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We develop a theory of gapped domain wall between topologically ordered systems in two spatial dimensions.
We find a new type of superselection sector—referred to as the parton sector—that subdivides the known
superselection sectors localized on gapped domain walls. Moreover, we introduce and study the properties
of composite superselection sectors that are made out of the parton sectors. We explain a systematic method
to define these sectors, their fusion spaces, and their fusion rules, by deriving nontrivial identities relating
their quantum dimensions and fusion multiplicities. We propose a set of axioms regarding the ground-state
entanglement entropy of systems that can host gapped domain walls, generalizing the bulk axioms proposed in
B. Shi, K. Kato, and I. H. Kim, Ann. Phys. 418, 168164 (2020). Similar to our analysis in the bulk, we derive
our main results by examining the self-consistency relations of an object called information convex set. As an
application, we define an analog of topological entanglement entropy for gapped domain walls and derive its
exact expression.
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I. INTRODUCTION

One of the fundamental discoveries in physics is topologi-
cally ordered phases of matter [1]. These are gapped phases
of quantum many-body systems that possess low-energy
excitations with fractional statistics [2–6]. A prominent exper-
imental example is the well-known fractional quantum Hall
states [7].

While these systems already exhibit a rich set of phe-
nomena in the bulk of the material, more new physics can
appear on their boundaries. The existence of a robust gapless
boundary mode is well-known [8,9]. The nontrivial effects of
gapped boundary conditions on the topological ground-state
degeneracy [10] and low-energy excitations [11] have also
been studied.

More generally, there can be gapped domain walls between
two different topologically ordered mediums [12–17]. Gapped
domain walls are not just of theoretical interest. When used
in conjunction with the low-energy excitations, the domain
walls can complete a universal set of topologically protected
quantum gates [18]. Therefore studies of gapped domain walls
may lead to new means of building a fault-tolerant quantum
computer [19].

While there have been a number of beautiful prior
works that studied gapped domain walls in various contexts
[11–17,20–34], there are still many unknowns. For one, less
is known about the order parameters that characterize gapped
domain walls. In the bulk of a topologically ordered system,
entanglement-based measures [35–37] are useful for charac-
terizing the underlying topological order [38–40]. However,
similar measures for gapped domain walls are not known to
the best of our knowledge.

Moreover, while a theory of gapped domain wall has been
proposed already [15], this theory is based on an assumption
about the condensation algebra [12,22], which abstracts away
the microscopic physics of the underlying many-body quan-
tum system. The abstractness of this theory is both a blessing
and a curse. It allows us to identify the fundamental data
that characterize the gapped domain wall without ever dealing
with the microscopic physics. However, the downside is that it
is not always clear how to extract these data directly from the
original many-body system. Moreover, one may contest that
the rules set out in this theory may not constitute a complete
theory of gapped domain walls. While this is a sentiment that
we do not necessarily share, it will still be desirable to derive
these rules from a more microscopic assumption about the
underlying physical system.

To address these issues, we applied a recently discovered
approach to studying topological order [41] to systems sep-
arated by a gapped domain wall. In Ref. [41], we derived
the axioms of the fusion theory of anyon and the expres-
sion for the topological entanglement entropy—defined as
the subleading contribution to the ground-state entanglement
entropy—from a set of simple assumptions on ground-state
entanglement. In this paper, we extend this analysis to systems
that possess a gapped domain wall, by relaxing the set of
assumptions used in Ref. [41] appropriately; see Fig. 1 for
the summary of these assumptions.

From these assumptions, we were able to identify a new set
of superselection sectors localized at the domain wall. These
sectors, which we refer to as the parton sectors, will be the
main subject of this paper. These are “partonlike” in the sense
that other superselection sectors are composite objects made
from these sectors. One example of such a composite sector is
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FIG. 1. The starting assumptions of this paper. Here, σ is the
ground state and SA is the entanglement entropy of a subsystem
A with respect to the state σ . For details, see Sec. II. (Top) We
consider topologically ordered mediums P (upper half) and Q (lower
half) which are separated by a gapped domain wall. (Bottom) We
assume that the ground state σ locally obeys two types of entropic
constraints. These constraints are imposed on balls of bounded ra-
dius. While these constraints hold everywhere in the bulk, the second
constraint is relaxed on the domain wall.

the superselection sectors of point excitations on the domain
wall, which have been studied in Refs. [12,15]. However, there
are other types of composite sectors that are new to the best of
our knowledge.

Both the parton and the composite sectors can be “fused”
together like the superselection sectors appearing in the bulk
of the topological phase. However, the ordinary rule of fusion
does not always apply. When we say fusion, we usually mean
that there are two sectors, say a and b, that fuses into c. The
state space in which a and b fusing into c is isomorphic to
the state space of some Hilbert space. However, when we fuse
parton sectors, the state space in which two parton sectors fuse
into another parton sector may not be isomorphic to any such
state space. We refer to this phenomenon as quasifusion and
later explain how this difference arises.

Another strange thing about the parton sectors is that
they should not be viewed as low-energy excitations. Gen-
erally, a single parton by itself cannot completely specify
an excitation. Instead, parton labels should be consid-
ered as quantum numbers that partially determine the
excitation.

Despite their bizarre nature, parton sectors are actual phys-
ical objects. There are operators localized on the N- and
U -shaped regions in Fig. 2 that can measure these sectors.
More concretely, for every parton sector, there is an operator
that can unambiguously detect the presence of that sector. As
such, parton sectors should be treated as fundamental objects
in any theory of gapped domain walls.

To examine whether a given microscopic system can host
parton sectors, calculating ground-state entanglement can be a
fruitful approach. We prove, starting from a set of assumptions
summarized in Fig. 1, that the linear combination of entangle-

P

Q

FIG. 2. For every parton sector, there is an operator acting either
on the N-shaped (left) or U -shaped (right) region that can unambigu-
ously detect the sector.

ment entropy in Fig. 3 must be equal to

Stopo,N = 2 lnDN ,

Stopo,U = 2 lnDU , (1)

where DN = √∑
n d2

n and DU = √∑
u d2

u are the total quan-
tum dimension of two different types of parton sectors
referred to as U and N sectors. In analogy with the topological
entanglement entropy [35,36], we refer to these “order pa-
rameters” as domain wall topological entanglement entropies.
More discussion on this order parameter will appear in our
companion paper [42].

Notwithstanding the rich physics of parton sectors, perhaps
the most remarkable fact of all is that all of these results
followed entirely from Fig. 1. No assumption on the parent
Hamiltonian was necessary. The notion of superselection sec-
tors was derived, instead of being imposed. The existence
of fusion spaces was, again, derived. These facts compel us
to name our approach as entanglement bootstrap, in analogy
with the conformal bootstrap program [43,44].

While there are many conclusions one can make from this
work, the following two stand out. First, in the presence of
gapped domain walls, there is a new type of superselection
sector called parton sector. Parton sectors are more funda-
mental than the other sectors in the sense that they subdivide
the other sectors. These findings suggest that there is more
to be understood about gapped domain walls than previously
thought.

The second lesson is somewhat philosophical. We often do
physics by beginning with a specific Lagrangian/Hamiltonian
in mind and then computing various properties of the the-
ory from those objects. Alternatively, one may write a
set of consistency equations coming from the underlying
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Stopo := (SBC + SCD − SB − SD)σ

FIG. 3. Subsystems involved in the calculation of the domain
wall topological entanglement entropy.
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symmetry of the theory [44]. Our work shows that there is a
third possibility, namely, a possibility to study the theory from
the properties of ground-state entanglement. Let us again em-
phasize that, in our study, we did not invoke any assumption
about the action or the symmetry. All that was required was
the set of consistency equations coming from the property of
the ground-state entanglement. The fact that a new physics
can be uncovered this way is, in our opinion, surprising and
certainly warrants further exploration.

The rest of this paper is structured as follows. In Sec. II,
we review Ref. [41], focusing on the key ideas that are used
in this work. In Sec. III, we explain how the assumptions used
in Ref. [41] are modified in the presence of gapped domain
walls. In particular, we deduce the existence of the parton
sectors, which are the central objects of this paper. In Sec. IV,
we study the composite superselection sectors that are made
out of the parton sectors. We begin with a few examples and
conclude with the general lessons. In Sec. V, we introduce
a method to construct the fusion spaces of these sectors. In
Sec. VI, we study the fusion rules. In particular, we derive a
number of nontrivial identities relating the fusion multiplici-
ties to the quantum dimensions. In Sec. VII, we discuss the
quasifusion rules of the parton sectors, which generalize the
ordinary fusion rules. In general, more than one fusion space
is needed to describe a quasifusion process, even if both the
parton sectors before and after the quasifusion are completely
specified. In Sec. VIII, we derive various expressions for
the topological entanglement entropies of domain walls. In
Sec. IX, we discuss the properties of the stringlike operators
that can create the superselection sectors we have studied in
this paper. We conclude in Sec. X, listing some open problems
and directions to pursue.

II. FUSION RULES FROM ENTANGLEMENT

Our theory of gapped domain walls rests on our recent
work on anyons [41]. Before this study, the theory of anyons
was based on a mathematical framework called unitary mod-
ular tensor category theory [9]. However, in Ref. [41], many
basic rules of that framework emerged from a generic property
of entanglement in gapped ground states. In this section, we
provide a brief overview of this work, focusing on the parts
relevant to this paper.

To start with, we explain an important concept called infor-
mation convex set [41,45,46]. The information convex set is
essential in understanding Ref. [41] because the key physical
objects of interest emerge from this definition. To explain this
concept, let us consider a subsystem of a two-dimensional
lattice, denoted as �. Let �′ ⊃ � be a subsystem obtained
by enlarging � along its boundary by an amount large com-
pared to the correlation length. The information convex set is
defined as follows:

�(�) := {Tr�′\�(ρ�′ )|ρb = σb ∀b ∈ B(r), b ⊂ �′}, (2)

where σ is some fixed global reference state. It is helpful to
think of this state as a ground state of some gapped Hamilto-
nian, although we do not make use of that fact. Here, B(r) is
the set of balls of bounded radius r = O(1), where r is chosen
to be large compared to the correlation length.

FIG. 4. The axioms A0 and A1 of Ref. [41] and their conse-
quences. These axioms, which are defined on a region of size O(1),
imply that the same entropic conditions hold at larger length scales;
see the first figure in the “consequences.” The isomorphism and the
factorization property holds if the subsystems’ thicknesses are larger
than 2r. Here, r is the radius of the disks on which the axioms are
imposed. While we only depicted annuli in this figure, the same
consequences apply to any sufficiently smooth subsystems.

As it stands, aside from the fact that it is convex, the infor-
mation convex set does not have any particularly noteworthy
structure. However, much more can be said about this set once
we incorporate physically motivated axioms on the reference
state σ . To that end, Ref. [41] advocated two physical axioms.
Specifically, the axioms state that

(SC + SBC − SB)σ = 0,

(SBC + SCD − SB − SD)σ = 0
(3)

over a set of subsystems depicted in Fig. 4, where S(ρ) =
−Tr(ρ ln ρ) is the von Neumann entropy of ρ. Here, we
specified σ in the subscript of the parenthesis because the
underlying global state is the same for all the entanglement
entropies in the linear combination. The subscript of S repre-
sents the relevant subsystem. For instance, SB appearing in an
expression like (. . . + SB + . . .)σ represents S(σB).
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Equation (3) is a reasonable assumption because it follows
from the well-known expression for the ground-state entan-
glement entropy of gapped systems [35,36]:

S(σA) = α|∂A| − γ + . . . , (4)

where A is a simply connected subsystem, α is a nonuniversal
constant, γ is the topological entanglement entropy, and the
ellipsis is the subleading term that vanishes in the |∂A| → ∞
limit.1 In the absence of subsystem symmetries [47], Eq. (4) is
expected to hold. Therefore the fact that Eq. (3) follows from
Eq. (4) justifies the physical relevance of our axioms.

These axioms lead to three important consequences, sum-
marized in Fig. 4. We will focus on discussing their meanings,
referring Ref. [41] for the proof.

The first consequence is that Eq. (3) holds at larger length
scales. Recall that the axioms only apply to balls of bounded
radius. The same set of constraints hold on arbitrarily large
subsystems.

The second consequenc is the isomorphism theorem.
Theorem II.1 (Isomorphism theorem [41]). If �0 and �1

are connected by a path {�t }t∈[0,1], there is an isomorphism
	 between �(�0) and �(�1) uniquely determined by the
path. Moreover, this isomorphism preserves the distance and
entropy difference between two elements of the information
convex sets: for any ρ, λ ∈ �(�0),

D(ρ, λ) = D(	(ρ),	(λ)),

S(ρ) − S(λ) = S(	(ρ)) − S(	(λ)),
(5)

where D(·, ·) is any distance measure that is nonincreasing
under completely-positive trace preserving maps.

Here we say that a path exists between two subsystems if
they can be smoothly deformed into each other without chang-
ing the topology of the subsystem.2 This theorem implies that
there are “conserved quantities” which remain invariant under
deformations of the subsystems. These quantities include the
distance between two states in the information convex set and
their entropy difference.

The third consequence concerns the factorization property
of the extreme points. Let � be an arbitrary subsystem. Con-
sider a subsystem �′ ⊃ � that can be smoothly deformed into
�, where �′ \ � is a “shell” that covers the boundary of �.
We shall refer to �′ \ � as the thickened boundary of �′. This
will be an important concept that will be used throughout this
paper. Let ρ

〈e〉
�′ ∈ �(�′) be an extreme point. Then we have

(S� + S�′ − S�′\�)ρ〈e〉 = 0. (6)

To see why we refer to Eq. (6) as the factorization property,
consider a purification of ρ

〈e〉
�′ , which we denote as |ρ〈e〉〉�′�′c

where �′c is the purifying system of �′. By using the fact
that the von Neumann entropy of a state is equal to that of its

1While Eq. (3) must be assumed to hold exactly in Ref. [41], we
expect the arguments of the paper to go through even if we the
conditions only hold approximately.

2In order to not run into any pathological counterexamples, it is
convenient to only consider subsystems whose thicknesses are at
least a few times larger compared to r.

1. Σ(X) is a simplex with orthogonal extreme points.

X Σ(X) =
{⊕

a∈C paρa
X

}
,

F (ρa
X , ρb

X) = δa,b.

Structures of different information convex sets

2. Σ(Y ) is isomorphic to a direct sum of state spaces
of some Hilbert spaces.

Y
Σ(Y ) =

{⊕
a,b,c∈C pc

abρ
abc
Y

}
,

where ρabc
Y ∈ Σc

ab(Y ).

Moreover, Σc
ab(Y ) ∼= S(Vc

ab).

FIG. 5. The technical consequences in Fig. 4 lead to the struc-
tural statements about the information convex sets. The proof of
the first statement is reproduced in Sec. II A. For the proof of the
second statement, see Ref. [41]. Here, X is an annulus and Y is a
two-hole disk. S(V c

ab) is the set of density matrices acting on a finite
dimensional Hilbert space V c

ab.

purifying space, we can conclude

I (� : �′c)|ρ〈e〉〉�′�′c = (S� + S�′ − S�′\�)ρ〈e〉

= 0,
(7)

where I (A : B)ρ := (SA + SB − SAB)ρ is the mutual informa-
tion between A and B over a state ρ. In other words, |ρ〈e〉〉�′�′c ,
upon tracing out �′ \ �, becomes a product state over � and
�′c.

These three consequences are the main workhorses of our
theory. Below, we will see the power of these consequences in
action, by deriving several nontrivial facts about anyon theory.
We urge the readers to carefully digest the ensuing material
before moving to the rest of the paper, as the key ideas remain
the same while the setup becomes more intricate as we move
forward.

A. Superselection sectors

In the theory of anyon, a superselection sector is a topologi-
cal charge associated with a pointlike excitation. In our theory,
we define the superselection sectors as the extreme points of
an information convex set over an annulus. In this section, we
justify this definition by showing that different extreme points
are orthogonal to each other. In particular, different extreme
points can be perfectly distinguished from each other by some
physical experiment.

To prove this fact, we set up the notation as follows.
Consider an annulus X and two additional annuli X ′ and X ′′
such that X ′ ⊃ X and X ′X ′′ is again an annulus; see Fig. 6.
Without loss of generality, consider two extreme points of
�(X ), denoted as ρX and ρ ′

X .
The key idea is to map these extreme points to the extreme

points in �(XX ′′) by using theorem II.1. Then, we apply the
factorization property of extreme points to argue that these
extreme points must factorize over X and X ′′. Our claim will
be an immediate consequence of this last fact.
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X

X ′

X ′′

FIG. 6. Subsystems involved in the proof of the orthogonality of
extreme points in �(X ). The annulus enclosed in the dotted region
of the second figure represents the blue annulus X in the top figure.
By applying the isomorphism theorem (theorem II.1), the annulus X
is deformed into a larger annulus X ′ ⊃ X and the union of X ′ (dark
blue) with X ′′ (light blue).

As a first step, note that any distance measure between ρX

and ρ ′
X is invariant under the isomorphism associated with a

smooth deformation of X ; see theorem II.1. In particular, the
fidelity between the two satisfies the following identity

F (ρX , ρ ′
X ) = F (ρX ′X ′′ , ρ ′

X ′X ′′ ), (8)

where ρX ′X ′′ and ρ ′
X ′X ′′ are the extreme points of �(X ′X ′′)

obtained from the isomorphism. Moreover, because fidelity is
nondecreasing under partial trace, we conclude 3

F (ρX , ρ ′
X ) = F (ρX ′X ′′ , ρ ′

X ′X ′′ )

� F (ρXX ′′ , ρ ′
XX ′′ ).

(9)

Secondly, by the factorization of the extreme points, we
have

(SX + SX ′ − SX ′\X )ρ = 0. (10)

By using the strong subadditivity of entropy (SSA) [48], we
get

I (X : X ′′)ρ � (SX + SX ′ − SX ′\X )ρ

= 0.
(11)

Therefore ρX ′X ′′ , upon restricting to XX ′′, becomes a product
state over X and X ′′. The same conclusion applies to ρ ′

X ′X ′′
because ρ ′ is an extreme point too.

Combining these two observations, we conclude

F (ρX , ρ ′
X ) � F (ρX , ρ ′

X )F (ρX ′′ , ρ ′
X ′′ ). (12)

3While fidelity is not a distance measure, one can relate it to a
distance measured called Bures distance, defined as

√
1 − F (·, ·).

Again using the isomorphism theorem (theorem II.1), we get

F (ρX , ρ ′
X ) � F (ρX , ρ ′

X )2. (13)

Since F (ρX , ρ ′
X ) ∈ [0, 1] by the definition of fidelity, the only

allowed values are F (ρX , ρ ′
X ) ∈ {0, 1}. Therefore, given any

two extreme points, they must be either orthogonal to each
other or exactly equal to each other, thus proving our claim.

Therefore, without loss of generality, we can characterize
�(X ) as a simplex with orthogonal extreme points.4 Specifi-
cally, we have

�(X ) =
{⊕

a

paρ
a
X :

∑
a

pa = 1, pa � 0

}
, (14)

where different extreme points {ρa
X } are supported on orthog-

onal subspaces. Provided that the underlying Hilbert space is
finite-dimensional, a belongs to a finite set

C = {1, a, b, . . . }, (15)

where “1” is the vacuum sector, the extreme point of which is
obtained by restricting σ to X .

To each of the extreme points, we can define a notion of
quantum dimension. Let ρa

X be an extreme point of �(X ). We
define the quantum dimension of the superselection sector a
as

da := exp

(
S
(
ρa

X

) − S
(
ρ1

X

)
2

)
, (16)

Note that, even though we have not specified the annulus here,
this definition is still well-defined because of the isomorphism
theorem (theorem II.1). It follows from this definition that
d1 = 1 and da > 0 for all a ∈ C.

Our definition of the quantum dimension is not standard.
However, this definition is equivalent to the more widely-held
definition [41]. We prove this in Sec. II B by showing that our
quantum dimensions are completely determined by the fusion
multiplicities, as is the case in the more conventional theory
of anyon [9].

