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First-principles calculation of electroacoustic properties of wurtzite (Al,Sc)N
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We study the electroacoustic properties of aluminum scandium nitride crystals Al1−xScxN with the metastable
wurtzite structure by means of first-principles calculations based on density functional theory. We extract
the material property data relevant for electroacoustic device design, namely, the full tensors of elastic and
piezoelectric constants. Atomistic models were constructed and analyzed for a variety of Sc concentrations
0 � x � 50%. The functional dependence of the material properties on the scandium concentration was extracted
by fitting the data obtained from an averaging procedure for different disordered atomic configurations. We give
an explanation of the observed elastic softening and the extraordinary increase in piezoelectric response as a
function of Sc content in terms of an element-specific analysis of bond lengths and bond angles.
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I. INTRODUCTION

Metastable aluminum scandium nitride (denoted by
Al1−xScxN or (Al,Sc)N in the following) with the wurtzite-
type crystal structure belongs to the class of polar-
piezoelectric materials. It can be synthesized up to approxi-
mately x � 0.41 by reactive direct current or radiofrequency
magnetron sputtering and is known to have outstanding elec-
troacoustic properties, surpassing reported values for all other
group-III nitrides [1–10]. The electroacoustic properties of
(Al,Sc)N depend strongly on the Sc concentration, which
offers an additional degree of freedom for adjusting, e.g., the
phase velocity and electromechanical coupling in the design
of resonator devices [11,12].

Experimentally, elastic and piezoelectric tensor compo-
nents have been acquired from acoustic resonance experi-
ments [1–5] or Brillouin scattering [6–8] on (Al,Sc)N thin
films with usually low Sc concentrations. Recently, the full set
of electroacoustic properties was determined experimentally
from Al1−xScxN thin films in a large range of compositions,
0 � x � 0.32, from the same material source using Rayleigh-
type waves in surface acoustic wave (SAW) resonators [5].
The elastic and piezoelectric properties of (Al,Sc)N have also
been obtained theoretically by means of density functional
theory (DFT) [13–16]. However, the quantitative computation
of material properties of randomly disordered alloys remains
a difficult and time-consuming task and raises principal con-
ceptual questions.

We present here a comprehensive study of the electroa-
coustic properties of aluminum scandium nitride. The full set
of material property data relevant for electroacoustic device
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design, namely, the full tensors of elastic and piezoelectric
constants, are computed by means of atomistic simulations
based on DFT. A combinatorial approach is chosen which
includes a large number of structure models and allows for a
statistical analysis of the microscopic structural parameters,
namely, bond lengths and bond angles. This analysis gives
insight into the microscopic origin of the observed highly
nonlinear dependence of the most relevant elastic and piezo-
electric constants as a function of Sc content.

The paper is divided into three major sections that present
and discuss the results for the structural parameters (Sec. III),
the elastic tensor (Sec. IV), and the piezoelectric tensor
(Sec. V) of Al1−xScxN. A summary is given in Sec. VI.

II. METHODOLOGY

A. Modeling of disorder

Mixed crystals and random alloys are characterized by
two (or more) atomic species sharing the same (sub)lattice
without giving rise to long-range order. The modeling using
DFT simulations of bulk materials requires the use of super-
cells containing a limited number of atoms (typically from
a few tens to a few hundreds) in combination with periodic
boundary conditions. Therefore, every structure model of fi-
nite size will be biased by the choice of the specific disorder
representation. One possibility to address this problem is to
construct specific model structures with as many atoms as
possible (limited by computational resources) for which site
occupation correlations are minimized. Such representative
structure models are referred to as special quasirandom struc-
tures (SQS) [17].

The advantage of the SQS approach is that it reduces the
propensity of artifacts generated by a special (e.g., highly
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symmetric) local atomic environment. The drawback is the
need of rather big supercells. Therefore, often only a sin-
gle SQS supercell is examined as being representative for
a specific atomic composition ratio. However, a single SQS
structure is not a unique representation of a disordered al-
loy, even for large supercells. Moreover, the assumption of a
purely random distribution of the different elements on the
lattice is not a unique choice, and in general, there is the
possibility of short-range correlations.

A second possibility to model mixed crystals is to take
a combinatorial approach and to study the large variety of
different realizations belonging to the same chemical com-
position and to extract physical properties by an appropriate
averaging procedure. Here, the variation in the physical prop-
erty of interest may be traced back to specific local atomic
environments. This opens up the possibility of gaining a
deeper understanding of the interplay of structural elements
and material properties. Both theoretical approaches, the SQS
method and the combinatorial approach, have advantages and
disadvantages and complement each other. In this paper, we
take the second approach.

To model the (Al,Sc)N alloy with random distribution of Al
and Sc atoms on the metal sublattice, we used various super-
cell representations with varying Sc content. It is necessary
to find a good compromise for the choice of the supercell
models regarding the following three aspects: (i) A reasonable
number of representative structure models for each Sc content
are required to account for the influence of different local
atomic configurations and to obtain reasonable statistics with
respect to the local atomic environments considered. (ii) The
supercell size should be large enough to avoid serious finite
size effects. (iii) The supercell size should be small enough
to keep the computational resources for a precise evalua-
tion of the material parameters at a tractable level. We have
therefore chosen supercell models which contain 36 atoms
to adequately address the abovementioned three points (see
Sec. III).

B. Computational settings

The calculation of elastic and piezoelectric constants was
carried out using the PWscf code of the Quantum Espresso
(QE) software package [18,19], using the generalized gradient
approximation Perdew-Burke-Ernzerhof (PBE) functional for
exchange correlation. The wave functions of the valence elec-
trons are represented by a plane-wave basis set with a cutoff
energy of 55 Ry (1 Rydberg ≈ 13.606 eV) and the electron
density and effective Kohn-Sham potential by discrete Fourier
series with a cutoff energy of 440 Ry. The interactions of
valence electrons with the atomic nuclei and core electrons
are described by pseudopotentials taken from the open-source
Standard Solid State Pseudopotentials (SSSP) library [20,21].
Here, ultrasoft pseudopotentials were chosen for N and Sc,
while the pseudopotential for Al is of the projected augmented
wave type. Brillouin zone integrals for the 36-atom supercells
were evaluated on a Monkhorst-Pack mesh of 3 × 3 × 6 k-
points with a Gaussian smearing of 0.01 Ry. The convergence
threshold was set to 10−5 Ry for the total energy and to
10−4 Ry/Bo (1 Bohr = 0.529 Å) for the forces on atoms.

FIG. 1. Left: The AlN unit cell of the wurtzite crystal structure
which is characterized by the hexagonal lattice parameters alat and
clat and one internal structure parameter u. The latter determines the
relative shift of the N sublattice with respect to the Al sublattice.
Right: Top view on the 36-atom supercell illustrating the two shifted
hexagonal lattices of the wurtzite structure and the positions of the
18 metal atoms.

Elastic stresses and interatomic forces were relaxed using the
Broyden-Fletcher-Goldfarb-Shanno algorithm.

III. STRUCTURE OF (AL,SC)N

This section introduces our representation of disordered
model structures for (Al,Sc)N. The energy criterion guiding
the choice of model structures is presented in Sec. III A and
the evaluation of lattice parameters in Sec. III B. An explana-
tion of the origin of the observed highly anisotropic change of
lattice parameters in terms of bond lengths and bond angles is
given in Sec. III C.

A. Low-energy supercell realizations of (Al,Sc)N

In this paper, we consider supercell models which contain
36 atoms and are built from 3 × 3 × 1 AlN wurtzite unit cells
with individual Al atoms being substituted by Sc atoms, c.f.,
Fig. 1. The choice of the representative set of disorder config-
urations is guided by comparing the DFT total energies of the
various possible atomic configurations at fixed Al:Sc ratio for
this supercell size. These total energies are the ground-state
energies of the structurally optimized supercell models which
are obtained by relaxation of the atom positions and the cell
shape (i.e., lattice parameter alat and clat) to zero elastic stress
and zero atomic forces. In other words, the lattice constants
and atomic coordinates are determined such that the total
energy is minimal for the given distribution of Al and Sc
atoms on the metal sublattice in the supercell.

