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Accurate calculation of excitonic signatures in the absorption spectrum
of BiSBr using semiconductor Bloch equations
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In order to realize the significant potential of optical materials such as metal halides, computational techniques
which give accurate optical properties are needed, which can work hand-in-hand with experiments to generate
high efficiency devices. In this work a computationally efficient technique based on semiconductor Bloch
equations (SBEs) is developed and applied to the material BiSBr. This approach gives excellent agreement with
the experimental optical gap, and also agrees closely with the excitonic stabilisation energy and the absorption
spectrum computed using the far more computationally demanding ab initio Bethe-Salpeter approach. The SBE
method is a good candidate for theoretical spectroscopy on large- or low-dimensional systems which are too
computationally expensive for an ab initio treatment.
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I. INTRODUCTION

The optical properties of metal-halide materials have been
of considerable interest recently due to their high efficiency
in photovoltaic applications, long exciton diffusion lengths,
and relative stability of these properties to structural defects
[1–5]. New generations of high efficiency, low cost devices
using their optical properties are promising not just for pho-
tovoltaics, but also water splitting and other photocatalytic
applications and sensors [4,5]. In order to realize this potential
we need computational tools available to facilitate the devel-
opment of new, efficient forms.

Optical properties of materials are extremely computa-
tionally expensive to calculate ab initio in comparison to
properties such as structural parameters or band structures
which may be amenable to density functional theory [6] or
the GW approximation [7]. The reason for this is that optical
spectra are dominated by neutral excitations, and precise cal-
culations need to accurately reproduce not only the electron
interactions which dress excitations (the quasiparticle descrip-
tion) but then accurately reproduce the interactions between
the dressed electrons and holes [8].

This is a formidable computational task, and while ap-
proaches such as time-dependent density functional theory
(TDDFT [9]) can provide information on excited states, only
the more formal Bethe-Salpeter equation (BSE) approach
performed on top of GW calculations includes electron-
hole interactions in an ab initio manner [8,10,11]. However,
the extreme resource requirements of BSE calculations have
stymied widespread uptake. A good summary of these ap-
proaches and related issues can be found in the review of
Onida, Reining, and Rubio [8].
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Alternatively, in the case of excitons with large Bohr
radii (Wannier-Mott excitons), an efficient model for optical
response can be built using an effective mass model and
semiconductor Bloch equations (SBEs) [12]. This approach,
being time dependent and nonperturbative is also amenable to
the calculation of time-dependent linear and nonlinear optical
properties such as transient-absorption spectroscopy and other
pump-probe experiments [13,14].

Recently it was shown that SBEs can be applied to in-
terlayer excitons in van der Waals bonded transition-metal
dichalcogenide layers [15]. In that study, the model for the
optical properties which was derived went beyond the effec-
tive mass approximation, and requires free parameters that can
be obtained from DFT calculations. In this work we attempt a
similar approach in order to determine if it can be an effective
and efficient alternative to much more computationally expen-
sive ab initio methods.

We chose to focus on the metal chalcohalide BiSBr, due to
its intriguing properties: an optical gap in the visible range of
the electromagnetic spectrum [16], synthesis at low tempera-
ture, and high photocurrents [17].

BiSBr crystallizes in a Pnma structure [3], two perspec-
tives of which are presented in Fig. 1. Figure 1(a) shows a
view down the crystal b axis which highlights the “cluster”
nature of the BiSBr structure. In the centers of the two unit
cells a Bi-S cluster is visible, which is weakly bound to the
other parallel cluster by van der Waals-type bonding. These
Bi-S units are linked down the b axis, as Fig. 1(b) demon-
strates. They form zigzag chains of Bi atoms connected by
sulfur and bromine atoms which are isolated from the other
parallel chains.

The quasi-one-dimensional structure suggests a corre-
sponding one-dimensional electronic structure, in which
considerable confinement of excitons will occur, significantly
enhancing their stabilities [18–20]. Optical spectroscopy mea-
surements on single BiSBr crystals determined the neutral
excitation gap to be 2.01 eV [21].
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FIG. 1. (a) View down the b axis of the BiSBr Pnma crystal
structure, showing the “cluster” shape of the chains which make up
the crystal. Bismuth atoms are green, bromine atoms are brown, and
sulfur atoms are yellow. (b) Side view of one of the cluster chains of
the previous perspective showing that the bismuth atoms are arranged
in an effectively one-dimensional structure.