B. Fusion multiplicities

In this section, we derive the following fundamental equa-
tion

dadb =
∑
c∈C

Nc
abdc, (17)

where Nc
ab is the dimension of the fusion space and da is

defined in the previous section [41,46]. This equation implies
that the quantum dimensions are the quantum dimensions of
anyons.

We begin by briefly explaining what we mean by a fusion
space, deferring the proof of Eq. (17) for the moment. The
fusion space is defined in terms of the information convex
set of a two-hole disk, say Y . Reference [41] completely
characterized this set, under the same set of assumptions we

4Here, the orthogonality means that the Hilbert-Schmidt inner
product of two-density matrices is 0. Namely, Tr(ρ†σ ) = 0.
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a b

c

a b c

FIG. 7. By restricting the elements of �c
ab(Y ) to three different

annuli, we obtain extreme points of �(X ) for some annulus X . These
extreme points correspond to the superselection sectors a, b, and c.

have used so far. Specifically,

�(Y ) =
{⊕

a,b,c

pc
abρ

abc
Y : ρabc

Y ∈ �c
ab(Y )

}
, (18)

where {pc
ab} is a probability distribution and �c

ab(Y ) is a set
of states in �(Y ) whose reduced density matrices on the
three annuli are the extreme points associated with supers-
election sectors a, b, and c; see Fig. 7. Importantly, �c

ab(Y )
is isomorphic to the state space of some finite-dimensional
Hilbert space. This is our definition of the fusion space. The
dimension of this fusion space is Nc

ab.
Below, we focus on the derivation of Eq. (17), by first

explaining the merging technique, and then applying this tech-
nique to our setup.

1. Merging

Equation (17) follows from an extremely useful technique
called merging. The merging technique addresses the follow-
ing problem. Let ρ ∈ �(�) and λ ∈ �(�′) be the elements
belonging to two different information convex sets. Can we
construct a state in �(� ∪ �′) that is consistent with both ρ

and λ? Obviously, this is not always possible because such
a state may not even exist.5 Moreover, even if there exists a
state consistent with both ρ and λ, that state may not belong to
�(� ∪ �′). With the merging technique, we can ensure both.

The following two statements are the key. First, for general
quantum states, we have the following merging lemma.

Lemma II.1 (Merging lemma [49]). If there is a pair of
quantum states ρABC and λBCD satisfying ρBC = λBC and I (A :
C|B)ρ = I (B : D|C)λ = 0, there exists a unique quantum state
τABCD such that

TrDτABCD = ρABC,

TrAτABCD = λBCD,

I (A : CD|B)τ = I (AB : D|C)τ = 0.

Here, I (A : C|B)ρ := (SAB + SBC − SB − SABC )ρ is the
conditional mutual information.

5As a simple example, let ρ be a maximally entangled state between
two subsystems, say A and B, and λ be a maximally entangled state
between B and C. By the monogamy of entanglement, there cannot
be any tripartite state over ABC that is consistent with both ρ and λ.

A B C D

A′ B′ C ′ D′

FIG. 8. Two ways of partitioning the overlapping subsystem
(BC). Because the overlapping region was chosen so that A and D
are sufficiently far apart from each other, we can choose B′ and C to
be separated by more than 2r, where r is the radius of the disk on
which our axioms are postulated (red).

Second, with an additional assumption, elements of the
information convex sets are “closed” under the merging
operation. Specifically, the density matrices belonging to in-
formation convex sets can merge into an element of another
information convex set. We refer to this fact as the merging
theorem.

Theorem II.2 (Merging theorem [41]). Consider two den-
sity matrices ρABC ∈ �(ABC) and λBCD ∈ �(BCD). Consider
the following three conditions:

(1) ρBC = λBC and I (A : C|B)ρ = I (B : D|C)λ = 0.
(2) There exists a partition B′C′ = BC, such that no disk

of radius r overlaps with both AB′ and CD.
(3) I (A : C′|B′)ρ = I (B′ : D|C′)λ = 0.
If these three conditions hold, the resulting density matrix

generated by ρABC and λBCD using the merging lemma (lemma
II.1) belongs to �(ABCD).

In this paper, to ensure the merged state is in an information
convex set, we shall exclusively use the merging theorem. If
the conditions in the merging theorem are satisfied, we shall
denote the merged state of ρ and σ as

ρ �� λ. (19)

Merged states are useful because they satisfy the following
nontrivial identities:

I (A : CD|B)ρ��λ = I (AB : D|C)ρ��λ = 0,

I (A : C′D|B′)ρ��λ = I (AB′ : D|C′)ρ��λ = 0,

I (A : D|BC)ρ��λ = 0,

(20)

which implies that ρ �� λ is the maximum-entropy state con-
sistent with both ρ and λ. This fact follows from SSA [48].
Moreover,

S(ρ �� λ) − S(ρ ′ �� λ) = S(ρ) − S(ρ ′), (21)

where we implicitly assumed that both ρ and ρ ′ can be merged
with λ.

To explain the utility of the merging theorem, we discuss a
simple example. We will discuss merging two density matri-
ces in a toy setup, focusing on the logic behind why they can
be merged.

Consider an annulus ABC and a disklike region BCD that
overlap on a disklike region; see Fig. 8. We will consider
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A B C E

FIG. 9. A partition of an annulus (blue) into A, B, and C. Here,
E is an auxiliary subsystem used in the proof of the vanishing
conditional mutual information.

density matrices ρ ∈ �(ABC) and λ ∈ �(BCD).6 These two
density matrices have identical reduced density matrix on disk
BC. Provided that the overlapping region is sufficiently thick
so that the distance between A and D is large, the requisite
conditions in the merging theorem (theorem II.2) can be sat-
isfied with an appropriate choice of B and C.

The first condition can be satisfied by partitioning the over-
lapping region as in Fig. 8. We can use SSA and the extensions
of axioms to derive the conditional independence condition.
For example, in order to prove I (A : C|B)ρ = 0, consider an
auxiliary subsystem E introduced in Fig. 9. By using the
isomorphism theorem, one can extend ρ to a density matrix ρ ′
in �(ABCE ). Such density matrix on a disklike region BCE
is consistent with the reference state σ . By the extension of
axiom, one can thus see that

I (A : C|B)ρ � (SBC + SCE − SB − SE )ρ ′

= 0.
(22)

Conditional independence of other sets of subsystems can be
obtained in a similar way.

Within this example, the conditions in theorem II.2 can
be satisfied because the overlapping region separates the
nonoverlapping parts sufficiently far apart from each other.
This observation holds quite generally, as we shall repeatedly
see throughout this paper.

2. Derivation

Armed with the merging technique, we are now in a posi-
tion to derive Eq. (17). To do so, we will merge two density
matrices with supports overlapping on a disklike region. Par-
tition these annuli into ABC and BCD, similar to the partition
we had before; see Fig. 10.

We can merge the density matrices in �(ABC) with the
density matrices in �(BCD) provided that the distance be-
tween A and D is sufficiently large. To see why, first note
that these density matrices have identical density matrices on
the overlapping region. Secondly, one can prove the requisite
conditions on the conditional mutual information, again by
utilizing the auxiliary subsystem introduced in Fig. 9.

While one can merge any pair of density matrices from
�(ABC) and �(BCD), we will merge the extreme points.
Without loss of generality, let ρa

ABC ∈ �(ABC) and λb
BCD ∈

6In fact, λBCD = σBCD on disk BCD. This is because any element
of the information convex set is indistinguishable with the reference
state on any disk [41].

A DB Ca b

FIG. 10. The set of subsystems used in merging the extreme
points of �(ABC) and �(BCD). Here, a and b are the superselection
sectors that the respective extreme points represent. While we also
require BC to be partitioned into B′C′ such that the requisite condi-
tions in theorem II.2 are satisfied, once these conditions are verified,
we will not make use of this partition. This is why we did not describe
these subsystems in this figure.

�(BCD) be a pair of extreme points associated with the su-
perselection sectors a and b. The merged state,

τ a��b
ABCD := ρa

ABC �� λb
BCD, (23)

according to Eq. (20), obeys the following identity:

(SABCD)τ a��b = (SABC + SBCD − SBC )τ a��b

= 2 ln(dadb) + (SABC + SBCD − SBC )σ .
(24)

In the first line, we used the property of the merged state. In
the second line, we used the definition of the quantum dimen-
sions. The second term of the second line can be interpreted
as the entropy of the merged state τ 1��1

ABCD , which is equal to the
reference state restricted to ABCD.7 Therefore

S(τ a��b
ABCD ) = S(σABCD) + 2 ln(dadb). (25)

Note that τ a��b
ABCD is the maximum-entropy state of

�(ABCD) that is consistent with the density matrices of the
two annuli. We can solve this maximization problem directly,
which, by definition, must agree with Eq. (25).

For this derivation, we use the structure of the information
convex set of a two-hole disk summarized at the bottom of
Fig. 5.8 We shall refer to this two-hole disk as Y := ABCD.
Because τ a��b

ABCD ∈ �(Y ), without loss of generality,

τ a��b
Y =

⊕
c

pc ρabc
Y , ρabc

Y ∈ �c
ab(Y ), (26)

for some probability distribution {pc}. Density matrices in dif-
ferent �c

ab(Y ) are mutually orthogonal to each other. Because
τ a��b

Y maximizes the entropy, its entropy is

S
(
τ a��b

Y

) = max
{pc},
{ρabc

Y }

(
H ({pc}) +

∑
c

pcS
(
ρabc

Y

))

= max
{pc}

(
H ({pc}) +

∑
c

pc max
ρabc

Y

S
(
ρabc

Y

))
, (27)

where H ({pc}) = −∑
pc ln pc is the Shannon entropy of the

probability distribution {pc}.

7This is a fact proved in Ref. [41].
8The proof of this statement also follows from the axioms in Fig. 4;

see Ref. [41] for more detail.
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This is the key identity:

max
ρabc

Y ∈�c
ab(Y )

S
(
ρabc

Y

) = S(σY ) + ln Nc
ab + ln(dadbdc), (28)

which we derive in two steps. First, we show that the extreme
points within �c

ab(Y ) have identical entropies. Because this
space is isomorphic to the state space of a Nc

ab-dimensional
Hilbert space, the maximum is attained by taking ρabc

Y to be
a uniform mixture of Nc

ab orthogonal extreme points within
�c

ab(Y ). Second, we show that the entropy of the extreme
points are equal to S(σY ) + ln(dadbdc).

For the first step, we use the factorization property of the
extreme points. Recall that any extreme point ρ

〈e〉
Y ′ ∈ �c

ab(Y ′)
satisfies

(SY + SY ′ − SY ′\Y )ρ〈e〉 = 0, (29)

where Y ′ ⊃ Y is a two-hole disk that is expanded along the
boundary of Y by an amount large compared to the correlation
length. By using the fact that the reduced density matrices of
the elements in �c

ab(Y ′) on Y ′ \ Y are identical and the fact
that the entropy difference over Y and Y ′ are equal, we can
conclude that the entropy of extreme points are identical.

In the second step, we seek to prove

S
(
ρ

〈e〉abc
Y

) = S(σY ) + ln(dadbdc) (30)

for any extreme point ρ
〈e〉abc
Y ∈ �c

ab(Y ). We can derive this fact
by comparing the entropy of ρ

〈e〉abc
Y to σY . More specifically,

again consider Y ′ ⊃ Y which is obtained by enlarging Y along
its boundary by a large enough amount.9 The extreme points
of �c

ab(Y ) are extended into the extreme points of �c
ab(Y ′) by

using the isomorphism theorem. By the factorization of the
extreme points [Eq. (6)], we obtain

S
(
ρ

〈e〉abc
Y

) + S
(
ρ

〈e〉abc
Y ′

) − S
(
ρ

〈e〉abc
Y ′\Y

) = 0,

S(σY ) + S(σY ′ ) − S(σY ′\Y ) = 0, (31)

where in the second line we used the fact that σY is an extreme
point of �1

11(Y ).10 By subtracting the second equation from
the first, we obtain

(SY + SY ′ )ρ〈e〉abc − (SY + SY ′ )σ = 2 ln(dadbdc). (32)

The nontrivial part lies on obtaining the right hand side of
Eq. (32). This expression can be derived by noting that Y ′ \ Y
is a union of three annuli and the fact that the reduced density
matrix of any element of �c

ab(Y ′) over Y ′ \ Y is a tensor
product of the extreme points associated with definite superse-
lection sectors a, b, and c.11 The first two terms in the left-hand
side of Eq. (32) are actually equal to each other due to the
isomorphism theorem. Thus we have proved Eq. (30).

9The thickness of Y ′ \ Y should be greater than 2r so that the
simplex theorem applies to the three annuli subsystems of Y ′ \ Y .

10This is a fact discussed in Ref. [41]. Our axioms imply that
�1

11(Y ) contains a unique element. Since σY trivially belongs to
�1

11(Y ), it must be an extreme point.
11Technically speaking, one also needs to prove this fact. We gloss

over this subtlety here, referring the readers to Ref. [41] for the
rigorous proof.

Plugging Eq. (28) into Eq. (27), we obtain

S
(
τ a��b

Y

) − S(σY ) = max
{pc}

(
H ({pc}) +

∑
c

pc ln
(
Nc

abdc
))

+ ln(dadb). (33)

This maximization problem can be solved by minimizing the
free energy of a fictitious Hamiltonian H (c) := − ln(Nc

abdc)
that depends on the superselection sector c with respect to
a “temperature” of T = 1. The partition function of this
fictitious Hamiltonian is Z = ∑

c Nc
abdc. Therefore the free

energy, defined as F = ∑
c pcH (c) − T H ({pc}), is minimized

as min{pc} F = −T ln Z = − ln(
∑

c Nc
abdc). The minimum is

obtained when pc = Nc
abdc

dadb
. 12 Therefore we obtain

S
(
τ a��b

Y

) = S(σABCD) + ln(dadb) + ln

( ∑
c

Nc
abdc

)
. (34)

By comparing Eq. (25) to Eq. (34), we conclude that

ln(dadb) + ln

(∑
c

Nc
abdc

)
= 2 ln(dadb), (35)

which, after rearranging the terms, becomes Eq. (17).
To conclude, we have sketched the proof of Eq. (17). The

key idea was to merge density matrices associated with two
superselection sectors. The entropy of the merged state can be
calculated in two different ways, one that is obtained from the
entropy of the reduced density matrices over smaller regions
and another obtained by directly maximizing the entropy. The
gist of the second calculation follows from Eq. (6).

The ideas sketched above are, in fact, powerful enough to
derive a whole slew of consistency relations, such as [41]

Nc
ab = Nc

ba,

Nc
1a = Nc

a1 = δa,c,

∀a, ∃! ā s.t. N1
ab = δb,ā,

Nc
ab = Nc̄

b̄ā,∑
i

Ni
abNd

ic =
∑

j

Nd
a jN

j
bc. (36)

A generalization of these identities will be discussed in
Sec. VI.

III. GAPPED DOMAIN WALLS:
A TALE OF PARTON SECTOR

The results we sketched in Sec. II follow from the axioms
described in Fig. 4. However, these assumptions become in-
adequate in the vicinity of gapped domain walls. On a domain
wall, we need to relax these assumptions appropriately.

Here is a heuristic discussion on this issue. Consider two
topologically ordered mediums that are separated by a gapped

12A mathematically equivalent fact is that relative (Shannon) en-
tropy is nonnegative. For two probability distributions {pi} and {qi},
min{pi} (

∑
i pi ln(pi/qi )) = 0. The minimum is obtained if and only

if the two probability distributions are identical.
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P

Q
C

B

D

C

B

D

C

B

D

Δ := (SBC + SCD − SB − SD)σ

Δ = 0 Δ = 0 Δ �= 0
in general

FIG. 11. If we use the ansatz for the entanglement entropy in
Eq. (37), the linear combination of entanglement entropy (SBC +
SCD − SB − SD )σ becomes 0 for the first two choices. However, the
same conclusion does not generally hold for the third choice.

domain wall. We shall refer to the bulk phases lying on dif-
ferent sides of the domain wall as P and Q. Suppose that the
entanglement entropy of a region A has the following form:

S(σA) = α|∂A| − γ (A) + . . . , (37)

where the first term is the leading area law term that can be
canceled from an appropriate linear combination, the second
term γ (A) is a constant that depends on A, and the ellipses rep-
resent the subleading correction that vanishes in the |∂A| →
∞ limit. Based on the study of entanglement entropy in the
bulk [41], we can make a somewhat speculative but reason-
able assumption about γ (A): that it is invariant under smooth
deformations of A.13 By smooth deformation, we mean any
deformation that retains the topology of A and its restrictions
to P and Q.

Once we accept this hypothesis, we can immediately verify
that (SBC + SCD − SB − SD)σ = 0 for the first two choices of
subsystems described in Fig. 11. This is because γ (BC) =
γ (CD) = γ (B) = γ (D) for these subsystem choices. How-
ever, this hypothesis does not imply that the same linear
combination of entanglement entropy vanishes for the third
choice. For the third choice, γ (BC) and γ (B) are allowed to
take different values since B cannot be smoothly deformed
into BC.

This observation motivates a relaxed set of axioms to study
gapped domain walls, summarized in Fig. 12. We emphasize
that the boundary between B and D can deform arbitrarily so
long as they do not cross the domain wall. We will not make
any assumption about the value of (SBC + SCD − SB − SD)σ
for the rightmost subsystems in Fig. 11. Remarkably, its value
is highly constrained, as we explain in Sec. VIII.

The new axioms in Fig. 12 directly lead to a defini-
tion of parton sectors. This is a new type of superselection
sector that is localized on either side of the domain wall.
We refer to these sectors as parton sectors because they
subdivide the known superselection sectors of pointlike ex-
citations on the domain wall [12,15]. As in the discussion

13Unlike the subleading contribution in the bulk [35,36], it is un-
clear if γ (A) can be always obtained from a linear combination of
entanglement entropies. Therefore it is unclear whether individual
γ (A) has a well-defined physical meaning. However, as we shall see
in Sec. VIII, certain linear combinations of entanglement entropies
do have clear physical meanings.

P

Q
C

B

C

B

D

C

B

C

B

D

C

B

C

B

D

FIG. 12. On top of the bulk axioms in P and Q, we assume
that (SC + SBC − SB )σ = 0 (red) and (SBC + SCD − SB − SD )σ = 0
(green) on the domain wall. The subsystems are allowed to be de-
formed as long as the boundaries between B and D do not cross the
domain wall.

in Sec. II A, the properties of the parton sectors can be
derived from three important consequences: extension of ax-
ioms, isomorphism theorem, and factorization of extreme
points.

Let us formally state these consequences below, deferring
the proofs to Appendixes A–C. First, the axioms can be ex-
tended to arbitrarily large regions. Secondly, a generalization
of the isomorphism theorem holds.

Theorem III.1 (Isomorphism theorem). Consider a refer-
ence state for which the axioms in Fig. 12 apply. If �0 and �1

are connected by a path {�t }t∈[0,1], there is an isomorphism
	 between �(�0) and �(�1) uniquely determined by the
path. Moreover, this isomorphism preserves the distance and
entropy difference between two elements of the information
convex sets: for ρ, λ ∈ �(�0),

D(ρ, λ) = D(	(ρ),	(λ)),

S(ρ) − S(λ) = S(	(ρ)) − S(	(λ)),
(38)

where D(·, ·) is any distance measure that is nonincreasing
under completely-positive trace preserving maps.

In order to understand this theorem, it is important to
understand what a modified definition of the “path” means in
the presence of a domain wall. This is most convenient to un-
derstand in the continuum limit. We say that two subsystems
are connected by a path if they can be continuously deformed
into each other. Specifically, let M be the manifold, which
is divided into M = MP ∪ MQ, where MP is the part that
hosts the topological phase P and MQ is the part that hosts
the phase Q. We say that there is a path between �0 ⊂ M
and �1 ⊂ M if there is a one-parameter family of homeo-
morphism φt : �0 ↪→ M such that φt (�0) restricted to P and
Q are both homeomorphisms for t ∈ [0, 1], φ0(�0) = �0, and
φ1(�0) = �1; see Fig. 13. Note that this definition of path is
a refinement of that in the bulk.