Note that we have kept the hexagonal symmetry for our
supercell models in the structural optimization, i.e., we opti-
mized the cell volume and c:a ratio while keeping the angles
in the hexagonal system fixed. Microscopically, there will be
local shear strains because the hexagonal supercell symmetry
is broken in most cases of disordered arrangements of Sc
atoms on Al sites. However, due to the periodic boundary
conditions used in the DFT simulations, we always have a
structure with identical atomic arrangements in the neigh-
boring supercells. This is not the case in the macroscopic
experimental realization of a (truly) disordered material. Here,
strain effects average out, and the wurtzite crystal structure is
observed experimentally with zero off-diagonal elements in
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FIG. 2. Formation enthalpies of metastable wurtzite (Al,Sc)N.
Upper panel: Formation enthalpies Hf with respect to the binary
nitride phases, evaluated for all the inequivalent 36-atom supercells
that are combinatorially possible. Data taken from Refs. [14,15] are
shown for comparison. Lower panel: Relative formation energy �Hf

zoomed in on the low-energy range. Here, �Hf is defined as the
difference in formation energy with respect to the lowest-energy
structure at each given x. Red circles mark the structures for the de-
tailed analysis which subsequently enter the fitting of the functional
dependence of the material properties on the Sc content.

the lattice matrix. Therefore, by keeping the hexagonal shape
fixed for our supercell models, we eliminate all microscopic
broken-symmetry effects in the simulations, like in the exper-
iments.

We have screened the ground-state energy (total energy)
for all the Al18−nScnN18 supercells, which are combina-
torically possible. Symmetry inequivalent structures were
generated using the software package SOD [22]. While this
results in only a small number of structures for small numbers
n of Sc atoms in the 36-atom supercell, namely 1, 5, and 14
inequivalent structures for n = 1, 2, and 3, respectively, this
number grows considerably at higher Sc content. For n = 4,
5, 6, 7, and 8, there are 46, 99, 219, 336, and 475 structures,
and for a Sc content of 50%, the wurtzite structure has 504
inequivalent possibilities for how to distribute the 9 Sc atoms
on the 18 metal sublattice sites.

The upper panel of Fig. 2 displays the computed forma-
tion enthalpy Hf for all 36-atom supercell realizations as a
function of the Sc content x = n/18. Here, Hf is defined with
respect to the two binary nitride phases, namely, wurtzite AlN
and cubic rocksalt-type ScN, and is computed as weighted
difference in total energies. Wurtzite (Al,Sc)N is known to be
thermodynamically metastable (i.e., Hf > 0) and can only be
stabilized experimentally as thin films. Other numerical data
taken from literature [14,15] are shown for comparison. Note
that the respective authors have used 128-atom SQS supercells

FIG. 3. Lattice parameters alat and clat as a function of the Sc
content x. The results of the quadratic fitting to the dataset are
shown as solid lines. Results for N = 128 SQS supercells taken
from literature [14,15] are shown for comparison. The dashed blue
line indicates Vegard’s rule, i.e., the linear interpolation between the
properties of the two binary compounds AlN and hexagonal ScN.

with one specifically selected distribution of Sc atoms for each
considered value of Sc content.

The lower panel of Fig. 2 shows a close-up on the low-
energy range and plots the relative formation energy �Hf ,
which is the energy difference in formation energy with re-
spect to the lowest-energy structure at each given x. For (i) the
further analysis of the structural parameters, (ii) the evaluation
of elastic and piezoelectric tensors, and (iii) the extraction
of their functional dependence on x, we have selected a set
of lowest-energy structures for each Al:Sc ratio considered.
These structures are marked by red symbols in Fig. 2. Natu-
rally, for n = 0 and 1, there is only one model structure each,
and for n = 2, we have taken all five available structures. For
n = 3, 4, 5, 6, and 7, we have chosen the six lowest-energy
structures each. As the energetical separation between the
individual structures becomes very small at large Sc content,
we have selected 11 and 15 sample structures for n = 8 and 9,
respectively.

Note that, in the thin-film-deposition synthesis of such
disordered semiconductor alloys, it is equally unlikely that
the resulting film yields a superstructure corresponding to the
lowest-energy structure model or that it has a completely ran-
domly disordered structure. Therefore, we decided to analyze
not only the particular lowest-energy structure at each given
Al:Sc ratio, but a larger ensemble of structures in the given
energy range (shown in the lower panel of Fig. 2) with equal
statistical weights.

B. Results: Structural parameters of (Al,Sc)N

Our results for the optimized lattice parameters alat and
clat are shown in Fig. 3 (see Fig. 1 for the definition of these
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quantities). They are found to be in very good agreement with
the data from Refs. [14,15] and indicate that our combinatorial
supercell approach yields equivalent results to theirs obtained
with the much larger 128-atom cells. Naturally, the N = 36
supercells show a dependency on the specific distribution of
Sc atoms in the cell, which becomes more pronounced at
larger x. The authors of Refs. [14,15] each have used one
specifically selected 128-atom supercell obtained via the SQS
approach for each Sc concentration x, at the expense of using a
relatively low plane-wave energy cutoff and k-points density.
It is interesting to note that, although the SQS are designed
to distribute the Sc atoms in an uncorrelated manner as well
as possible, the results of Refs. [14,15] obtained with two
distinct disorder representations differ noticeably and in a
similar range as our data.

To extract the functional dependence of the calculated
structural parameters on the Sc content, we have fitted a
quadratic function to our selected set of data points. Therefore,
we have first averaged the data points separately for each x
value (c.f., black filled circles in Fig. 3) and then applied a
least squares fitting procedure where the value of the quadratic
fitting function at x = 0 was kept fixed to the respective data
point. The results for the variation in lattice parameters with
Sc content x are

alat (x) = 3.131
(
1 + 0.126 x + 0.077 x2

)
Å, (1)

clat (x) = 5.020
(
1 + 0.073 x − 0.223 x2

)
Å. (2)

The corresponding quadratic fit of the respective cell volume
data yields the mass density

ρ(x) = 3.194
(
1 + 0.108 x + 0.030 x2

)
g/cm3. (3)

The evolution of the lattice parameters with increasing
Sc content is found to be highly anisotropic, in agreement
with experimental results [5]. The lattice parameter alat grows
essentially linearly following Vegard’s rule alat (x) ∼ (1 −
x)aAlN + x aScN, where aAlN and aScN are the equilibrium lat-
tice parameters of wurtzite AlN and hexagonal ScN. Note that
the latter structure corresponds to wurtzite with the internal
parameter set to u = 0.5 and is a hypothetical crystal structure
for ScN [13,23]. The equilibrium crystal structure of ScN is
cubic rock salt. However, the Sc-N bond length in hexagonal
ScN is very close to the one of cubic rock salt ScN.

In contrast, the lattice parameter clat changes on a much
smaller scale and remains almost constant for a wide range
of Sc content. This behavior is very different from the other
mixed wurtzite nitrides like (Al,Ga)N or (Al,In)N (see, e.g.,
Ref. [24] and refs. therein) and has so far not yet been fully
explained. Our set of model structures, however, allows us
to clarify the origin of the anisotropic dependence on the Sc
content, as discussed in the following section.

