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Topological entanglement entropy of interacting disordered zigzag graphene ribbons
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Interacting disordered zigzag graphene nanoribbons have fractional charges, are quasi-one-dimensional, and
display an exponentially small gap. Our numerical computations showed that the topological entanglement
entropy of these systems has a small finite but universal value, independent of the strength of the interaction and
the disorder. The result that was obtained for the topological entanglement entropy shows that the disorder-free
phase is critical and becomes unstable in the presence of disorder. Our result for the entanglement spectrum in
the presence of disorder is also consistent with the presence of a topologically ordered phase.
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I. INTRODUCTION

Graphene structures have many fascinating physical prop-
erties, such as massless Dirac electrons and the quantum
Hall effect [1–4]. Recent years have seen rapid progress
in the fabrication of atomically precise graphene nanorib-
bons [5]. Recent studies showed [6,7] that interacting
zigzag graphene nanoribbons [8] are topologically ordered
[9,10] when disorder is present. The ground states of these
quasi-one-dimensional Mott-Anderson insulators are doubly
degenerate: the two degenerate ground states are related to
each other in that their electron spins are reversed (see Fig. 1).
They have an exponentially small gap, �s, in the density of
states (DOS) (see Fig. 2) and their boundary zigzag edges
can support 1/2 fractional charges. These objects are solitonic
in nature [11,12]. Moreover, the zigzag edges induce spin
splitting in the bulk [13] and can display spin-charge separa-
tion. Disorder in interacting zigzag graphene ribbons induces
a transition between symmetry-protected and topologically
ordered phases.

In this paper, we investigated the entanglement in many-
body topological insulators [14,15] of interacting disordered
zigzag graphene nanoribbons. A region D of a topologically
ordered gapful system with one boundary has an entanglement
entropy [16–18]

SD = αL − β (1)

with the subdominant and universal topological entanglement
entropy (TEE) β > 0 [19,20]. The value of β can be numer-
ically computed, see, for example, Jiang et al. [21]. Here L
is the length of the boundary and α is nonuniversal constant.
The entanglement entropy SD = −Tr[ρDlnρD] is given by the
reduced density matrix ρD of region D.

In the case of non-negligible finite-size effects and disorder
fluctuations, different methods can be used to compute β.
We adopt the method of partitioning the system into different
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regions [19,20]. The TEE of a ring [20] can be written as

Stop = 2β = −[(SA − SB) − (SC − SD)]. (2)

SA is the entanglement entropy for the region consisting of
the sites in A. Other entanglement entropies defined similarly.
The regions should be as in Fig. 3 or a smooth deformation
thereof without changing how the regions border on each
other. The entanglement entropy SA − SB has the contribution
as that of SC − SD. The difference between these two con-
tributions is the TEE. Note that other regions have only one
boundary, whereas A has two boundaries, i.e., one inner and
one outer, as shown in Fig. 3. Except near a critical point, the
value of the TEE is universal and is independent of system
parameters.

Several questions regarding the entropy of interacting dis-
ordered zigzag ribbons remain unanswered. For example, it
is unclear whether these ribbons should have nonzero TEE.
As mentioned above, the presence of fractional charges sug-
gests that the TEE is finite, although the magnitude thereof
is unknown. However, the presence of an exponentially small
gap may be compatible with zero TEE. In addition, the be-
havior of the TEE near the critical point is unclear. In this
paper, we numerically computed the TEE and showed that
it is finite and universal, and independent of the strength of
both the interaction and disorder. Our results also showed that
the disorder-free phase is critical and that this phase becomes
unstable in the presence of disorder.