Third, we can extend Eq. (6) to the gapped domain wall.
Specifically, the exact same equation holds, irrespective of
the presence of the domain wall. We restate this fact here for
readers’ convenience. Given an extreme point of an informa-
tion convex set over �, let �′ ⊃ � be a region obtained from
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P

Q

×

×

FIG. 13. The subsystem on the left side is homeomorphic to a
disk. However, it is not connected to a disk in P (or Q) by any path
because its part that lies on Q is a union of two disks. There is no
homeomorphism that maps those disks to either a single disk or an
empty set.

� by enlarging14 � along the boundary, such that �′ \ � is
the thickened boundary of �′. Then, for any extreme point
ρ

〈e〉
�′ ∈ �(�′), we have

(S� + S�′ − S�′\�)ρ〈e〉 = 0. (39)

A. Parton sectors

Now we are ready to define the parton sectors, the fun-
damental objects of our theory. To define these sectors, we
choose the subsystems described in Fig. 14. We will refer
to the left diagram as an N-shaped region and the right di-
agram as a U -shaped region. Their information convex sets
form simplices with orthogonal extreme points, each of which
labels a parton sector.

There are two types of parton sectors, one associated with
the N-shaped region and the one associated with the U -shaped
region. We shall refer to the former as an N-type superselec-
tion sector and the latter as a U -type superselection sector to
evoke the shape of the underlying regions.

Let us first explain why these sectors are well-defined. We
focus only on the N-type superselection sector. Because the
same argument applies to the U -type superselection sector,
we omit that discussion.

Our proof is based on the following choice of subsys-
tems, which we depict in Fig. 15. Without loss of generality,
consider an N-shaped region N . Let N ′ ⊃ N be a subsystem
obtained by enlarging N along its boundary. Let N ′′ be another
N-shaped region disjoint from N ′ such that N ′N ′′ is again an
N-shaped region.

Consider a pair of extreme points ρN , ρ ′
N ∈ �(N ). As dis-

cussed in Sec. II A, the key idea is to map these extreme points
to the extreme points in �(NN ′′) by using the isomorphism
theorem (theorem III.1). These extreme points must be factor-
ized over N and N ′′, which immediately implies our claim.

Let ρN ′N ′′ and ρ ′
N ′N ′′ be the extreme points of �(N ′N ′′) ob-

tained by applying the isomorphism theorem (theorem III.1)
between �(N ) and �(N ′N ′′) to ρN and ρ ′

N , respectively. Their
fidelity is equal to the fidelity between ρN and ρ ′

N :

F (ρN , ρ ′
N ) = F (ρN ′N ′′ , ρ ′

N ′N ′′ ). (40)

14An enlargement is associated with a path connecting � and �′.
By the isomorphism theorem, there is an isomorphism between �(�)
and �(�′).

P

Q

n

u

FIG. 14. Subsystems associated with the N-type (left) and U -
type (right) superselection sectors. We use n and u denote the
respective sectors.

Because fidelity is nondecreasing under partial trace, we have

F (ρN , ρ ′
N ) = F (ρN ′N ′′ , ρ ′

N ′N ′′ )

� F (ρNN ′′ , ρ ′
NN ′′ ).

(41)

Because both ρNN ′′ and ρ ′
NN ′′ are extreme points, they fac-

torize over N and N ′′:

F (ρNN ′′ , ρ ′
NN ′′ ) = F (ρN , ρ ′

N )F (ρN ′′, ρ ′
N ′′ ). (42)

In particular, by the isomorphism theorem, we get

F (ρN , ρ ′
N ) � F (ρN , ρ ′

N )2. (43)

Therefore F (ρN , ρ ′
N ) is either 0 or 1.

Therefore we can characterize �(N ) as

�(N ) =
{⊕

n

pnρ
n
N :

∑
n

pn = 1, pn � 0

}
, (44)

where different extreme points {ρn
N } are supported on orthog-

onal subspaces. The same argument applies to �(U ):

�(N ) =
{⊕

u

puρ
u
U :

∑
u

pu = 1, pu � 0

}
. (45)

We shall formally denote these superselection sectors as

CN = {1, n, . . . },
CU = {1, u, . . . }. (46)

P

Q

N

P

Q

N ′

N ′′

FIG. 15. Subsystems involved in the proof of the orthogonality
of the extreme points in �(N ). Here, N ′ ⊃ N (dark blue) is obtained
from N by enlarging N along the boundary. N ′′ (light blue) is chosen
in such a way that N ′N ′′ is again a N-shaped subsystem. On the right,
the dotted region represents N .
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Like in the bulk, we will define the quantum dimensions of
the parton sectors as

dn := exp

(
S
(
ρn

N

) − S
(
ρ1

N

)
2

)
,

du := exp

(
S
(
ρu

U

) − S
(
ρ1

U

)
2

)
, (47)

where N and U are N- and U -shaped regions, respectively,
and the “1” in the superscript means that the density matrix is
obtained by tracing out all but the region in the subscript over
the global reference state σ .

Readers may wonder whether the parton sectors we
identify can be understood using the “folding technique”
[11,12,15]. The folding technique turns a system P and Q
separated by a domain wall into a system P ⊗ Q̄ (upper
half-plane) and the vacuum (lower half-plane) separated by
a gapped boundary. (Here, Q̄ is Q reflected along the domain
wall.) Historically, the folding technique was useful in under-
standing the superselection sectors of point excitations on the
gapped domain wall (i.e., the O-type sectors we shall discuss
below in Sec. IV A) by identifying them to with the supers-
election sectors of point excitations on the gapped boundary
of the folded nonchiral system. However, we are not aware of
any way to understand the parton sectors by directly looking
at the folded system. The intuitive reason behind this is that
the N-shaped subsystem cannot be obtained by unfolding any
subsystem.

Let us comment on the physical interpretation of the parton
sector. We emphasize that a parton sector generally does not
specify a localized excitation. Specifically, if the reference
state is a ground state of some local Hamiltonian, its low-
energy excitation is not always uniquely determined by a
single parton sector. Often extra information is required to
specify such an excitation, as we explain in Sec. IV.

Instead, it is better to view them as “quantum numbers”
that partially specify excitations. Because the extreme points
of �(N ) [as well as �(U )] are orthogonal to each other,
there is a set of projectors that project out a unique sector.
In principle, one should be able to measure these projectors,
thereby obtaining these “quantum numbers.”

IV. COMPOSITE SECTORS

In this section, we will study the composite superselection
sectors. These are superselection sectors localized on the do-
main wall that can carry multiple parton labels:

Ccomposite =
⋃

n1,n2,···∈CN
u1,u2,···∈CU

C[n1,u1,n2,u2,... ]
composite . (48)

As before, a superselection sector is associated with some
region. This region may contain N- and U -shaped regions as
its subsystems, which contain partial information about the
composite sectors. Specifically, recall that there are projectors
localized on N- and U -shaped subsystems that can measure
the N- and U -type superselection sectors. One can measure
those projectors to determine the parton labels.

There can be multiple composite sectors that carry the
same parton labels. In other words, the collection of parton

P

Q
α n

u

FIG. 16. (Left) A subsystem associated with the O-type superse-
lection sector. (Right) Upon tracing out the annulus, one can obtain a
N-shaped and U-shaped subsystems, which must lie on the informa-
tion convex set of �(N ) and �(U ), respectively.

sectors do not uniquely specify a composite sector. This is
actually not a strange phenomenon. If the domain wall is triv-
ial, the parton sectors are also trivial. Because the underlying
subsystem is topologically a disk, its information convex set
has a unique element [41]. However, we can instead consider
an annulus, which clearly has N- and U-shaped regions as its
subsystems. The information convex sets of these subsystems
are trivial, but the information convex set of an annulus is
not; see Sec. II A for the discussion. Therefore, even after
specifying the parton sectors, there is a leftover degree of
freedom that remains unspecified.

This “composition rule” of superselection sectors is some-
what mundane in the bulk. However, in the presence of a
gapped domain wall, we can have a much richer structure. In
Sec. IV A, we shall study a composite sector that can be iden-
tified with the pointlike excitations studied in Refs. [12,15].
However, we shall see in Secs. IV B and IV C that there are
other types of composite sectors as well. They are new to the
best of our knowledge. While we do not believe that we have
an exhaustive list of composite sectors, we expect to be able to
characterize any reasonable composite superselection sectors
by using the general observations summarized in Sec. IV D.

Before we delve into these details, let us make a remark on
our convention. We will frequently use the following short-
hand notation for the merged state:

τ a��b := ρa �� λb, (49)

where ρa and λb are associated with superselection sectors
a and b. Both ρa and λb are elements of some information
convex sets. The choice of these sets will depend on the
context.

A. O-type sectors

The first of these composite sectors is the O-type superse-
lection sector. These sectors correspond to the extreme points
of an annulus on the gapped domain wall; see Fig. 16. These
extreme points are orthogonal to each other because the ex-
position in Sec. II A applies here as well. Physically, these
sectors are the superselection sectors of the pointlike excita-
tions on the gapped domain wall, studied in Refs. [12,15].

We shall denote the set of O-type superselection sectors as

CO = {1, α, β, . . . }, (50)
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P

Q
α

P

Q
α

FIG. 17. (Left) We begin with an extreme point corresponding
to α ∈ CO. (Right) By using the isomorphism theorem, the density
matrix is extended to a larger annulus. Upon tracing out the middle
of this larger annulus, we obtain two annuli. By the factorization of
the extreme points, the state over these two annuli is a product state.
Consequently, the N-shaped subsystems in these two annuli must also
be in a product state.

where we use Greek letters starting from α to denote these
sectors.

Let us explain in what sense the O-type sectors are compos-
ite. Consider an extreme point on the annulus that represents
the sector α ∈ CO. Upon tracing out a disklike region on Q, we
get a density matrix over an N-shaped subsystem. Similarly,
by tracing out a disklike region on P, we obtain a density
matrix over a U-shaped subsystem. Moreover, these density
matrices are elements of �(N ) and �(U ), respectively.

The elements we obtain this way are not just any element;
they are extreme points. To see why, consider an extreme
point on the annulus that represents a O-type sector. As we
discussed in Sec. II A, if we extend an annulus to a thicker
annulus and trace out the middle of the thicker annulus to ob-
tain two annuli, these two annuli are decoupled. Importantly,
subsystems of the two annuli must be also decoupled.

In particular, the state over the two N-shaped regions in
these annuli is factorized; see Fig. 17. This is the key reason
why the state is an extreme point. Let the density matrix in
one of these two N-shaped subsystems (say N) to be

ρN =
⊕
n∈CN

pnρ
n
N . (51)

By the isomorphism theorem, the density matrix over NN ′ is

ρNN ′ =
⊕
n∈CN

pnρ
n
N ⊗ ρn

N ′ , (52)

where N ′ is the other N-shaped subsystem in Fig. 17 separated
from N . Therefore the mutual information between the two
regions is

I (N : N ′) = H ({pn}). (53)

This has to be zero because the underlying state is a product
state. The only possibility is that pn must be equal to 1 for
some n and 0 for other elements in CN . Therefore the reduced
density matrix over N is an extreme point of �(N ). Similarly,
the reduced density matrix over U is an extreme point of
�(U ).

P

Q

A

B
C

B
C

D

FIG. 18. Merging a pair of parton sectors to obtain an O-type
composite sector. The subsystem N = ABC carries n ∈ CN and the
subsystem U = BCD carries u ∈ CU . In the main text, O is defined
to be ABCD in this figure.

Therefore CO must be a disjoint union of the following
form:

CO =
⋃

n∈CN

u∈CU

C[n,u]
O , (54)

where C[n,u]
O ⊂ CO is a subset in which the N- and U -type

superselection sectors are fixed to n and u.
The quantum dimension of this sector, which we define as

dα := exp

(
S
(
ρα

O

) − S
(
ρ1

O

)
2

)
, (55)

has a nontrivial relation with the quantum dimension of the
parton sectors. Specifically,

d2
n d2

u =
∑

α∈C[n,u]
O

d2
α∑

α∈C[1,1]
O

d2
α

. (56)

To derive this relation, we use the merging technique used
in Sec. II B. Specifically, we merge extreme points of �(N )
and �(U ) to obtain an element in �(O), where O is an annulus
on the domain wall; see Fig. 18. Without loss of generality, let
us refer to these extreme points as ρn

N and ρu
U . For the merged

state τ n��u
O := ρn

N �� ρu
U , its entropy is equal to

S
(
τ n��u

O

) = ln
(
d2

n d2
u

) + (SN + SU − SN∩U )σ . (57)

On the other hand, we can directly obtain the maximum en-
tropy consistent with the given extreme points in �(N ) and
�(U ):

S
(
τ n��u

O

) = max
{pα}

⎛⎝H ({pα}) +
∑

α∈C[n,u]
O

pα ln d2
α

⎞⎠ + SO(σ )

= ln

⎛⎝ ∑
α∈C[n,u]

O

d2
α

⎞⎠ + S(σO). (58)

Let τ 1��1
O be the state merged from extreme points 1 ∈ CN and

1 ∈ CU . We get

S
(
τ n��u

O

) − S
(
τ 1��1

O

) = ln
(
d2

n d2
u

)
= ln

(∑
α∈C[n,u]

O
d2

α∑
α∈C[1,1]

O
d2

α

)
, (59)
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u

n′

S′

FIG. 19. Snake-shaped subsystems.

which leads to Eq. (56).

B. Snake sectors

While the O-type sector has appeared in the literature al-
ready, there are other composite sectors that are new to the
best of our knowledge. One such example is the snake sector,
or alternatively, a S-type sector. This is a superselection sector
associated with the “snake”-shaped regions, e.g., S and S′ in
Fig. 19. The information convex sets of these subsystems are
isomorphic to a simplex with a finite number of orthogonal
extreme points. These snake sectors are again composite sec-
tors of N-type and U -type sectors, and therefore many of the
discussions about CO in Sec. IV A apply here as well.

Let S be the simplest snake-shaped region in Fig. 19. The
set of snake sectors is a disjoint union of the following form:

CS =
⋃

n∈CN
u∈CU

C[n,u]
S , (60)

where the extreme points associated with C[n,u]
S carry n ∈ CN

and u ∈ CU .
Also, we can define the quantum dimensions as follows:

ds := exp

(
S
(
ρs

S

) − S
(
ρ1

S

)
2

)
, (61)

where ρs
S is an extreme point of �(S).

There is a nontrivial identity between {ds} and the quantum
dimension of the parton sectors:

d2
n d2

u =
∑

s∈C[n,u]
S

d2
s . (62)

The proof is essentially the same as the proof of Eq. (56), the
only difference being that

∑
s∈C[1,1]

S
d2

s = 1.

This last fact follows from the fact that |C[n,1]
S | = |C[1,u]

S | =
1. That C[n,1]

S has a unique element follows from the observa-
tion that an element of �(S) that carries parton sector u = 1
is the reduced density matrix of a certain element in �(SD),
where SD is an N-shaped subsystem; see Fig. 20. Here, D is
a disk on the domain wall, which fills the “slot” in Fig. 20
and turns the U -shaped arc into a disk on the domain wall. (In
more detail, we need to divide S into ABC in an obvious way,
in which BCD is another disk on the domain wall. Then, we
use the merging theorem. Note that the merging is possible
because u = 1.) The proof of |C[1,u]

S | = 1 is analogous.

P

Q D

n

S

FIG. 20. For the proof of |C[n,1]
S | = 1. A snake-shaped subsystem

S and an N-shaped subsystem SD. Here, D is a disk on the domain
wall and it fills a slot.

C. N- and U -type sectors

There are composite sectors that play a crucial role in
studying the fusion space of the aforementioned superselec-
tion sectors. These are the N- and U -type sectors; see Fig. 21.
The underlying subsystems are annuli on the domain wall
which are not path-connected to any O-shaped subsystem. It
should be obvious—from the discussion about the bulk super-
selection sectors and the parton sectors—that the information
convex set associated with this subsystem is also isomorphic
to a simplex formed by a finite number of mutually orthog-
onal extreme points. Moreover, these are composite sectors
in a sense that, upon tracing out the appropriate subsystems,
one can obtain two N- and U -shaped subsystems. Moreover,
the argument that leads to Eq. (54) also applies here, which
implies that CN is a disjoint union of sets labeled by n, n′, u,

and u′, where n, n′ ∈ CN and u, u′ ∈ CU . However, we will not
use this fact in this paper.

We define the quantum dimensions of these sectors as
follows:

dN = exp

(
S(ρN

N ) − S
(
ρ1
N

)
2

)
,

dU = exp

(
S(ρU

U ) − S
(
ρ1
U

)
2

)
, (63)

where N ∈ CN and U ∈ CU are the N- and U -type superse-
lection sectors. We again use the superscript “1” to denote the
extreme point obtained from the reference state σ .

There is a natural notion of embedding:

ηN : CN ↪→ CN,

ηU : CU ↪→ CU ,
(64)

P

Q

N

U

FIG. 21. Subsystem choices for CN and CU .
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P

Q

P

Q

FIG. 22. Given an extreme point of �(N ), we can obtain an
extreme point of �(N ) by tracing out the middle part.

which is defined by tracing out the interior of the N-shaped (or
U-shaped) subsystem; see Fig. 22.

In Eq. (64), we are implicitly asserting that an extreme
point of �(N ), upon traced out the middle part, becomes an
extreme point of an information convex set of a N-shaped
region. Below, we briefly sketch the underlying reason.

Consider an N-shaped subsystem N , which is partitioned
into N ′ and N = NinNmiddleNout, where Nin,Nmiddle, and Nout

are nonoverlapping N-shaped regions. Specifically, we have
the following sequence of N-shaped regions:

N ′ ⊂ N ′Nin

⊂ N ′NinNmiddle

⊂ N ′NinNmiddleNout, (65)

and the following sequence of N-shaped regions:

Nin ⊂ NinNmiddle

⊂ NinNmiddleNout

= N. (66)

Let ρ
〈e〉
N be an extreme point of �(N ). By the factorization

property of the extreme point, we have

I (N ′Nin : Nout)ρ〈e〉 = 0. (67)

By the monotonicity of the mutual information, we get

I (Nin : Nout)ρ〈e〉 = 0. (68)

This is possible only if the reduced density matrix of ρ
〈e〉
N over

N is an extreme point.
Moreover, using the factorization property, we can derive

dηN (n) = d2
n ,

dηU (u) = d2
u . (69)

To see why, without loss of generality, consider the subsys-
tems described in Fig. 23. Here, both N and N ′ are N-shaped
subsystems. Importantly, N ′ \ N is a N-shaped subsystem.
Using the factorization property of the extreme points, we get

(SN + SN ′ − SN ′\N )ρn
N ′ = 0,

(SN + SN ′ − SN ′\N )ρ1
N ′ = 0, (70)

where ρn
N ′ ∈ �(N ′) is an extreme point associated with the

sector n ∈ CN . From these equations and the definition of the
quantum dimension, Eq. (69) follows.

P

Q

N

N ′ \ N

FIG. 23. Subsystems involved in the proof of Eq. (69)

Later in Sec. VI C, we shall see that there is a one-to-one
map between the set of N-type sectors and the set of U -type
sectors. We denote this fact as follows:

ϕ : CN → CU , (71)

where ϕ is a bijection. Later, we will show that this map
preserves the quantum dimensions, namely

dN = dϕ(N ). (72)

This would be certainly true if the domain wall is trivial since
both subsystems can be smoothly deformed to an annulus.
However, because N and U cannot be smoothly deformed
into each other, Eq. (72) is a nontrivial fact in general.

To summarize, different sets of superselection sectors are
related to each other in the following way:

CN CU

CN CU

ηN ηU .

(73)

While the cardinality of CN is generally different from that
of CU , those two sets may be indirectly related to each other
via CN and CU .

D. Generalities

In this section, we introduce general facts about superse-
lection sectors. First, we explain an all-encompassing recipe
to show that an information convex set of a subsystem is
isomorphic to a simplex with orthogonal extreme points. The
following discussion will assume the continuum limit, in
which the familiar notion of topology is well-defined.

