation of exchange
splittings and transition probabilities for each L valley at a
given magnetization direction.

The decomposition of the total Hamiltonian into the
exchange-independent and exchange-dependent parts
[Eq. (3)] as well as the use of the Schrieffer-Wolff
transformation and atomic values of the potential exchange
[Eq. (6)] allows one describing low-energy spin-related
effects by a simple Kondo-type Hamiltonian. In order
to check a quantitative accuracy of the Schrieffer-Wolff
transformation, we have computed the p-d exchange energy
N0β by incorporating the Mn d levels into the TB model
employing values of d-level energies and hybridization
matrix elements (weighted by x1/2

eff ) collected in Table III.
For xeff = 0.0625, we obtain N0β = −0.76 and −0.72 eV
for Cd1−xMnxTe and Hg1−xMnxTe, respectively, the values

within 3% in agreement with the theoretical data displayed in
Table IV, N0β = −0.78 and −0.74 eV, respectively.

F. Magnetic circular dichroism for E1 and E1 + �1 transitions

In order to interpret quantitatively experimental studies of
MCD at helium temperatures [18–20,22], we have to deter-
mine energies and oscillator strengths for optical transitions
at the L points of the Brillouin zone. The experimental data
were collected in the Faraday configuration for σ+ (electron
cyclotron resonance active) and σ− light polarizations, and
provided �E , that is the difference in spectral positions of
edges observed at these two polarizations. This optical ex-
change splitting �E was found to scale with magnetization,
and was independently determined for spectral regions cor-
responding to E1 and E1 + �1 transitions. In the presence
of nonzero magnetization, the four L valleys may not be
equivalent and, thus, show different exchange splittings in
the presence of SOC. Accordingly, in general, we expect that
spectral features may consist of up to 16 excitonic lines in the
vicinity of both E1 and E1 + �1 energy gaps, corresponding
to optical transitions L2 → L1 and L3 → L1, respectively. Ac-
cording to the bands’ dispersion at the L point shown in Fig. 5,
and similarly to the case of other zinc-blende semiconductors
[73], E1 and E1 + �1 optical transitions have a character of
saddle-point excitons at low temperatures.

Our tight-binding Hamiltonian [Eq. (3)] allows us to obtain
directly expected optical transition energies Eιϕ = Eϕ − Eι

between states ι (initial) and ϕ (final) at critical points of the
valence and conduction subbands in a particular L valley at
kL and at a given magnetization M. We assume the transition
probabilities at photon energies hν = Eιϕ are proportional,
in the dipole approximation, to the square of the interband
momentum matrix elements, i.e., we have for the oscillator
strength f ±

ιϕ ,

f ±
ιϕ = 2|〈ι|p±|ϕ〉|2

m0(Eϕ − Eι)
, (7)

where p± = (px ± ipy)/
√

2 for σ± polarization, respectively,
in a right-handed coordinate system (x, y, z) with z being here
the optical axis, and m0 is the free-electron mass.

The determination of dipole matrix elements is somewhat
ambiguous within TBA [74,75]. Similarly, the use of the
Peierls substitution for the determination of the momentum
matrix elements in the presence of the vector potential [76]
triggered an extensive debate about the correctness [77,78]
and gauge invariance of such a procedure [79,80]. Accord-
ingly, optical spectra have been often evaluated within a
poorly justified constant momentum matrix element approxi-
mation [81] or by treating the momentum matrix elements as a
fitting parameter [74]. As shown in the Appendix, we have de-
rived, employing a method of invariants, a k · p Hamiltonian
for the L valleys in zinc-blende semiconductors [Eq. (A43)].
A similar formalism was elaborated earlier for the L valleys
in Ge and other semiconductors crystallizing in the diamond
structure [82]. Our general approach, for the L points in zinc-
blende semiconductors, takes the inversion asymmetry into
account, which results in the presence of terms linear in the
k vector, absent in the diamond structure. Inherently to this
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FIG. 6. Normalized absorption A±
ιϕ for σ+ and σ− polarizations (positive and negative bars, respectively) for optical transitions in the

