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Phase diagram and orbital Chern insulator in twisted double bilayer graphene
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Compared with twisted bilayer graphene, twisted double bilayer graphene (TDBG) provides another important
platform to realize the moiré flat bands. In this paper, we first calculate the valley Chern number phase diagram
of TDBG in the parameter space spanned by the twist angle and the interlayer electric potential. To include the
effects of interactions, we then phenomenologically introduce the spin-splitting and valley-splitting. We find that
when the valley splitting is larger than the bandwidth of the first conduction band so that a gap is opened and the
spin splitting is relatively weak, the orbital Chern insulator emerges at half-filling, associated with a large orbital
magnetization (OM). Further calculations suggest that there is no sign reversal of the OM when the Fermi energy
goes from the bottom to the top of the half-filling gap, as the OM remains negative in both AB-AB stacking and
AB-BA stacking. The implications of our results for the ongoing experiments are also discussed.
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I. INTRODUCTION

The recent discovery of the correlated insulator states [1],
superconductivity [2,3], as well as quantum anomalous Hall
(QAH) state [4,5] in twisted bilayer graphene (TBG) have
drawn significant attention. In TBG, the spatial variation of
interlayer coupling modified the Dirac linear band structure of
graphene in such a way that the band dispersion was almost
completely suppressed at the so-called magic angle [6]. As the
bandwidth w of the flat band was sufficiently narrow, it was
possible to achieve the situation U

w
� 1 so that the effective

Coulomb interaction U dominated the system. The interaction
provided a possible mechanism for the observed correlated in-
sulator states and superconducting states upon charge doping
[7–9]. It was further revealed that the low-energy flat bands
could have well-defined valley Chern numbers, which can
host a number of fascinating many-body phenomena, includ-
ing the fractional QAH effects [10].

This novel twist-angle degree of freedom and its con-
trol could be generalized to other two-dimensional systems,
where similar correlated physics may also be exhibited. It was
demonstrated that twisted double bilayer graphene (TDBG)
[11–15] and ABC-stacked trilayer graphene on hexagonal
boron nitride (hBN) supperlattices [16,17] can provide an-
other important moiré system with strong correlation effect.
TDBG refers to a pair of bilayer graphene twisted with each
other by a small angle θ . There may exist as two different
stacking types for TDBG, AB-AB stacking and AB-BA stack-
ing, both of which will be considered in this paper. Unlike
TBG, the isolated flat moiré band in TDBG can appear when
an out-of-plane electric field is applied on the system [18].
More importantly, as the bilayer graphene becomes gapped
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under the electric field, the opposite Berry curvatures at the
two valleys can be accumulated [19,20], leading to the change
of the band Chern number. As both the twist angle and the
electric field can be well controlled in the experiment, the
study of the driven Chern number phase diagram in TDBG is
meaningful and gives the first motivation of the present work.

In TBG, the topological flat moiré bands are closely con-
nected to the large orbital magnetizations (OMs), which may
give rise to an orbital Chern insulator (OCI) state once the
valley symmetry is broken. In fact, the OCI has been suc-
cessfully observed at n = 3

4 ns filling of TBG when aligned
with the hBN substrate around the magic angle [4,5], with
ns = 4

SM
being the density corresponding to fully filling one

moiré band, the factor of 4 accounting for the spin and valley
flavors, and SM denoting the size of the unit moiré cell. The
time-reversal symmetry (TRS) breaking mechanism of OCI
in TBG can be attributed to the condensation of the electrons
in the momentum space, where the many-body interaction
drives the spontaneous valley polarization. Another important
system called the spin Chern insulator was observed in Cr-
doped (Bi, Sb)2Te3 thin film [21], where the TRS is broken
by the local spin moments that are ordered ferromagnetically
due to the exchange interaction. Both the orbital and spin
Chern insulators are quite different from the Chern insulator
identified in the original Haldane model [22], where the TRS
is broken by the local staggered magnetic flux in a unit cell,
leading to the Berry curvatures of the same sign around the
two valleys.

In this paper, we will study under what conditions the OCI
can be realized in TDBG. Although in a unit cell, TDBG
has two times the sublattices as TBG, the band counting is
the same and each moiré band accommodates four electrons
per unit moiré cell when the spin-degeneracy and valley-
degeneracy are preserved. If the number of electrons per moiré
band is a multiple of four, gaps may appear. However, when
the Fermi energy lies in the gap, the Chern number vanishes
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due to the opposite contributions from the two valleys that are
connected by the TRS. Thus, to observe the nontrivial Chern
insulator phase in TDBG, the four-fold degeneracy of the
moiré band needs to be broken, which may be achieved by the
spin-splittings and valley-splittings. Moreover, the magnetic
property studied in TBG revealed that the OM may reverse
its sign when doping the system from the bottom to the top
of the insulating gap, and suggested that this was quite com-
mon in the OCI [23]. The external perpendicular magnetic
field B favors the state with magnetization M aligned in the
same direction, leading to the stronger resistive signal in the
transport experiment. Thus the sign reversal of the OM can
drive a reversal of the valley polarization when the Fermi
energy crosses the gap, enabling the electrical switching of
a magnetic state in TBG in when a fixed magnetic field is
present [24]. Then a natural question arises that what is the
magnetic property in TDBG when the OCI is realized, which
will also be explored in this paper.