The following definition will be important.
Definition IV.1 (Sectorizable region). A subsystem R is

sectorizable if there is a region R̂ such that:
(1) R̂ contains disjoint regions R and R′′ and
(2) both R and R′′ can be connected to R̂ by a path, where

the path is a sequence of extensions.
This definition is important because the information con-

vex set of any sectorizable region is a simplex with orthogonal
extreme points.

Lemma IV.1. Let R be a sectorizable region. Then

�(R) =
{⊕

I

pIρ
I
R :

∑
I

pI = 1, pI � 0

}
, (74)
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where {ρI
R} is a set of density matrices that are mutually

orthogonal to each other.
The proof of this lemma is straightforward, because it is a

simple generalization of what we have been discussing so far.
For completeness, we sketch the proof below. First, extend R
to R̂ using the isomorphism theorem, and then trace out R̂ \
(R ∪ R′′). We can obtain the following inequality:

F (ρR, ρ ′
R) � F (ρRR′′ , ρ ′

RR′′ ), (75)

where ρR and ρ ′
R are two extreme points of �(R), and ρRR′′

and ρ ′
RR′′ are obtained from the former density matrices by

an extension to R̂ and a partial trace over R̂ \ (R ∪ R′′). Note
that Eq. (9) and Eq. (41) are special cases of Eq. (75). By
the factorization property, we get F (ρR, ρ ′

R) � F (ρR, ρ ′
R)2.

Therefore F (ρR, ρ ′
R) must be either 0 or 1. This proves lemma

IV.1.
Second, for two sectorizable subsystems, the set of extreme

points obeys the “product rule.”
Lemma IV.2 (Product rule). Let �1 and �2 be sectorizable

subsystems which are disjoint from each other. Then the sub-
system �1�2 is another sectorizable subsystem and

C�1�2
∼= C�1 × C�2 , (76)

where C�1 , C�2 and C�1�2 are the set of superselection sectors
associated with sectorizable subsystems �1, �1 and �1�2

respectively. Moreover, every extreme point of �(�1�2) is
a tensor product of extreme points of �(�1) and �(�2).

Proof. First, the fact that �1�2 is again a sectorizable sub-
system is easy to verify. The two conditions in definition IV.1
are verified by letting �̂1�2 = �̂1�̂2 and (�1�2)′′ = �′′

1�
′′
2.

Second, note that any extreme point of �(�1�2), once
restricted to either �1 or �2, becomes an extreme point of
�(�1) and �(�2), respectively. This is because, once we ex-
tend an extreme point in �(�1�2) to an element of �(�̂1�2)
by using the isomorphism theorem and tracing out the ap-
propriate subsystems, the mutual information of this state
between �1�2 and �′′

1�
′′
2 is zero. This fact follows from the

factorization property of the extreme points. Therefore the
state must be factorized over �1 and �′′

1. The same factor-
ization holds over �2 and �′′

2. Such factorization is possible
only if the reduced density matrix of any extreme point of
�(�1�2) over �1 and �2 are extreme points.

Now, we can use the factorization property of the extreme
point of �(�1) as follows. Note that the extreme points of
�(�1�2), restricted to �1 \ ∂�1, where ∂�1 is the thickened
boundary of �1, must be factorized with anything that is out-
side of �1. Therefore these extreme points must be factorized
between �1 \ ∂�1 and �2. Using the isomorphism theorem,
we conclude that the extreme points over �(�1�2) must be
factorized over �1 and �2.

E. Summary

We have so far studied the parton sectors and its (deriva-
tive) composite sectors. Below, we summarize our key results
for the readers’ convenience. First, we have summarized these
superselection sectors in Fig. 24. Note that the set of compos-
ite sectors can be decomposed further into a disjoint union
of sets, each of which is labeled by the parton sectors. For
instance, O- and S-type sectors are labeled by an N- and a

P

Q

CN = {1, n, · · · } CU = {1, u, · · · } CO = {1, α, · · · }

P

Q

CS = {1, s, · · · } CN = {1,N , · · · } CU = {1,U , · · · }

FIG. 24. A list of subsystem topologies and the corresponding
superselection sector labels.

U -type sector. On the other hand, N- and U -type sectors are
labeled by two N- and two U -type sectors.

The quantum dimensions of these sectors are all defined
in the same way, in terms of the entanglement entropy of the
extreme point associated with the superselection sector.

We derived the following identities:

d2
n d2

u =
∑

α∈C[n,u]
O

d2
α∑

α∈C[1,1]
O

d2
α

=
∑

s∈C[n,u]
S

d2
s . (77)

Moreover, we studied the maps ηN (as well as ηU ) and ϕ

which has the following properties. The maps ηN and ηU are
embeddings from CN to CN and from CU to CU respectively,
such that

dηN (n) = d2
n ,

dηU (u) = d2
u . (78)

ϕ is a bijection between CN and CU such that

dϕ(N ) = dN ,

dϕ−1(U ) = dU . (79)

Finally, we mention that antisectors are well defined for CN ,
CU and CO. The quantum dimension of every sector is equal to
that of its antisector.

dn̄ = dn, ¯̄n = n, ∀n ∈ CN ,

dū = du, ¯̄u = u, ∀u ∈ CU ,

dᾱ = dα, ¯̄α = α, ∀α ∈ CO, (80)

where we have used a “bar” over a sector label to denote its
antisector. We will prove these identities later.

V. FUSION SPACES

In this section, we define and study the fusion spaces of
the superselection sectors introduced in Secs. III and IV. To
understand our definition of fusion space, it will be instruc-
tive to recall the definition of fusion space in the theory of
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Ω ∂Ω

FIG. 25. An example of thickened boundaries. Here, � is a suf-
ficiently thick and smooth two-hole disk. The thickened boundary
∂� is a sectorizable subsystem. Furthermore, ∂� is a union of three
disjoint annuli, each of which is a sectorizable subsystem.

anyon. In the anyon theory, a fusion space is a Hilbert space.
Specifically, when a sector a and b fuse into another sector
c, there is a leftover degree of freedom, described by a state
space of some Hilbert space. This underlying Hilbert space is
the fusion space. In this paper, we will adhere strictly to this
rule and ascribe a fusion space to any space isomorphic to a
state space of some Hilbert space.

Without loss of generality, consider an information convex
set �(�) associated with a subsystem �. To characterize
�(�), it will be helpful to study the information convex set
of its thickened boundary ∂�; see Fig. 25. Because ∂� is
a sectorizable region, �(∂�) is a simplex with orthogonal
extreme points; see definition IV.1 and lemma IV.1. Moreover,
the factorization property of the extreme points implies that
every extreme point of �(�) reduces to an extreme point of
�(∂�). Therefore elements of �(�) can be divided further in
terms of the extreme points of �(∂�):

�(�) =
{ ⊕

I∈C∂�

pIρ
I
� :

∑
I

pI = 1, pI � 0

}
, (81)

where C∂� is a set of superselection sectors associated with
the extreme points of �(∂�) and ρI

� is an element of �(�)
that, upon restricting to ∂�, becomes an extreme point ρI

∂� ∈
�(∂�). The set of ρI

� with a fixed I forms a convex subset of
�(�), which we shall denote as �I (�).

It remains to characterize C∂� and �I (�). For C∂�, we can
use the general strategy explained in Sec. IV. For instance, if
∂� has multiple connected components, the set of superse-
lection sectors C∂� obeys the product rule (lemma IV.2). For
example, in Fig. 25, ∂� is the union of three disjoint annuli.
In this case, I ∈ C∂� is a triple of superselection sectors of the
three annuli, i.e., {I} ∼= {(a, b, c)} where a, b, and c belong to
the set of superselection sectors associated with an annulus.

For �I (�), we can prove the following fact:

�I (�) ∼= S (VI ), (82)

where S (VI ) is the state space of a finite-dimensional Hilbert
space VI , which generally depends on the choice of I . Com-
bined with Eq. (81), this implies that one can assign a fusion
space to any sufficiently smooth and thick subsystem. The di-
mension of the Hilbert space, NI = dim VI , is a non-negative
integer known as the fusion multiplicity.

As a sanity check, we can see that the fusion space defined
in Eq. (82) produces sensible results in known setups. In
Fig. 25, NI is simply Nc

ab, the multiplicity for the fusion of
anyons a and b into an anyon c. In that context, Eq. (82) was
derived in theorem 4.5 of Ref. [41].

P

Q

{Nγ
αβ} {Nα

a } {Nα
x }

P

Q

{Nα
ax} {Nα

U } {Nα
NU}

FIG. 26. Subsystems that are relevant to the study of fusion
spaces on gapped domain walls. Also shown are the labels for the
fusion multiplicities.

The proof of Eq. (82) for general subsystems can be done
similarly as the proof of theorem 4.5 of Ref. [41]. Moreover,
we provide an alternative proof which is simpler; see the
Hilbert space theorem (theorem D.1) in Appendix D.

A. Fusion on gapped domain walls

In this section, we list a few examples of fusion spaces on
gapped domain walls. A (partial) list of relevant subsystems is
described in Fig. 26. For example, we can consider a two-hole
disk on the domain wall, both of the holes sitting on the
domain wall; see the first figure in Fig. 26. The thickened
boundary of that region is a union of three disjoint annuli
on the domain wall, with the extreme points labeled by CO.
Hence, the fusion space of the two-hole disks on the domain
wall can be labeled by a triple (α, β, γ ), where α, β, γ ∈ CO.
We may formally denote the fusion space as V γ

αβ and the
fusion multiplicity as Nγ

αβ .
The other examples listed in Fig. 26 can be understood

in a similar way. While we have discussed our notation of
superselection sectors in Sec. IV, we restate it below for the
readers’ convenience:

α, β, γ ∈ CO,

a ∈ CP,

x ∈ CQ,

U ∈ CU ,

N ∈ CN, (83)

where CP and CQ denote the set of anyon labels in phases P
and Q, respectively.

In Sec. VI, we will in fact derive the fusion rules that these
fusion spaces must obey and derive intricate constraints on
the fusion multiplicities. Let us briefly mention these results,
deferring the details to Sec. VI. We can formally express the
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P

Q

M

n n′

n′′

FIG. 27. An M-shaped region. Three parton sectors n, n′, n′′ ∈
CN can be detected from the three N-shaped subsystems (darker
color) of M.

following fusion processes:

α × β =
∑

γ

Nγ

αβγ ,

a =
∑

α

Nα
a α,

x =
∑

α

Nα
x α,

a × x =
∑

α

Nα
axα. (84)

Here, for any choice of sectors on the left-hand side there
exists at least one fusion result on the right-hand side.

However, the same cannot be said about the fusion pro-
cesses involving multiplicities Nα

U and Nα
NU . For example, for

a particular choice of N and U , there may not be an α such
that Nα

NU �= 0. We will revisit this issue in Sec. VI.

B. Quasi-fusion of parton sectors

We have seen examples of fusion spaces in Fig. 26. They
involve composite sectors on the domain wall as well as the
superselection sectors of anyons in the 2D bulk P and Q. One
may wonder whether there is a similar generalization of fusion
spaces to parton sectors. What happens if we “fuse” a pair of
parton sectors (say n, n′ ∈ CN ) together? Can they fuse into
another parton sector n′′ ∈ CN ? Can we define a fusion space
(V n′′

nn′) associated with a triple of parton sectors?
Surprisingly, the answer to the last question is “no.” To see

why, let us first formalize the problem. Consider a M-shaped
subsystem (M) shown in Fig. 27. There are three N-shaped
subsystems, associated with superselection sectors n, n′, and
n′′ without loss of generality. The question is whether the state
space with a fixed choice of n, n′, and n′′ is isomorphic to a
state space of some Hilbert space.

It turns out that this is not the case. What is correct is
the fact that n, n′, and n′′ partially characterize the extreme
points of �(∂M ), where ∂M is the thickened boundary of
M. However, they do not characterize the extreme points of
�(∂M ) completely. This is because ∂M is not a union of three
N-shaped regions; the N-shaped regions associated with n, n′,
and n′′ are part of ∂M but not all of it. Therefore, even after
specifying n, n′, and n′′, one may have more than one fusion
space, each labeled by an extreme point of �(∂M ). We shall
refer to this phenomenon as quasifusion of parton sectors.

However, when one side of the bulk phase, say Q, has a
trivial anyon content, there is a unique fusion space (which
can be labeled as V n′′

nn′) for each choice of n, n′, n′′ ∈ CN . In

P

Q

P

Q

FIG. 28. If Q has trivial anyon content, we can apply topology-
changing operation to the subsystems in Q side without affecting the
structure of the information convex sets. In this case, CU = {1} and
CN

∼= CO. Moreover, the quasifusion rule of N-type parton sectors is
identical to the conventional fusion rule of point excitations on the
domain wall.

this specific instance, the conventional fusion rule applies to
the parton sectors as well.

Importantly, our statement applies even if the bulk phase
with a trivial anyon content has a nonzero chiral central
charge. A nontrivial example is the so-called E8 state [9]. A
proof of our claim is presented in Appendix E 2. The key idea
is that trivial anyon content implies a new type of entropic
constraint. This new constraint allows us to prove a strength-
ening of the isomorphism theorem in which the underlying
subsystems can undergo a topology change. We sketched this
idea in Fig. 28, deferring the details to Appendix E 2.

VI. FUSION RULES

So far, we have defined a number of different superselec-
tion sectors and their fusion spaces. In this section, we will
study their fusion rules.

To put our work into a context, let us recall the fusion rules
in the bulk. Formally, we can write

a × b =
∑

c

Nc
abc, (85)

where a, b, and c are superselection sectors in the bulk; as
we discussed in Sec. II, these are associated with the extreme
points of the information convex sets of an annulus. Nc

ab is the
fusion multiplicity of a and b fusing into c.

In Ref. [41], we were able to derive the following facts:

Nc
ab = Nc

ba,

Nc
1a = Nc

a1 = δa,c,

∀a, ∃! ā s.t. N1
ab = δb,ā,

Nc
ab = Nc̄

b̄ā,∑
i

Ni
abNd

ic =
∑

j

Nd
a jN

j
bc. (86)

The first line says the fusion rule is commutative. The second
line says the fusion with the vacuum is trivial. The third line
implies that antisector is unique. The fourth line is a symmetry
of the fusion multiplicity involving the replacement of sectors
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α β

γ

FIG. 29. The subsystem choice and sector labels relevant to the
fusion space V γ

αβ .

with their antisectors. The last line says the composition of
fusion multiplicities is associative.

Furthermore, the quantum dimensions—defined in terms
of the entropy difference Eq. (16)—are constrained by the
fusion multiplicities by the following equation:

dadb =
∑

c

Nc
abdc. (87)

In fact, this equation completely determines the set of (pos-
itive) quantum dimensions because the fusion multiplicities
satisfy Eq. (86). It follows from this constraint that d1 = 1
and da = dā � 1 for any a. Furthermore, da is quantized in
the sense that it cannot take an arbitrary value; for example, it
cannot take any value in the interval (1,

√
2).

The primary purpose of this section is to derive identities
on the fusion multiplicities analogous to these equations. We
further derive the quantization of the quantum dimensions of
parton sectors by relating them to these fusion multiplicities.
We shall go through the fusion spaces described in Fig. 26 and
derive their respective fusion rules.

A. Fusion rules for O-type sectors

As a starter, let us first consider the fusion space formed
by two sectors in CO fusing into another sector in CO. We
shall refer to these sectors as α, β, and γ . This fusion space
can be defined over the information convex set over the blue
subsystem described in Fig. 29, with the appropriately chosen
superselection sectors. Formally, we can write this as

α × β =
∑

γ

Nγ

αβ γ . (88)

The fusion rules of the pointlike superselection sectors on
the domain wall are very similar to those of the bulk super-
selection sectors. We first summarize the results and provide
some basic explanations. A discussion on the proof will then
follow.

The following facts about the fusion multiplicities {Nγ

αβ}
are derived from our assumptions:

Nγ

1α = Nγ

α1 = δα,γ ,

∀α, ∃! ᾱ s.t. N1
αβ = δβ,ᾱ = δα,β̄ ,

Nγ

αβ = N γ̄

β̄ᾱ
,∑

i∈CO

Ni
αβNδ

iγ =
∑
j∈CO

Nδ
α jN

j
βγ . (89)

First, let us compare these identities with the bulk identities in
Eq. (86). Every identity in Eq. (89) has an analogous identity
in the bulk. However, one bulk identity is generally violated
in this context. Specifically, Nγ

αβ �= Nγ

βα in general, in contrast
to the identity Nc

ab = Nc
ba. Intuitively, this is because there is

no room to permute two domain wall sectors.15

There is an identity which relates the quantum dimensions
{dα} to the fusion multiplicities {Nγ

αβ}:

dαdβ =
∑

γ

Nγ

αβdγ . (90)

This identity is analogous to Eq. (87). It completely deter-
mines the set of quantum dimensions {dα} because the fusion
multiplicities satisfy Eq. (89). Then it follows that d1 = 1
and dα = dᾱ � 1 for ∀α ∈ CO. Furthermore, the quantum di-
mension dα is quantized, just like its bulk counterpart. This
completes the summary of the fusion properties of O-type
superselection sectors.

In terms of proofs, Eq. (90) follows from the same line
of argument explained in Sec. II. Also, the proofs of the
triviality of the vacuum and the associativity relation [the
first and fourth lines of Eq. (89)] are identical to their bulk
counterparts. We refer the readers to Ref. [41] for these proofs.

However, the proofs on the two properties involving the
antisectors [the second and the third lines of Eq. (89)] need to
be modified a bit.

1. Proofs related to antisectors

Below, we derive the fact that, for each α ∈ CO, there is a
unique antisector ᾱ ∈ CO, such that

N1
αβ = δβ,ᾱ = δα,β̄ ,

Nγ

αβ = N γ̄

β̄ᾱ
. (91)

To prove these facts, it will be convenient to instead prove
the following weaker statements:

(i) ∀α ∈ CO, ∃!−→α ,←−α ∈ CO s.t. N1
αβ = δβ,−→α = δ

α,
←−
β

;

(ii) Nγ

αβ = N
−→γ−→
β −→α .

Statement (i) means any α ∈ CO has a “left antisector” ←−α
and a “right antisector” −→α .

These two statements as a whole is weaker than Eq. (91).
Nevertheless, with the established triviality of the vacuum,
Nγ

1α = Nγ

α1 = δα,γ , we can derive Eq. (91) from these two

weaker statements. To see why, first note that
←−−→α = −→←−α = α,

which follows from statement (i) alone; this is because state-
ment (i) implies N1

α−→α = N1←−−→α −→α
= 1 and N1←−α α

= N1
←−α −→←−α

= 1.

Moreover, statement (i) and the triviality of the vacuum imply
that 1 = −→

1 = ←−
1 ; this is because statement (i) implies N1

1
−→
1

=
N1←−

1 1
= 1. Next, we choose γ = 1 and α = ←−

β for statement

(ii). We see that N1←−
β β

= N1−→
β β

= 1,∀β. Thus ←−α = −→α , ∀α ∈
CO. In other words, the left antisector and the right antisector

15This does not imply domain wall sectors are confined onto the
domain wall. They are not. See Sec. IX for an explanation of this
point.
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FIG. 30. (a) Merging extreme points associated with 1 ∈ CO and
α ∈ CO. (b) Merging extreme points associated with 1 ∈ CO and β ∈
CO.

are identical. Therefore there is a unique antisector for every
superselection sector in CO. We denote the unique antisector
of α as ᾱ. Plugging this result into the two statements, we
arrive at Eq. (91).

We have seen that we only need to prove the two statements
above in order to derive Eq. (91). Below, we provide these
proofs.