Despite the potential of metal halide materials for pho-
tovoltaic applications, rigorous ab initio studies have been
reported on only a handful of systems, such as TDDFT data
[22] and static hybrid DFT data [23] on methyl-ammonium
lead iodide (MA-PbI) and MA-PbX where X = I, Cl, Br,
respectively.

The purpose of this work is therefore to determine whether
a far less computationally demanding approach based on
semiconductor Bloch equations can, when used in concert
with ab initio electronic structure approaches such as the GW
approximation, provide data which are in good agreement
with full ab initio methods, but far more amenable to large,
or low-dimensional structures.

II. METHODS

The optical properties of materials are contained in the
macroscopic dielectric matrix εM (ω), which is obtained from
the modified response function χ̄ , via

εM (ω) = 1 − lim
q→0

VG=0(q)χ̄G=G′=0(q; ω), (1)

where VG=0(q) is the Coulomb interaction, and G, G′ denote
reciprocal lattice vectors.

Once the dielectric response is obtained the absorption
spectrum can be calculated via

α(ω) = ωε2(ω)√
1
2

[
ε1(ω) +

√
ε2

1 (ω) + ε2
2 (ω)

] , (2)

where ε1(ω) and ε2(ω) are the real and imaginary parts of the
frequency-dependent dielectric response, respectively.

In this work three different approaches are used to calculate
the optical response of BiSBr: Time-dependent density func-
tional theory (TDDFT), solving the Bethe-Salpeter equation,
and an approach based on solving a system of semiconductor
Bloch equations (SBE). These three approaches differ signifi-
cantly in their computational approach and we describe them
in detail in the Supplemental Material [24]. We give a brief
description of the semiconductor Bloch equation calculations
below.

A. Semiconductor Bloch equations

In this work we modify the semiconductor Bloch equations
to take into account the local field effect in the directions
perpendicular to the atomic chains. The derivation of the
modified semiconductor Bloch equations (shown in detail in
the Supplemental Material [24]) starts with the linear in opti-
cal field equations of motion for the reduced density matrix.
These are derived in the work of the Mukamel group, and
describe optical response of an electron-hole pair conserving
many-body model, characterized by a set of occupied and
unoccupied molecular orbitals [25,26].

A closed system of the kinetic equation has been de-
rived by means of the time-dependent Hartree-Fock technique
[27,28] solving the hierarchy problem [29]. Unlike the
conventional two-band semiconductor Bloch equations, this
approach allows Coulomb coupling between subbands as well
as local-fields effects to be taken into account, and is suitable
for both Wannier-Mott and Frenkel excitons. This method
has been successfully applied to finite and anisotropic struc-
tures such as conjugated polymers [27] and semiconductor
nanocrystals [28].

In the linear optical regime, the optical properties of the
system are determined by the kinetics of the nondiagonal
density matrix elements, assuming that the diagonal elements
(populations) are constant [30]. The diagonal elements in this
work are given by the ground state populations of the molecu-
lar orbitals. The resulting equation of motion can be written
in a form reminiscent the semiconductor Bloch equations
showing explicitly the common terms:

ih̄
d

dt
ρvc

ji,k = (
εc

k, j − εv
k,i − iγ

)
ρvc

ji,k − dvc
i j,kE (t )

+
∑
q �=k

V ii| j j
|k−q|ρ

vc
ji,q+

∑
q, p �= i or

q �= j

(
V pi| jq

|k−q| − V pq| ji
|k−q|

)
ρvc

qp,q,

(3)

where ρvc
i j,k is the nondiagonal element of the reduced density

matrix for a pair of states with the wave vector k and band
indices i and j, εc

k, j and εv
k,i are the energies of electrons and

holes respectively, represented by the quasiparticle energies
from the GW computations, dvc

i j,k is the dipole matrix element
computed using DFT, E (t ) is the external electromagnetic
field, V pi| jq

|k−q| is the two-electron Coulomb potential [31], and γ

is a phenomenological dephasing factor. This parameter can
be considered as a rough approximation to the self-energy
of all scattering processes determining broadening of spec-
tral characteristics such as electron-electron, electron-phonon
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scatterings, etc. which is generally a wave-vector, tempera-
ture, and energy-dependent function. In this work it is set to
0.1 eV, to match the broadening used in the BSE calculations
(see the Supplemental Material [24]).