Our main findings are as follows. (i) By using the Fukui’s
algorithm, we perform accurate calculations of the Chern
numbers of the first valence and first conduction band,
(Cv1,Cc1), and obtain a reliable phase diagram of TDBG as a
function of the twist angle and the electric potential, especially
for the regions where the neighboring moiré bands are over-
lapped. We find that the phase diagrams for AB-AB stacking
and AB-BA stacking show significant discrepancies. Since the
(Cv1,Cc1) = (2,−2) phase in the AB-BA stacking and the
(1,1) phase in the AB-BA stacking share similar broad pa-
rameter regions, and in the two phases the bands are relatively
flat, our studies are mainly focused on these two phases. (ii)
By phenomenologically introducing the interaction-induced
valley splitting and spin splitting, the OCI state is found at
half-filling n = 1

2 ns of the first conduction band and is as-
sociated with the large OM. The condition is that the valley
splitting should be larger than the bandwidth so as to open
a gap at half-filling, and the spin splitting should be relatively
weak. (iii) For the OCI in TDBG, our calculations suggest that
there is no sign reversal of the OM when the Fermi energy
goes from the bottom to the top of the half-filling gap, as the
OM remains negative in both AB-AB stacking and AB-BA
stacking. Our study could help explore the twist-angle and
electric-field modulated topological phases of matter in the
flat-band twisted superlattice systems.

II. TWISTED DOUBLE BILAYER GRAPHENE MODEL

Bilayer graphene is composed of a pair of monolayer
graphene, where four sublattices are included in a unit cell,
labeled as A1, B1 in the upper layer and A2, B2 in the bottom
layer. In bilayer graphene, the most stable configuration is AB
or BA stacking, which is also the stacking structure of three-
dimensional (3D) bulk graphite [25]. In AB (BA) stacking,
the A1 (B1) sublattice of the upper layer is located on the
top of the B2 (A2) sublattice of the lower layer, leading to a
small on-site energy � for these dimer sublattices. The other
two sublattices, B1 and A2 (A1 and B2), are directly above or
below the hexagon center of the other layer. The schematics
of TDBG are shown in Fig. 1, with the two stacking types,
AB-AB stacking and AB-BA stacking.

FIG. 1. Schematics of TDBG with (a) AB-AB stacking and
(b) AB-BA stacking. The hopping integrals between the neighboring
sublattices, γ0,1,3,4, are shown with arrows in different colors. For
the dimer sublattices, there is a small on-site energy �. The layer-
dependent potentials are also labeled.

To describe the single-particle band structure of
TDBG, we adopt the commonly used tight-binding
model [6,18,26–29]. In the eight-component basis
(cA1 , cB1 , cA2 , cB2 , cA3 , cB3 , cA4 , cB4 )T , the Hamiltonian at
small twist angle θ is

HAB−AB(k) =

⎛
⎜⎜⎝

h0(k1) g†(k1)
g(k1) h′

0(k1) T †

T h0(k2) g†(k2)
g(k2) h′

0(k2)

⎞
⎟⎟⎠ + V,

(1)

and

HAB−BA(k) =

⎛
⎜⎜⎜⎝

h0(k1) g†(k1)

g(k1) h′
0(k1) T †

T h′
0(k2) g(k2)

g†(k2) h0(k2)

⎞
⎟⎟⎟⎠ + V.

(2)

Here kl = R(± θ
2 )(k − K l

ξ ) is the in-plane momentum, with
R(θ ) being the two-dimensional rotation matrix and the sign
± for the top (l = 1) and bottom (l = 2) bilayer graphene,
respectively. ξ = ±1 is the valley index and K l

ξ is the cor-
responding Dirac point. Both h0(k) and h′

0(k) describe the
intralayer hoppings between sublattices A and B, while g(k)
denotes the coupling between the two layers in bilayer
graphene. These 2×2 submatrices are written as

h0(k) =
(

� −γ0 f (k)
−γ0 f ∗(k) 0

)
, (3)

h′
0(k) =

(
0 −γ0 f (k)

−γ0 f ∗(k) �

)
, (4)

g(k) =
(

γ4 f (k) γ3 f ∗(k)
γ1 γ4 f (k)

)
, (5)

where γ0 is the nearest-neighbor hopping integral and f (k) =∑
i e−ik·δi , with δ1 = a0(0,− 1√

3
), δ2 = a0(− 1

2 , 1
2
√

3
), δ3 =

a0( 1
2 , 1

2
√

3
) denoting the vectors pointing from sublattice A

to B, and a0 being the lattice constant. We can expand f (k)
around the Dirac points K± = (± 4π

3a0
, 0) as f (K± + k) =

√
3a0
2 (∓kx + iky). In g(k), the parameter γ3 represents the

trigonal warping of the energy bands and γ4 accounts for
the electron-hole asymmetry in bilayer graphene [30]. The
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tight-binding parameters are labeled in detail in Fig. 1. We
use the parameters that are extracted from the ab initio results
of Ref. [31], γ0 = 2610 meV, γ1 = 361 meV, γ3 = 283 meV,
γ4 = 138 meV, and � = 15 meV.