Let us first focus on statement (i), the uniqueness of the
antisector maps α → −→α and α → ←−α . The idea is similar to
the proof of proposition 4.9 of Ref. [41]. Specifically, we can
merge an extreme point carrying the sector α ∈ CO with an-
other extreme point carrying the sector 1 ∈ CO. See Fig. 30(a).
Here, the annulus that carries the sector α is inside the annulus
that carries 1. The existence of the merged state implies that
∀α, ∃β s.t. N1

αβ � 1. The entropy of the merged state can
be obtained in two different ways, leading to the following
equation:

2 ln dα = ln dα + ln(
∑

β

N1
αβdβ ), (92)

where we have used the fact that N1
1β = δβ,1. Equation (92)

further simplifies into

dα =
∑

β

N1
αβdβ. (93)

With the exact same approach, we can derive the following
identity:

dβ =
∑

α

N1
αβdα (94)

by considering the merging process in Fig. 30(b).16 For a cho-
sen α, we pick a β such that N1

αβ � 1. (As we have discussed,
such a choice always exists.) For such β, dα � dβ . Similarly,
for a chosen β, there must be at least one α such that N1

αβ � 1
and dβ � dα . Therefore dα = dβ if N1

αβ � 1. Obviously, these
two quantum dimensions cannot be equal to each other if for
the chosen α, N1

αβ � 1 for more than one choice of β, nor can
this happen if N1

αβ > 1. Therefore we conclude that statement
(i) is true.

16Unlike the bulk version of the proof, we cannot “rotate” the two-
hole disk on the domain wall to switch the two holes. This is why we
need the merging process Fig. 30(b).

FIG. 31. The overall picture of the proof of statement (ii).

As a byproduct of this analysis, we have also found that

dα = d←−α = d−→α . (95)

Now, let us prove statement (ii), namely Nγ

αβ = N
−→γ−→
β −→α . This

proof is similar to the proof of the bulk version (proposition
4.10 of Ref. [41]), but with some modifications.

The overall picture of the derivation is depicted in Fig. 31.
The density matrix in Fig. 31(a) is the unique element of
�1

α−→α (G), where G is the depicted subsystem. After taking a
partial trace, we merge this density matrix with the unique
element of �1

β
−→
β

(G′), where G′ is the subsystem on the right

side of Fig. 31(b). The resulting 4-hole disk W is depicted in
Fig. 31(c). The key object in the proof is the density matrix
obtained from this merging process, which we shall refer to as

ρ
(α−→α ;β

−→
β )

W .

To see why the merged state ρ
(α−→α ;β

−→
β )

W helps in the proof
of statement (ii), we consider its reduced density matrices
on subsystems GL, GM , and GR depicted in Fig. 31(d). In
general, while we have fixed the sectors α,−→α , β,

−→
β , the

sectors on the outer boundary of GL and GR are, in general,
a mixture. By inspecting the subsystem GM , we see that the
superselection sectors on the outer boundary of GL and GR

must fuse to identity. Thus we can denote the sectors as γ and−→γ respectively. While there can be multiple possible choices
of γ , we measure the sector −→γ on the outer boundary of GR
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whenever we measure the sector γ on the outer boundary of
GL. Therefore the probability of finding the sector γ on the
outer boundary of GL equals to the probability of finding the
sector −→γ on the outer boundary of GR. Formally, we can write
this fact as

P
(
γ |ρ (α−→α ;β

−→
β )

GL

) = P
(−→γ |ρ (α−→α ;β

−→
β )

GR
). (96)

The next step is to calculate both sides of Eq. (96). The
key observation is the fact that the reduced density matrices

of ρ
(α−→α ;β

−→
β )

W on GL and GR are the maximmum-entropy states
with the respective superselection sector choices. In other
words,

TrW \GL ρ
(α−→α ;β

−→
β )

W = ρ
α��β
GL

,

TrW \GR ρ
(α−→α ;β

−→
β )

W = ρ
−→
β ��−→α

GR
, (97)

where ρ
α��β
GL

and ρ
−→
β ��−→α

GR
can be obtained by merging two

annuli associated with the specified superselection sectors.
Let us study the consequence of Eq. (97), deferring the

proof of Eq. (97) to Appendix F. By using the fact that ρ
α��β
GL

is the maximum-entropy state consistent with the chosen sec-
tors α and β, we obtain

P
(
γ |ρ (α−→α ;β

−→
β )

GL
) = Nγ

αβdγ

dαdβ

. (98)

Similarly,

P
(−→γ |ρ (α−→α ;β

−→
β )

GR

) =
N

−→γ−→
β −→α d−→γ

d−→
β

d−→α
. (99)

Because dα = d−→α [see Eq. (95)], we conclude Nγ

αβ = N
−→γ−→
β −→α ,

as we claimed. This completes the proof of statement (ii).
In conclusion, we have justified Eq. (89).

B. Fusion onto the domain wall

In this section, we discuss the fusion rules of anyons, i.e.,
the bulk superselection sectors, onto the domain wall. We will
use a, b, c, . . . ∈ CP to denote the anyons on the P side and
x, y, z . . . ∈ CQ to denote the anyons on the Q side.

The fusion of anyons onto domain walls gives rise to fu-
sion spaces that involve the superselection sectors of the bulk
and the domain wall. One may consider moving an anyon
a ∈ CP onto the domain wall; moving an anyon x ∈ CQ onto
the domain wall; or alternatively, bringing a pair of anyons
a ∈ CP and x ∈ CQ onto the domain wall. These processes can
be formally written as

a =
∑

α

Nα
a α, (100)

x =
∑

α

Nα
x α, (101)

a × x =
∑

α

Nα
ax α, (102)

where the fusion multiplicities {Nα
a }, {Nα

x } and {Nα
ax} are again

non-negative integers. Here, α is in CO.
The fusion multiplicities have the following physical inter-

pretation. N1
a is relevant to the process of condensing anyon

P

Q

a
α

x

α
a

x

α

FIG. 32. Three basic subsystem types that are relevant to the
fusion of anyons onto the domain wall: (a) is relevant to {Nα

a }, (b) is
relevant to {Nα

x } and (c) is relevant to {Nα
ax}.

a onto the domain wall. What we mean by condensing is that
if N1

a � 1, it is possible to move an anyon a onto the domain
wall and annihilate it by a local process. This also means that
if N1

a � 1, we can create a single anyon a in the bulk with
a string operator attached to the domain wall. The physical
interpretation of N1

x is similar. A pair (a, x) with N1
ax � 1 can

be simultaneously annihilated (or created) in the vicinity of
the gapped domain wall. Similarly, Nα

a determines whether it
is possible to fuse an anyon a onto the domain wall and turn it
into a domain wall sector α ∈ CO.

The concrete rules that govern these processes can be de-
duced from three types of subsystems described in Fig. 32.
Repeating the analysis in Sec. VI A, we obtain the following
results.

(1) Fusion of the vacuum:

among
{
Nα

a

}
: Nα

1 = δα,1, (103)

among
{
Nα

x

}
: Nα

1 = δα,1, (104)

among {Nα
ax} : Nα

a1 = Nα
a , Nα

1x = Nα
x . (105)

(2) Relations between quantum dimensions and fusion
multiplicities:

da =
∑

α

Nα
a dα, (106)

dx =
∑

α

Nα
x dα, (107)

dadx =
∑

α

Nα
axdα. (108)

(3) Relation between a fusion space and an fusion space
formed by the antisectors:

Nα
a = N ᾱ

ā , (109)

Nα
x = N ᾱ

x̄ , (110)

Nα
ax = N ᾱ

āx̄. (111)

(4) Associativity conditions:

Nα
ax =

∑
β,γ

Nβ
a Nγ

x Nα
βγ , (112)

Nα
ax =

∑
β,γ

Nβ
x Nγ

a Nα
βγ , (113)
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FIG. 33. (a) A subsystem relevant to the fusion involving the
sectors N ∈ CN , U ∈ CU and α ∈ CO. (b) A subsystem relevant to
the fusion involving the sector U ∈ CU and α ∈ CO.

∑
c

Nc
abNγ

c =
∑
α,β

Nα
a Nβ

b Nγ

αβ, (114)∑
z

Nz
xyNγ

z =
∑
α,β

Nα
x Nβ

y Nγ

αβ, (115)∑
β,γ

Nα
βγ Nβ

axNγ

by =
∑
c,z

Nα
czN

c
abNz

xy. (116)

These identities are consistent with the proposal in the ex-
isting literature. For example, Eq. (116) implies the so called
stable condition of Ref. [16].

C. Fusions with N-type and U -type sectors

In this section, we discuss a few things related to the fusion
of N- and U -type sectors. Specifically, we consider the fusion
spaces {Nα

NU } and {Nα
U }, defined in Figs. 33(a) and 33(b),

respectively.
These fusions are a bit abstract, so one may wonder why

we consider them in the first place. A simple reason is that
the constraints on these fusion spaces enable us to prove some
fundamental properties of the simpler N-type and U -type par-
ton sectors. These sectors do not obey the ordinary fusion rule,
as we have briefly discussed in Sec. V B. However, we can still
derive nontrivial facts about their fusion by embedding those
sectors into the N- and U -type sectors (see Sec. IV C).

The most notable implication is Proposition VI.5, which
implies that the quantum dimensions of the partons, i.e., {dn},
are uniquely determined by two sets of fusion multiplicities
{Nγ

αβ} and {Nα
μ(n)}. In that sense, these quantum dimensions

are “quantized.” Moreover, unlike the N- and U -type sectors,
the N and U sectors do allow a conventional definition of
fusion space.

To study these fusion rules, let us begin by showing some
simple properties when one of the sectors involved is the
vacuum sector.

Proposition VI.1. Among the fusion multiplicities {Nα
NU },

we have

N1
1U = δU ,1 (117)

and

N1
N 1 = δN ,1. (118)

Furthermore, among the fusion multiplicities {Nα
U }, we have

Nα
1 = δα,1. (119)

P

Q

P

Q

1

P

Q

(a)

P

Q
1

P

Q

(b)

FIG. 34. (a) A two-step merging process for N = 1. It is useful
in the proof of N1

1U = δU ,1. (b) A merging process for U = 1. It is
useful in the proof of Nα

U=1 = δα,1.

The key idea of the proof is to use the properties of the
vacuum sector to design merging processes that can “fill” a
hole. See Fig. 34 for an illustration of the relevant merging
processes.

Proof. Let us first prove Eqs. (117) and (118). These two
proofs are analogous to each other, so we only discuss the
proof of Eq. (117). Recall that the fusion multiplicities {Nα

NU }
are associated with the subsystem in Fig. 33(a), where the
superselection sectors involved are α ∈ CO, N ∈ CN and U ∈
CU . To show N1

1U = δU ,1, it suffices to prove the following
statement. If α = 1 and N = 1, the density matrix of the blue
region in Fig. 33(a) is equal to the reduced density matrix
obtained from σ .

To see why this is the case, we consider the two-step
merging process shown in Fig. 34(a). This merging process
is possible when N = 1 is the vacuum sector. The first step
“fills” the N-shaped hole with the vacuum, by merging density
matrix over the subsystem on the top of Fig. 34 to the density
matrix obtained from the reference state. This is possible be-
cause N = 1; the density matrix on the surrounding N-shaped
region is identical to that of the reference state, satisfying the
requisite condition for the merging theorem (theorem II.2).
The second step fills part of the U -shaped hole and turns it into
a pointlike area intersecting with the domain wall. This step is
possible because N = 1 implies that one of the parton labels
of the sector U must be the vacuum. (More precisely, U carries
a pair of N-type parton sectors and a pair of U -type parton
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FIG. 35. (a) A merging process involving a pair of regions,
which carry 1 ∈ CO and N ∈ CN , respectively. (b) A merging pro-
cess involving a pair of regions, which carry 1 ∈ CO and U ∈ CU ,
respectively.

sectors. The N-type parton sector on the left is the vacuum
sector due to N = 1.)

After the two-step merging process, we obtain an element
of the information convex set on an O-shaped region. There-
fore the same O-type sector α ∈ CO must appear on both
boundaries of the O-shaped region, i.e., the annulus on the
bottom of Fig. 34(a). If α = 1, the hole can be filled. The end
result is the reduced density matrix of the reference state on a
disklike region on the domain wall. Therefore we must have
U = 1. Furthermore, the density matrix labeled by α = 1,
N = 1 and U = 1 in Fig. 33(a) is unique. This completes the
proof of Eq. (117).

The proof of Eq. (119) follows from a similar line of
reasoning. The merging process in Fig. 34(b) is possible when
U = 1. The end result is a disk on the domain wall. This
implies that the α ∈ CO in the original density matrix must
be the vacuum sector. Moreover, this density matrix is unique.
Therefore Eq. (119) holds. This completes the proof. �

Next, we show that there is a nontrivial isomorphism be-
tween CN and CU . If the gapped domain wall is trivial, this
result would be trivially true because the N-shaped and U -
shaped subsystems can be smoothly deformed into each other.
However, this fact is less obvious when the domain wall is
nontrivial.

Proposition VI.2. There is an isomorphism17

ϕ : CN → CU (120)

such that

N1
NU = δU ,ϕ(N ) (121)

and

dN = dϕ(N ). (122)

Proof. We will use the merging processes described in
Fig. 35, using the logic used in the proof of proposition 4.9
of Ref. [41].

We consider the merging process in Fig. 35(a), which
involves two sectors 1 ∈ CO and N ∈ CN . Note that any
N ∈ CN is allowed in the merging process. This implies that

17It is possible to define another isomorphism between CN and CU

by considering the mirror image of Fig. 35. This isomorphism can be
different from ϕ.

∑
U N1

NU � 1, ∀N ∈ CN . By calculating the entropy differ-
ence [between two sector choices (1, N ) and (1, 1)] in two
different ways, we find

2 ln dN = ln dN + ln
∑
U

N1
NUdU . (123)

The left-hand side is the entropy difference based on the
entropy on the N-shaped subsystem. The right-hand side is
obtained by solving a maximization problem on the merged
region. In the calculation of the right-hand side, we have
applied Eq. (117), which implies

∑
U N1

1UdU = 1. There is an
analogous equation for the merging process in Fig. 35(b). By
simplifying these two equations, we find

dN =
∑
U

N1
NUdU ,

dU =
∑
N

N1
NUdN . (124)

Equation (124) is a strong constraint. For a chosen N , pick
a sector U that satisfies N1

NU � 1. It follows from Eq. (124)
that dN � dU and dU � dN . We have used the fact that the
multiplicities are nonnegative integers and that the quantum
dimensions are positive. Therefore, for every choice of N ,
there is a unique U for which the fusion multiplicity obeys
N1
NU = 1. Moreover, we have dU = dN for this choice. For

the same N , a different choice of U gives N1
NU = 0.

Let ϕ be the map from CN to CU , mapping a sector N ∈ CN
to the unique sector U ∈ CU satisfying N1

NU = 1. ϕ is bijec-
tive because there is an inverse map obtained by the same
argument, choosing U instead of N first. This completes the
proof. �

For later purpose, it will be convenient to consider an
embedding μ : CN ↪→ CU , defined as μ = ϕ ◦ ηN . Here, ηN is
the embedding defined in Eq. (64). From Eqs. (69) and (122),
it follows that

dμ(n) = d2
n , ∀ n ∈ CN . (125)

There is an important subtlety about the fusion space Nα
U .

(See Fig. 33 for the relevant subsystems.) For some U ∈ CU ,∑
α Nα

U may vanish. This can happen when CU contains two
or more elements. Recall that each U ∈ CU can be labeled by
four parton sectors, two of which are U -type parton sectors.
If a sector U labels an extreme point of the subsystem in
Fig. 33(b), the two U -type parton sectors must be in the
vacuum because the disk that sits in the slot of the U -shaped
susbsystem is in the reference state. Importantly, this implies
that generally

dU �=
∑

α

Nα
Udα. (126)

However, the following proposition is true.
Proposition VI.3. For every U that satisfies

∑
α Nα

U � 1,
the quantum dimension of U is given by

dU =
∑

α

Nα
Udα. (127)

Proof. We consider the merging process in Fig. 36. Note
that any U such that

∑
α Nα

U � 1 is allowed. We can calculate
the entropy difference between an arbitrary (allowed) choice
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FIG. 36. Merging of a disk with a U -shaped region. This U -
shaped region carries a sector U ∈ CU that satisfies

∑
α Nα

U � 1.

of U and the vacuum (1 ∈ CU ). There are two different ways
to do the same calculation. After comparing them, we can
derive

2 ln dU = ln dU + ln
∑

α

Nα
Udα. (128)

The left-hand side of this equation is the entropy difference
calculated using the entropy of the U -shaped subsystem. The
right-hand side is calculated by solving a maximization prob-
lem on the merged region. In the derivation of Eq. (128), we
have applied Eq. (119) to conclude that

∑
α Nα

1 dα = 1. By
simplifying Eq. (128), we obtain Eq. (127). �

The following statement will be useful for proving the
“quantization” of dn.

Proposition VI.4. The multiplicities satisfy

N1
U =

∑
n∈CN

δU ,μ(n). (129)

Proof. If N1
U � 1, then ∃!n ∈ CN such that U = μ(n). This

follows from Eq. (121). Furthermore, when U = μ(n), we can
“fill” the hole with the sector ηN (n). The associated merging
process can be inverted, which implies that N1

μ(n) = 1. This
completes the proof. �

From this proposition, we deduce the quantization of dn.
Proposition VI.5. The quantum dimensions of the N-type

parton sectors, {dn}n∈CN are uniquely determined by two sets
of integers {Nγ

αβ} and {Nα
μ(n)} according to

d2
n =

∑
α

Nα
μ(n)dα. (130)

Furthermore, dn � 1 and dn cannot be in the interval (1,
√

2),
∀n ∈ CN .

Proof. Note that
∑

α Nα
μ(n) � N1

μ(n). Moreover, N1
μ(n) = 1

because of Eq. (129). It follows that

d2
n = dμ(n)

=
∑

α

Nα
μ(n)dα.

(131)

The first line follows from Eq. (125). The second line follows
from Eq. (127). Recall that {dα} is uniquely determined by
the set of fusion multiplicities {Nγ

αβ} according to Eq. (90).
Therefore {dn}n∈CN are uniquely determined by two sets of
integers {Nγ

αβ} and {Nα
μ(n)}.

Note that, d2
n = 1 + ∑

α �=1 Nα
μ(n)dα , due to N1

μ(n)d1 = 1.
Furthermore, {Nα

μ(n)} are non-negative integers and dα � 1.

Therefore dn � 1 and no value in the interval (1,
√

2) is al-
lowed for dn. This completes the proof. Obviously, a similar
statement applies to du as well. �

VII. QUASIFUSION RULES

As we have briefly discussed already, parton sectors do not
have the familiar notion of fusion space; see Sec. V B. This
phenomena, which we refer to as quasifusion, stems from the
difference between Figs. 27 and 25. The key point is that the
three N-shaped subsystems in Fig. 27 do not constitute ∂M.
On the other hand, in Fig. 25, the three annuli do constitute
the entire ∂�. Therefore the three N-shaped subsystems do
not generally fix the sector in ∂M. When there is more than
one sector in ∂M, for the chosen parton labels, multiple fusion
spaces are involved in the description of quasifusion.

However, this does not mean that the quasifusion of parton
sectors can be completely arbitrary. In this section, we will
explain the basic rules that the parton sectors must obey when
they are fused together, focusing on the similarities and differ-
ences with the ordinary rule of fusion. We will refer to these
rules as quasifusion rules.

Let us first say that there are some similarities between the
fusion rule and the quasifusion rule. In particular, the notion of
antisector is well-defined for the parton sectors as well. Given
a sector n ∈ CN , one can show that there is a unique sector
n̄ ∈ CN such that

dn = dn̄ and ¯̄n = n. (132)

Similarly, we can define the antisectors for u ∈ CU as well. We
will prove these statements in Appendix E.

To further study the quasifusion rules, it is convenient
to introduce the following sets. Let us define �n′′

nn′ (M ) with
n, n′, n′′ ∈ CN to be the subset of �(M ) consisting of elements
that reduce to the extreme points of these three sectors on
the three N-shaped subsystems.18 With this definition, one
can verify the following proposition. We leave the proof in
Appendix E 1.

Proposition VII.1. The convex set �n′′
nn′ (M ) with n, n′, n′′ ∈

CN satisfies the following properties.
(1) Every extreme point of �(M ) is contained in some

�n′′
nn′ (M ).
(2) ∪n′′�n′′

nn′ (M ) is nonempty for ∀ n, n′ ∈ CN .
(3) �n′′

n1(M ) is the empty set for n′′ �= n. For n′′ = n, it has
a unique element.