vicinity of the E1 and E1 + �1 gaps at L points in the Brillouin zone for Cd1−xMnxTe (left panels) and Hg1−xMnxTe (right panels) with
xeff = 0.0625 and fully polarized Mn spins along 〈100〉, 〈110〉, or 〈111〉 crystal axis that is also the light propagation direction (upper, middle,
and bottom panels, respectively). Arrows show the resulting spectral splittings at L, �E , defined as a distance between the centers of gravity
of lines appearing for σ− and σ+ polarizations, respectively. In the case of Cd1−xMnxTe, �E at E1 is about 30 times smaller than at E0 for the
same Mn magnetization. Note that MCD is usually defined as the difference A− − A+.

approach, both f ±
ιϕ and the effective masses depend on the

interband matrix elements pvc, described by two real mate-
rial parameters A and B. In particular, the inverse effective
masses (longitudinal 1/ml and transverse 1/mt ), character-
izing constant energy ellipsoids in the bands denoted as L1

(L6 representation) and L2 (L4,5 representation), have con-
tributions proportional to A2 (longitudinal one) and B2 (the
transverse one). This is consistent with |A| � |B|, as ml � mt

according to ab initio results showed in Fig. 5. Moreover, the
magnitudes of fιϕ (for the E1 and E1 + �1 features) depend
mostly on the value of B. These imply that the normalized
absorbances A±

ιϕ , i.e., f ±
ιϕ divided by the sum of all f ±

ιϕ for
either E1 or E1 + �1 transitions, are immune (within 1%)
to the numerical values of A and B as long as |A| � |B|.
Accordingly, theoretical values of MCD can be obtained with
no adjustable parameters.

Figure 6 shows computed A±
ιϕ values for E1 and E1 +

�1 transitions involving all four L valleys in Cd1−xMnxTe
and Hg1−xMnxTe in the presence of magnetization M, pro-
duced by spin-polarized Mn ions with the concentration xeff =
0.0625 and S = 5

2 , parallel to along either 〈100〉, 〈110〉, or
〈111〉 crystalline axis, which is also the light propagation
direction. The TBA has served to determine parameters for

the k · p model (including exchange energies), which in turn
has been used to obtain E±

ιϕ and A±
ιϕ .

In the case of M ‖ 〈100〉, there are four equivalent valleys
tilted by 56.34◦ to the light propagation direction, so that
we expect that up to four optical transitions in both E1 and
E1 + �1 spectral ranges. Since the cleavage plane is (110)
for the zinc-blende structure, in the case of bulk single-crystal
samples [18,19,22], the magnetic field is presumably applied
along the 〈110〉 crystal axis. In this configuration, the kL vec-
tor of two valleys is perpendicular, and of two others tilted by
35.25◦ to the light direction. MCD studies were also carried
out on thin films of Cd1−xMnxTe and Zn1−xMnxTe grown by
molecular beam epitaxy on sapphire (0001) substrates, which
resulted in (111)-oriented polycrystalline samples [20]. In
such a case, light propagates parallel to L valley’s longitudinal
axis, whereas KL of three other valleys, if effects of strain and
piezoelectric fields can be neglected, are tilted by 70.53◦ to
the light direction.