II. MODEL

We applied a Hubbard model to the interacting disor-
dered zigzag graphene nanoribbons and used a self-consistent
Hartree-Fock approximation [15,22]. We included both
electron–electron interactions and disorder in a tight-binding
model at half-filling. When the on-site repulsion is U = 0,
the effect of disorder can be described exactly within the
Hartree-Fock approximation whereas, in the other limit,
where disorder is absent, the interaction effects are well
represented by the Hartree-Fock approximation, which is
widely used in graphene-related systems [23]. The ground
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FIG. 1. (a) Zigzag edge antiferromagnetism of an interacting
zigzag graphene nanoribbon without disorder showing the two de-
generate ground states. (b) Schematic band structures of interacting
(solid curves) and noninteracting (dashed curves) zigzag graphene
nanoribbons. Unoccupied and occupied states near the wave vectors
k = ±π/a0: R and L represent the states confined to the zigzag
edges on the right and left, respectively (the length of the unit cell
of a ribbon is a0). The small arrows indicate the spins. Spin-split
energy levels of the spin-up (solid lines) and spin-down (dashed
lines) gap-edge states of the interacting disordered interacting zigzag
graphene nanoribbons. These figures are taken from Ref. [7].

state is doubly degenerate and can be written as a product of
spin-up and -down Slater determinants,

�1 = �L,↑(�r1, . . . , �rN/2)�R,↓(�rN/2+1, . . . , �rN ),

�2 = �R,↑(�r1, . . . , �rN/2)�L,↓(�rN/2+1, . . . , �rN ), (3)

where �L,σ (�R,σ ) describes N/2 electrons with spin σ with
some of these electrons localized on the left (right) zigzag
edge. In the first state, the spin of the magnetization of the
zigzag edge on the left (right) is dominantly upward (down-
ward), see Fig. 1(a). In the second state, the magnetization
is the opposite. The total number of electrons is N . In these
wave functions, spins are separated because spin terms of the
mean-field Hamiltonian are separated, H = H↑ + H↓ [6,7],
see the following equation.

The total Hamiltonian in the Hartree-Fock approximation
is

H = −
∑
〈i j〉σ

tc†
iσ c jσ +

∑
iσ

Vic
†
iσ ciσ

+U
∑

i

(ni↑〈ni↓〉 + 〈ni↑〉ni↓ − 〈ni↑〉〈ni↓〉)

− U

2

∑
i

(ni↑ + ni↓), (4)

where c†
iσ and niσ are the electron creation and occupation

operators at site i with spin σ . Because the translational

symmetry is broken, the Hamiltonian is written in the site
representation. In the hopping term, the summation is over the
nearest-neighbor sites (the value of the hopping parameter is
t ∼ 3 eV). The eigenstates and eigenenergies are computed
numerically by solving the tight-binding Hamiltonian ma-
trix self-consistently. The self-consistent occupation numbers
〈niσ 〉 in the Hamiltonian are the sum of the probabilities of
finding electrons of spin σ at site i:

〈niσ 〉 =
∑

E�EF

|ψiσ (E )|2. (5)

The summation is over the energy E of the occupied eigen-
states below the Fermi energy EF . Note that ψiσ (E ) represents
an eigenvector of the tight-binding Hamiltonian matrix with
energy E . The on-site impurity energy Vi is chosen randomly
from the energy interval [−
,
].

III. CALCULATION OF TOPOLOGICAL
ENTANGLEMENT ENTROPY

The upward or downward spin destruction operator of a
Hartree-Fock single-particle state |k〉 is

ak =
∑

i

Akici, (6)

where ci is the destruction of the operator at site i. Inverting
this relation, we find

ci =
∑

k

(A−1)ikak =
∑

k

Bikak . (7)

Let us divide the zigzag ribbon into two parts A and B.
We restrict the indices i and j to A and define the correlation
function/reduced density matrix [24,25],

Ci j = 〈�|c+
i c j |�〉, (8)

where � = �1 is chosen (�2 is an equally good choice). This
can be written as

Ci j = 〈�|
(∑

k

Bikak

)+(∑
k′

B jk′ak′

)
|�〉

= 〈�|
(∑

k

a+
k B∗

ki

)(∑
k′

B jk′ak′

)
|�〉

=
∑

k

B∗
kiB jknk . (9)

Here we have used

〈�|a+
k ak′ |�〉 = δkk′nk, (10)

where nk is the number of occupied Hartree-Fock states. The
entanglement entropy of A is given by

SA = −
∑

i

[λilnλi + (1 − λi )ln(1 − λi )], (11)

where λi are the eigenvalues of the matrix C.