The term V in the Hamiltonian describes the effect of the
out-of-plane perpendicular electric field, as it can induce the
interlayer asymmetric electric potential. In bilayer graphene,
the electric potential difference between the two layers can
open a gap in the parabolic touching bands [30]. We assume
that the electric potential drop between the neighboring layers
is uniform, Ui − Ui+1 = U

3 , as shown in Fig. 1. Specifically,

V =

⎛
⎜⎜⎝

U
2 I

U
6 I

−U
6 I

−U
2 I

⎞
⎟⎟⎠, (6)

with I being the 2×2 unit matrix. In the experiment, the
electric potential in TDBG can be effectively tuned by the top
and back gates [11–14].

The tunneling T (r) between the top and bottom bilayer
graphene varies with the moiré period and is written as [6,26]

T (r) = T0 + e−ib+·rT+1 + e−ib−·rT−1, (7)

Tj = w0σ0 + w1cos

(
j
2π

3

)
σx + w1sin

(
j
2π

3

)
σy, (8)

where b± = 4π√
3aM

(± 1
2 ,

√
3

2 ) are the moiré reciprocal lattice

vectors and aM = a0

2sin θ
2

denotes the moiré period. Because

the moiré period is much larger than the lattice constant,
aM � a0, the intervalley scatterings can be safely ignored
and we treat the two valleys separately. Moreover, as the
two valleys are connected by the TRS, we mainly focus on
the K valley, while the physics of the K ′ valley can be ob-
tained by the TR operation. w0 and w1 are the two tunneling
parameters, which in general are unequal due to the layer
corrugation in the moiré pattern. We take w0 = 79.5 meV and
w1 = 97.5 meV [26] in the following calculations.

The moiré potential reconstructs the original Dirac linear
bands into the small moiré Brillouin zone (MBZ). Numer-
ically, the band structures can be effectively calculated by
using the plane-wave expansions [6]. For each momentum
k, we use the basis that include the states of (2M + 1) ×
(2M + 1) momentum points: k + n1b+ + n2(b+ − b−), where
−M � n1, n2 � M are integers. In the calculations, we choose
M = 4 to achieve results that are well convergent.

III. PHASE DIAGRAM

First we calculate the K valley Chern number phase dia-
gram of TDBG, as the moiré bands are generically topological
and can carry nonzero Chern number [10]. For the nth band,
its Chern number is defined as an integration over the MBZ
[32]

Cn = i

2π

∫
MBZ

d2k
〈
∂unk

∂k

∣∣∣∣ ×
∣∣∣∣∂unk

∂k

〉
, (9)

with |unk〉 being the Bloch wave function. The Chern number
can be numerically calculated by using the Fukui’s algorithm,
in which the BZ is divided into many disconnected sectors and

a unique topological invariant is assigned to each sector. Then
the Chern number is written as [33,34]

Cn = 1

2π

∑
i

Im
[
ln

(〈
u1

nki

∣∣u2
nki

〉〈
u2

nki

∣∣u3
nki

〉

× 〈
u3

nki

∣∣u4
nki

〉〈
u4

nki

∣∣u1
nki

〉)]
, (10)

where the summation is to be taken over all disconnected
sectors, and |u j

nki
〉 ( j = 1, 2, 3, 4 in anticlockwise direction)

is the nth wave vector corresponding to the four vertices in
the ith sector. The advantage of the Fukui’s algorithm is that it
can calculate the Chern number of a specific band in a reliable
way, even when neighboring bands are overlapped, as long as
the bands do not touch with each other. We label the Chern
number of the nth valence (conduction) bands as Cvn (Ccn).
The first valence and first conduction bands will be focused
on and the Chern numbers (Cv1,Cc1) are used to distinguish
the different phases, as they can undergo multiple changes at
the high-symmetry points in the MBZ.

When the electric potential U in TDBG reverses its direc-
tion, we find that for AB-AB stacking, the Chern number of
the nth band turns to its opposite value, Cn(−U ) = −Cn(U ),
while for AB-BA stacking, it will not change, Cn(−U ) =
Cn(U ). This is because in AB-AB stacking, the C2x symmetry
is broken by the electric potential, while in AB-BA stacking,
the C2x symmetry is maintained. Specifically, if we rotate the
TDBG system with negative U by 180◦ along the x axis in the
two-dimensional (2D) plane, for AB-AB stacking, the rotated
system becomes BA-BA stacking with positive U . As the
chirality of the massive bands changes, it makes the Chern
number reverse to its opposite value. However, for AB-BA
stacking, the rotated system returns to its origin with posi-
tive U and thus the Chern number remains unchanged. This
property may be used in the experiment to judge whether the
chiralities of the two stacked bilayer graphene are the same or
not.

The K-valley Chern number phase diagram of TDBG is
plotted in Fig. 2 with AB-AB stacking in Fig. 2(a) and AB-BA
stacking in Fig. 2(e), where the different phases are labeled
in different colors. We can see that the Chern number are
tunable up to ±3. Clearly, there are significant discrepancies
of the two phase diagrams in the two stacking types. The
typical moiré band structures along the high-symmetry line
in the MBZ are plotted in Figs. 2(b) to 2(d) and Figs. 2(f) and
2(g). We define the band gap between the first conduction and
second conduction band as δ1, the band gap between the first
conduction and valence band as δ2, and the band gap between
the first valence and second valence band as δ3. When θ is
small and U is lower than 20 meV, the first conduction and
valence band touch with each other [e.g., see Fig. 2(b)], mak-
ing δ1 unopened and the Chern number ill-defined. However,
the band gaps δ1 and δ3 are opened and can protect the sum
of the Chern numbers. So we use Cc1 + Cv1 to characterize
these phases. As shown in Figs. 2(a) and 2(e), the phase of
Cc1 + Cv1 = 0 and Cc1 + Cv1 = 4 spans the lower left region
of the phase diagram, respectively.