As seen in Fig. 6, there are four lines in each polarization
for M ‖ 〈100〉 and M ‖ 〈110〉. Inspection of the M ‖ 〈110〉
data shows that the strongest and the weakest features origi-
nate from the two oblique valleys, whereas the two other peaks
from the valleys with kL perpendicular to the magnetization
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and light direction, for which spin-momentum locking by
SOC results in vanishing exchange splitting of the valence
band states. In the case of M ‖ 〈111〉, the strongest line comes
from the longitudinal valley kL ‖ 〈111〉; the four other lines
originate from the three remaining oblique valleys. For com-
parison, at E0 in Cd1−xMnxTe, two lines corresponding to
the heavy and light excitons are resolved for each polariza-
tion. The heavy-hole lines are three times stronger, and the
energy difference between their positions in the two polariza-
tions is taken as the magnitude of optical splitting �E at �,
�E (E0) = xeffS(N0α − N0β ). This procedure, taking xeff =
0.0625 and the theoretical values of the exchange energies
shown in Table IV, leads to �E (E0) = 0.17 and 0.16 eV
for Cd1−xMnxTe and Hg1−xMnxTe, respectively. According to
Fig. 6, the distances between the strongest lines at L are much
smaller, particularly in the case of Cd1−xMnxTe, implying
r = �E (E0)/�E (E1) = 38 and −17 for Cd1−xMnxTe and
Hg1−xMnxTe, respectively, and M ‖ [110]. Actually, taking
into account intrinsically large broadening of excitonic tran-
sitions at L (Ref. [73]), a better measure of spectral splitting
provided by MCD is the distance between centers of gravity
of lines appearing in σ+ and σ− polarizations, as depicted
by arrows in Fig. 6. In this case, r = 33 and 13 for the
two compounds in question independently of magnetization
orientations, the values in a qualitative agreement with the cor-
responding experimental data r = 16 (Refs. [19,20]) and 5 ±
1 (Ref. [22]), respectively. Our theory explains, therefore, a
large difference between exchange splittings of optical spectra
at � and L in bulk [18,19,22] and epitaxial [20] Cd1−xMnxTe,
hitherto regarded as highly surprising and contradicting theo-
retical expectations [18–22]. The developed theory describes
also the chemical trend, i.e., a significantly smaller magnitude
of r in topological Hg1−xMnxTe [22] compared to topologi-
cally trivial Cd1−xMnxTe [18–20]. On the other extreme, in
the case of light Zn cations, greater value r was found for bulk
Zn1−xMnxTe or even sign reversal of r in the case of epitaxial
(111)Zn1−xMnxTe [20]. Furthermore, the computed values of
�E (E1 + �1) are seen in Fig. 6 to have the same amplitude
but the opposite sign compared to �E (E1), as anticipated
earlier [18,21] and observed experimentally for Hg1−xMnxTe
[22]. Interestingly, no such reversal was fond in the case
of epitaxial (111)Cd1−xMnxTe though it appears in epitaxial
(111)Zn1−xMnxTe [20].

IV. CONCLUSIONS

By combining density functional theory with the modi-
fied Becke-Johnson exchange-correlation potential, a minimal
tight-binding model, and envelope function formalisms at
band extrema, we have accurately described experimental en-
ergy gaps and exchange splittings of magneto-optical spectra
at the � and L points of the Brillouin zone in Mn-doped topo-
logically trivial CdTe and topologically nontrivial HgTe with
no adjustable or empirical parameters. In particular, according
to our insight, a substantial reduction of the exchange-driven
splittings at the L points compared to the � point, since long
regarded as challenging [18–22], originates from the same
sign and similar magnitudes of the exchange energies in the
conduction and valence bands at L. More specifically, the
negative exchange energy of the conduction band at L results

from (i) k-dependent hybridization between band states and
Mn open d shells, which leads to the appearance of anti-
ferromagnetic kinetic exchange; (ii) k-dependent changes in
the orbital components of the Bloch functions, which affects
the relative magnitudes of antiferromagnetic kinetic exchange
and ferromagnetic potential exchange; and (iii) the proximity
of the conduction band at L to the upper Mn Hubbard band,
which enlarges the role of kinetic exchange. This enlargement
is more significant in Cd1−xMnxTe compared to Hg1−xMnxTe
in which the relativistic mass-velocity term shifts downward
s orbitals of Hg contributing to the conduction band energy at
L. The theory of magneto-optical phenomena also illustrates
the interplay of exchange interactions with spin-orbit effects
such as spin-momentum locking that diminishes exchange
splitting of valence states in L valleys that are oblique to the
magnetization direction.