Equation (3) differs from the conventional semiconductor
Bloch equations by the last sum which is responsible for the
local-field effects, and causes coupling between microscopic
polarizations for different pairs of energy bands. Its form
is similar to the density matrix formulation of the TDDFT
method, but the way the exchange-correlation kernel and or-
bital energies are defined is different.

Since we are interested in the stationary optical spectra in
this work, Eq. (3) has been transformed into a linear algebra
problem using a Fourier transform, and solved numerically
(see the Supplemental Material for more details [24]). The
first term in the second sum in Eq. (3) corresponds to the
direct Coulomb coupling, while the second one is the ex-
change energy. The numerical results show that the maximal
contribution from the exchange term is five times smaller
than the maximal direct term. The exchange term, unlike the
direct Coulomb coupling, depends on the overlap of the wave
functions of initial and final quantum states. The fact that it is
small implies that the electron and hole wave functions do not
overlap significantly meaning that the electron and hole form
an interlayer exciton.

B. Coulomb coupling

The two-electron Coulomb integral in momen-
tum space over the molecular orbitals reads V̂ =
e2

∫
dkψ̃pq(−k)g(k)ψ̃nm(k), where g(k) is the Green’s

function of the Laplacian operator in momentum space and
ψ̃nm(k) = F[ψ̂∗

n (r)ψ̂m(r)] is the Fourier transform of a
product of field operators, e is the elementary charge, and
V is volume. Note that the integration is performed over
a three-dimensional vector space, while in real space the
two-electron integrals are six dimensional. The considered
material is characterized by anisotropic dielectric properties
that change dramatically for the directions along and
perpendicular to atomic chains. For such media, assuming
axial symmetry, the Green’s function for the Laplacian
operator is defined by the Fourier-transformed Poisson
equation (ε⊥k2

⊥ + ε‖k2
‖ )g(k⊥, k‖) = 4π [15]. For crystalline

structures it is convenient to represent the momentum vector
as a sum of the reciprocal lattice vector G and the wave vector
bounded within the first Brillouin zone q: k⊥ = q⊥ + G⊥
and k‖ = q‖ + G‖. The Coulomb potential operator in the
representation of bulk semiconductor states reads

V̂ =
∑

G⊥,G‖

Bλ′,λ
−q⊥,−q‖ (−G⊥,−G‖)Bν ′,ν

q⊥,q‖ (G⊥, G‖)

× 4πe2

ε⊥(q⊥ + G⊥)2 + ε‖(q‖ + G‖)2
, (4)

where G⊥ and G‖ are the projections of the reciprocal lattice
vectors in the direction along the atomic chains and on the
plane perpendicular to the chains, respectively, q⊥ and q‖ are
the projections of the wave vectors, confined within the first
Brillouin zone, on the direction along atomic chains and on

the plane perpendicular to the chains, respectively, and

Bλ′,λ
k⊥, k‖,
q⊥, q‖

(G⊥, G‖) =
∫
�

dr⊥dr‖ei(G⊥r⊥+G‖r‖ )

× u∗
λ,k⊥+q⊥,k‖+q‖ (r⊥, r‖)uλ′,k⊥,k‖ (r⊥, r‖),

(5)

where � is the unit cell volume and uλ′,q⊥,q‖ (r⊥, r‖) are the
periodic Bloch functions.