C. Microscopic origin of anisotropic change
of lattice parameters

The almost perfect tetrahedra AlN4 of nearest-neighbor
atoms in bulk wurtzite AlN are characterized by two bond
lengths �c and �ab for the Al-N bond parallel to the lattice vec-
tor c (z axis) and the three bonds forming the basal plane (xy
plane) of the tetrahedra, respectively. Moreover, there is one

TABLE I. Equilibrium lattice parameters alat and clat , internal
parameter u, bond angles α and β, and bond lengths �ab and �c

for wurtzite AlN and hexagonal ScN from DFT calculations. (See
Figs. 1 and 4 for the geometric definitions.) The third line gives the
arithmetic mean of the values of w-AlN and h-ScN. Note that the
equilibrium lattice parameter of cubic ScN obtained with compara-
ble numerical settings is 4.509 Å, yielding a ScN bond length of
2.254 Å.

alat (Å) clat (Å) u α (deg) β (deg) �ab (Å) �c (Å)

w-AlN 3.131 5.019 0.381 108.2 110.7 1.903 1.915
h-ScN 3.723 4.498 0.5 90 120 2.149 2.249
Average 3.437 4.759 0.441 99.2 115.4 2.026 2.082

characteristic angle α between these two types of bonds, or
alternatively, the angle β between each of the two basal plane
bonds may be chosen. There is a direct correspondence [25]
of these parameters with the lattice parameters alat and clat

and the internal parameter u of the wurtzite structure. The
respective values are summarized in Table I. The situation is
more complicated in (Al,Sc)N, where the MN4 tetrahedra (we
use the notation M for a metal atom) in general have a broken
symmetry, which results in many more parameters that are
needed for their characterization, see Fig. 4. All four tetrahe-
dral M-N bonds can have different lengths. With �c, we refer
to the bond length of the M-N bond which is oriented roughly
in c direction but may have a small tilting angle γ with respect
to the z axis. The M-N bonds involving the three N atoms in
the basal plane in general have three different lengths �ab,i

(i = 1, 2, 3) and three different angles δi measuring the tilt
with respect to the xy plane. The three bond angles αi differ as
well; the same applies to the three βi.

We have conducted a statistical analysis to derive a cor-
respondence between the lattice parameters and these bond
lengths and bond angles that in general vary for all consid-
ered atomic bonds. Therefore, we have averaged each of the
parameters �ab, �c, α, β, γ , and δ over all the Al-N and Sc-N
bonds in all the structurally relaxed supercells of our dataset at
each given Sc content. The respective results are summarized
in Fig. 5. The histograms for Al-N and Sc-N bonds have been
evaluated separately, and the blue circles and red diamonds
give the respective mean values. Error bars of ±1 standard

FIG. 4. Definition of the bond angles (left) and bond lengths
(right) for the tetrahedral MN4 structural unit. Here, M = Al or Sc.
While the three angles αi (i = 1, 2, 3) for all three nitrogen atoms in
the basal plane are equal in perfect wurtzite AlN, they individually
differ in the mixed, symmetry-broken case of (Al,Sc)N compounds.
The same applies for the angles βi and δi and the bond lengths �ab,i.
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FIG. 5. Bond lengths and bond angles averaged over the set
of structurally relaxed low-energy supercell models as a function
of the Sc content. Values from AlN4 tetrahedra (blue circles) and
ScN4 tetrahedra (red diamonds) are shown separately, and the black
symbols mark their weighted average at given Sc content x. Error
bars indicate ±1 standard deviation from the average value.

deviation indicate the spread of the distributions. Finally, the
averaged values weighted by the respective Al:Sc ratios are
shown as black squares.

The average Al-N bond lengths 〈�ab〉Al and 〈�c〉Al are found
to be very close to the values of bulk wurtzite AlN, c.f.,
Table I. Moreover, both lengths vary only marginally with
the Sc content. By contrast, the values for the Sc-N bond
lengths are found to be substantially smaller than the values
of cubic ScN and hexagonal ScN, and they gradually grow
with increasing number of Sc atoms in the supercell. For
the bond angles, the situation is different. While 〈α〉Sc is a
few degrees smaller than 〈α〉Al, both decrease monotonously
and with a similar slope as a function of the Sc content. The
disorder and symmetry breaking introduced by the Sc atoms
lead to a tilting of the MN4 tetrahedra, as reflected in the
increase of 〈γ 〉 for both M = Al and Sc. Here, the latter is
less affected than the former. The observed decrease in 〈δ〉 is
directly connected with the decrease in 〈α〉. Since 〈γ 〉 is small,
the relation 〈δ〉 � 〈α〉 − 90◦ holds to a large extent.

The lattice parameter alat can be obtained by averaging
over the projection of the M-N bonds onto the xy plane

〈a〉 =
√

3 〈Pxy�ab〉 �
√

3 〈�ab〉 sin〈α〉. (4)

The averaged projection 〈Pxy�ab〉 grows even faster than the
average 〈�ab〉 with increasing Sc content because 〈α〉 is de-
creasing. Both effects add up and give the observed almost
linear dependence of alat on x. By contrast, the averaged pro-
jection onto the z axis 〈Pz�ab〉 decreases for the same reason
and largely compensates the increase of 〈�c〉 with increasing
Sc content. This in combination leads to the observed depen-
dence of lattice parameter clat on x since

〈c〉 = 2〈Pz�c〉 + 2〈Pz�ab〉
� 2〈�c〉 cos〈γ 〉 + 2〈�ab〉 sin〈δ〉. (5)

For small values of 〈γ 〉, Eq. (5) can be well approximated by
setting sin〈δ〉 � − cos〈α〉 and cos〈γ 〉 � 1.

IV. ELASTIC TENSOR

This section introduces our method of evaluating the elastic
tensor as a function of Sc content x in Sec. IV A, and the
respective results are presented in Sec. IV B. The observed
behavior can be well correlated with the change in the inter-
atomic bonds due to an applied strain, as shown and discussed
in Sec. IV C.

A. Evaluation of tensor components Cμν

The tensor of elastic constants is of rank 4, which implies
tensor components Ci jkl with four cartesian indices. Due to
symmetry, it is convenient to use the Voigt notation to write
the tensor components in matrix form with elements Cμν (and
with Cμν = Cνμ). Here and in the following, we use Greek let-
ters for tensor indices in Voigt notation and Latin letters for the
cartesian indices. The matrix representing the elastic tensor
has five independent nonzero components for the hexagonal
symmetry of the wurtzite crystal. These are C11, C12, C13, C33,
and C44. By symmetry, C22 = C11, C23 = C13, C55 = C44, and
C66 = (C11 − C12)/2.

The random distribution of Sc atoms on the metal sublat-
tice a priori breaks the hexagonal symmetry for the considered
(Al,Sc)N supercell, so that a calculation will yield the full set
of 21 nonvanishing independent components Cμν . To restore
the hexagonal symmetry of the elastic tensor as it is observed
experimentally for (Al,Sc)N films on the macroscopic level,
we make use of the appropriate point group symmetry C6v

(6mm). This group comprises 12 symmetry elements, namely
five rotation angles (60◦, 120◦, 180◦, 240◦, 300◦), six mirror
planes, and the identity. The transformation of the elastic
tensor (tensor of rank 4) under a symmetry operation R(α)
with corresponding transformation matrices R(α)

i j is given by

C(α)
i jkl =

3∑
m=1

3∑
n=1

3∑
p=1

3∑
q=1

R(α)
im R(α)

jn R(α)
kp R(α)

lq Cmnpq. (6)
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FIG. 6. Symmetrized elastic tensor components Cμν calculated for 36-atom (Al,Sc)N supercells with varying Sc content x. The results of
the quadratic fitting are marked as solid lines. Results taken from Refs. [15,16,26] are included for comparison. The arithmetic mean of the
elastic properties of binary AlN and ScN is displayed by blue diamond symbols at x = 50%.