Supplementing previous tight-binding Hamiltonian de-
signed for describing low-energy physics in topological
HgTe-CdTe systems [61], our work provides tight-binding
parameters appropriate to investigate phenomena dependent
on global properties of the band structure, such as indirect
exchange coupling between magnetic ions in magnetic semi-
conductors. At the same time, the derived k · p Hamiltonian
is suitable for modeling phenomena involving L valleys in all
compounds with a zinc-blende crystal structure.
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APPENDIX: DETERMINATION OF THE k · p
HAMILTONIAN FOR THE L POINTS IN

ZINC-BLENDE CRYSTALS

1. Construction of the representation for
the zinc-blende valence band

Let R0 be a lattice node (a cation or an anion site) of the
zinc-blende lattice and let G = Td be the corresponding point
group, generated by the operations {ga, gb} ⊂ G given in the
Cartesian basis as

ga =
⎛
⎝ 0 1 0

−1 0 0
0 0 −1

⎞
⎠, gb =

⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠. (A1)

A representation � of the space group for the zinc-blende
valence band is constructed following Ref. [83]: let kL =
π
a0

(1, 1, 1) be the L-symmetry point of the Brillouin zone,
where a0 is the lattice parameter. The corresponding Hilbert
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space HkL of the Bloch states is spanned by the wave functions
{ψX , ψY , ψZ} ⊂ HkL , denoted further as kets X , Y , and Z .
The Hilbert space HkL is the space of the representation D :
G → B(HkL ) such that ga and gb are represented by the same
matrices (A1) in the basis (X,Y, Z ). The primitive translations
t ∈ a0

2 {(0, 1, 1), (1, 0, 1), (1, 1, 0)} act as

�(t )ψ = exp(−ikL · t )ψ, ψ ∈ HkL . (A2)

Thus, the action of the subgroup

GkL = {g ∈ G : gkL ≡ kL} (A3)

coincides with the restriction of D, �|GkL
= D|GkL

, while any
other operation g moves to another (nonequivalent) L point of
the Brillouin zone: HkL � ψ �→ �gψ ∈ HgkL . There are four
nonequivalent L points in total:

GkL

= π

a0

{
(1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1)

}
,

(A4)

and the action of D in this set defines the permutation matrices
ra and rb:

ra =

⎛
⎜⎝

0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

⎞
⎟⎠, rb =

⎛
⎜⎝

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

⎞
⎟⎠. (A5)

Therefore,

�(ga) = ra ⊗ ga, �(gb) = rb ⊗ gb. (A6)

This defines a representation of the space group.

2. Observables

Accordingly, any observable O is represented by a 12 ×
12 matrix, or a 4 × 4 block matrix (with 3 × 3 blocks). The
action of the primitive translations separates the blocks of O
in the sense that translation-invariant observables are block di-
agonal. Moreover, the requirement of invariance with respect
to point operations implies that any such observable is defined
by the first block, the one corresponding to HkL . For example,
scalar observables have the form

O =
⎛
⎝aO bO bO

bO aO bO
bO bO aO

⎞
⎠, (A7)

with two real-valued parameters (aO, bO ).
Vector observables are defined by their Cartesian compo-

nents (Vx,Vy,Vz ):

Vx =
⎛
⎝aV bV bV

cV dV eV
cV eV dV

⎞
⎠, (A8)

Vy =
⎛
⎝dV cV eV

bV aV bV
eV cV dV

⎞
⎠, (A9)

Vz =
⎛
⎝dV eV cV

eV dV cV
bV bV aV

⎞
⎠. (A10)

3. Time-inversion symmetry

We assume for simplicity that the antiunitary time-
inversion operator T̂ acts independently on the orbital and
spin degrees of freedom, i.e., it is a tensor product

T̂ = K̂ ⊗ T̂1/2, (A11)

of some spin-independent part (denoted K̂) and the usual time
inversion for spin- 1

2 particles:

T̂1/2 : ψ =
(

ψ↑
ψ↓

)
�→ −iσyψ =

(−ψ↓
ψ↑

)
(A12)

(the arbitrary phase factor being included in K̂). Therefore,
still disregarding the spin for now, we consider an antiunitary
involution K̂ ,

K̂ (cψ ) = cK̂ψ, K̂2ψ = K̂ (K̂ψ ) = ψ (A13)

(cf. the relation T̂ 2 = −1 for fermions). It is defined by the
matrix Kαβ = 〈ψα|K̂ψβ〉 (α, β = X,Y, Z), such that

K̂

(∑
α

cαψα

)
=

∑
α,β

Kαβcβψα. (A14)

Assuming that the representation of the extended symmetry
group (space operations and time inversion) is a regular rather
than a projective one,

