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The experimental verification of chiral anomaly in Weyl semimetals is an active area of investigation in modern
condensed matter physics, which typically relies on the combined signatures of longitudinal magnetoconduc-
tance (LMC) along with the planar Hall effect (PHE). It has recently been shown that for weak nonquantizing
magnetic fields, a sufficiently strong finite intervalley scattering drives the system to switch the sign of LMC from
positive to negative. Here we unravel another independent source that produces the same effect. Specifically, a
smooth lattice cutoff to the linear dispersion, which is ubiquitous in real Weyl materials, introduces nonlinearity
in the problem and also drives the system to exhibit negative LMC for noncollinear electric and magnetic fields
even in the limit of vanishing intervalley scattering. We examine longitudinal magnetoconductivity and the planar
Hall effect semianalytically for a lattice model of tilted Weyl fermions within the Boltzmann approximation. We
independently study the effects of a finite lattice cutoff and tilt parameters and construct phase diagrams in
relevant parameter spaces that are relevant for diagnosing chiral anomaly in real Weyl materials.
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I. INTRODUCTION

As dictated by the well-known no-crossing theorem [1], the
Bloch bands in a solid typically do not cross each other at any
point in the Brillouin zone. Some exceptions to this general
rule are Dirac and Weyl materials, where nontrivial topology
of the Bloch bands can stabilize the band-degenerate point
[2–12]. In a Weyl semimetal (WSM), a band-crossing point,
also known as a Weyl node, can act as a source or sink of
Abelian Berry curvature [13]. Since the net Berry flux through
the Brillouin zone must vanish, the Weyl nodes must occur in
multiples of two. The topological nature of the Bloch bands
in a WSM gives rise to very interesting physics typically that
is absent in conventional condensed matter systems. Some
examples include the manifestation of anomalous Hall [12,14]
and Nernst [15–17] effects, open Fermi arcs [10], and the most
prominent one being the manifestation of chiral or Adler-Bell-
Jackiw anomaly [18–27].

Weyl fermions have an associated chirality quantum num-
ber that is identical with the integral of the flux of the Berry
curvature around a Weyl node. The number of Weyl fermions
of a specific chirality remain conserved in the absence of
an external gauge or gravitational field coupling. However,
in the presence of background gauge fields, such as electric
and magnetic fields, the separate number conservation laws
for Weyl fermions are violated [18–20]. This is the result of
chiral anomaly in Weyl fermions and has its origins rooted
in high-energy physics. The verification of chiral anomaly
in Weyl semimetals is an important area of investigation in
condensed matter physics.

Chiral anomaly in WSMs may be verified by experimental
probes such as that measure magnetoconductance [28–36],
Hall effect [37–45], thermopower [15,46–48], optical pro-

cesses [26,49,50], nonlocal transport [51], optical phonons
[52–55]. It was initially concluded that chiral anomaly in
WSMs directly correlates with the observation of positive
longitudinal magnetoconductance (LMC). For example, from
elementary field-theory calculations [27], the chiral chemical
potential (μ5, which is the difference between the chemical
potential between Weyl nodes of two chiralities) created by
the external parallel E and B fields in the presence of in-
tervalley scattering is μ5 = 3v3

F e2τiEB/4h̄2μ2, where vF , τi,
and μ denote the Fermi velocity, scattering time, and the
chemical potential, respectively. The corresponding longitu-
dinal current is given by j = e2μ5B/2π2, which immediately
gives us positive longitudinal magnetoconductance. However,
a detailed analysis shows that positive longitudinal magneto-
conductance is neither a necessary nor a sufficient condition
to prove the existence of chiral anomaly in WSMs. It has now
been well established that both positive or negative magneto-
conductance can arise from chiral anomaly in WSMs [56–73].
In the presence of strong magnetic field, when Landau quanti-
zation is relevant, the sign of magnetoconductance depends on
the nature of scattering impurities [56–62]. For weak magnetic
fields, it was recently shown that sufficiently strong intervalley
scattering can switch the sign of LMC [71,72].

In this work we unravel another independent source that
produces negative LMC for weak noncollinear electric and
magnetic fields even for vanishing intervalley scattering
strength. Around a Weyl node, the energy dispersion locally
behaves as ε