For AB-AB stacking, when U = 0 and θ > 1◦, the two
touching bands are separated. The increasing θ drives the
system first enter the (3,−3) phase and then the (0,0) phase
[Fig. 2(c)]. As the two lowest bands are separated from the
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FIG. 2. The K valley Chern number phase diagram of TDBG in the parameter space (θ,U ) with (a) AB-AB stacking and (e) AB-BA
stacking. The different phases are characterized by the Chern numbers of the first valence and conduction band (Cv1,Cc1). (b)–(d) and (f)–(h)
are the typical moiré bands along the high-symmetry line, K̄ ′ → 
̄ → M̄ → K̄ , in the MBZ, with the parameter points being marked by the
crosses in (a) and (e), respectively. Note that Chern numbers are labeled in each figure.

higher bands, the summation of the Chern numbers remains
zero, Cc1 + Cv1 = 0. We can see that the Chern number in
the middle band gap, Cδ2 , which is defined as the summation
of the band Chern number below the band gap δ2, is also
zero. The increasing U can drive the bands touch at the high-
symmetry points and then separate, resulting in the change of
Cc1 or Cv1. Note that the (2,−2) phase [Fig. 2(d)] spans a
broad parameter region in the phase diagram, meaning that it
remains unchanged to the small variations of U and θ . More-
over, the (2,−2) phase represents a valley Chern insulator as
Cδ2 = 2.

For AB-BA stacking, when U = 0 and 0.86◦ < θ < 0.98◦,
the Chern numbers become (2,2), but the direct gap is too
small or even does not exist [Fig. 2(f)]. When U < 66 meV
and θ ∼ 0.98◦, the first valence band will touch with the
higher valence band at the 
̄ point. Thus the phase transitions
happen and a vertical phase boundary at θ ∼ 0.98◦ is seen,
where Cv1 varies but Cc1 remains unchanged. For example, at
U = 0, the increasing θ drives the (2,2) phase enter the (0,2)
phase [Fig. 2(g)]. It shows that Cδ2 = −1 and is distinct from
AB-AB stacking. We also note that the (1,1) [Fig. 2(h)] phase
behaves as a trivial insulator as Cδ2 = 0. More importantly, it
spans a similar broad parameter region in the phase diagram
as the (2,−2) phase in AB-AB stacking.

In a previous work [29], the valley Chern number phase di-
agrams of TDBG were obtained from the TKNN formula [see
Eq. (11) below], which partly agreement with our results. The
differences between them mainly lie in the parameter regions
where the neighboring bands related to the first conduction
and first valence bands are overlapped (see Appendix A). Our

results show that when the neighboring bands are overlapped,
the different computational methods may lead to different
results (see Appendix B). As is known, when there is a direct
band gap between the neighboring topological bands and the
Fermi energy lies in it, the TKNN formula [see Eq. (12)
below] can express the anomalous Hall conductivity (AHC)
σH (in unit of e2

h ) as a quantized value, which equals the Chern
number in the gap Cδ . Then the band Chern number is deter-
mined and equals the Chern number in the above band gap
minus the Chern number in the below band gap. In this case,
we checked that the Chern number results obtained by using
the Fukui’s algorithm and the TKNN formula are consistent
with each other. When the the bands overlap, the quantized
σH will not appear. In this case, the Chern number judgment
from the TKNN formula may be inconvenient. However, we
suggest that the Fukui’s algorithm is still valid for determining
the Chern number, as long as the neighboring bands do not
touch each other. The valley Chern number phase diagram was
also reported in another work [27], but was only about the first
conduction band Cc1 . It is worth pointing out that our phase
diagrams are also consistent with two recent studies [28,35],
where the Chern numbers in TDBG are presented for some
specific parameter points of (θ,U ).

We further study the evolution of the first conduction band
with the electric potential U , as it can be well isolated from
other bands. In Fig. 3 with the fixed θ = 1.28◦, we plot the
flatness of the first conduction band w, the band gaps δ1

and δ2 as functions of U . It shows that for both AB-AB
and AB-BA stacking types, these quantities exhibit similar
trends. Around U = 30 meV, we have w = 12.5 meV, which
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FIG. 3. The flatness w of the first conduction band, the gaps δ1

and δ2 vs the interlayer potential U in TDBG, where both AB-AB
stacking and AB-BA stacking are considered. We set the twist angle
θ = 1.28◦.

is comparable to δ1, whereas δ2 is close to zero. At large
U , both w and δ2 increase while δ1 decreases, meaning that
the first conduction band becomes wider and moves closer to
the second conduction band. In the extremal case when U is
sufficiently high (low), the neighboring bands overlap and δ1

(δ2) becomes negative. These results can be used to explain the
recent resistance measurements in TDBG with θ being around
1.3◦ [13–15], where the insulating state at charge neutrality
(corresponding to δ2) strengthens with the electric potential
U , while the n = +ns insulating state (corresponding to δ1) is
weakened and eventually disappears with the increasing U . In
addition, the observed asymmetric change of insulating states

at n = +ns and n = −ns versus U [13–15] can be attributed
to the broken electron-hole symmetry in the TDBG moiré
bands.