The symmetrized tensor is obtained as an average with respect
to the 12 symmetry elements of the point group symmetry C6v ,

C(sym.)
i jkl = 1

12

12∑
α=1

C(α)
i jkl . (7)

We have evaluated the elastic tensor from first-principles
stress calculations for all of the selected 36-atom sample struc-
tures using the ElaStic package [27]. Depending on the space
group of the crystal, a set of deformation matrices is selected.
Stress calculations are carried out for all deformed structures,
and the computed stresses are fitted as polynomial functions of
the applied strains to extract the derivatives at zero strain. The
knowledge of these derivatives allows for the determination of
all independent components of the elastic tensor. In this con-
text, the accuracy of the elastic constants critically depends
on the polynomial fit, namely, the order of the polynomial
used and the range of deformations considered. The ElaStic
tool allows for a systematic study of the influence of these
fitting parameters on the numerical derivatives to obtain the
most reliable results. We have used third-order polynomials
and the strain interval [−0.004, 0.004] with 17 equally spaced
data points for each deformation.

B. Results: Elastic tensor of (Al,Sc)N

The results for the symmetrized elastic tensor are compiled
in Fig. 6, where they are also compared with other DFT results
from literature [15,16,26]. The elastic tensor components vary
for the individual structure models at a given Sc content x.
However, their averaged values (black circles in Fig. 6) change
monotonously as a function of x. As for the lattice parameters,
we have fitted a quadratic function to these data with the
constraint that the function at x = 0 has the value of the AlN

parameter. The results of the fit (solid red lines in Fig. 6) are
given by

C11(x) = 374.1(1 − 0.882 x + 0.602 x2)GPa, (8)

C12(x) = 128.6(1 + 0.400 x − 0.082 x2)GPa, (9)

C13(x) = 100.3(1 + 0.793 x − 0.481 x2)GPa, (10)

C33(x) = 351.7(1 − 1.160 x − 0.256 x2)GPa, (11)

C44(x) = 111.6(1 − 0.848 x + 1.369 x2)GPa. (12)

The quadratic fitting works very well for all five tensor com-
ponents. Note, however, that there is a small modulation in the

(a) equilibrium (b) strain ⊥ z (c) strain z

FIG. 7. Sketch of the average atomic configuration (a) in equi-
librium, and under an applied uniaxial strain (b) within the xy plane
and (c) parallel to the z axis. Dashed lines serve as a guide for the
eye and mark the equilibrium positions. Little red arrows highlight
the directions of the changes in bond lengths and angles under strain.
All relative changes are largely magnified for better visibility.
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TABLE II. Elastic tensor components computed for wurtzite AlN
and hexagonal ScN. The third line gives the arithmetic mean of the
values of w-AlN and h-ScN.

C11 (GPa) C12 (GPa) C13 (GPa) C33 (GPa) C44 (GPa)

w-AlN 374 129 101 351 112
h-ScN 218 160 89 346 132
Average 296 145 95 349 122

C12 data around the fitted, almost linear curve which cannot
be captured by the quadratic fitting ansatz. Our results agree
qualitatively with the values obtained by the other theory
groups, except from C12, for which we predict a considerably
stronger increase with increasing Sc content.

Blue diamond symbols in Fig. 6 mark the arithmetic mean
of the tensor components of pure wurtzite AlN and hexagonal
ScN (cf., Table II) at x = 50%. The comparison of these esti-
mates with our data allows us to distinguish two cases. On the
one hand, the change of the elastic tensor components C11 and
C12 with increasing Sc content can be fairly well approximated
by the interpolation between the two pure phases. On the other
hand, this does not hold for C13, C33, and C44.

Although C33 has roughly the same value for the pure
components (cf., Table II), there is a considerable softening
for the mixed crystal. The behavior of C13 as well cannot be
inferred from an interpolation between the pure phases, which
would predict a decrease with growing Sc content instead of
the observed increase. Finally, C44 is also found to soften;
it starts to increase at a large Sc content of �50%, which is
directly correlated with the significant nonlinear variation of
the lattice parameter clat in this range.

C. Microscopic origin of C33 softening

The elastic constants of other mixed wurtzite-type nitrides,
namely, (Al,Ga)N, (Al,In)N, or (In,Ga)N, are found to depend
linearly on composition [28]. Deviations from this Vegard’s
rule behavior are small and typically of the order of a few
percent only. By contrast, (Al,Sc)N apparently does not follow
this trend.

The qualitative different dependencies on composition of
the Cμν of (Al,Sc)N can be seen as analogous to those of the
lattice parameters alat and clat on the Al:Sc ratio. Therefore,
we correlate the dependence of the elastic tensor components
on the Al:Sc ratio with the microscopic atomic structure. We
have analyzed the distribution of bond lengths and angles
for our supercell models when a strain is applied either in
the z direction (ε‖) or in a direction within the xy plane
(ε⊥). The atoms react to the applied strain and the averaged
atomic configuration is modified with respect to the equilib-
rium structure, as sketched in Fig. 7. For this comparison,
we have chosen an uniaxial strain of ε = 0.004, which is the
maximum applied strain in our calculation of elastic tensors.
Hence, we have strained the crystal in the respective direction
accordingly while keeping the dimensions in the other two
directions fixed at their equilibrium values. For the case of
an applied strain perpendicular to the z direction, we have
considered both the x and y directions. Their averages will be
discussed in the following. This procedure corresponds once
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FIG. 8. Averaged change in bond lengths and bond angles for
a strain ε⊥ = 0.004 applied perpendicular to the z direction. The
black square symbols display the weighted average of the results for
Al-N (blue circles) and Sc-N (red diamonds) at the respective Sc
content x.

more to averaging over the symmetry-equivalent supercell
realizations.

The results for the change in the average bond lengths
〈�ab〉 and 〈�c〉 and bond angle 〈α〉 due to an applied strain
perpendicular to the z direction are visualized in Fig. 8. All
quantities are apparently proportional to the Sc content within
a wide range of x. Moreover, the average elongation 〈�c〉 of the
bonds in the z direction and the decrease in bond angle 〈α〉 are
nearly independent of the Sc content for both Al-N and Sc-N
bonds. As the Al-N bonds are stiffer than the Sc-N bonds, the
admixture of Sc leads to the observed softening of C11 and
C12, which roughly follows the linear interpolation between
the two binary compounds. The nonlinearity in both tensor
components can be traced back to the response of 〈�ab〉 (Fig. 8,
middle panel). The three bonds forming the basal plane of
the MN4 tetrahedra are forced to take up more of the applied
strain the more the bond angle α decreases with increasing Sc
content.

The situation is qualitatively different for an applied strain
in the z direction, as visualized in Fig. 9. Here, the interplay of
changing Al-N and Sc-N bond lengths and bond angles leads
to an overall decreasing strain on the bonds in the z direction,
which is reflected in a decrease of 〈�c〉 as a function of x.
Opposed to that, the response of 〈�ab〉 is almost independent
of x when averaged over all metal atoms. The strong decrease
of �〈�c〉M with x is directly related to the observed softening
of C33 and is accomplished by a considerable change in the
average bonding angle 〈α〉M . In other words, most of the
applied strain in the z direction is reflected in the increase of
the projection of the basal plane bonds onto the z axis,

〈Pz�ab〉 � 〈�ab〉 sin〈α〉. (13)
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FIG. 9. Averaged change in bond lengths and bond angles for
a strain ε‖ = 0.004 applied in the z direction. The black square
symbols display the weighted average of the results for Al-N (blue
circles) and Sc-N (red diamonds) at the respective Sc content x.

This length measures the average distance between the M and
N planes.

V. PIEZOELECTRIC TENSOR

In the following, we describe the method to compute the
x-dependent piezoelectric tensor in Sec. V A. Results are pre-
sented in Sec. V B. They are analyzed and traced back to their
microscopic origin in Secs. V C and V D.