χ

k = h̄vF k, where vF is the Fermi velocity, while
k is the modulus of the wave vector measured from the nodal
point. In practice, the linear energy dispersion around a Weyl
node is only valid for a small energy window. In a realistic
lattice model of Weyl fermions, the bands are no longer linear
far apart from the nodal point, and the lattice regularization
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provides a physical ultraviolet cutoff to the low-energy spec-
trum. The lattice model of Weyl fermions introduces a source
of nonlinearity in the problem and has important implications
in several physical properties. For example, the lattice model
of Weyl fermions produces a nonzero Nernst effect [15,16]
(as also observed experimentally [17]), which is otherwise
predicted to vanish in the linear approximation [46]. Here, we
semianalytically examine longitudinal magnetoconductance
and the planar Hall effect for a lattice model of Weyl fermions
that has a smooth lattice cutoff. By a “smooth” lattice cutoff
we mean that the dispersion gradually transitions from being
linear to becoming flat at the corners of the Brillouin zone.
This is in contrast to imposing a hard cutoff to the linear
spectrum by discarding the high-energy contributions. The
lattice model we adopt here is also advantageous over other
continuum nonlinear models because (i) there is no need to
impose a hard cutoff at higher energies, as the bands flatten
out naturally at higher energies, (ii) includes nonlinearities
up to all orders, and (iii) the expressions for Berry curvature
and orbital magnetic moment in the current model offer better
analytical tractability than some other nonlinear models. It
is also worthwhile to point out that the lattice model we
adopt has exact analytical expressions for the Berry curvature,
orbital magnetic moment, and band velocities at all energies.
This is in contrast to earlier works on a lattice model of
Weyl semimetals mostly resorting to numerical evaluation of
various intrinsic quantities such as the Berry curvature and
the orbital magnetic moment, as well as transport quantities
such as longitudinal conductance or the Hall conductance
[15,16,25,37,70]. Therefore, in this work the associated trans-
port quantities are also evaluated semianalytically within the
Boltzmann formalism. Further, it is not straightforward to
incorporate internode scattering in lattice models of a WSM
because the energy dispersion valid throughout the first Bril-
louin zone does not “see” any distinction between nodes. In
contrast, here we consider lattice models of individual Weyl
nodes and thus it is straightforward to incorporate intervalley
scattering akin to the case of two Weyl nodes with linearized
dispersion.

We find that nonlinear lattice effects can produce negative
LMC for noncollinear electric and magnetic fields even in the
absence of intervalley scattering. Crucially, we note that it is
important to account for orbital magnetic moment effects to
obtain negative LMC. We also find that in the presence of
finite intervalley scattering, lattice effects drive the system to
exhibit negative longitudinal magnetoconductance quickly at
a lesser threshold of intervalley scattering as compared to the
linearized approximation.

Further, in realistic materials the Weyl cones not only have
a smooth lattice cutof,f but are also in general tilted along a
particular direction [70,74,75]. We also examine longitudinal
magnetoconductance σzz and the planar Hall conductance σxz

in the presence of a tilt parameter both parallel and perpen-
dicular to the z direction. When the electric and magnetic
fields are aligned parallel to each other, and when the Weyl
cones are tilted along the direction of the magnetic field, LMC
is quadratic if the cones are oriented in the same direction,
and the sign of LMC depends on the strength of intervalley
scattering (αi). When the cones are tilted opposite to each
other, LMC is found to be linear in B with sign depend-

ing on the magnitude of the tilt as well as αi. When the
cones are tilted perpendicular to the direction of the magnetic
field, LMC is found to be quadratic, with the sign again
depending on the value of intervalley scattering strength αi.
However, more interesting features emerge when LMC is
examined for noncollinear electric and magnetic fields, as
demonstrated by several phase plots in the αi-tk space (tk
being the tilt parameter). We also find that the planar Hall
conductance also shows linear-in-B behavior for tilted Weyl
cones oriented opposite to each other, and this linear-in-B
behavior is enhanced in the presence of intervalley scattering
αi. Lastly, we also discuss the applicability of our results to a
scenario more relevant to actual Weyl materials, i.e., the case
of a inversion symmetry-broken Weyl semimetal by extending
the Boltzmann formalism to tackle multiple nodes simulta-
neously. Interestingly, we find that despite the presence of
internode scattering between nodes of opposite tilt orientation,
the linear-in-B LMC coefficient vanishes for our model. We
find that the interplay of various internode scattering channels
along with the magnitude of tilt parameter governs the sign of
LMC.

This paper is organized as follows: In Sec. II, we discuss
the Boltzmann formalism for magnetotransport for a system
of lattice Weyl nodes, that may also be tilted along a particular
axis. Section III consists of our main results that are divided
into four subsections as highlighted in Fig. 1. Finally, we
conclude in Sec. IV. The technical details are relegated to the
Appendices.