IV. ORBITAL CHERN INSULATOR

As the strong electron-electron interactions exist in the
flat bands, the four-fold degeneracy of each moiré band may
be spontaneously broken by the interaction-induced spin-
splitting �s and valley-splitting �v . To study the effect of
interaction, we phenomenologically introduce �s and �v in
the TDBG system, with the Hamiltonian [23,27,35,36]

Hsv = �ssz + �vτz. (11)

Here sz and τz both denote the third Pauli matrice, but are
defined in the spin and valley subspace, respectively. In Fig. 4,
with the electric potential U = 56 meV and the twist angle
θ = 1.28◦, we plot the splitted moiré bands and the corre-
sponding density of states (DOS) in AB-AB stacking for a set
of the splittings (�s,�v ). The dotted horizontal line denotes
the Fermi energy position at half-filling n = 1

2 ns of the first
conduction band. Note that w = 10.54 meV.

Four cases are considered. (i) When �s = �v = 0, the
four-fold degeneracy of the first conduction band is preserved
[Fig. 4(a)], so the Fermi energy at half-filling lies in the band
interior. As K and K ′ valleys are connected by the TRS,
they have the same DOS and thus the total DOS is four
times the DOS of one flavor [Fig. 4(b)]. (ii) When �s = 0
and �v = 6 meV, the bands are spin-degenerate but valley-
splitted [Fig. 4(c)], so the total DOS evolves into two peaks
[Fig. 4(d)]. At half-filling, we can see that a gap is opened and
the system is valley polarized, with the first conduction bands

FIG. 4. The moiré bands (a), (c), (e), and (g), and the DOS (b), (d), (f), and (h) of TDBG with AB-AB stacking, with the different spin
splitting �s and valley splitting �v . The band structures are along the high-symmetry line in the MBZ. The dotted horizontal line denotes the
Fermi energy at half-filling of the first conduction band. We choose the parameters as U = 56 meV and θ = 1.28◦. The legends are the same
in all figures.
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FIG. 5. The (a) AHC σH and (b) OM M of TDBG in the parametric space of the splittings (�s, �v ) with AB-AB stacking. The dashed
lines denote the phase boundaries, separating three phases: OCI phase, metallic phase, and SP phase. The Fermi energy is pinned at half-filling
of the first conduction band. If a gap is opened at the half-filling, the Fermi energy is chosen to lie at the bottom of the gap. The parameters
are taken as U = 56 meV and θ = 1.28◦. (c) The schematics of the valley-splitted and spin-splitted moiré bands. The Fermi energy positions
at n = ± 1

2 ns filling are denoted by the dotted lines.

in K ′ valley being completely filled while those in K valley
being empty. Since the TRS has been broken by �v , the AHE
would occur in this case. (iii) When �s = 6 meV and �v = 0,
the spin degeneracy is broken, with the upspin bands moving
upwards and downspin bands moving downwards [Fig. 4(e)].
At half-filling, a gap is also opened and the system represents
a spin-polarized (SP) state. In the experiment, by evaluat-
ing the g factor to be around g � 2, the observed insulating
phase at half-filling was attributed to this state, where the
insulating gap is further enhanced by an in-plane magnetic
field [13–15]. (iv) When �s = �v = 6 meV, both the spin and
valley degeneracies are broken. At half-filling, there is no gap
opening and the Fermi energy also lies in the band interior
[Fig. 4(g)]. Because there is an overlap of the DOS of the K
valley, downspin band and the K ′ valley, upspin band, the total
DOS exhibits three peaks [Fig. 4(h)].

Normally, when both the splittings are larger than the
moiré band flatness, gaps may be opened at the odd-fillings,
n = 1

4 ns or 3
4 ns. This is just the case in TBG, where the OCI

phase with C = 1 was successfully observed in the n = 3
4 ns

filling gap [4,5]. However, in TDBG, the flatness of the first
conduction band may be large and can reach 10 ∼ 30 meV
in the region that we focus on [see Appendix A]. This may
lead to the closing of the gaps at odd-fillings, as the higher
bands may move into the gap by the splittings. For example, in
Fig. 4(g), the second conduction band of K ′ valley, downspin
flavor moves downwards into the n = 3

4 ns gap and the first
valence band of K valley, upspin flavor moves upwards into
the n = 1

4 ns gap. These results agree well with the experi-
ments [13–15], in which there is no insulating state observed
at n = 3

4 ns filling gap, while the insulating state at n = 1
4 ns

filling gap quickly disappears at the temperature less than 3 K
[13], demonstrating that the gap is very small. According to
these analyses, we suggest that the nontrivial Chern insulator
phase in TDBG may only appear at half-filling n = 1

2 ns of the
first conduction band when the condition �v > 1

2w + �s is
satisfied, corresponding to the case of Fig. 4(c).