(Kαβ )
α,β=X,Y,Z =

⎛
⎝aT bT bT

bT aT bT

bT bT aT

⎞
⎠. (A15)

The pairs (aT , bT ) such that K̂2 = 1 can be further
parametrized by (u, v), |u| = |v| = 1,

aT = u
v + 2

3
, bT = u

v − 1

3
, (A16)

and the matrix (Kαβ )
α,β=X,Y,Z assumes the form

Kαβ = u

(
δαβ + v − 1

3

)
. (A17)

Since u can be adjusted by changing the overall phase of the
valence-band wave functions, one lets u = 1.

4. Invariant Hamiltonian and the momentum operator

Accordingly, the invariant Hamiltonian for the valence
band at the exact L point reads as

Hinv =
⎛
⎝aH bH bH

bH aH bH

bH bH aH

⎞
⎠. (A18)

The construction of a k · p Hamiltonian involves the momen-
tum operator p̂, which we discuss in detail here. Momentum
is represented as a time-inversion odd, vector operator. The
operator equation K̂ p̂ + p̂K̂ = 0 defines a set of homogeneous
linear equations for the parameters (ap, bp, cp, dp, ep) and
their complex conjugates [see Eqs. (A8)–(A10)]. In order to
find the invariants one performs an LDU decomposition of
the coefficients’ matrix and investigates the zero entries on
the diagonal of D. Special combinations of (aT , bT ) (or u and
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v) are when a particular entry becomes zero. Therefore, two
cases should be considered:

(1) If v = 1,

(Kαβ )
α,β=x,y,z =

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠. (A19)

and (P real)

p̂x = m0P

h̄

⎛
⎝ 0 i i

−i 0 0
−i 0 0

⎞
⎠, (A20)

p̂y = m0P

h̄

⎛
⎝0 −i 0

i 0 i
0 −i 0

⎞
⎠, (A21)

p̂z = m0P

h̄

⎛
⎝0 0 −i

0 0 −i
i i 0

⎞
⎠. (A22)

(2) If v = eiφ �= 1,

(Kαβ )
α,β=x,y,z = 1

3

⎛
⎝v + 2 v − 1 v − 1

v − 1 v + 2 v − 1
v − 1 v − 1 v + 2

⎞
⎠, (A23)

and (P real)

p̂x = 2

3
sin

(
φ

2

)
m0P

h̄

⎛
⎝ 2 2+v

1−v
2+v
1−v

− 1+2v
1−v

−1 −1
− 1+2v

1−v
−1 −1

⎞
⎠, (A24)

p̂y = 2

3
sin

(
φ

2

)
m0P

h̄

⎛
⎝−1 − 1+2v

1−v
−1

2+v
1−v

2 2+v
1−v

−1 − 1+2v
1−v

−1

⎞
⎠, (A25)

p̂z = 2

3
sin

(
φ

2

)
m0P

h̄

⎛
⎝−1 −1 − 1+2v

1−v

−1 −1 − 1+2v
1−v

2+v
1−v

2+v
1−v

2

⎞
⎠. (A26)

5. The k · p Hamiltonian

The standard derivation of k · p Hamiltonians involves
perturbation theory and an expansion in the basis of the
high-symmetry-point Bloch functions. Since in a typical semi-
conductor the result is dominated by terms due to virtual
transitions to the conduction band, rather than giving the gen-
eral form of the k · p Hamiltonian, here we write out an 8 × 8
matrix (including the conduction band explicitly rather than
via perturbation theory, and a spin-orbit term) which preserves
the most important features of such systems. In the basis of
(S, X,Y, Z ) states our Hamiltonian H reads as

H =
(

Ec + h̄
m0

k · p̂c
h̄

m0
k · p̂vc

h̄
m0

k · p̂†
vc Hinv + h̄

m0
k · p̂

)

+ 1

3
λSO(I ′

xσx + I ′
yσy + I ′

zσz ), (A27)

where p̂c is the momentum operator in the conduction band (it
is given in the next subsection in coordinates appropriate for
the L point). The valence band orbital momentum matrices
I ′
α are defined as usual by the Levi-Civita symbol (Iα )βγ =
−iεαβγ , α, β, γ = x, y, z by padding with zeros to a 4 × 4

matrix, whereas σα are the Pauli matrices corresponding to
the spin degree of freedom.