A. Evaluation of tensor components eiμ

The piezoelectric tensor is of rank 3 with tensor compo-
nents ei jk . Frequently, the second and third Cartesian indices
are merged into one index in the Voigt notation, so that the ten-
sor components can be written in matrix form with elements
eiμ. Given the hexagonal symmetry of the wurtzite structure,
this matrix has three independent nonzero coefficients. These
are e15, e31, and e33; by symmetry, e32 = e31 and e25 = e15.
The random distribution of Sc atoms on the metal sublattice
breaks the symmetry for the considered (Al,Sc)N supercell, so
that there will be the full set of 18 independent components.
Corresponding to our workflow for the calculation of elastic
constants, we make use of the point group symmetry C6v

(6mm) to restore the hexagonal symmetry of the piezoelectric
tensor as it is observed experimentally on the macroscopic
level. The symmetry averaged tensor components are obtained
from

e(sym.)
i jk = 1

12

12∑
α=1

e(α)
i jk , (14)

with

e(α)
i jk =

3∑
m=1

3∑
n=1

3∑
p=1

R(α)
im R(α)

jn R(α)
kp emnp, (15)

using the 12 symmetry elements R(α) of point group C6v with
corresponding transformation matrices R(α)

i j .
For the determination of the piezoelectric tensors, we

have adapted and extended the workflow as implemented
in the ElaStic tool. Following the modern theory of polar-
ization [29,30], the piezoelectric response is related to the
dependence of the Berry phase φ on the elastic strain,

ei jk = 1

2π

e



3∑
α=1

φα

ε jk
rα,i. (16)

Here, ε jk is a strain tensor component, rα,i the ith compo-
nent of one of the three (primitive) lattice vectors �rα ,  =
�r1 · (�r2 × �r3) is the unit-cell volume, and e is the electron
charge. The Berry phase is computed for the three primitive
reciprocal lattice vectors �gα (corresponding to the real-space
lattice vectors �rα),

φα = 1

BZ
Im

∑
n(occ.)

∫
BZ

d3k〈un�k|�gα · �∇�k|un�k〉. (17)

Here, BZ is the volume of the first Brillouin zone, and the
un�k are the Bloch states. The sum includes all occupied bands.

We use the same set of deformation matrices and strained
deformed structure models as in Sec. IV for the analysis of
elasticity. Calculations of the Berry phase are carried out using
the implementation in QE for each deformed structure. We
have used 5, 5, and 11 discrete k-points for the integration
along the three reciprocal lattice directions. Subsequently,
the data are fitted as third-order polynomial functions of the
applied strains to extract the derivatives at zero strain. The
knowledge of these derivatives allows for the determination
of all independent components of the piezoelectric tensor.

The piezoelectric tensor coefficients are commonly dis-
cussed by dividing them into two parts [31]. (i) The first
part captures the change in polarization due to a straining
of the lattice. This so-called clamped-ion term represents the
effect of external macroscopic strain on the electronic struc-
ture. It is computed without a relaxation of interatomic forces
in the strained structure models. (ii) The second part to the
piezoelectric tensor coefficients then reflects the presence of
internal strain. It explicitly involves the piezoelectric response
with respect to the change in internal structure parameters by
displacements of atoms induced by the strain.

B. Results: Piezoelectric tensor of (Al,Sc)N

We have evaluated the full set of tensor components for
the subset of low-energy sample structures. The results for the
symmetrized piezoelectric tensor are presented in Fig. 10 and
compared there with other DFT results from literature [16].
The individual structure models yield varying tensor com-
ponents, like what was observed for the elastic tensor in
Sec. IV B. Nevertheless, the averaged values at each given
Sc content (black circles in Fig. 10) change monotonously
as a function of x. We have fitted a quadratic function to the
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FIG. 10. Symmetrized piezoelectric tensor components calcu-
lated for 36-atom (Al,Sc)N supercells with varying Sc content x. The
results of the quadratic fitting are shown as solid lines. Data taken
from Ref. [16] are shown as dashed lines for comparison.

data, thereby constraining the function at x = 0 to the AlN
parameters. The results of the fit (solid red lines in Fig. 10)
are given by

e15(x) = −0.313(1 − 0.296 x − 1.687 x2)C/m2, (18)

e31(x) = −0.593(1 + 0.311 x + 0.971 x2)C/m2, (19)

e33(x) = 1.471(1 + 0.699 x + 4.504 x2)C/m2. (20)

All three components vary significantly as a function of x.
While e15 decreases by ∼57% in magnitude when x is in-
creased from 0 up to 50%, e31 increases by ∼40% in the
same x range. Most notably, e33 increases by ∼150% when
comparing (Al,Sc)N with 50% Sc with pure AlN.

For further analysis, we single out the clamped-ion terms
e(0)

15 , e(0)
31 , and e(0)

33 which are plotted in Fig. 11. They do not
contribute strongly to the large variations of the full piezo-
electric coefficients, as can be seen by direct comparison with
Fig. 10.
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FIG. 11. Clamped-ion contributions e(0)
iμ to the respective piezo-

electric coefficients. Symbols mark the symmetry-averaged values
for each specific Sc concentration. The result of the quadratic fitting
is shown as solid lines. Note that e(0)

33 is opposite in sign compared
with e(0)

15 and e(0)
31 .

C. Microscopic origin of significant nonlinear increase in e33

As described in the previous sections, the set of supercell
models of our study maps to a wurtzite crystal if the results
are statistically averaged according to the hexagonal C6v point
group symmetry. Therefore, it is possible to define an aver-
aged u parameter as

〈u〉 = 1

2

〈Pz�c〉
〈Pz�ab〉 + 〈Pz�c〉 , (21)

where 〈Pz�ab〉 and 〈Pz�c〉 are the averaged projections onto
the z axis of the �ab and �c bonds, respectively (cf., Figs. 1
and 4). The dependence of 〈u〉 on the Sc content is shown in
the left panel of Fig. 12. This reflects the x dependence of
the piezoelectric coefficient e33, and an almost linear relation
between e33 and 〈u〉 is found. However, we need to con-
sider the response of 〈u〉 with respect to strain to establish a
more satisfactory correlation with the microscopic parameters
which captures both the variations in e33 and e31.

The piezoelectric tensor coefficient e33 of wurtzite crystals
is commonly discussed by dividing it into the following two

Sc content [%] Sc content [%]
0 16.7 33.3 50

0.38
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0.43
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M
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|

FIG. 12. Left: Average internal parameter 〈u〉 as a function of Sc
content. Values from AlN4 and ScN4 tetrahedra are averaged sep-
arately, and the black symbols show their weighted average. Right:
Change in the average parameter 〈u〉 due to uniaxial strain of ±0.004
in the z direction (‖) or within the xy plane (⊥).
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parts [31]:

e33 = clat
∂Pz

∂clat
+ 4eZ∗

√
3a2

lat

du

dε‖
. (22)

Here, Z∗ is the dynamical Born charge in units of the
electronic charge e, and ε‖ is the applied strain in the z di-
rection. The clamped-ion term e(0)

33 = clat ∂Pz/∂clat captures
the change in polarization Pz in the z direction due to a
macroscopic strain on the lattice. The second term in Eq. (22)
reflects the presence of internal strain and explicitly involves
the derivative of the internal wurtzite structure parameter u
with respect to strain. The Born dynamical charge itself is de-
fined via the partial derivative of the piezoelectric polarization
with respect to u [31],

Z∗ =
√

3a2
lat

4e

∂Pz

∂u
. (23)

Note than an equation analogous to Eq. (22) holds for e31,
which then involves the derivative of u with respect to a strain
ε⊥ applied in the xy plane.