(4) �n′′
1n′ (M ) is the empty set for n′′ �= n′. For n′′ = n′, it

has a unique element.
(5) �1

nn′ (M ) is the empty set for n′ �= n̄. For n′ = n̄, it has
a unique element. �

Physically, the content of proposition VII.1 should be
viewed as a relaxation of the fusion rule. For instance, one
can see that two parton sectors can always fuse into some
parton sector; see the second statement of proposition VII.1.
Moreover, the triviality of the vacuum sector is stated in the
third and the fourth result. The fifth result states that a parton
sector and its antisector can fuse to the vacuum.

18Note that �n′′
nn′ (M ) may be an empty set for some choices of

n, n′, n′′ ∈ CN .
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Note that �n′′
nn′ (M ) is similar to �c

ab(Y ) in that it may store
quantum information. However, unlike �c

ab(Y ), �n′′
nn′ (M ) is

generally not isomorphic to a state space of some Hilbert
space. Moreover, the entropy difference between two extreme
points ρ ∈ �n′′

nn′ (M ) and σ ∈ �1
11(M ) can be

S(ρ) − S(σ ) �= ln dn + ln dn′ + ln dn′′ , (133)

unlike the extreme points in �c
ab(Y ).

VIII. DOMAIN WALL TOPOLOGICAL
ENTANGLEMENT ENTROPY

In this section, we introduce and study the domain wall
topological entanglement entropies. These are order param-
eters that can detect the presence of gapped domain walls.
Moreover, for the class of states that we considered, these
order parameters are invariant under a small deformation of
the subsystem. The following is a list of objects that one can
obtain directly from the ground-state entanglement entropy.

(1) DN =
√∑

n∈CN
d2

n .

(2) DU =
√∑

u∈CU
d2

u .

(3) DO =
√∑

α∈CO
d2

α .

During this analysis, we also prove that

D2
O =

√∑
a∈CP

d2
a

√∑
x∈CQ

d2
x . (134)

Furthermore, the total quantum dimension of the snake sectors

in CS , defined as DS =
√∑

s∈CS
d2

s , and the total quan-

tum dimension of the sectors in C[1,1]
O , defined as DO[1,1] =√∑

α∈C[1,1]
O

d2
α , are encoded in the ground state as well. This

is because they can be expressed as

DS = DNDU , (135)

DO[1,1] = DO

DNDU
, (136)

where Eq. (135) follows from Eqs. (62) and (136) follows
from Eq. (56).

These derivations are quite similar to each other. To start
with, let us consider

Stopo,N := (SBC + SCD − SB − SD)σ , (137)

where the subsystems B, C, abd D are described in Fig. 37(a).
We obtain a number of (equivalent) expressions for this

quantity; see proposition VIII.1. As a byproduct of this analy-
sis, we also obtain a nontrivial identity:∑

n∈CN

d2
n =

∑
a∈CP

N1
a da. (138)

Proposition VIII.1.

exp (Stopo,N ) = D2
N =

∑
a∈CP

N1
a da. (139)

Moreover,

Stopo,N = I (A : C|B)σ (140)

P

Q
C

B

D

(a)

A

B

C

(b)

FIG. 37. The total quantum dimension of N-type parton sectors
DN shows up in the ground-state entanglement entropy for both of
these partitions. (a) Stopo,N = (SBC + SCD − SC − SD )σ . (b) Stopo,N =
I (A : C|B)σ . This is a domain wall version of the Levin-Wen partition
[36].

for the subsystem A, B, and C shown in Fig. 37(b).
Proof. First, we observe that the entropy combination in

Eq. (137) can be rewritten as a conditional mutual informa-
tion. For the partitions in Fig. 38(a),

Stopo,N = I (A : C|B)σ , (141)

Stopo,N = I (A : C|D)σ . (142)

To derive Eq. (141), we use the fact that SAB = SCD + SE

and SABC = SD + SE for the reference state.19 These relations
follow from the domain wall version of A0 and the fact that
we could deform the regions with other axioms and SSA. A
similar derivation applies to Eq. (142).

Let τABC = σAB �� σBC . It follows that

Stopo,N = I (A : C|B)σ

= S(τABC ) − S(σABC )

= ln

( ∑
U∈CU

N1
UdU

)

= ln

(∑
n∈CN

dμ(n)

)

= ln

(∑
n∈CN

d2
n

)
= 2 lnDN . (143)

The first line is Eq. (141). The second line follows from the
fact that τABC and σABC have identical reduced density matri-
ces over AB and BC and that I (A : C|B)τ = 0. In the third line,
we have computed the maximum entropy over the set of den-
sity matrices with a sector 1 ∈ CO and subtracted it from the
entanglement entropy of the reference state. [See Fig. 38(b).]
The fourth and the fifth line follows from Eqs. (129) and
(125), respectively. The last line follows from the definition
of DN .

19If the reference state is pure, E refers to the complement of
ABCD. If the reference state is a mixed state, we purify the reference
state and let E include the purifying system.
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P

Q
C

B

D

A
E

(a)

U

1

(b)

a

1

(c)

FIG. 38. (a) Subsystems A, B, C, D and E . (b) The merging
process that generates τABC = σAB �� σBC , a state involving different
choices of U . (c) The merging process that generates λACD = σAD ��
σCD, a state involving different choices of a.

For the second half of the main claim, let λACD = σAD ��
σCD. It follows that

Stopo,N = I (A : C|D)σ

= S(λACD) − S(σACD)

= ln

(∑
a

N1
a da

)
. (144)

The second line follows from the fact that λACD and σACD have
identical reduced density matrices over AD and CD and that
I (A : C|D)λ = 0. In the third line, we computed the maximum
entropy over the set of density matrices with a sector 1 ∈ CO

and subtracted it from the entanglement entropy of the refer-
ence state. [See Fig. 38(c).]

From Eqs. (143) and (144) we conclude Eq. (139). For
the subsystem choice in Fig. 37(b), the mutual information
is I (A : C|B)σ = 2 lnDN , which justifies Eq. (140). �

Similarly, we can define an analogous quantity Stopo,U by
considering a set of subsystems that are mirror images of the
aforementioned subsystems along the domain wall.

Let us emphasize that the pair of domain wall topological
entanglement entropies (Stopo,N and Stopo,U ) contains genuine
data about the gapped domain wall. These quantities are not
completely determined by the bulk data that defines the phase
P and Q. Physically, there are two ways to interpret Stopo,N .
An interpretation of Stopo,N = ln (

∑
a∈CP

N1
a da) is that Stopo,N

measures the total amount of anyon condensation from P
to the gapped domain wall. Alternatively, one can look at
Stopo,N = ln (

∑
n∈CN

d2
n ) and say that it measures the total

quantum dimension of the N-type parton sectors. Both are
valid interpretation of the same result.

Another interesting point is that, by definition, Stopo,N is the
amount by which the axiom A1 breaks down in the presence
of a gapped domain wall. What is interesting is that the axiom
A1 cannot be broken in an arbitrary way. Instead, there has to
be a minimal “gap,” which is bounded from below by ln 2.

In fact, we can consider another quantity Stopo,O. Unlike
the previous ones, Stopo,O characterizes the total amount of
condensation of anyon pair a ∈ CP and x ∈ CQ to the gapped
domain wall. Let us define Stopo,O as the entropy combination
on the reference state

Stopo,O := (SBC + SCD − SB − SD)σ , (145)

where B, C, and D are shown in Fig. 39(a). This quantity is
completely determined by the bulk data, unlike Stopo,N and
Stopo,U ; see proposition VIII.2.

P

Q
C

B

B

DD

(a)

B

B

CA

(b)

FIG. 39. (a) Subsystems appearing in the definition of Stopo,O.
(b) A Levin-Wen type partition on the domain wall.

Proposition VIII.2.

exp (Stopo,O) = D2
O =

∑
a∈CP,x∈CQ

N1
axdadx. (146)

Moreover,

exp (Stopo,O) =
√∑

a∈CP

d2
a

√∑
x∈CQ

d2
x (147)

and

Stopo,O = I (A : C|B)σ (148)

for the A, B, and C in Fig. 39(b).
Proof. At a technical level, the proof of Eqs. (146) and

(148) are similar to the proof of proposition VIII.1. The only
difference is the choice of subsystems, shown in Fig. 40.

The derivation of Eq. (147) involves the comparison of two
calculations of the entropy of the maximum-entropy state in
�(F ), where F = ACD for the partition in Fig. 40(a). We
denote the maximum-entropy state as ρ̃F .

One way to calculate the entropy difference S (̃ρF ) − S(σF )
is to solve a maximization problem. This involves writing ρ̃F

as a convex combination involving different choices of α, a,
x sectors. By applying the entropy-maximization procedure,
which has been repeatedly used in Sec. IV, we find

S (̃ρF ) − S(σF ) = ln

⎛⎝ ∑
a∈CP,x∈CQ

∑
α∈CO

Nα
axdadxdα

⎞⎠
= ln

(∑
a∈CP

d2
a

)
+ ln

⎛⎝∑
x∈CQ

d2
x

⎞⎠. (149)

In the second line, we have applied Eq. (108) to simplify the
sum.

P

Q
C

B

B

DD

A
E

(a)

α ᾱ

1

(b)

a

x

1

(c)

FIG. 40. (a) Subsystems A, B, C, D and E . (b) The merging
process that generates the state σAB �� σBC . Different choices of
α ∈ CO exist in the state. (c) The merging process that generates the
state σAD �� σCD. Different choices of a and x exist in the state.
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U (a,ā)

a ā

FIG. 41. A unitary string operator U (a,ā) in the bulk. It creates an
anyon a and its antiparticle ā.

The second way to calculate the entropy difference
S (̃ρF ) − S(σF ) is to calculate the entropy difference on sub-
systems. For this purpose, we use the merging technique.
Consider a third state λF := σAD �� σCD obtained by the
merging process in Fig. 40(c). We further observe that the
state ρ̃F is a merged state, namely ρ̃F = ρ̃AD �� σCD. Here,
ρ̃AD is the maximum-entropy state of �(AD). Note that
the subsystem involved in this merging process is again
Fig. 40(c); the only difference lies in the difference of the state
on �(AD). Instead of computing S (̃ρF ) − S(σF ) directly, we
can compute the following two quantities:

S (̃ρF ) − S(λF ) and S(λF ) − S(σF ). (150)

Because the merging with the disklike region CD does not
change the entropy difference, the first quantity in Eq. (150)
equals to ln (

∑
α∈CO

d2
α ). The value of the second quantity

in Eq. (150) can be computed by the entropy-maximization
procedure. The end result is ln(

∑
a∈CP,x∈CQ

N1
axdadx ), leading

to the following result:

S (̃ρF ) − S(σF ) = ln

(∑
α∈CO

d2
α

)
+ ln

⎛⎝ ∑
a∈CP,x∈CQ

N1
axdadx

⎞⎠.

(151)

By comparing Eqs. (149) and (151) and then using Eq. (146),
one can verify Eq. (147). �

IX. STRING OPERATORS

In the bulk, an anyon and its antiparticle can be created by a
stringlike unitary operator; see the operator U (a,ā) in Fig. 41.
In fact, such a unitary operator can be deformed freely. The
deformability of these operators follow from axiom A0 and
A1 [41], which were briefly discussed in Sec. II.

Similarly, we can establish the existence of stringlike oper-
ators in the vicinity of gapped domain walls. The underlying
logic is similar to the discussion in Appendix H of Ref. [41].
We will explain how that analysis can be applied to our setup,
focusing on the physical meaning. A pair of domain wall
excitations α ∈ CO and ᾱ ∈ CO can be created by a stringlike
unitary operator U (α,ᾱ); see Fig. 42(a). Note that, in general,
the support of the string stretches into both sides of the bulk.
However, the support of this operator can be restricted further
to one side if α is either in C[n,1]

O or C[1,u]
O . In the former case,

the string can be restricted to P; in the latter case, the string
can be restricted to Q. See Figs. 42(b) and 42(c).

The domain wall superselection sectors in CO are defined
in the vicinity of the domain wall. However, we should not
interpret them as excitations confined to the domain wall. As
illustrated in Fig. 43, anyons in the bulk can carry a domain
wall sector as well. That sector makes sense if we perform a

P

Q
U (α,ᾱ)

α ᾱ
(a)

P

Q

(b)

P

Q

(c)

FIG. 42. (a) A unitary string operator U (α,ᾱ) near the gapped
domain wall. It can create a general domain wall excitation pair α

and ᾱ, where α ∈ CO. (b) The support of U (α,ᾱ) can be restricted to
P, when α ∈ ∪n∈CN C[n,1]

O . (c) The support of U (α,ᾱ) can be restricted
to Q, when α ∈ ∪u∈CU C[1,u]

O .

measurement on a region that is (i) anchored on the domain
wall and (ii) surrounding the anyon.

Once we create an anyon with a superselection sector a
[using a string operator U (a,ā) shown in Fig. 43(a)], the do-
main wall sector for that anyon will be generally indefinite.
The probability of finding a sector α ∈ C[n,1]

O on the annulus
around the dotted circle in Fig. 43(a) can be computed. The
result is

P(a→α) = Nα
a dα

da
. (152)

On the other hand, if we apply a string operator that can
touch the domain wall, e.g., the string operator Ũ (a,ā) shown in
Fig. 43(b), the anyon with a superselection sector a can carry
any sector α ∈ C[n,1]

O that has Nα
a � 1. The specific sector α

depends on the choice of the string operator. This sector can be
detected on the annulus around the dotted circle in Fig. 43(b).

We can also identify the set of string operators that connect
a bulk excitation and a domain wall excitation; see Fig. 44.
Specifically, there exists a set of string operators {U (ā,α)z} that
creates ā ∈ CP and α ∈ CO if Nα

a � 1. The label z is introduced
to parametrize the states in a Nα

a dimensional Hilbert space.
For the special case Nα=1

a � 1, it is possible to choose the

P

Q

U (a,ā)

a ā

(a)

P

Q

Ũ (a,ā)

a ā

(b)

FIG. 43. Detecting the domain wall sector carried by an anyon a
with a measurement on the dotted circle. In the two figures, the pair
of anyons a and ā are created in two ways, which are generically
inequivalent. (a) The string U (a,ā) is in the bulk. (b) The string Ũ (a,ā)

touches the domain wall.
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P

Q

ā

α

U (ā,α)z

ā

U (ā,1)z a

x

U (a,x)z

FIG. 44. Three sets of string operators {U (ā,α)z }, {U (ā,1)z }, and
U (a,x)z . The label z parametrize the corresponding fusion space. A
string operator U (ā,α)z that creates ā and α exists when Nα

a � 1. A
string operator U (ā,1)z that creates ā exists when N1

a � 1. A string
operator U (a,x)z that creates a and x exists when N1

ax � 1.

string operators such that no excitation is created on the do-
main wall. For the set of string operators {U (ā,1)z} in Fig. 44,
the strings can be deformed freely, including the endpoint on
the domain wall; note that the string cannot detach from the
domain wall.

Similarly, there exists a set of string operators {U (a,x)z} for
any pair of anyons a ∈ CP and x ∈ CQ that satisfies N1

ax � 1;
see Fig. 44. Here, z parametrize the state in a N1

ax dimensional
Hilbert space. Such a string can simultaneously create an
anyon a on the P side and an anyon x on the Q side. This
type of string is related to the phenomena of tunneling an
anyon through the wall. In general, although all anyons can
fuse onto the domain wall, only a subset can condense on (or
tunnel through) the domain wall.

X. DISCUSSION

In this paper, we have observed a remarkably rich structure
of many-body quantum entanglement that arises from our
simple assumptions (Fig. 1). The notion of superselection
sectors, fusion spaces, and fusion multiplicities in the vicinity
of a gapped domain wall were all deduced from these as-
sumptions. Moreover, we derived a set of nontrivial identities
relating these objects. These results extend the bulk version of
the entanglement bootstrap method [41] to a broader physical
context.

While some of these results are known, others are new. In
particular, we have identified a new type of arguably funda-
mental superselection sector called the parton sector. While
prior studies did not necessarily exclude the possibility of such
sectors, parton sectors provide more fine-grained information
about the superselection sectors on the gapped domain wall.
This is because they subdivide the known superselection sec-
tors for the pointlike excitations on the domain wall [12,15].

We could also derive an expression for the domain wall
topological entanglement entropy, which may prove useful for
detecting the presence of nontrivial domain walls numerically.
A more in-depth discussion of this will appear in our compan-
ion paper [42].

The main philosophy behind these derivations was simple.
We assume that the subleading contribution to the entangle-
ment entropy obeys a set of sensible constraints but do not
assume anything more than that. What is surprising is that
merely specifying these rules constrain the subleading terms

so strongly that we can derive a large number of nontrivial
constraints. Moreover, these constraints are strong enough
to imply that fundamental objects such as the quantum di-
mensions cannot have an arbitrary value; for example, the
quantum dimensions of the parton sectors cannot possess
value in the range of (1,

√
2). In other words, these values

are “quantized.”
For deriving the fusion rules, the essential observation

seems to be the following. Given any sufficiently thick
subsystem �, an extreme point of �(�) always carries a
well-defined set of sectors on the thickened boundary of �.
Furthermore, once the sectors in the thickened boundary of
� are fixed, the remaining degrees of freedom form a convex
subset of �(�). This subset is isomorphic to the state space
of some finite-dimensional Hilbert space. As such, it makes
sense to refer to them as fusion spaces. One can relate the
superselection sectors defined over different subsystems by
either smoothly deforming one subsystem to another, merging
the subsystems, or reducing to a smaller subsystem.

The key advantage of this approach is that the basic
emergent laws that govern the low-energy excitations of topo-
logically ordered systems are derived from our principle that
has been elucidated in Fig. 1. This led us to the discovery of
parton sectors, which would have been difficult to envision
otherwise.

It will be good to understand the mathematical framework
that can accurately describe our findings. This framework
should naturally explain, among other things, the parton sec-
tors, all kinds of composite sectors as well as the quasifusion
rules of the parton sectors. The number of snake sectors
is unbounded. It is not clear to us how to determine them
from a finite set of data in general. In ordinary fusion rule,
the state space in which two sectors fuse to another sector
is isomorphic to the state space of some finite-dimensional
Hilbert space. For the quasifusion of parton sectors, the state
space in which two sectors “fuse” to another parton can be
a convex hull of more than two state spaces, each of which
is isomorphic to the state space of some finite-dimensional
Hilbert space. In other words, there is a piece of information
about the “composite charge” that remains unspecified. Would
category theory continue to be the right framework to describe
these properties? We do not know the answer to this question.

We deduced our results from the axioms in Fig. 1. Because
the axioms are expected to hold on very general classes of
physical systems, including the gapped domain wall between
2D chiral phases, our results are expected to hold with the
same generality. Nonetheless, readers may wonder whether
nontrivial parton sectors exist in known solvable models for
gapped domain walls [11,12]. Our theory predicts that they
do because, one can verify our axioms and the fact that Stopo,N

or Stopo,U is nonzero for some of these models.20

For future work, closely related physical setups can be
studied. A codimension-2 defect can separate two different

20In particular, we can consider the models described in Sec. 6
of Ref. [11], which depends on a finite group U ⊆ G × G′ and a
2-cocycle. If we let U = {(k, k) : k ∈ K}, where K is a subgroup of
both G and G′ and let the 2-cocycle be that in the trivial class, then
one can verify Stopo,N = ln |G|

|K| and Stopo,U = ln |G′ |
|K| .
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gapped domain walls. As a special case, if the two topolog-
ically ordered systems are identical 2D phases, the gapped
domain wall may have endpoints. If, in addition, the domain
walls are transparent, the endpoints are isolated pointlike re-
gions that break condition A1; these endpoints are topological
defects [50]. Our approach can be generalized to accommo-
date these physical situations. We also expect our approach to
be generalized to the gapped domain walls between higher-
dimensional topologically ordered systems.