The interband matrices of momentum have the general
form (apvc, bpvc complex)

pvc,x = (apvc bpvc bpvc), (A28)

pvc,y = (bpvc apvc bpvc), (A29)

pvc,z = (bpvc bpvc apvc). (A30)

We require again that p̂vc is odd with respect to the time
inversion, where the time inversion in the conduction band is
defined as T̂ |S ↑〉 = |S ↓〉, T̂ |S ↓〉 = −|S ↑〉. There exist two
such invariants, therefore, we introduce a complex parameter
z, and

apvc = m0

h̄

(1 + 2v)z + 3z

1 − v
, bpvc = m0

h̄
z, (A31)

unless v = 1, when

apvc = im0

h̄
a, bpvc = im0

h̄
b, (A32)

a and b being two real parameters.

6. Change of coordinates

In order to diagonalize Hinv, one transforms the basis of the
Hilbert space HkL according to (ω = e2π i/3)

Uω = 1√
3

⎛
⎝1 ω ω2

1 ω2 ω

1 1 1

⎞
⎠. (A33)

In the new basis Hinv is diagonal, with eigenvalues Ev1 =
aH + 2bH (nondegenerate) and Ev2 = aH − bH (twofold de-
generate). K̂ swaps the two energy-degenerate eigenstates,
and is v on the nondegenerate eigenstate. By an appropriate
adjustment of the phase of the corresponding basis vector v

can be set to v = 1. Let us assume this case.
Furthermore, an appropriate coordinate system with z′

along [111] is introduced by the rotation R[111],

R[111] =
⎛
⎝ 1/

√
2 1/

√
6 1/

√
3

−1/
√

2 1/
√

6 1/
√

3
0 −2/

√
6 1/

√
3

⎞
⎠, (A34)

which allows to define two parameters A = − ih̄
m0

(apvc +
2bpvc) and B = − ih̄

m0
(apvc − bpvc). As discussed above, we

assume that the time-inversion parameters u = v = 1, which
implies that A and B are real. These interband momentum
matrix elements determine the band dispersion in the vicinity
of the L point, in the longitudinal and transverse directions,
respectively. Position operator r̂ is given by matrices of the
same form, but then the matrix elements (arvc, brvc) are real
rather than purely imaginary.

The rotation of the real-space coordinates implies a ro-
tation in the space of the spin degrees of freedom. We
implement it with a unitary transformation Uc,

Uc = 1√
6 − 2

√
3

(
1 − i 1 − √

3
−1 + √

3 1 + i

)
, (A35)
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where the group generators ga and gb are represented as

ga �→ 1√
2

(
1 − i 0

0 1 + i

)
, (A36)

gb �→ 1

2

(
1 − i −1 − i
1 − i 1 + i

)
. (A37)

The transformed Pauli matrices read as

σ ′
x′ = − 1√

2

(
0 1 − i

1 + i 0

)
, (A38)

σ ′
y′ = 1√

2

(
0 1 + i

1 − i 0

)
, (A39)

σ ′
z′ =

(
1 0
0 −1

)
. (A40)

With this notation, the conduction band momentum oper-
ator takes the form (Q/h̄ is the transverse velocity in the
conduction band)

p′
c,x′ = m0

h̄
Qσ ′

y′ , p′
c,y′ = −m0

h̄
Qσ ′

x′ , p′
c,z′ = 0. (A41)

In the new coordinates, the valence band spin-orbit interaction
term (in a basis in which the spin-up states precede those with
spin-down) takes the form

HSO = 1

3
λSO

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 1 + i 0
0 1 0 0 0 0
0 0 −1 −1 − i 0 0
0 0 −1 + i 0 0 0

1 − i 0 0 0 −1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠.

(A42)
More generally, the diagonal entries in this matrix can have a
(longitudinal) coefficient independent from the coefficient of
the off-diagonal entries (a transverse one).