In the long wavelength limit where G⊥ = 0, G‖ = 0, and
Bλ′,λ

k⊥, k‖,
q⊥, q‖

(G⊥ = 0, G‖ = 0) = δλ′,λδq⊥,0δq‖,0, Eq. (4) is further

simplified as

V̂q={q⊥,q‖} = 4πe2 1

ε⊥q2
⊥ + ε‖q2

‖
. (6)

The long wavelength limit is usually used in the semicon-
ductor Bloch equations for Wannier-Mott excitons with large
effective Bohr radii. In the semiconductor Bloch equations
used in this study (see the Supplemental Material [24]), a
long wavelength potential is used. For the BiSBr crystals
this approximation can be very inaccurate since the situation
when electron and hole are confined on the neighboring chains
within the same primitive cell is possible and, as a result, the
local field effects become important.

Therefore, we need to take into account terms for which
G⊥ > 0. For BiSBr the dimensions of the Brillouin zone in
the directions perpendicular to the atomic chains are much
smaller compared to the size along the chains. This implies
|G‖| � |G⊥|. As a result of this observation we neglect all
terms for which G‖ �= 0. Note that G⊥ can be comparable to
q‖. Equation (7) can be further simplified considering optical
transitions only around the center of the Brillouin zone ne-
glecting weak dependence of Bν ′,ν

k⊥,k‖ ,

q⊥ ,q‖
on k⊥, k‖, q⊥, and q‖:

V̂ λ,λ′,ν,ν ′
q={q⊥,q‖} = 4πe2

∑
G⊥

Bλ′,λ
0 (−G⊥)Bν ′,ν

0 (G⊥)

ε⊥(q⊥ + G⊥)2 + ε‖q2
‖
. (7)

Computing Bν ′,ν
0 (G⊥) explicitly from the DFT Kohn-Sham

wave function using a fast-Fourier transform confirms that the
largest contributions have four reciprocal lattice vectors:

G⊥ = {[0, 2π/a], [0,−2π/a], [2π/c, 0], [−2π/c, 0]}.
All other components are neglected. The potential of (7) cor-
responds to the second term on the second line of Eq. (3).

In this work we are interested in the absorption around the
band edges. For that reason, we compute the semiconductor
Bloch equations for the system of the two lowest conduction
bands and six topmost valence bands. The values of the static
dielectric constants were computed using the GW approxima-
tion: ε‖ = 9.24 and ε⊥ = 5.21. It has been shown in Ref. [32]
that a constant dielectric screening works well for predicting
the exciton binding energy in the framework of TDDFT.

C. Ab initio calculations

The crystal structure parameters of BiSBr were obtained
from the literature [33]. All ab initio calculations performed
using projector augmented waves [34] and the Vienna ab initio
simulation package (VASP) [35]. The DFT functional used in
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TABLE I. Electronic band gaps determined from DFT, hybrid
DFT using the HSE06 functional, and the GW approximation com-
pared to the experimental optical gap.

Technique Gap (eV)

DFT 1.36
HSE06 1.93
GW 2.28
Experiment 2.01

all calculations was the GGA functional of Perdew, Burke, and
Ernzerhof [36], and all ab initio calculations on this structure
included spin-orbit interactions.

The hybrid functional used was the HSE06 [37] functional,
and the GW band structure and input data for the Bloch
equations were calculated on a 6×6×6 Monkhorst-Pack [38]
k-point mesh using a single-shot G0W0 approach [39]. All
TDDFT and BSE calculations used the tetrahedron method for
Brillouin zone integration with Blöchl corrections [40], except
for the hybrid-DFT calculations which used Methfessel and
Paxton smearing [41]. The TDDFT and BSE calculations pre-
sented were performed on 4×6×4 Monkhorst-Pack k-point
grids using 96 bands, and 3×4×3 Monkhorst-Pack k-point
grids using 144 bands, respectively, in the Tamm-Dancoff ap-
proximation [8]. The finer sampling in the b direction reflects
the anisotropy of the BiSBr unit cell, in which a = 8.47 Å,
b = 4.09 Å, and c = 10.58 Å. For the ab initio optical calcu-
lations the broadening applied (corresponding to the CSHIFT
parameter in VASP) was 0.1 eV.