Next we study the dependence of the AHC and OM on
the splittings, �s and �v . The AHC σH is calculated by the
famous TKNN formula, which expresses σH as an integration

of the Berry curvature over the MBZ [37],

σH = − e2

h̄
Im

∫
MBZ

d2k
(2π )2

∑
n,n′ �=n

×
〈unk| ∂H

∂kx
|un′k〉〈un′k| ∂H

∂ky
|unk〉

(εnk − εn′k)2
f (εF − εnk), (12)

and the OM M is calculated as [32,38,39]

M = e

h̄
Im

∫
MBZ

d2k
(2π )2

∑
n,n′ �=n

(εnk + εn′k − 2εF )

×
〈unk| ∂H

∂kx
|un′k〉〈un′k| ∂H

∂ky
|unk〉

(εnk − εn′k)2
f (εF − εnk), (13)

where f (εF − εnk) is the Fermi-Dirac distribution function
and εF is the Fermi energy. We use e2

h and μB

SM
as the unit of σH

and M, respectively, with μB being the Bohr magneton. The
OM can be separated into two parts M = M1 + M2 [23],

M1 = e

h̄
Im

∫
MBZ

d2k
(2π )2

∑
n,n′ �=n

(εnk + εn′k)

×
〈unk| ∂H

∂kx
|un′k〉〈un′k| ∂H

∂ky
|unk〉

(εnk − εn′k)2
f (εF − εnk), (14)

and

M2 = e

h̄
Im

∫
MBZ

d2k
(2π )2

∑
n,n′ �=n

(−2εF )

×
〈unk| ∂H

∂kx
|un′k〉〈un′k| ∂H

∂ky
|unk〉

(εnk − εn′k)2
f (εF − εnk). (15)

The above equations show that when the Fermi energy εF

lies in the gap, M1 is independent of εF , while M2 exhibits
a linear dependence on εF . In particular, M2 is closely related
to the edge states as its coefficient is proportional to the Chern
number in the gap, dM2

dεF
= e

2π h̄Cδ .
We show the AHC σH and OM M of AB-AB stacking in

Figs. 5(a) and 5(b), respectively. The splittings �s and �v
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FIG. 6. The single-flavor OM M in K valley and �M = MK
cb − MK

ct of TDBG with (a, b) AB-AB stacking and (c, d) AB-BA stacking. In
(a) and (c), the parameters are taken as U = 56 meV and θ = 1.28◦. The red dashed and blue dotted lines denote M1 and M2, respectively.
The gray stripes indicate the energy gaps δ1 and δ2. The extremal OMs MK

cb and MK
ct are marked by the asterisks. In (b) and (d), we focus on

the (2, −2) phase and (1,1) phase, respectively, while the gray areas are outside of the (2,−2) and (1,1) phase. Both figures show that �M is
negative, except that in a small region of (d), as highlighted by the green lines, �M is positive, but can reach ∼0.1 μB

SM
at most.

are varied from 0 to 8 meV. The Fermi energy is pinned at
half-filling of the first conduction band. If a gap is opened at
half-filling, the Fermi energy is chosen to lie at the bottom
of the gap. We can see that when �v = 0 and the TRS is
preserved, both σH and M vanish due to the opposite contri-
butions from the K and K ′ valleys. For a fixed �s, when �v

increases, more electronic states in K ′ valley than K valley are
occupied. Correspondingly, σH increases from zero, while M
decreases from zero to a large negative value.

Three phases that are separated by the dashed lines can be
seen in Fig. 5. Above the phase boundary �v = 1

2w + �s, a
gap is opened at half-filling n = 1

2 ns of the first conduction
band and the system enters the OCI phase. Because both
the occupied upspin and downspin band in K ′ valley have
the Chern number CK ′

c1 = 2 (opposite to CK
c1 = −2), σH is

quantized as 4 e2

h , as shown in Fig. 5(a). But M will further
decrease with �v due to the contributions from the edge states
in the gap, as in Fig. 5(b). As the upspin and downspin states
are equally occupied in the OCI phase, the spin magnetization
vanishes and therefore the total magnetization is dominated by
the orbital component. When �v = 8 meV and �s increases,
σH gradually deviates from the quantized value, whereas M
is still large and around −10 μB

SM
. On the other hand, below

the phase boundary �s = 1
2w + �v , a gap is also opened at

half-filling of the first conduction band and the system enters
the SP ferromagnetic state. As the TRS is unbroken (�v = 0)
or weakly broken (�v � w), σH is zero or vanishingly small,
while M gives a small value, which also originates from the
edge states in the gap. Between the phase boundaries, a metal-
lic phase is present in the parameter space due to the finite
DOS at the Fermi energy. We note that the exact positions of
the phase boundaries are dependent on the electric potential
U and the twist angle θ , as the flatness w can be effectively
modulated (see Appendix A). Although only AB-AB stacking
is considered in Figs. 4 and 5, similar conclusions can also be
obtained for AB-BA stacking, except that the AHC would be
quantized as σH = −2 e2

h for the same U and θ .
We further explore whether there is a OM reversal in the

half-filling gap of TDBG when the OCI phase has been iden-
tified. To see the behavior of the OM M, in Fig. 6, we plot the
single-flavor M in K valley (no splittings) as a function of the
Fermi energy εF with AB-AB stacking [Fig. 6(a)] and AB-
BA stacking [Fig. 6(c)] when the parameters U = 56 meV
and θ = 1.28◦. The red dashed and blue dotted lines denote
the separated M1 and M2 contributions, respectively. As K
and K ′ valleys are TR counterparts, their OM contributions
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are opposite in sign. In Fig. 6(a), we observe that M in
K valley keeps unchanged in δ1 gap as the Chern number
CK