IV. TOPOLOGICAL ENTANGLEMENT ENTROPY

We computed S/L as a function of 1/L and tried to extract
the TEE from the result. For an interacting but disorder-
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FIG. 2. Dashed line: The exponentially small soft gap with
α ∼ 1/

√
�s near the Fermi energy of the tunneling density of states

of an interacting disordered zigzag graphene nanoribbon. Solid line:
The hard gap, �, of the tunneling density of states of an interacting
zigzag graphene nanoribbon in the absence of disorder.

free system, we found β ≈ 0. Note that, in this case, a
hard gap exists in the DOS and no zero-energy zigzag edge
states exist, as shown in Fig. 2. However, in the pres-
ence of disorder, the method for computing the TEE from
Eq. (1) is not accurate: the data we obtained display sig-
nificant disorder fluctuations that depend on the size of the
system.

We use another method based on a rectangular ring to
compute Stop = 2β given in Eq. (2). Since the whole rib-
bon is topologically ordered [6,7], we can divide the system
into a rectangular ring that lies well inside the ribbon and
the rest of the ribbon. However, a careful analysis is re-
quired to reduce finite-size effects, see Jiang et al. [21]. For
this purpose, we adopt the partition of the ribbon shown in
Fig. 3 [20]. We apply this method to compute β of inter-
acting disordered zigzag ribbons. To compute β, one must
use a thick and large rectangular ring. The width of the ring

FIG. 3. Different regions of the ribbon used in Eq. (2) to compute
the TEE. Vertical lengths are measured in number of horizontal
carbon lines and horizontal lengths in number of vertical carbon
lines.
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FIG. 4. TEE β of an interacting disordered zigzag nanoribbon
is computed using a rectangular ring with different ring widths w.
Each point represents a different value of (U, 
). In (a), the ring
width, ribbon length, ribbon width are, respectively, w = 7, L′ =
260, W = 112. The side lengths of the ring are lzig = 221 and larm =
46. In (b), they are w = 4, L′ = 200 W = 64, lzig = 161, larm = 28.
The number of disorder realizations ND are, respectively, 10 and 20
in (a) and (b).

w = wzig = warm should be larger than the correlation length
ξ . (In zigzag ribbons, the correlation length ξ ∼ h̄vF /� is of
the order of the lattice constant, estimated from the size of
gap ∼2 eV [8] and the Fermi velocity vF ). When the width
increases, the size of ribbon and the ring must be increased
at the same time. As a check on our method, we computed
the TEE of a gapful armchair nanoribbon. We found the
expected value of zero both in the absence and presence of
disorder.

The TEE result of interacting disordered zigzag graphene
nanoribbons is displayed in Fig. 4 for two values of the ring
width. We see that, as the ring width increases, the numerical
uncertainties decrease. We find that the numerical uncertainty
of the computed TEE is small when the ring width is larger
than �7 (it is estimated by varying the ring width at the fixed
values of the ribbon length and width L′ ∼ 300 and W ∼ 100
and the rectangular ring sizes lzig ∼ 250 and larm ∼ 50).

Except for small values of 
/U , the results are independent
of different values of L′, W , Nimp, larm, and lzig. From the
data collapse, we infer that β ≈ 0.016 ± 0.003 and that it is,
within numerical uncertainty, independent of the strength of
the interaction and disorder, i.e., independent of 
/U . We
consider this small value of β to be related to the presence
of an exponentially small soft gap in interacting disordered
ribbons [7]. We see from the data that, as the critical point
is approached, 
/U → 0, the value of the TEE varies rather
abruptly to zero in a nonuniversal manner [18]. (In limit of
infinitely large systems, the transition should occur discontin-
uously at 
/U = 0.)

In conclusion, our numerical work showed that the TEE
of interacting disordered zigzag graphene nanoribbons is
small but finite and universal. Disorder-free interacting zigzag
graphene nanoribbons are in a critical phase that becomes
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unstable in the presence of disorder. It would be interesting to
find other systems with a pseudogap that belongs to the same
universality class. It may be worthwhile to analytically com-
pute Stop of a quasi-one-dimensional system in the presence of
an exponentially small gap.
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