We postulate that Eq. (22) also holds for the case of disor-
dered (Al,Sc)N when the internal parameter u of the wurtzite
crystal is replaced by the average 〈u〉, Eq. (21). When the
derivative in the second term is replaced by a finite difference
and we make use of Eq. (23), we obtain

e31(x) = e(0)
31 (x) + ∂Pz

∂〈u〉
�〈u〉
ε⊥

, (24)

e33(x) = e(0)
33 (x) + ∂Pz

∂〈u〉
�〈u〉
ε‖

. (25)

Here, �〈u〉 is the change in the average 〈u〉 when a uniaxial
strain ε‖ or ε⊥ is applied. The quantity �〈u〉 at a strain of
±0.004 is plotted for the four different cases in the right panel
of Fig. 12. A positive strain in the z direction (+ε‖) leads to
a decrease of 〈u〉, while a positive strain applied in the xy
plane (+ε⊥) yields an increase of the latter. This behavior is
reversed for negative strain. The counteracting response and
the different magnitude of �〈u〉 for the two cases ε‖ and ε⊥
are reflected in the opposite signs of e33 and e31 and their
magnitudes.

Figure 13 plots the second terms of Eqs. (24) and (25),
i.e., the differences e31 − e(0)

31 and e33 − e(0)
33 , as a function

of �〈u〉/ε. A linear correlation is demonstrated which holds
for both datasets. As a consequence thereof, the derivative
∂Pz/∂〈u〉 does not vary significantly as a function of the Sc
content and is constant to leading order.

In summary, the nonlinear increase of e33 has its origin
essentially in the internal structural distortions induced by
straining the crystal in the z direction. The local structural
sensitivity to the applied strain increases when the Sc content
is raised, which is reflected in the dependence of 〈u〉 on x. A
microscopic reason for this behavior is given in the following
section. Hereby, we extend and consolidate the seminal anal-
ysis of Ref. [13].
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FIG. 13. Correlation of the piezoelectric coefficients e31 and e33

with the change in the u parameter due to an uniaxial strain ε⊥ and
ε‖, respectively. A linear fit to the data is shown as blue line.

D. Microscopic reason for variation of internal
displacement parameter 〈u〉

There is an important difference between the group-IIIA
simple-metal element Al (or Ga and In) and the group IIIB
transition-metal element Sc (or Y and La) in their metal-
nitride compounds. On the one hand, for Al, the chemical
nearest-neighbor bonds to 2s and 2p valence-electron orbitals
of N atoms are formed by Al 3s and 3p orbitals. This results in
the sp3 hybridization and the tetrahedral coordination [AlN4]
in the hexagonal wurtzite structure of AlN. On the other hand,
for Sc, the bonds to N are formed by Sc 3d and 4s orbitals,
which leads to the octahedral coordination [ScN6] in the cubic
rock salt structure of ScN.

Alloying Al and Sc in their nitrides leads to an energetic
competition between the sp-sp character of Al-N bonds of
tetrahedrally coordinated Al atoms and the sd-sp character
of Sc-N bonds of preferential octahedrally coordinated Sc
atoms. For (Al,Sc)N alloys with a Sc content <50%, the tetra-
hedral coordination of the wurtzite structure is energetically
favored. As a consequence, the Sc atoms occupy tetrahe-
dral sites instead of their favored octahedral sites in these
wurtzite-type alloys. To avoid this site dilemma, Sc atoms
are displaced more than Al atoms from the regular tetrahedral
positions.

In the wurtzite structure, there are connections from a given
tetrahedral site to three neighboring octahedral sites and to
another neighboring tetrahedral site through the four triangu-
lar faces of the tetrahedron. An isolated single Sc atom at a
tetrahedral site of the hexagonal N sublattice would be accom-
modated by a displacement to one of the three neighboring
octahedral sites. However, shifting a Sc atom in the (Al,Sc)N
nitride with fully occupied nitrogen and metal sublattices to a
neighboring octahedral site would lead to a strong repulsion
by metal atoms on next neighbor tetrahedral sites. This leaves
only one possible way of achieving a better accommodation
for a Sc atom: it is displaced along the hexagonal c axis
toward the next empty tetrahedral site. However, the displaced
Sc atom cannot reach this tetrahedral site, again because of
a strong repulsion by next neighbor metal atoms. Therefore,
there is a balance of bonds and forces for Sc atoms close to
the triangular N face between two connected tetrahedral sites.
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TABLE III. Comparison of experimentally measured and theoretically predicted elasticity tensor components of AlN taken from literature.
The second column contains information on the employed experimental and numerical methods used (see text for explanation and discussion).

Reference Method C11 (GPa) C12 (GPa) C13 (GPa) C33 (GPa) C44 (GPa)

Kazan et al. [32] Experiment, single crystal, BLS 394 134 95 402 121
Sotnikov et al. [33] Experiment, single crystal, BAW 402.5 ± 0.5 135.6 ± 0.5 101 ± 2 387.6 ± 1 122.9 ± 0.5
McNeil et al. [34] Experiment, single crystal, BLS 411 ± 10 149 ± 10 99 ± 4 389 ± 10 125 ± 5
Deger et al. [35] Experiment, thin film, SAW 410 140 100 390 120
Tsubouchi et al. [36] Experiment, thin film, SAW 345 125 120 395 118
Kurz et al. [5] Experiment, thin film, SAW 404 ± 3 – 103 ± 15 375 ± 13 124 ± 2
Carlotti et al. [8] Experiment, thin film, BLS 392 ± 8 – 106 ± 15 385 ± 10 112 ± 2

This paper DFT, PWPP (QE), PBE, stress-strain 376 129 102 353 111
de Jong et al. [37] DFT, PWPP (VASP), PBE, stress-strain 375 130 98 353 113
Zhang et al. [15] DFT, PWPP (VASP), PBE, stress-strain 397 137 106 367 118
Caro et al. [16] DFT, PWPP (VASP), PBE, stress-strain 410 142 110 385 123
Wrigth et al. [38] DFT, PWPP, LDA, energy-strain 396 137 108 373 116
Kim et al. [39] DFT, FP-LMTO, LDA, energy-strain 398 140 127 382 96

This approximately triangular Sc coordination has an internal
displacement parameter value of u ≈ 1

2 instead of u ≈ 3
8 for

the tetrahedral Al coordination.
In response to such local displacements of the Sc atoms,

the Al atoms get displaced as well in the relaxed random-alloy
structure, but to a lesser extent. Altogether, a compromise
between chemical Sc[sd]-N[sp] and Al[sp]-N[sp] bonds is a
reason for the gradual raise of 〈u〉 between the two limiting
values of u with increasing Sc content (see left panel of
Fig. 12). Note that, in the case of hexagonal ScN, there is
no competing energy term that arises from deformed Al[sp]-
N[sp] bonds, and the Sc atoms are allowed to relax to the
trigonal bipyramidal site with u = 0.5 and triangular coordi-
nation in the xy plane.

VI. SUMMARY

We have investigated the electroacoustic properties of
(Al,Sc)N crystals with the metastable wurtzite structure. A
combinatorial approach was chosen, and a large variety of
structure models with varying Sc content was analyzed.
Thereby, we sampled the different local atomic configurations
of metal-sublattice disorder. For the chosen set of model struc-
tures (63 in total), we have evaluated the equilibrium lattice

parameters and atomic positions, as well as the full elastic
and piezoelectric tensors. The functional dependence of these
properties on the Al:Sc ratio was obtained by an averaging
and fitting procedure. Thereby, we obtained a consistent set
of material parameters for (Al,Sc)N extracted from a large
data basis over the full range of experimentally accessible Sc
content 0 � x � 50%.

Moreover, a statistical analysis of the microscopic struc-
tural parameters—bond lengths and bond angles—was con-
ducted. The response of these parameters to an applied
uniaxial strain was compared with their equilibrium averages.
All structure models were strained parallel and perpendicular
to the z axis. This analysis relates the observed variation in
elastic and piezoelectric tensor components as a function of
Sc content to the change in the averaged values of specific
geometrical quantities.