The Hamiltonian is displayed in Eq. (A43). In addition
to the energies Ec, Ev1, Ev2, and λSO [all determined by the
empirical band energies at L according to (A46)], it is char-
acterized by the four-momentum matrix elements Q, P, A,
and B:

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ec Q
(

1+i√
2

kx′ + 1−i√
2

ky′
)

iAkz′ −
B(kx′ +iky′ )

√
2

B(kx′ −iky′ )
√

2
0 0 0

Q
(

1−i√
2

kx′ + 1+i√
2

ky′
)

Ec 0 0 0 iAkz′ −
B(kx′ +iky′ )

√
2

B(kx′ −iky′ )
√

2
−iAkz′ 0 Ev1

√
3
2 P(kx′ + iky′ ) −

√
3
2 P(kx′ − iky′ ) 0 1+i√

3
λSO 0

−
B(kx′ −iky′ )

√
2

0
√

3
2 P(kx′ − iky′ ) Ev2 + λSO

3 0 0 0 0

B(kx′ +iky′ )
√

2
0 −

√
3
2 P(kx′ + iky′ ) 0 Ev2 − λSO

3 − 1+i√
3

λSO 0 0

0 −iAkz′ 0 0 − 1−i
3 λSO Ev1

√
3
2 P(kx′ + iky′ ) −

√
3
2 P(kx′ − iky′ )

0 −
B(kx′ −iky′ )

√
2

1−i
3 λSO 0 0

√
3
2 P(kx′ − iky′ ) Ev2 − λSO

3 0

0
B(kx′ +iky′ )

√
2

0 0 0 −
√

3
2 P(kx′ + iky′ ) 0 Ev2 + λSO

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A43)

In the same basis, the generators of the C3v group are

c[111] = diag

(
1 − i

√
3

2
,

1 + i
√

3

2
,

1 − i
√

3

2
,−1,

1 + i
√

3

2
,

1 + i
√

3

2
,

1 − i
√

3

2
,−1

)
(A44)

(the threefold rotation), and

s(110) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1+i√
2

0 0 0 0 0 0

− 1−i√
2

0 0 0 0 0 0 0

0 0 0 0 0 1+i√
2

0 0

0 0 0 0 0 0 0 1+i√
2

0 0 0 0 0 0 1+i√
2

0

0 0 − 1−i√
2

0 0 0 0 0

0 0 0 0 − 1−i√
2

0 0 0

0 0 0 − 1−i√
2

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A45)

(the reflection). The eigenvalues of c[111] equal to −1 correspond to the L4,5 representation, the remaining ones to L6.
The eigenvalues of H at k = 0 (the exact L point) are Ec and

E0 = Ev2 + 1
3λSO,

E± = 1
6

[
3Ev1 + 3Ev2 − λSO ±

√
9(Ev1 − Ev2)2 + 6(Ev1 − Ev2)λSO + 9λ2

SO

]
(A46)
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and are (Kramers) twofold degenerate. The corresponding eigenvectors are

ψc↑ = |1〉, (A47)

ψc↓ = |2〉, (A48)

ψ0↑ = |4〉, (A49)

ψ0↓ = |8〉, (A50)

ψ±↑ = 1

n±
[c±|3〉 + (1 − i)d±|7〉], (A51)

ψ±↓ = 1

n±
[−(1 + i)d±|5〉 + c±|6〉] (A52)

(n± > 0 is the normalization) with

c± = 3Ev1 − 3Ev2 + λSO ±
√

9(Ev1 − Ev2)2 + 6(Ev1 − Ev2)λSO + 9λ2
SO, (A53)

d± = 2λSO. (A54)

In the basis of eigenstates, the threefold rotation c[111] is diagonal, with eigenvalues

diag

(
1 − i

√
3

2
,

1 + i
√

3

2
,−1,−1,

1 − i
√

3

2
,

1 + i
√

3

2
,

1 − i
√

3

2
,

1 + i
√

3

2

)
(A55)

and the reflection s(110) is block diagonal, with each block of the same form:

1√
2

(
0 1 + i

−1 + i 0

)
. (A56)

The time inversions acts as (now the spin directions are given with respect to the [111] axis)

T̂ (ψc↑) = ψc↓, (A57)