δ1
= 0, and increases linearly in δ2 gap as CK

δ2
= 2, while

in Fig. 6(c), M in K valley increases linearly in δ1 gap as
CK

δ1
= 1 and remains unchanged in δ2 gap as CK

δ2
= 0. Note

that, due to the absence of the electron-hole symmetry in
TDBG, M does not vanish at zero Fermi energy. This is in
sharp contrast with TBG, where the electron-hole symme-
try is well preserved and M always vanishes at zero Fermi
energy [23].

When the splittings are present in TDBG, the total OMs
require to sum over all spin and valley flavors. For the OCI
at n = ± 1

2 ns filling, with the Fermi energy positions being
denoted by the dotted lines in Fig. 5(c), the OM in each
flavor can be easily obtained. For example, we have MK↑

+ 1
2 ns

=
MK

cb − e
2π h̄CK

δ2
2�s and MK↑

− 1
2 ns

= MK
cb − e

2π h̄CK
δ2

(2�v − w).

For AB-AB stacking, the total OMs are

M+ 1
2 ns

= 2�M − e

π h̄
CK

δ2
�s, (16)

M− 1
2 ns

= 2�M − e

π h̄
CK

δ2
(2�v − �s − w), (17)

where �M = MK
cb − MK

ct , with MK
cb and MK

ct denoting the ex-
tremal OM with the Fermi energy being located at the band
bottom and top, respectively. Eq. (17) tells us that M− 1

2 ns

decreases with �v , but increases with �s, as observed in the
top left of Fig. 5(b). The difference between M+ 1

2 ns
and M− 1

2 ns

is

M+ 1
2 ns

− M− 1
2 ns

= e

π h̄
CK

δ2
(2�v − 2�s − w), (18)

which is positive when taking into account the condition for
the OCI, �v > 1

2w + �s. In Fig. 6(a), we can see that 0 <

MK
cb < MK

ct and thus M− 1
2 ns

< M+ 1
2 ns

< 0. This means that the
OM will increase from the bottom to the top of the half-filling
gap, but remains negative. We further check this in the whole
(2,−2) phase. As the total OMs depend heavily on �M, we
plot �M in Fig. 6(b), where �M is always negative, indicating
that there is no OM reversal in AB-AB stacking.

For AB-BA stacking, the total OMs are

M+ 1
2 ns

= 2�M − e

π h̄
CK

δ1
(2�v − �s − w), (19)

M− 1
2 ns

= 2�M − e

π h̄
CK

δ1
�s. (20)

Their difference is

M+ 1
2 ns

− M− 1
2 ns

= − e

π h̄
CK

δ1
(2�v − 2�s − w), (21)

which is negative for the OCI state. Figure 6(c) shows that
MK

cb < MK
ct < 0, so we can identify that M+ 1

2 ns
< M− 1

2 ns
< 0,

meaning that the OM will decrease from the bottom to the top
of the half-filling gap, but again remains negative. In Fig. 6(d),
we also check �M in the whole (1,1) phase. It shows that
�M is mostly negative, except for a small region where �M
becomes positive, as has been highlighted by the green lines.
However, in this region, �M can only reach ∼0.1 μB

SM
at most.

Considering that e·meV
π h̄ = 0.884 μB

SM
and 2�v − �s − w > �s,

a sufficiently weak �s ∼ 0.23 meV can make M± 1
2 ns

remain

negative. Thus we suggest that the OMs are also negative and
there is no OM reversal in AB-BA stacking.

In Ref. [23], by studying the magnetic property in TBG,
the authors expected that the sign reversal of the OM is
common in the large gap OCI. Here we demonstrated that
this conclusion does not hold in the OCI state of TDBG,
which may be attributed to the specific band topologies in
TDBG. So the necessary conditions for the OM reversal in
the OCI state based on the moiré flat-band systems need more
investigation.

V. DISCUSSIONS AND SUMMARIES

When comparing with the experiments [13–15], we find
that the typical electric potential performed on TDBG is
higher than that used in our theoretical calculations. This may
be attributed to the fact that in our model, the uniform electric
potential drop is assumed between neighboring layers, but in
real samples, the uniform electric potential drop cannot exist
because the separation between the double bilayer graphene is
evidently larger than the separation between the two layers of
one bilayer graphene. Nevertheless, the effect of the electric
potential in TDBG can still be qualitatively captured by the
theoretical model.

We make some comparisons of the topological moiré bands
between TBG and TDBG. In TBG, the observation of the
flat moiré bands needs to fix the twist angle to the specific
magic angle, θ ∼ 1.1◦. The nontrivial band topology requires
to perfectly align the TBG system with the hexagonal boron
nitride cladding layers [5,40,41], as to break the C2z symmetry
between the two sublattices and acquire a finite mass for the
Dirac cone. These conditions are rather strict constraints in
the experiment. Here in TDBG, the flat bands can exist in a
large twist-angle range, as is shown in the phase diagrams and
has been demonstrated in the experiment [13–15]. Because
both the twist angle and electric potential can be controlled in
experiment, this makes the band Chern number in TDBG be
effectively modulated.