The anisotropic evolution of the lattice parameters alat and
clat with increasing Sc content is a consequence of an interplay
of increasing average bond lengths and decreasing average
bond angle 〈α〉.

The elastic softening in the z direction (C33) is related to
the disorder in local atomic configurations induced by the
presence of the Sc atoms. Therefore, an applied strain ε‖ is
distributed over several of the microscopic degrees of freedom

TABLE IV. Comparison of experimentally measured and theoretically predicted piezoelectricity tensor components of AlN taken from
literature. The second column contains information on the employed experimental and theoretical methods used (see text for explanation and
discussion).

Reference Method e33 (C/m2) e31 (C/m2) e15 (C/m2)

Bu et al. [40] Experiment, single crystal, SAW 1.39 ± 0.22 −0.58 ± 0.23 −0.29 ± 0.06
Sotnikov et al. [33] Experiment, single crystal, BAW 1.34 ± 0.10 −0.60 ± 0.20 −0.32 ± 0.05
Tsubouchi et al. [41] Experiment, thin film, SAW 1.55 −0.58 −0.48
Kurz et al. [5] Experiment, thin film, SAW 1.52 ± 0.43 −0.54 ± 0.05 −0.30 ± 0.22

This paper DFT, PWPP (QE), PBE 1.48 −0.58 −0.32
Bernardini et al. [31] DFT, PWPP, LDA 1.46 −0.60 –
Caro et al. [16] DFT, PWPP (VASP), PBE 1.45 −0.51 −0.32
Momida et al. [26] DFT, PWPP (VASP), PBE 1.39 −0.55 −0.30
de Jong et al. [42] DFT, PWPP (VASP), PBE 1.46 −0.58 −0.29
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TABLE V. Comparison of experimentally measured and theoretically predicted elastic and piezoelectric tensor components of AlScN with
14 and 32% Sc content. The theoretically obtained functional dependence of the Cμν end eiμ have been rescaled with reference to binary AlN,
as explained in the text.

Composition Reference C11 (GPa) C13 (GPa) C33 (GPa) C44 (GPa) e33 (C/m2) e31 (C/m2) e15 (C/m2)

Al0.86Sc0.14N Experiment [5] 354 ± 4 108 ± 7 305 ± 15 112 ± 3 1.88 ± 0.07 −0.54 ± 0.09 −0.26 ± 0.07
Al0.86Sc0.14N This paper (rescaled) 359 113 312 113 1.80 −0.57 −0.28
Al0.68Sc0.32N Experiment [5] 307 ± 3 123 ± 5 230 ± 5 110 ± 2 2.80 ± 0.12 −0.69 ± 0.14 −0.23 ± 0.13
Al0.68Sc0.32N This paper (rescaled) 315 124 226 108 2.56 −0.65 −0.22

which, on average, leads to a reduced stretching of the bond
lengths �c.

The extraordinary nonlinear increase in the piezoelectric
tensor component (e33) has its origin in the increased sensi-
tivity of the averaged parameter 〈u〉 to strain, the more Sc is
added to the (Al,Sc)N crystal. Although 〈u〉 itself increases
toward the value 0.5 of nonpolar hexagonal ScN, its response
to strain largely increases as a function of x.

All the above mentioned effects follow from the (energetic)
competition between Al atoms that favor the tetrahedral coor-
dination by N atoms in the wurtzite structure and the Sc atoms
that would prefer octahedral coordination and need to accom-
modate themselves as well as possible. The incorporation of
Sc on the metal sublattice leads to the observed statistical
distribution of bond lengths and bond angles that break the
rigid wurtzite crystal symmetry on the microscopic level. This
in turn adds flexibility to the atomic structure of (Al,Sc)N
on how to respond to strain, which finally determines the
outstanding elastic and piezoelectric properties.
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APPENDIX A: ELASTIC AND PIEZOELECTRIC
TENSOR OF ALN

This Appendix gives an overview on available literature
results for the material parameters of AlN. The comparison
of experimentally measured and theoretically predicted elas-
ticity tensor components is compiled in Table III, while the
respective comparison of piezoelectricity tensor components
is given in Table IV.

Although binary AlN is a well and frequently studied ma-
terial, there is quite some scatter in the available measured
tensor components. These differences are partially caused by
different crystal quality, including possible elastic and piezo-

electric inhomogeneities of the samples under study. Further
scatter is caused by the different measurement accuracy of the
various experimental methods used: Brillouin light scattering
(BLS), SAW measurements, and bulk acoustic wave (BAW)
techniques.

Also, the DFT calculations show a noticeable spread in the
predicted values. On the one hand, this is due to the different
implementations of DFT, such as plain wave pseudopo-
tential codes (PWPP) or the full-potential linear muffin-tin
(FP-LMTO) approach, and the numerical settings used for
convergence. On the other hand, the choice of exchange cor-
relation functional also influences the result. While the local
density approximation (LDA) in general tends to underes-
timate the equilibrium bonding lengths between atoms, the
PBE functional in general overestimates them. However, the
comparison of the results summarized in Tables III and IV
does not give evidence that one or the other choice is superior
for the computation of elastic and piezoelectric properties of
AlN thin films. Another degree of variation arises from the
approach taken for the derivation of elastic constants, namely,
either the energy strain or the stress strain approach [43].

APPENDIX B: COMPARISON WITH EXPERIMENTS
ON AlScN

Recently, Kurz et al. [5] determined a full set of the elec-
troacoustic properties for (Al,Sc)N thin films experimentally
from the same material source using Rayleigh-type waves in
SAW resonators for high Sc concentrations up to 32%. The
results from Ref. [5] for Al0.86Sc0.14N and Al0.68Sc0.32N are
compared with our theoretical predictions in Table V. To this
end, we have corrected for the systematic error in DFT arising
from the overestimation of bonding by the PBE functional by
rescaling the functional dependence of the Cμν and eiμ by
a constant prefactor so as to meet the end points of binary
AlN. This procedure yields a satisfactory agreement between
the theoretically predicted and the experimentally measured
parameter dependence on Sc content.

[1] R. Matloub, A. Artieda, C. Sandu, E. Milyutin, and P. Muralt,
Appl. Phys. Lett. 99, 092903 (2011).

[2] K. Umeda, H. Kawai, A. Honda, M. Akiyama, T. Kato, and
T. Fukura, in 26th International Conference on Micro Electro
Mechanical Systems (MEMS) (IEEE, Taipei, 2013), pp. 582–
589.

[3] A. Konno, M. Kadota, J.-I. Kushibiki, Y. Ohashi, M. Esashi,
Y. Yamamoto, and S. Tanaka, IEEE International Ultrasonics
Symposium (IUS), (IEEE, Chicago, 2014), pp. 273–276.

[4] F. Parsapour, V. Pashchenko, P. Nicolay, and P. Muralt, IEEE
Micro Electro Mechanical Systems (MEMS) (IEEE, Belfast,
2018), pp. 763–766.

[5] N. Kurz, A. Ding, D. F. Urban, Y. Lu, L. Kirste, N. M. Feil,
A. Zukauskaite, and O. Ambacher, J. Appl. Phys. 126, 075106
(2019).

[6] H. Ichihashi, T. Yanagitani, M. Suzuki, S. Takayanagi, and
M. Matsukawa, in IEEE International Ultrasonics Symposium
(IUS) (IEEE, Chicago, 2014), pp. 2521–2524.

115204-12

https://doi.org/10.1063/1.3629773
https://doi.org/10.1063/1.5094611


FIRST-PRINCIPLES CALCULATION OF … PHYSICAL REVIEW B 103, 115204 (2021)

[7] H. Ichihashi, T. Yanagitani, M. Suzuki, S. Takayanagi, M.
Kawabe, S. Tomita, and M. Matsukawa, IEEE Trans. Ultrason.
Ferroelectr. Freq. Control 63, 717 (2016).