T̂ (ψc↓) = −ψc↑, (A58)

T̂ (ψ0↑) = ψ0↓, (A59)

T̂ (ψ0↓) = −ψ0↑, (A60)

T̂ (ψ±↑) = ψ±↓, (A61)

T̂ (ψ±↓) = −ψ±↑. (A62)

Furthermore, the restrictions of the spin operator (s′
x′, s′

y′ , s′
z′ ) to the eigenspaces take the form

s′
x′,y′,z′ |E=Ec = σ ′

x′,y′,z′

2
, (A63)

s′
x′,y′ |E=E0 = 0, s′

z′ |E=E0 = σ ′
z′

2
, (A64)

s′
x′,y′

∣∣
E=E±

= ± 3E± − 3Ev2 + λSO√
9(Ev1 − Ev2)2 + 6(Ev1 − Ev2)λSO + 9λ2

SO

σ ′
x′,y′

2
, (A65)

s′
z′ |E=E± = ± 3Ev1 − 3Ev2 + λSO√

9(Ev1 − Ev2)2 + 6(Ev1 − Ev2)λSO + 9λ2
SO

σ ′
z′

2
. (A66)
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7. Velocities and effective masses

The bands can be classified as those with linear
(∂E/∂k|k=0 �= 0) and parabolic (∂E/∂k|k=0 = 0) transverse
(in the kx′ , ky′ plane) dispersion. Generally, for a twofold-
degenerate band, the velocities are given in terms of the
characteristic polynomial χ = χ (k, E ) as

h̄v = −
(

∂2χ (k,E )
∂k ∂E

)
(

∂2χ (k,E )
∂E2

) ±

√√√√[(
∂2χ (k,E )

∂k ∂E

)
(

∂2χ (k,E )
∂E2

)
]2

−
(

∂2χ (k,E )
∂k2

)
(

∂2χ (k,E )
∂E2

) . (A67)

In the present case, χ (k, E ) = χ (−k, E ) due to Kramers de-
generacy and one writes χ = χ (k2, E ). For the same reason,
∂χ (0, E )/∂E = 0. Then, in the former class (the conduction
band and the E± eigenspaces), the velocity can be calculated
by evaluating the following expression at k = 0:

1

h̄

∣∣∣∣∂E

∂k

∣∣∣∣ = 1

h̄

√√√√−2
(

∂χ (k2,E )
∂ (k2 )

)
(

∂2χ (k2,E )
∂E2

) , (A68)

or by diagonalization of the velocity operator,
1
h̄∂H (k)/∂k|E=E± in each energy eigenspace. The result
for the transverse velocity in the ± band (disregarding sign)

is

v± = 1

h̄

2PλSO√
3(Ev1 − Ev2)2 + 2(Ev1 − Ev2)λSO + 3λ2

SO

.

(A69)

Therefore, the dispersion E (k) can be approximated as

E (k) = E (0) ± h̄vt

√
k2

x′ + k2
y′ + h̄2

2mt

(
k2

x′ + k2
y′
) + h̄2

2ml
k2

z′ ,

(A70)

and the masses (mi)i=t,l are given by

h̄2

2m
=

1
6

∂2χ (k,E )
∂k2

∂3χ (k,E )
∂E3 − 1

2
∂3χ (k,E )
∂k2 ∂E

∂2χ (k,E )
∂E2[

∂2χ (k,E )
∂E2

]2

h̄2

2m
=

1
3

∂χ (k2,E )
∂ (k2 )

∂3χ (k2,E )
∂E3 − ∂2χ (k2,E )

∂ (k2 ) ∂E
∂2χ (k2,E )

∂E2[
∂2χ (k2,E )
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Explicitly, each h̄2/2mi has contributions from
(1) the value of the second derivative of the Hamiltonian

1
2∂2H(k)/∂k2 in the energy eigenspace;

(2) the second-order off-diagonal perturbations
1
2

∑
j �=i Tr [H′

i j (H′
i j )

†]/(Ei − Ej ), where H′
i j denotes the

2 × 2 off-diagonal block of ∂H(k)/∂k corresponding to
bands (i, j).
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