In summary, in this paper, we investigated the phase dia-
gram and OCI in TDBG modulated by the twist angle and the
electric field. As the stacking type plays an important role in
determining the band topology of TDBG, we find that it can be
inferred by judging the valley Chern number with the reversed
direction of the electric potential. The appearance of the OCI
in TDBG requires the strong valley splitting to open a gap
at half-filling of the first conduction band. The experiments
[13–15] and the Hatree-Fock calculations [27] pointed to the
SP state at half-filling due to the strong spin splittings by the
correlation effect. Therefore the realization of the strong val-
ley splitting in TDBG may require more delicate conditions,
which need more theoretical and experimental studies in the
future.
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FIG. 7. The band gaps δ1, δ2, and δ3 of TDBG in the parametric space (θ,U ) with (a)–(c) AB-AB stacking and (d)–(f) AB-BA stacking.
δ1 is the band gap between the first conduction and second conduction band, δ2 is the band gap between the first conduction and valence band,
and δ3 is the band gap between the first valence and second valence band.

APPENDIX A: BAND GAPS AND FLATNESS

We calculate the band gaps δ1, δ2, and δ3 of TDBG, which
are defined as

δ1 = min(ε2c) − max(ε1c), (A1)

δ2 = min(ε1c) − max(ε1v ), (A2)

δ3 = min(ε1v ) − max(ε2v ), (A3)

and the flatness of the first conduction band

w = max(ε1c) − min(ε1c). (A4)

In Fig. 7, the contour plots of the band gaps are presented.
When the neighboring bands are overlapped, there is no direct
band-gap opening and the band gap becomes negative. We can
see that the regions for the overlapped bands are roughly the
same for AB-AB stacking and AB-BA stacking. Note that for
AB-AB stacking, the obtained band-gap results are consistent
with those in Figs. 7(a) to 7(c) of Ref. [27]. For δ2, the regions
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FIG. 8. The flatness w of the first conduction band of TDBG in the parametric space (θ,U ) with (a) AB-AB stacking and (b) AB-BA
stacking. The regions that we focus on the OCI are inside of the black lines in each figure.
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FIG. 9. The AHC σH (in units of e2

h ) calculated by using the TKNN formula [Eq. (12)], with the parameters in (a) and (b) being the same
as those in Figs. 2(c) and 2(d) and Figs. 2(g) and 2(h), respectively. When the neighboring bands are overlapped, σH will not be quantized, as
in both (a) and (b), there is no Cδ3 plateau of the red line and no Cδ2 plateau of the black line.

appear in the bottom with low U [Figs. 7(b) and 7(e)], while
for δ1 and δ3, the overlapped bands can span quite a large
region in the parametric space [Figs. 7(a), 7(c) 7(d), and 7(f)].
Thus we arrive at the conclusion that the overlapped bands
related to the first conduction and first valence bands are quite
common for the small twist-angle TDBG modulated by the
electric potential.

In Fig. 8, the contour plots of the flatness are presented.
The regions that we focus on the OCI, the (2,−2) phase in
Fig. 8(a) and (1,1) phase in Fig. 8(b), are inside the black
lines. We can see that in these regions, the flatness w can reach
10–30 meV, ensuring that the band gap cannot be opened at
the odd fillings, n = 1

4 ns or n = 3
4 ns, by the splittings.

APPENDIX B: CHERN NUMBER DETERMINATION
FROM THE TKNN FORMULA

By using the TKNN formula [Eq. (12)], the AHC σH of
the system can be calculated as a function of the Fermi energy
εF . In Fig. 9, we plot the calculated σH , with the parameters in
Figs. 9(a) and 9(b) chosen to be the same as those in Figs. 2(c)
and 2(d) and 2(g) and 2(h), respectively.

Comparing the Chern number determination from the
TKNN formula and Fukui’s algorithm, we can see that when
the direct gap dominates the system, the results are the same.
But when the neighboring bands are overlapped, the results
are different, as σH will not be quantized in the TKNN for-
mula. This is clearly seen in both Figs. 9(a) and 9(b), where
there is no Cδ3 plateau of the red line and no Cδ2 plateau of the
black line.

For example, in Fig. 9(a) of the red line, with θ = 1.28◦
and U = 56 meV, we observe that Cδ1 = 0 and Cδ2 = 2. Then
the Chern number of the first conduction band is determined
as Cc1 = Cδ1 − Cδ2 = −2. This Chern number value is consis-
tent with that obtained from the Fukui’s algorithm, as labeled
in Fig. 2(d). On the other hand, when the negative δ3 gap is
present that the first valence and second valence bands are
overlapped, which is evidently seen in the moiré band struc-
ture in Fig. 2(d), no quantized σH is observed. Consequently,
the Chern number of the first valence band Cv1 is not well
judged from the TKNN formula. Similar cases can also be
seen in other lines of Fig. 9. However, even with the presence
of the overlapped bands, we suggest that the Chern number
can still be well determined from the Fukui’s algorithm, as
long as the neighboring moiré bands do not touch each other.
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