Another direction to pursue is the “braiding properties”
of these sectors. For example, what kind of anyons can dis-
appear on a gapped domain wall? What are the consistency
conditions the domain wall excitations have to satisfy that are
beyond the fusion rules? If the two phases that lie on each
side of the domain wall are both nontrivial, can we “factorize”
the boundary version of the Verlinde formula [30] further
into simpler ones? What are the necessary conditions the two
phases have to satisfy for the gapped domain wall to exist?
Can we show the chiral central charge of the two phases must
match from merely the axioms in Fig. 1? Answers to these
questions can be nontrivial. Progress in this direction may be
made from a generalization of the method in Ref. [51], which
derives the mutual braiding statistics of anyons from the same
set of axioms.
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APPENDIX A: EXTENSIONS OF AXIOMS

In this section, we explain why the axioms described in
Fig. 1 implies that the same set of conditions hold at an ar-
bitrarily large scale. The proof of this statement is essentially
identical to the proof of the analogous statement in Ref. [41].
These are straightforward consequences of the strong subad-
ditivity of entropy [48].

In this Appendix, we shall refer to the entropy conditions
in Fig. 1 in red color as bulk or domain wall version of A0,
and we refer to the entropy conditions in Fig. 1 in green
color as bulk and domain wall version of A1. The fact that
conditions A0 and A1 hold on arbitrarily large length scales in
the bulk is derived in proposition 3.3 of Ref. [41]. Therefore
we shall focus on the extension of the domain wall version
of conditions A0 and A1. The ideas behind these proofs are
similar.

First, let us study how the domain wall version of axiom
A0 can be extended. We want to show

(SC + SBC − SB)σ = 0, (A1)

P

Q C

B

d c b

(a)

C

B

d
c
b

(b)

FIG. 45. The extension of the domain wall version of A0. In both
figures, d ⊂ C and bc ⊂ B. For (a), the green disk bcd is a partition
for the domain wall version of axiom A1. For (b), the green disk bcd
is a partition for the bulk version of axiom A1.

for large B and C that is topologically equivalent to the red
disk BC in Fig. 1.

It suffices to consider two ways of deforming the subsys-
tem. First, consider enlarging B to BB′ ⊃ B while keeping C
fixed. We will see that

(SC + SCBB′ − SBB′ )σ = 0. (A2)

To see why this condition holds, we note that

(SC + SCBB′ − SBB′ )σ � (SC + SCB − SB)σ

= 0. (A3)

The first line follows from SSA. In the second line, we ap-
plied the domain wall version of condition A0 on BC. On the
other hand, SSA implies that (SC + SCBB′ − SBB′ )σ � 0. Thus
Eq. (A2) holds.

Secondly, consider deforming the boundary between B
and C so that C is enlarged while BC as a whole remains
unchanged; see Fig. 45 for an illustration. More precisely,
we consider a disk in green color, divided into b, c, and d .
Here, c ⊂ B, attached to the boundary between B and C, is
sufficiently small such that there are subsystems d ⊂ C and
b ⊂ B that surrounds c. We have

(SCc + SBC − SB\c)σ � (SCc − SB\c + SB − SC )σ

� (Sdc + Sbc − Sd − Sb)σ

= 0. (A4)

In the first line, we applied the domain wall version of the
condition A0 for BC. In the second line, we used SSA. In
the third line, we applied axiom A1 to the partition bcd in
Fig. 45(a), and applied the domain wall version of axiom A1
to the partition bcd in Fig. 45(b).

This argument implies that we can expand C into the bulk
and also along the domain wall so long as we can choose an
appropriate green disk to apply our axioms (versions of A1).

Here are a few remarks. The green disk formed by the
union of b, c and d has a radius at most r so that our axioms
can apply. B must be thick enough so that b and c together
is a subset of B. Moreover, the boundary between b and d
should not cross the domain wall, as we did not make any
assumptions about the entanglement entropies of such sub-
systems. We emphasize that we do not attempt to exhaust all
possible ways of enlarging C. Nevertheless, the deformations
shown in Fig. 45 provide at least one way of enlarging C from
a small-sized subsystem to an arbitrarily large one. Therefore
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FIG. 46. The extension of the domain wall version of axiom A1.
On each green disk, a version of axiom A1 is used to show that we
can enlarge C to include the central area (c) of the green disk.

the deformations we have explained are enough to accomplish
our proof.

Now, let us move onto the enlargement of the domain
wall version of axiom A1. Using SSA, one can again see
that the axiom continues to hold when we expand B or D
whilst fixing C. It remains to consider two cases: deforming
the boundary between B and C while keeping both BC and
D fixed and deforming the boundary between C and D while
keeping both CD and B fixed. The underlying arguments are
practically identical, so we just consider the first case and omit
the argument for the second case.

The idea is again to find green disks (of radius r) on which
we can apply a version of A1. As illustrated in Fig. 46, there
are three (inequivalent) possibilities. By using SSA, we can
show that it is possible to enlarge C by adding the central area
of the green disk while preserving the boundary version of
entropy condition A1. These types of deformations are all we
need to deform a small C to an arbitrarily large one, with a
position of our choice.

One may wonder why we did not discuss the deformation
of the boundary between B and D. While we can include
more partitions to achieve these, that is unnecessary. When
we enlarge the subsystems, we can enlarge them in such a way
that the boundary between B and D is the correct one. This is
possible because, when we expand B and D while keeping C
fixed, the same axiom holds independent of how we expand
them. This completes the proof of the extensions of axioms.

APPENDIX B: ISOMORPHISM THEOREM

The proof of the isomorphism theorem (theorem III.1) is
also very similar to its bulk analog in Ref. [41]. We briefly
sketch the main idea, focusing on how the arguments of
Ref. [41] can be applied to our setup.

The main idea is to use versions of axiom A1 to smoothly
deform the region by a sequence of “small” deformations
called elementary step of deformation. A finite sequence of el-
ementary steps is a path that connects a pair of regions that can
be separated far apart. This way, we establish a well-defined
notion of smooth deformation. The isomorphism theorem
states that the information convex sets associated with a pair
of regions are isomorphic if the pair can be connected by a
path.

Let us consider the elementary steps illustrated in Fig. 47.
For illustration purpose, an annulus topology is shown. How-
ever, the argument applies more generally. Consider the
information convex sets �(AB) and �(ABC) for the subsys-

P

Q

A
B

C A

BC

FIG. 47. For the proof of the isomorphism theorem. For the par-
titions in this figure, I (A : C|B) = 0 for any ρABC ∈ �(ABC). For (a),
this fact follows from the bulk version of axiom A1. For (b), this fact
follows from the domain wall version of axiom A1.

tem choice shown in either Fig. 47(a) or Fig. 47(b). Here, the
deformation of region is AB � ABC.

Note that the usage of axiom A1 in this figure is similar
to that in the proof of the extension of axioms (Appendix A).
However, the proof of the isomorphism theorem turns out to
be much more subtle and intricate. The subtlety is due to the
fact that we consider the information convex set rather than
the reference state. We will discuss this subtlety as we go.

We wish to show �(AB) and �(ABC) are isomorphic,
denoted as �(AB) ∼= �(ABC), by which we mean the follow-
ing.

(1) The partial trace TrC and the Petz map21 Eσ
B→BC are

maps between �(AB) and �(ABC):

TrCρABC ∈ �(AB), ∀ρABC ∈ �(ABC), (B1)

Eσ
B→BC (ρAB) ∈ �(ABC), ∀ρAB ∈ �(AB). (B2)

(2) The following two operations are identity maps on the
respective information convex set:

Eσ
B→BC ◦ TrC : �(ABC) → �(ABC), (B3)

TrC ◦ Eσ
B→BC : �(AB) → �(AB). (B4)

This establishes the fact that TrD and Eσ
B→BC are bijections

between �(AB) and �(ABC).
(3) The entropy difference and distance measures are pre-

served under the isomorphism.
Equations (B1) and (B3) are simple to derive. Equation

(B1) follows from the definition of the information convex
set. Equation (B3) follows from the fact that I (A : C|B)ρ = 0
for any ρABC ∈ �(ABC). Under this condition, the Petz map
(Eσ

B→BC) is a quantum channel that recovers the state ρABC

from ρAB [52].
The preservation of entropy difference and distance mea-

sure is easy to establish once the isomorphism is established.
The preservation of entropy difference follows from the con-
ditional independence of I (A : C|B)ρ = 0 for any ρABC ∈
�(ABC) and that TrAρABC = σBC for the partitions in Fig. 47.
The preservation of distance measure is a consequence of the
fact that distance measures are monotonic under the action of

21The Petz map is a quantum channel, which has an explicit expres-

sion Eσ
B→BC (XAB) = σ

1
2

BCσ
− 1

2
B XABσ

− 1
2

B σ
1
2

BC on the support of σBC .
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quantum channels; both TrD and Eσ
B→BC are quantum chan-

nels, and they reverse each other on the information convex
sets.

The subtle part of the proof is the justification of Eqs. (B2)
and (B4). If every ρAB ∈ �(AB) has an “extension” in
�(ABC), which has ρAB as its reduced density matrix, then
both Eqs. (B2) and (B4) follow. However, the existence of
this extension is part of what we need to prove. (Recall that
we cannot use the isomorphism theorem at this point because
we are trying to prove it.)

The rest of this section is devoted to a sketch of the ex-
istence of this extension. How to show that for any ρAB ∈
�(AB), there is a density matrix on a larger region ABC
that matches it? Furthermore, how do we show this extension
ρABC belongs to �(ABC)? The key technique is the merging
lemma (lemma II.1) and the merging theorem (theorem II.2).
Specifically, we can prove that for every ρAB ∈ �(AB) there
exists an element ρABC ∈ �(ABC) such that TrCρABC = ρAB

so long as AB is thick enough. The requirement that AB is
thick enough is for the purpose of avoiding potential patho-
logical counterexamples.22

The merging lemma provides a way to generate a density
matrix on the larger region ABC that is consistent with ρAB; the
merging theorem guarantees that the resulting density matrix
is an element of �(ABC). This is why the extension exists.
This completes the sketch of the proof of the isomorphism
theorem.

Finally, for completeness, we also provide a very brief
sketch on why the merging theorem (theorem II.2) is true.
The full proof is technical, and the interested reader is en-
couraged to read Appendix C of Ref. [41] for the details.
The key idea behind the proof of the merging theorem is to
introduce a convex set of density matrices, which we denote
as �̂(�). The definition of �̂(�) does not make use of an
extra layer as �(�) does. Instead, it requires some additional
internal conditional independence condition on its elements;
these involve partitions near the boundary of �. [These addi-
tional conditions mimic the conditional independence induced
by the extra layer in the definition of �(�).] A version of
the merging theorem can be proved for �̂(�). This merging
theorem on �̂(�) implies that every element in �̂(�) can be
consistently extended to a larger region containing �, which
subsequently implies that �̂(�) = �(�). Therefore the merg-
ing theorem applies to the information convex set �(�) as
well.

APPENDIX C: FACTORIZATION OF EXTREME POINTS

In this Appendix, we provide a streamlined proof of the
factorization of extreme points of information convex sets.
The main idea is to make use of (an enlarged version of) axiom
A0. It is amusing to contrast this usage of A0 with previous
usage of A1 in the proof of two other important properties
(Appendixes A and B). Note that the condition A0 on the

22AB should be thicker than 2r. If AB is thinner than that, there
can be pathological counterexamples for which there is no room to
achieve the deformation of regions required in the merging theorem.

: Ω
: Ω′ \ Ω

FIG. 48. A thick enough subsystem � and a shell (�′ \ �)
around it. They form a region �′. Note that �′ can be smoothly
deformed into � and �′ \ � is a thickened boundary of �′. While
we only depicted an annulus topology in this figure, the same factor-
ization property applies to any sufficiently smooth subsystems. The
red disks are regions on which an enlarged version of axiom A0 is
considered; they will be called as b′ in the proof.

domain wall has no difference with that in the bulk. Therefore
this proof is essentially a recap of that in Ref. [41].

Let � be a thick enough but otherwise arbitrary subsystem.
Let �′ ⊃ � be a subsystem that can be smoothly deformed
into � for which �′ \ � is a thickened boundary of �′. See
Fig. 48 for an illustration. For any extreme point ρ

〈e〉
�′ ∈ �(�′),

we show that

(S�′ + S� − S�′\�)ρ〈e〉 = 0. (C1)

Because Eq. (C1) is a straightforward consequence of the
following equation:

Tr�′\� |i〉�′ 〈 j| = δi, jρ
〈e〉
� , (C2)

where {|i〉�′ } is the set of eigenvectors of ρ
〈e〉
�′ with positive

eigenvalues, we will focus on proving Eq. (C2).
For this purpose, we first show that the states in the span of

{|i〉�′ }, reduced to �, are in �(�). It suffices to show that

Tr�′\b|i〉�′ 〈 j| = δi, j σb (C3)

for any disk b of radius r that can be enlarged into b′ ⊂ �′.
Here, b′ \ b is a thickened boundary of b′. (As an illustration,
a red disk in Fig. 48 is a b′, which contains a smaller disk b
in the middle.) By the extension of our axioms (Appendix A),
we have

(Sb + Sb′ − Sb′\b)ρ〈e〉 = 0. (C4)

This subsequently implies that the purification of ρ
〈e〉
�′ has a

certain “factorization property.” Specifically, let

|ϕ〉�′P =
∑

i

√
pi|i〉�′ ⊗ |i〉P (C5)

be the purification of ρ
〈e〉
�′ with a purifying space P, where pi >

0 for all i. By SSA, we can conclude that (Sb + SP − SbP )|ϕ〉 =
0. Because any bipartite state with a vanishing mutual infor-
mation I (A : B) := SA + SB − SAB must be a factorized state,
we can explicitly write down the following identity:∑

i, j

√
pi p j (Tr�′\b|i〉�′ 〈 j|) ⊗ |i〉P〈 j| = σb ⊗

∑
j

p j | j〉P〈 j|,

(C6)
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where the summation is taken over i and j such that pi, p j >

0. Eq. (C3) follows straightforwardly from Eq. (C6). There-
fore the reduced density matrix of any state in the span of
{|i〉�′ } to � must belong to �(�).

Now, we are in a position to prove Eq. (C2). We present
a proof by contradiction. Suppose there is a state |φ〉�′ in the
span of {|i〉�′ } whose reduced density matrix is different from
ρ

〈e〉
� . Note that ρ�′ = p|φ〉�′ 〈φ| + (1 − p)ρ ′

�′ for some p > 0
and ρ ′

�′ living in the state space of the Hilbert space spanned
by {|i〉�′ }. This means that

ρ
〈e〉
� = p Tr�′\� |φ〉�′ 〈φ| + (1 − p)Tr�′\� ρ ′

�′ , (C7)

where both density matrices on the right-hand side belong to
�(�). However, this is a contradiction because the left-hand
side must be an extreme point by the isomorphism theorem;
ρ

〈e〉
� was obtained from an extreme point of another informa-

tion convex set via an isomorphism. Therefore both terms on
the right-hand side must be equal to ρ

〈e〉
� . We thus conclude

that any state in the span of {|i〉�′ }, restricted to �, must be
equal to ρ

〈e〉
� . By inspecting the matrix elements, we conclude

Eq. (C2).
Finally, our main claim (Eq. (C1)) follows because

Eq. (C2) implies that any purification of ρ
〈e〉
�′ must have van-

ishing mutual information between the purifying space and �.
This completes the derivation of Eq. (C1).

APPENDIX D: FUSION SPACE

In this Appendix, we provide a proof of theorem D.1. We
shall refer to this result as the Hilbert space theorem. Specif-
ically, consider a sufficiently thick but otherwise arbitrary
subsystem �. We claimed that, once we fix the extreme point
associated with ∂�, i.e., the thickened boundary of �, the
remaining degrees of freedom is isomorphic to the state space
of some finite-dimensional Hilbert space.

The proof of theorem D.1 presented below is an improve-
ment of that in Appendix E of Ref. [41]. While we will
depict subsystems in the bulk for concreteness, the underlying
logic applies more generally, for instance, to the subsystems
intersecting with the domain wall. This is because every ar-
gument is based on the extensions of axioms, isomorphism
theorem, and the factorization of extreme points, which we
have generalized in Appendixes A–C.

We will use a well-known structure theorem of quantum
Markov state [53]. The precise statement is presented below
as a lemma.

Lemma D.1 (Structure of quantum Markov states [53]). If
ρABC satisfies I (A : C|B) = 0, there exists a decomposition
HB = ⊕

j HBL
j
⊗ HBR

j
, such that

ρABC =
⊕

j

p jρABL
j
⊗ ρBR

j C, (D1)

where {p j} is a probability distribution, ρABL
j

is a density ma-
trix on HA ⊗ HBL

j
and ρBR

j C is a density matrix on HBR
j
⊗ HC .

Remark There is no known generalization of this lemma
for approximate quantum Markov states, states with small but
nonzero I (A : C|B); see Ref. [54] for a related discussion.
Therefore, while we expect the conclusion of this paper to be
extended to the setup in which the assumptions in Fig. 1 hold

C

(a)

A1B1 A2B2

A1B1 B2A2

A3

B3

C

(b)

FIG. 49. The partition � = (∪K
i=1AiBi ) ∪ C for: (a) an annulus,

which has K = 2, and (b) a 2-hole disk, which has K = 3.

approximately, the proofs in this Appendix do not. Additional
techniques need to be developed for approximate cases.

The following is another useful result.
Lemma D.2. Consider a subsystem �′ ⊃ � that can be

smoothly deformed into �, where �′ \ � is the thickened
boundary of �′. Suppose ρ�′ ∈ �(�′) can be written as ρ�′ =∑

i qiλ
i
�′ , where {qi} is a probability distribution with qi > 0,

∀i and {λi
�′ } is a set of density matrices. Then

Tr�′\�λi
�′ ∈ �(�). (D2)

The proof of this statement is nearly identical to that of
lemma D.1 in Ref. [41]. The only difference is that we also
need the domain wall version of the extension of condition
A0 discussed in Appendix A, which generalizes an analogous
statement in Ref. [41].

We will frequently consider the partition of � shown in
Fig. 49. Explicitly, we have � = (∪K

i=1AiBi ) ∪ C, where Ai,
Bi and AiBi are thickenings of the ith boundary of � with
different thicknesses; Ai is the outer layer and Bi is the inner
layer. For example, as illustrated in Fig. 49, an annulus has
K = 2 and a two-hole disk has K = 3. Note that these types of
partitions are very general, and they can be applied to regions
intersecting with the gapped domain wall as well.

First, we observe a useful conditional independence prop-
erty of this partition.

Lemma D.3. Let � be a subsystem with K disjoint bound-
aries. Let � = (∪K

i=1AiBi ) ∪ C, where Ai, Bi and AiBi are
thickenings of the i-th boundary of � with different thickness;
Ai is the outer layer and Bi is the inner layer. (See Fig. 49.) We
have

I (Ai : � \ AiBi|Bi )ρ = 0, ∀ i and ∀ρ� ∈ �(�). (D3)

The proof of this proposition is the same as the bulk version
in Ref. [41]; see lemma D.2 therein. The idea is that we can
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smoothly deform � \ Ai to �. Using versions of axiom A1,
we can derive the claimed conditional independence relation.

The following proposition characterizes the universal
structure of elements in �I (�).

Proposition D.1. Consider ρI
� ∈ �I (�), (see Sec. V). For

the partition of � = (∪K
i=1AiBi ) ∪ C described above, there

exists a decomposition

HBi = (HBL
i
⊗ HBR

i
) ⊕ H′ (D4)

for some Hilbert space H′ such that

ρI
� = ( ⊗K

i=1 ρI
AiBL

i

) ⊗ ρ(∪iBR
i )∪C, (D5)

where the density matrix ρI
AiBL

i
, supported on HAi ⊗ HBL

i
,

is independent of the specific choice of element in �I (�)
once I is fixed. ρ(∪iBR

i )∪C is a density matrix supported on
(⊗K

i=1HBR
i
) ⊗ HC .

Remark The decomposition Eq. (D4) does not necessar-
ily imply that BL

i is a subsystem of B. In general it is not.
Therefore Eq. (D5) does not imply that the state ρI

� is a tensor
product over a subsystem of AiBi and its remainder within �.