The eigenvalues and wave functions used as input to
the SBE calculations used the GW approximation ap-
proach implemented in VASP [39] calculated on a 6×6×6
Monkhorst-Pack k-point mesh using the same input param-
eters and functional as that for the BSE calculations.

III. RESULTS AND DISCUSSION

Given the aforementioned pseudo-one-dimensional elec-
tronic structure of BiSBr and thus considerable confinement
of excitons expected, the electronic band gap must differ
significantly from the optical gap. That is the confinement
induced stability will lower the energies of neutral excitations
(given by the optical gap) compared to charged excitations
(reflected in the electronic band gap). This stability will result
in an optical gap which is lower than the band gap, and for
low-dimensional electronic structures, significantly so.

Table I lists the electronic band gaps of BiSBr computed
using DFT, hybrid DFT using the HSE06 [37] functional,
and the GW approximation, compared with the experimental
optical gap. The DFT and GW band gap values appear to
roughly straddle the experimental optical gap of 2.01 eV; the
GW calculation overshoots the experimental value by approx-
imately 270 meV, while the DFT band gap is 0.65 eV lower.
Attempting to correct the DFT gap by using the HSE06 hybrid
functional instead of the PBE96 [36] functional in the DFT
calculations gives a value of 1.927 eV, which brings it much
closer to the experimental optical gap.

The large discrepancy between the DFT and GW band gaps
most likely has its origin in the fact that DFT is overestimating

the screening in comparison to the GW method, and that
the electrons are interacting much more strongly than DFT
indicates. This reduction in screening in the GW calculations
will result in conduction electrons interacting more strongly
with the valence band, thus increasing their energies.

The band gap data therefore suggest that of the three ap-
proaches, only the GW gap has the “wiggle room” to give
an optical gap in line with experiment once excitonic effects
in the case of BSE calculations, or quasiparticle effects in
the case of TDDFT are included. Given that both DFT and
HSE06 predict band gaps lower in energy than the optical
gap, it is unlikely that including quasiparticle effects using
TDDFT will result in better agreement with experiment, while
also exhibiting considerable excitonic stabilization.

However, we can try to improve on this. By using a scissor
operator on the DFT data to align its band gap with that from
GW and performing TDDFT calculations there may be some
hope of correcting the DFT data. Likewise, we can use the GW
eigenvalues and dipole matrix elements as input into semicon-
ductor Bloch equations in an attempt to get accurate optical
data. Both of these approaches will be less computationally
expensive than BSE, and in the case of semiconductor Bloch
equations, significantly so.

Figure 2 presents the optical data of BiSBr calculated
using five different approaches: the Bethe-Salpeter method
(BSE), the semiconductor Bloch equation approach (SBE),
time-dependent density functional theory (TDDFT), TDDFT
combined with a hybrid DFT functional (again using the
HSE06 [37] functional, henceforth simply hybrid-TDDFT) in
an attempt to start from a more accurate DFT band gap, and
TDDFT in which a scissor operator has been applied to the
conduction bands also in an attempt to correct the DFT band
gap. The value of the scissor operator was chosen to align the
DFT band gap with that from GW calculations.

The data of Fig. 2(a) plots the optical gaps resulting from
the five approaches determined from Tauc plots [42] in order
to be consistent with the experimental value (see the Supple-
mental Material for an example [24]), with the experimental
gap represented by a dashed line. Of the five approaches the
BSE, Bloch equation, and hybrid-TDDFT come the closest
to reproducing the experimental gap of 2.01 eV, with the
TDDFT+scissor approach and plain TDDFT significantly
over- and underestimating the gap, respectively.

However, while the optical gap from the hybrid-TDDFT
approach appears reasonable, the optical absorption spectra
of Fig. 2(b) and the exciton stabilization energies plotted in
Fig. 2(f) suggest otherwise. Comparing TDDFT and BSE
[Fig 2(b), gray trace] we see that the TDDFT spectrum is
shifted to lower energy, indicating a smaller gap, and that
the peaks in the spectrum do not match those of the BSE
approach, indicating a significant difference in the energy dis-
tribution of the optical transitions and the oscillator strengths.