[8] G. Carlotti, J. Sadhu, and F. Dumont, in IEEE International
Ultrasonics Symposium (IUS) (IEEE, Washington, DC, 2017),
pp. 1–5.

[9] Y. Lu, M. Reusch, N. Kurz, A. Ding, T. Christoph, L. Kirste,
V. Lebedev, and A. Zukauskaite, Phys. Status Solidi A 215,
1700559 (2018).

[10] S. Mertin, B. Heinz, O. Rattunde, G. Christmann, M.-A.
Dubois, S. Nicolay, and P. Muralt, Surf. Coat. Technol. 343,
2 (2018).

[11] G. Wingqvist, F. Tasnadi, A. Zukauskaite, J. Birch, H. Arwin,
and L. Hultman, Appl. Phys. Lett. 97, 112902 (2010).

[12] N. M. Feil, N. Kurz, D. F. Urban, A. Altayara, B. Christian,
A. Ding, A. Zukauskaite, and O. Ambacher, in IEEE Interna-
tional Ultrasonics Symposium (IUS), (IEEE, Glasgow, 2019),
pp. 2588–2591.

[13] F. Tasnadi, B. Alling, C. Höglund, G. Wingqvist, J. Birch, L.
Hultman, and I. A. Abrikosov, Phys. Rev. Lett. 104, 137601
(2010).

[14] C. Höglund, J. Birch, B. Alling, J. Bareno, Z. Czigany, P. O. A.
Persson, G. Wingqvist, A. Zukauskaite, and L. Hultman,
J. Appl. Phys. 107, 123515 (2010).

[15] S. Zhang, W. Y. Fu, D. Holec, C. J. Humphreys, and M. A.
Moram, J. Appl. Phys. 114, 243516 (2013).

[16] M. A. Caro, S. Zhang, T. Riekkinen, M. Ylilammi, M. A.
Moram, O. Lopez-Acevedo, J. Molarius, and T. Laurila,
J. Phys.: Condens. Matter 27, 245901 (2015).

[17] A. Zunger, S. H. Wei, L. G. Ferreira, and J. E. Bernard, Phys.
Rev. Lett. 65, 353 (1990).

[18] https://www.quantum-espresso.org/.
[19] P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502

(2009).
[20] G. Prandini, A. Marrazzo, I. E. Castelli, N. Mounet, and

N. Marzari, A Standard Solid State Pseudopotentials (SSSP)
Library Optimized for Accuracy and Efficiency (Version
1.0), Materials Cloud Archive 2018.0001/v2 (2018), doi:
10.24435/materialscloud:2018.0001/.

[21] K. Lejaeghere, et al., Science 351, 1415 (2016).
[22] R. Grau-Crespo, S. Hamad, C. R. A. Catlow, and

N. H. de Leeuw, J. Phys.: Condens. Matter 19, 256201
(2007).

[23] N. Farrer and L. Bellaiche, Phys. Rev. B 66, 201203(R) (2002).

[24] Z. Dridi, B. Bouhafs, and P. Ruterana, Semicond. Sci. Technol.
18, 850 (2003).

[25] O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann,
M. Eick-hoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V.
Tilak, B. Schaff, and L. F. Eastman, J. Phys.: Condens. Matter
14, 3399 (2002).

[26] H. Momida, A. Teshigahara, and T. Oguchi, AIP Adv. 6, 065006
(2016).

[27] R. Golesorkhtabar, P. Pavone, J. Spitaler, P. Puschnig, and
C. Draxl, Comp. Phys. Commun. 184, 1861 (2013).

[28] S. P. Lepkowski, J. Appl. Phys. 117, 105703 (2015).
[29] D. Vanderbilt, J. Phys. Chem. Solids 61, 147 (2000).
[30] R. Resta and D. Vanderbilt, in Physics of Ferroelectrics: A

Modern Perspective, edited by C. H. Ahn, K. M. Rabe, and J. M.
Triscone (Springer, Berlin, 2007).

[31] F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B 56,
R10024 (1997).

[32] M. Kazan, E. Moussaed, R. Nader, and P. Masri, Phys. Status
Solidi (c) 4, 204 (2007).

[33] A. Sotnikov, H. Schmidt, M. Weihnacht, E. Smirnova, T.
Chemekova, and Y. Makarov, IEEE Trans. UFFC 57, 808
(2010).

[34] L. E. McNeil, M. Grimsditch, and R. H. French, J. Am. Ceram.
Soc. 76, 1132 (1993).

[35] C. Deger, E. Born, H. Angerer, O. Ambacher, M. Stutzmann, J.
Hormsteiner, E. Riha, and G. Fischerauer, Appl. Phys. Lett. 72,
2400 (1998).

[36] K. Tsubouchi, K. Sugai, and N. Mikoshiba, in 1981 Ultrasonics
Symposium (IEEE, Chicago, 1981), pp. 375–380.

[37] M. de Jong, W. Chen, T. Angsten, A. Jain, R. Notestine, A.
Gamst, M. Sluiter, C. Krishna Ande, S. van der Zwaag, J. J.
Plata, C. Toher, S. Curtarolo, G. Ceder, K. A. Persson, and M.
Asta, Sci. Data 2, 150009 (2015).

[38] A. F. Wright, J. Appl. Phys. 82, 2833 (1997).
[39] K. Kim, W. R. L. Lambrecht, and B. Segall, Phys. Rev. B 53,

16310 (1996).
[40] G. G. Bu, D. Ciplys, M. Shur, L. J. Schowalter, S. Schujman,

and R. Gaska, Appl. Phys. Lett. 84, 4611 (2004).
[41] K. Tsubouchi and N. Mikoshiba, IEEE Trans. Sonics Ultrason.

32, 634 (1985).
[42] M. de Jong, W. Chen, H. Geerlings, M. Asta, and K. A. Persson,

Sci. Data 2, 150053 (2015).
[43] M. A. Caro, S. Schulz, and E. P. O’Reilly, J. Phys.: Condens.

Matter 25, 025803 (2012).

115204-13

https://doi.org/10.1109/TUFFC.2016.2544864
https://doi.org/10.1002/pssa.201700559
https://doi.org/10.1016/j.surfcoat.2018.01.046
https://doi.org/10.1063/1.3489939
https://doi.org/10.1103/PhysRevLett.104.137601
https://doi.org/10.1063/1.3448235
https://doi.org/10.1063/1.4848036
https://doi.org/10.1088/0953-8984/27/24/245901
https://doi.org/10.1103/PhysRevLett.65.353
https://www.quantum-espresso.org/
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1126/science.aad3000
https://doi.org/10.1088/0953-8984/19/25/256201
https://doi.org/10.1103/PhysRevB.66.201203
https://doi.org/10.1088/0268-1242/18/9/307
https://doi.org/10.1088/0953-8984/14/13/302
https://doi.org/10.1063/1.4953856
https://doi.org/10.1016/j.cpc.2013.03.010
https://doi.org/10.1063/1.4914416
https://doi.org/10.1016/S0022-3697(99)00273-5
https://doi.org/10.1103/PhysRevB.56.R10024
https://doi.org/10.1002/pssc.200673503
https://doi.org/10.1109/TUFFC.2010.1485
https://doi.org/10.1111/j.1151-2916.1993.tb03730.x
https://doi.org/10.1063/1.121368
https://doi.org/10.1038/sdata.2015.9
https://doi.org/10.1063/1.366114
https://doi.org/10.1103/PhysRevB.53.16310
https://doi.org/10.1063/1.1755843
https://doi.org/10.1109/T-SU.1985.31647
https://doi.org/10.1038/sdata.2015.53
https://doi.org/10.1088/0953-8984/25/2/025803