Proof. First, because ρI
� ∈ �(�), according to lemma D.3,

we have I (A1 : � \ A1B1|B1)ρI = 0. Then, by lemma D.1,
there exists a decomposition HB1 = ⊕

j HBL
1 j

⊗ HBR
1 j

such
that

ρI
� =

∑
j

p jρ
I
A1BL

1 j
⊗ ρBR

1 jC(∪i �=1AiBi ), (D6)

where {p j} is a probability distribution. Furthermore, because
ρI

� ∈ �I (�), it carries a fixed sector label I ∈ C∂�. Therefore
its reduced density matrix on sectorizable subsystem B1 must
be an extreme point. In fact, a stronger condition holds. Ac-
cording to lemma D.2, ρI

A1BL
1 j

⊗ ρBR
1 jC(∪i �=1AiBi ), for any j with

p j > 0, reduces to the same extreme point of �(B1). However,
the Hilbert spaces HBL

1 j
⊗ HBR

1 j
for different chocies of j are

orthogonal subspaces. The only consistent choice is that p j is
nonzero for only one choice of j. Therefore Eq. (D6) can be
simplified into

ρI
� = ρI

A1BL
1
⊗ ρBR

1 C(∪i �=1AiBi ). (D7)

We can repeat the same logic for any i. The end result of this
analysis is Eq. (D5).

Finally, we explain the fact that for any ρI
� ∈ �I (�), the

decomposition of HBi in Eq. (D4) and the density matrices
{ρI

AiBL
i
} in Eq. (D5) can be chosen to be the same. This follows

from the fact that different elements of �I (�), for a fixed
I , can be converted into each other by a quantum channel
on � \ (AiBi ), for any i. Specifically, without loss of gen-
erality, consider two density matrices ρI,1

� and ρI,2
� . We can

consider an additional layer Di ⊂ � \ (AiBi ) that surrounds
Bi. We have I (AiBi : � \ (AiBiDi )|Di ) = 0. Therefore one can
map ρI,1

� to ρI,2
� and vice versa by taking a partial trace

on � \ (AiBiDi ) and then applying the Petz map from Di

to � \ (AiBi ). This two-step process only involved quantum
channels acting on � \ (AiBi ), thus completing the proof. �

Below, we provide a proof of the Hilbert space theorem.
This proof is in many sense simpler than the original one in
Ref. [41]. Furthermore, it manifests the fact that the fusion

space is physically accessible on a deformable region (∪iBi ) ∪
C within �.

Theorem D.1 (Hilbert space theorem).

�I (�) ∼= S (VI ), (D8)

where S (VI ) is the state space of a finite dimensional Hilbert
space VI . Moreover, under the partition � = (∪K

i=1AiBi ) ∪ C
described above, an arbitrary extreme point of �I (�) has the
following explicit expression

ρ
I〈e〉
� = ( ⊗K

i=1 ρI
AiBL

i

) ⊗ |ϕ〉〈ϕ|, (D9)

where the set of possible states {|ϕ〉} is the set of normalized
pure states of a dim VI dimensional subspace of (⊗K

i=1HBR
i
) ⊗

HC .
Proof. Let us enlarge � into �′ by letting �′ = (∪iA′

iBi ) ∪
C, where A′

i ⊃ Ai and A′
i \ Ai is a thickened ith connected

piece of the boundary of �′. According to proposition D.1,
any element of �I (�) can be written as

ρI
� = (⊗K

i=1 ρI
AiBL

i

) ⊗ ρ(∪iBR
i )∪C, (D10)

for some density matrix ρ(∪iBR
i )∪C , where the set of density

matrices {ρI
AiBL

i
} are fixed by the choice of I . This implies that

�I (�) ∼= {ρ(∪iBR
i )∪C}, where the isomorphism “∼=” preserves

the entropy difference and any distance measure.
Below, we determine the set of density matrices {ρ(∪iBR

i )∪C}.
We will show that {ρ(∪iBR

i )∪C} forms the state space of a finite
dimensional subspace of (⊗K

i=1HBR
i
) ⊗ HC . By the isomor-

phism theorem, we can obtain an element of �I (�′) by an
extension of ρI

�. This element can be written as

ρI
�′ = ( ⊗K

i=1 ρI
A′

iB
L
i

) ⊗ ρ(∪iBR
i )∪C, (D11)

where TrA′
i\AiρA′

iB
L
i

= ρAiBL
i
. Equation (D11) holds because the

extension from � to �′ can be done by applying a sequence
of nonoverlapping quantum channels on each Ai.

Let |ϕ〉 be a (normalized) state in the span of the eigenstates
of ρ(∪iBR

i )∪C with positive eigenvalues. Then it follows that

ρ(∪iBR
i )∪C = p|ϕ〉〈ϕ| + (1 − p)̃ρ(∪iBR

i )∪C (D12)

for some p ∈ (0, 1) and density matrix ρ̃(∪iBR
i )∪C . Therefore

ρI
�′ = pρI;ϕ

�′ + (1 − p)̃ρI
�′ , (D13)

where

ρ
I;ϕ
�′ = ( ⊗K

i=1 ρI
A′

iB
L
i

) ⊗ |ϕ〉〈ϕ|, (D14)

ρ̃I
�′ = ( ⊗K

i=1 ρI
A′

iB
L
i

) ⊗ ρ̃(∪iBR
i )∪C, (D15)

Because of lemma D.2, Tr�′\� ρ
I;ϕ
�′ must belong to �I (�).

Therefore ( ⊗K
i=1 ρI

AiBL
i

) ⊗ |ϕ〉〈ϕ| ∈ �I (�). (D16)

Moreover, the state on the left-hand side of Eq. (D16) must
be an extreme point of �I (�). This is because every element
of �I (�) is of the form Eq. (D10). Therefore {ρ(∪iBR

i )∪C}
forms the state space of a finite dimensional subspace of
(⊗K

i=1HBR
i
) ⊗ HC .

In particular, {ρ(∪iBR
i )∪C} ∼= S (VI ) for some finite dimen-

sional Hilbert space VI . This justifies Eq. (D8). Equation (D9)
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P

Q
μ(n)

1 1

n n̄

FIG. 50. The definition of antisector n̄.

holds because every extreme point of �I (�) is of the form
shown on the left-hand side of Eq. (D16) for some |ϕ〉. This
completes the proof. �

APPENDIX E: ASPECTS OF QUASI-FUSION

In this section, we initiate a yet-to-be-completed theory of
quasifusion. We begin by showing that the notion of antisector
is well-defined.

We define the antisector map (n → n̄) as the automor-
phism of CN illustrated in Fig. 50. Here, the two disconnected
boundaries of the subsystem carry sector labels 1 ∈ CO and
μ(n) ∈ CU respectively. Then we look at the two N-shaped
subsystems in darker blue. On the left side, we have n ∈ CN .
The unique sector on the right side, which we denote as
n̄ ∈ CN , is defined as the antisector of n.

To see why the antisector map is an automorphism of CN ,
we show the map is a bijection. This fact follows from two
observations. First, the map n → μ(n) is a bijection. This
follows from the definition μ = ϕ ◦ ηN , where ηN : CN → CN
is an embedding and ϕ : CN → CU is an isomorphism; see
Eqs. (64) and (120). Second, the map n̄ → μ(n) is a bijection.
The details are similar to the analysis shown above; we simply
need to consider the “mirror image” of the isomorphism ϕ.
Thus the antisector map n → n̄ is an automorphism of CN .

Furthermore, from Fig. 51, it is easy to see that α ∈ C[n,u]
O

if and only if ᾱ ∈ C[n̄,ū]
O . This is because, when α ∈ C[n,u]

O ,
after taking a partial trace, we obtain the same density ma-
trix shown in Fig. 50. This fact can serve as an alternative
definition of the antisector. From this alternative (equivalent)
definition, we have

¯̄n = n,

dn = dn̄.
(E1)

The first line follows from the fact that ¯̄α = α. The second line
follows from dα = dᾱ and Eq. (56).

P

Q α ᾱ

1 partial trace

α ∈ ∪uC[n,u]
O

1

n n̄

FIG. 51. An alternative definition of n̄.

1. Quasifusion rule

In this section, we provide some details of the quasifusion
rule of the N-type parton sectors. In particular, we present the
proof of proposition VII.1. We restate the content below for
the readers’ convenience. These results concern the informa-
tion convex set of a M-shaped subsystem, denoted as M. This
M-shaped subsystem (see Fig. 27) contains three N-shaped
subsystems. For this reason, we can consider the following
convex subsets of �(M ):

�n′′
nn′ (M ), (E2)

where n, n′, n′′ ∈ CN are the sector labels for the three
N-shaped subsystems. These sets satisfy the following state-
ments:

(1) Every extreme point of �(M ) is contained in some
�n′′

nn′ (M ).
(2) ∪n′′�n′′

nn′ (M ) is nonempty for ∀ n, n′ ∈ CN .
(3) �n′′

n1(M ) is the empty set for n′′ �= n. For n′′ = n, it has
a unique element.

(4) �n′′
1n′ (M ) is the empty set for n′′ �= n′. For n′′ = n′, it

has a unique element.
(5) �1

nn′ (M ) is the empty set for n′ �= n̄. For n′ = n̄, it has
a unique element.

Let us prove these statements one by one. For the proof of
the first statement, let ρ

〈e〉
M be an extreme point of �(M ). Let

∂M be the thickened boundary of M. According to the general
discussion of the fusion space at the beginning of Sec. V, ∂M
is a sectorizable subsystem; moreover, an extreme point ρ

〈e〉
M

must carry a fixed sector I ∈ C∂M . Furthermore, we see from
the shape of ∂M that the sector I is a composite sector (see
Sec. IV). Because the three N-shaped subsystems in Fig. 27
can be identified as subsystems of ∂M, we always find a set of
parton sectors n, n′, n′′ ∈ CN on them. This implies that each
extreme point of �(M ) must carry a definite set of sectors
n, n′, n′′ ∈ CN . This establishes the first statement.

The second statement follows from the merging process
described in Fig. 52(a). For any choice of n, n′ ∈ CN , the
merged state exists, and it belongs to conv( ∪n′′ �n′′

nn′ (M )).
Thus ∪n′′�n′′

nn′ (M ) is nonempty.
The third and the fourth statements follow from the

same idea. The relevant merging processes are illustrated in
Fig. 52(b). Due to the similarity, we only provide the proof
for the third statement. Suppose �n′′

n1(M ) contains at least one
element. Then we can apply the merging process in the left
figure of Fig. 52(b). Let the resulting subsystem be N . Then
the original density matrix must be the reduced density matrix
of the extreme point ρn

N of �(N ). This implies that �n′′
n1(M ) is

an empty set for n′′ �= n. For the same reason, �n
n1(M ) must

have a unique element for ∀n ∈ CN .
For the fifth statement, suppose �1

nn′ (M ) is nonempty. For
an element of �1

nn′ (M ), we can apply the merging process
shown in Fig. 52(c). Here, the annulus carries 1 ∈ CO. This
merging process is possible because n′′ = 1. The merged
state must carry the sector μ(n) ∈ CU in the newly formed
boundary. Therefore the merged state is unique; it is the state
depicted in Fig. 50. Thus n′ = n̄ is a necessary condition
for �1

nn′ (M ) to be nonempty. Furthermore, there is a unique
element in �1

nn̄(M ). The existence follows from the fact that
for each n, a unique state depicted in Fig. 50 exists, which is
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P

Q
(a)

n n′

P

Q
(b)

1
n

n′′

1 n′

n′′

P

Q
(c)

1

μ(n)

FIG. 52. (a) The merging of two N-shaped subsystems.
(b) Patching a slot for the sector choice n′ = 1 ∈ CN (left) and n =
1 ∈ CN (right). (c) The merging of M with an annulus for n′′ = 1 ∈
CN , where the annulus is in the vacuum sector 1 ∈ CO.

labeled by 1 ∈ CO and μ(n) ∈ CU . Every element in �1
nn̄(M )

must be the reduced density matrix of this unique density
matrix, and therefore the choice is unique. This completes the
proof.

2. When quasifusion becomes a fusion

Sometimes, the quasifusion rule reduces to the ordinary
rule of fusion. This happens when one side of the domain wall,
say Q, has a trivial anyon content. In this section, we explain
this reasoning.

Let us emphasize that our argument applies even if Q is not
adiabatically connected to the (trivial) product state. There is
one such nontrivial example, namely the E8 state [9]. While
such phases support a chiral edge mode, one may be able to
gap out this mode by placing a topological phase on the P side
that matches the chiral central charge and turning on some
perturbations along the domain wall. If this is possible, our
argument would still apply.

Here are the key results.
(1) CU = {1}.
(2) CN and CO are isomorphic. Furthermore, under the

isomorphism C : CN → CO, we have dn = dC(n).
(3) The quasifusion rule of parton sectors in Fig. 27 co-

incides with the conventional fusion rule. Namely, when we
specify n, n′, n′′ ∈ CN , there is a unique fusion space, which
can be labeled as V n′′

nn′ and the associated fusion multiplicity
Nn′′

nn′ satisfies

Nn′′
nn′ = NC(n′′ )

C(n)C(n′ ). (E3)

The proofs of all three statements are similar. The idea is
to strengthen the isomorphism theorem when Q has a trivial
anyon content. We shall derive the first fact in detail. The rest

Q

B

B

CD D

(a)

P

Q

A

B B
C CD

(b)

FIG. 53. (a) If Q has a trivial anyon content, the entropy combi-
nation (SBC + SCD − SB − SD )σ vanishes for the partition shown in
this diagram. (b) The merging process in this figure is a “connection
process”, which turns an N-shaped subsystem into an O-shaped
subsystem.

follows straightforwardly. (The key idea has been illustrated
in Fig. 28.)

Under the assumption that Q has trivial anyon content, we
have an additional identity. Namely, for the set of subsystems
of Q described in Fig. 53(a), we have

(SBC + SCD − SB − SD)σ = 0. (E4)

This additional identity implies that one can establish an
isomorphism theorem between two subsystems with different
topologies. Specifically, we can imagine a topology-changing
connection/disconnection of a subsystem on the Q side; see
Figs. 28 and 53(b). This connection/disconnection preserves
the structure of the information convex sets.

Specifically, let N = ABC (O = ABCD) be the N-shaped
(O-shaped) subsystem shown in Fig. 53(b). A connection
process is a pair of operations acting on the region N and its
information convex set �(N ). The connection process turns
N into O. This connection process is associated with a map
C : �(N ) → �(O), which is defined by the merging process
in Fig. 53. Conversely, the disconnection process D turns O
into N . The action of this map in �(O) is simple; simply take
a partial trace on O \ N .

While both of these processes can be applied to any choice
of P and Q, C ◦ D : �(O) → �(O) is irreversible in general.
However, when Q has a trivial anyon content, due to the extra
condition Eq. (E4), an arbitrary element ρO ∈ �(O) satisfies

I (A : CD|B)ρ = I (AB : D|C)ρ = 0. (E5)

In this case, C ◦ D is the identity operation on �(O). This im-
plies that �(N ) and �(O) are isomorphic, with isomorphisms
given by C and D.

APPENDIX F: PROOF OF MAXIMAL ENTROPY

In this Appendix, we prove Eq. (97), which implies that

the reduced density matrices of ρ
(α−→α ;β

−→
β )

W on GL and GR are
certain maximum-entropy states. Because the derivation of the
two identities are similar, we will only present the derivation
of

TrW \GL ρ
(α−→α ;β

−→
β )

W = ρ
α��β
GL

(F1)

in details. The subsystems and the merging process relevant
to this proof are illustrated in Fig. 54.
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FIG. 54. (a) The partition W = ABC. (b) Tracing out a hole from
B and get B̃. We denote AB̃C as W̃ . For the density matrices we
consider, the fifth hole is in the vacuum sector. (c) The merging

process that defines ρ̃
(α−→α ;β

−→
β )

W̃
.

Proof. The main strategy is to construct another merged

state ρ̃ (α−→α ;β
−→
β ). We show that this is identical to ρ (α−→α ;β

−→
β ) on

a subsystem containing GL. We further show that the reduced

density matrix of ρ̃ (α−→α ;β
−→
β ) on GL is ρ

α��β
GL

. Below are the
details.

First, if we divide the 4-hole disk W into W = ABC as
shown in Fig. 54(a), we obtain a conditional independence
condition

I (A : C|B)
ρ (α−→α ;β

−→
β ) = 0, (F2)

where the annulus B can be either the overlapping region of
the merging process depicted in Fig. 31(b→c) or a region
enlarged from it. If B is the overlapping region, the conditional
independence follows from that of the merged state; if B is
enlarged from the overlapping region, we use the following
consequence of SSA, I (AA′ : CC′|B) � I (A : C|A′C′B), to es-
tablish the conditional independence relation.

Second, we cut a hole from B and reduce it to B̃; see
Figs. 54(a) and 54(b). We shall refer to this hole as the fifth
hole from now on. Also, we shall denote AB̃C as W̃ . Obvi-
ously, for the state ρ (α−→α ;β

−→
β ), the fifth hole is in the vacuum

sector. One can show

I (A : C|B̃)
ρ (α−→α ;β

−→
β ) = 0 (F3)

using the following argument. Note that the state ρ
(α−→α ;β

−→
β )

W
satisfies an extended domain wall version of condition A0 on
the disk covering the fifth hole and an extra layer surrounding
that hole, leading to

(SB\B̃)
ρ (α−→α ;β

−→
β ) = (SB̃ − SB)

ρ (α−→α ;β
−→
β )

= (SAB̃ − SAB)
ρ (α−→α ;β

−→
β )

= (SB̃C − SBC )
ρ (α−→α ;β

−→
β )

= (SAB̃C − SABC )
ρ (α−→α ;β

−→
β ) .

(F4)

Plugging in these identities to Eq. (F2), we obtain Eq. (F3).
Third, we consider a different merging process depicted

in Fig. 54(c). The density matrices involved are identical to
that involved in the merging process in Figs. 31(a)–31(c), but
the subsystem choices are different; in the case of Figs. 54(c),
we reduce the density matrices to the ones on smaller regions
before merging them. The resulting region is W̃ instead of W .

Let us denote the merged state as ρ̃
(α−→α ;β

−→
β )

W̃
, for which the fifth

hole of W̃ carries the vacuum sector because N1
1γ = δγ ,1. This

density matrix has the following properties:

I (A : C|B̃)
ρ̃ (α−→α ;β

−→
β ) = 0,

ρ̃
(α−→α ;β

−→
β )

AB̃
= ρ

(α−→α ;β
−→
β )

AB̃
,

ρ̃
(α−→α ;β

−→
β )

B̃C
= ρ

(α−→α ;β
−→
β )

B̃C
.

(F5)

Equations (F5) and (F3) imply that

ρ
(α−→α ;β

−→
β )

W̃
= ρ̃

(α−→α ;β
−→
β )

W̃
. (F6)

This is because any two tripartite states over A, B, and C
obeying I (A : C|B) = 0 and having identical reduced density
matrices over AB and BC are equal [55].

Next, we observe that

TrW̃ \GL
ρ̃

(α−→α ;β
−→
β )

W̃
= ρ

α��β
GL

. (F7)

This statement follows from two facts. (i) The state ρ̃
(α−→α ;β

−→
β )

W̃
is conditionally independent with respect to the partition in
Fig. 54(c), where the conditioned subsystem is that between
the triple line. (ii) We can apply a partial trace on the un-
conditioned subsystems to connect the holes with sectors−→
β , 1,−→α and the outer boundary of W̃ . This partial trace
reduces A → Ã and C → C̃. Thus I (Ã : C̃|B̃)

ρ̃ (α−→α ;β
−→
β ) = 0. Fur-

thermore, ÃB̃C̃ can be smoothly deformed into GL.

These two facts imply that the state ρ̃ (α−→α ;β
−→
β ), after reduced

to GL, must be the maximum-entropy state with the sector
choice α and β. This implies Eq. (F7).

Finally, it follows from Eqs. (F6) and (F7) that Eq. (F1) is
true. This completes the proof.
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