The TDDFT approach combined with the scissor operator
[Fig. 2(b), orange trace] shifts the absorption to higher energy
which it was designed to do, but in doing so overshoots the
BSE spectrum and again the peaks do not line up. The hy-
brid approach (green trace) fares similarly; the spectrum is
shifted to higher energy, slightly overshooting the experimen-
tal optical gap, and peak shapes differ significantly. Neither
TDDFT-derived spectrum exhibits any significant redshift.
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FIG. 2. Optical properties of BiSBr calculated using various techniques described in the text. (a) Optical gaps computed using BSE,
SBE, TDDFT, TDDFT with a scissor operator, and TDDFT using the HSE06 functional, with the experimental gap plotted as a dashed
line. (b) Corresponding simulated absorption spectra not including the SBE approach. (c) Absorption spectrum of SBE compared with BSE.
(d) Excitonic stabilization energies of the five approaches. (e) SBE imaginary part of the dielectric matrix for the direction along atomic chains
computed with (solid line) and without (dashed line) local field effects, and with free particles (dotted line) compared to BSE (shaded blue
curve). Comparing the free particle spectrum and excitonic spectrum gives an estimate of the exciton binding energy: Eb = 305 meV.

However, the Bloch equation approach [Fig. 2(c)] returns
an absorption spectrum which is almost identical to the BSE
data. This tells us that the BSE and Bloch equation approaches
are consistent with each other, but not the hybrid-TDDFT
data.

The question then becomes: is it the hybrid-TDDFT data or
the BSE and SBE data that is correct? Figure 2(d) answers this
by plotting the excitonic stabilization energies; the redshift of
the absorption spectrum compared to the band gap, computed
from the differences between the band gaps, and the optical
gaps of the five approaches. Note that this is a different quan-
tity to the exciton binding energy calculated in Fig. 2(e).

The data clearly show that of the three techniques, which
get the closest to the experimental optical gap, only the
BSE and Bloch equation approaches predict a considerable
stabilization energy in line with what is expected from the
pseudo-one-dimensional BiSBr structure. In fact, the hybrid
approach predicts unstable excitons (positive energy).

As discussed above, the pseudo-one-dimensional nature
of the electronic structure of BiSBr will result in confine-
ment of excitons, which stabilizes them against dissociation.
Combining this with the well studied suitability of metal
halide materials to excitonic applications [3–5], we would
expect the optical gap to be significantly lower than the elec-
tronic band gap due to excitonic stabilization. The TDDFT
data is inconsistent with this, while the BSE and SBE data

are entirely in line with this expectation, while also providing
good agreement with the experimental optical gap.

Therefore, from knowledge of the crystal and electronic
structures, it is clear that the agreement of the optical gap of
the hybrid-TDDFT data with experiment is coincidence. The
blueshift of the band gap due to the exact exchange introduced
by the hybrid functional coincidentally shifts the optical gap
to a value close to experiment. The reason for the failure of the
TDDFT technique for this material is that it does not contain
the required electron-hole interactions [8] (see the Supple-
mental Material [24]), and therefore cannot reproduce the
stabilization of optical excitations due to these interactions,
which are considerable in pseudo-one-dimensional materials
like BiSBr.

Thus we see that the BSE and Bloch equation approaches
predict an optical gap within 3.5% of experiment, and also
predict excitonic stabilisation energies of >0.3 eV, in line
with what would be expected from a metal halide with a
pseudo-one-dimensional electronic structure. The data from
TDDFT either fare poorly at reproducing the optical gap, or
predict positive excitonic stabilization energy (i.e., a repulsive
interaction).

This is a remarkable result, as the computational require-
ments of the BSE and Bloch equation approaches occupy
opposite ends of the spectrum. The BSE calculations use
∼6000 CPU hours, while the SBE approach uses just 0.14
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CPU hours. Despite this difference, the techniques agree very
closely on the most significant aspects of the optical proper-
ties: the absorption spectra are almost identical.

The advantage of the SBE approach its efficiency in de-
scribing Wannier-Mott excitons with long range Coulomb
interactions in an isotropic medium. This efficiency is
achieved by reducing the number of degrees of freedom due
to symmetry considerations. In this work we have achieved
better performance by reducing the number of bands par-
ticipating in the optical response and wave vectors in the
Coulomb coupling terms written in the momentum space
representation, taking into account particularities of the band
structure of BiSBr.

For other systems, for instance in the case of III–V bulk
semiconductors an axial approximation for the Coulomb po-
tential and band structure is employed considering only the
lowest conduction band and highest valence band. Unfortu-
nately this approach is inaccurate in the case of BiSBr due to
its anisotropic properties and strong exciton localization in the
direction perpendicular to the atomic chains. Another way to
reduce the computational cost is by applying a simplified di-
electric screening model such as the static screened-exchange
Coulomb-hole approximation [43] or a plasmon-pole model
with or without free parameters [44].

In general though, the main advantage of using SBE over
BSE are the time-dependent features of the former that allow
access of the dynamical optical response and nonlinear optical
characteristics.

In Fig. 2(e) we compare the imaginary part of the dielectric
constant computed with SBE approach and semiconductor
Bloch equations and compare the exciton binding energies
with and without local field effects (the exciton binding en-
ergy is the difference between the energy of the absorption
edge without Coulomb interactions between the electrons and
holes, and the exciton peak with these interactions included).
The results indicate that good agreement between two meth-
ods can be achieved only if the local fields effect are taken into
account (see the Supplemental Material [24]). Without these
the exciton binding energy is significantly underestimated; on
the order of ∼10 meV.

However, taking the local field effects into account leads
to a huge exciton binding energy (∼300 meV) which implies
that the exciton wave function is localized within the unit cell
and is represented by a linear combination of the bulk crystal
states having not only different wave vectors, but also different
band indices.

The contribution of the local field effects is negligible in
most III–V semiconductors, where the exciton Bohr radius is
much larger than the lattice constant (Wannier-Mott excitons).
However, they are significant in perovskites and van der Waals
heterostructures where the lattice constant in one direction is
comparable to the Bohr radius. This can occur due to small di-
electric screening on the one hand, or larger spacing between
atomic layers (or chains in BiSBr) on the other hand.

The relationship between the localization of the exciton
wave function and local field effects can be illustrated by
considering a simple rectangular lattice whose conduction
and valence bands are shown schematically in Fig. 3(a). The
Coulomb potential in the convectional semiconductor Bloch
equations couples states with different momenta, but is di-

(a) (b)

FIG. 3. (a) Coulomb coupling V i j
|k−k′ | between microscopic polar-

ization operators Pi j
k and Pi j

k′ for Wannier-Mott excitons with Bohr
radii much larger than a lattice constant couples electrons and holes
with different quasimomenta belonging to one pair of energy bands.
(b) Coulomb coupling for the Frenkel excitons that couples micro-
scopic polarizations for different pairs of bands.

agonal in the band indices. If we keep the same crystalline
structure and double the lattice constant, the Brillouin zone
halves, and the electronic bands fold over as per Fig. 3(b).

As a result, Coulomb coupling between two wave vectors
in the first case becomes coupling between different bands
in the second case. Thus, if we want to represent the wave
function of the excitons with large binding energy as a linear
combination of bulk semiconductor wave functions, it is not
enough to use wave functions with different wave vectors for
a pair of bands; several conduction and valence bands must be
used.

IV. CONCLUSIONS

To summarize, we find that unsurprisingly the compu-
tationally expensive, but theoretically rigorous GW -Bethe-
Salpeter approach to computing optical properties produces
predicts an optical gap in excellent agreement with experiment
for the metal halide BiSBr, while TDDFT calculations did not.

However, combining the ab initio approach with the semi-
conductor Bloch equation formalism appears to be a viable
low-resource substitute for BSE. The data are in good agree-
ment with the experimental optical gap (1.94 vs 2.01 eV,
a difference of ∼3.5%), and also agrees particularly well
with the optical gap, excitonic stabilization energy, and the
absorption spectrum of the BSE data. This agreement comes
with a significantly reduced computational cost, making the
Bloch equation approach a good candidate for theoretical
spectroscopy on systems which are computationally out of
reach of BSE calculations.
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