II. BOLTZMANN FORMALISM FOR
MAGNETOTRANSPORT

We begin with the most general form of a tilted type-I
Weyl node of a particular chirality χ , including nonlinear
effects away from the Weyl node due to lattice regularization.
The Hamiltonian expanded around each Weyl point can be
expressed as

Hk = χE0 p(ak · σ ) + T χ
x q(akx ) + T χ

z r(akz ). (1)

In the above expression, E0 is an energy parameter, T χ
x and T χ

z
are tilt parameters along the x and z directions, respectively, k
is the momentum measured relative to the Weyl point, σ is
the vector of the Pauli matrices. The functions p, q, and r can
assume any form as long as p(0) = q(0) = r(0) = 0, but we
choose p(x) = q(x) = r(x) = sin(x) as a prototype of a lattice
Weyl node. The corresponding energy dispersion is given by

ε
χ

k = ±E0 sin(ka) + T χ
z sin(akz ) + T χ

x sin(akx ). (2)

Note that for a Weyl node without any tilt, the energy band-
width equals 2E0.

We study charge transport for weak electric and mag-
netic fields via the quasiclassical Boltzmann theory and thus
the Landau quantization regime will not be relevant for our
discussion. A phenomenological Boltzmann equation for the
nonequilibrium distribution function f χ

k can be written as [76](
∂

∂t
+ ṙχ · ∇r + k̇χ · ∇k

)
f χ

k = Icol
[

f χ

k

]
, (3)

where the collision term on the right-hand side incorporates
the effect of impurity scattering. In the presence of electric (E)
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FIG. 1. Schematic of the presentation of results in Sec. III.

and magnetic (B) fields, the dynamics of the Bloch electrons
is modified as [24]

ṙχ = Dχ
[ e

h̄

(
E × �χ + e

h̄
(vχ · �χ )B + vχ

k

)]
,

ṗχ = −eDχ
(

E + vχ

k × B + e

h̄
(E · B)�χ

)
, (4)

where vχ

k is the band velocity, �χ = −χk/2k3 is the Berry
curvature, and Dχ = (1 + eB · �χ/h̄)−1 is the factor by
which the phase-space volume is modified due to Berry phase
effects. The self-rotation of Bloch wave packet also gives rise
to an orbital magnetic moment (OMM) [13] that is given by
mχ

k = −eχE0 sin(ak)k/2h̄k3 for the above lattice model (see
Appendix A for details). In the presence of magnetic field,
the OMM shifts the energy dispersion as ε

χ

k → ε
χ

k − mχ

k · B.
Note that the Berry curvature and the orbital magnetic mo-
ment are independent of the tilting of the Weyl cones.

The collision integral must take into account scattering
between the two Weyl cones (internode, χ ⇐⇒ χ ′), as well
as scattering within a Weyl cone (intranode, χ ⇐⇒ χ ), and
thus Icol[ f χ

k ] can be expressed as

Icol
[

f χ

k

] =
∑
χ ′

∑
k′

W χχ ′
k,k′

(
f χ ′
k′ − f χ

k

)
, (5)

where the scattering rate W χχ ′
k,k′ in the first Born approximation

is given by [76]

W χχ ′
k,k′ = 2π

h̄

n

V
∣∣〈ψχ ′

k′
∣∣U χχ ′

kk′
∣∣ψχ

k

〉∣∣2
δ
(
ε

χ ′
k′ − εF

)
. (6)

In the above expression n is the impurity concentration, V is
the system volume, |ψχ

k 〉 is the Weyl spinor wave function

[obtained by diagonalizing Eq. (1)], U χχ ′
kk′ is the scattering

potential profile, and εF is the Fermi energy. The scattering
potential profile U χχ ′

kk′ is determined by the nature of impurities
(whether charged or uncharged or magnetic). Here we restrict
our attention only to nonmagnetic pointlike scatterers, but
particularly distinguish between intervalley and intravalley
scattering that can be controlled independently in our formal-

ism. Thus, the scattering matrix is momentum independent but
has a chirality dependence, i.e., U χχ ′

kk′ = U χχ ′
I.

The distribution function is assumed to take the form f χ

k =
f χ

0 + gχ

k , where f χ

0 is the equilibrium Fermi-Dirac distribu-
tion function and gχ

k indicates the deviation from equilibrium.
In the steady state, the Boltzmann equation [Eq. (3)] takes the
form

[(
∂ f χ

0

∂ε
χ

k

)
E ·

(
vχ

k + eB
h̄

(
�χ · vχ

k

))]

= − 1

eDχ

∑
χ ′

∑
k′

W χχ ′
kk′

(
gχ

k′ − gχ

k

)
. (7)

The deviation gχ

k is assumed to be small such that its gradient
can be neglected and is also assumed to be proportional to the
applied electric field

gχ

k = e

(
−∂ f χ

0

∂ε
χ

k

)
E · �

χ

k . (8)

We will fix the direction of the applied external electric field
to be along +ẑ, i.e., E = Eẑ. Therefore. only �

χz
k ≡ �

χ

k is
relevant. Further, we rotate the magnetic field along the xz
plane such that it makes an angle γ with respect to the x̂
axis, i.e., B = B(cos γ , 0, sin γ ). When γ = π/2, the electric
and magnetic fields are parallel to each other. When γ �= π/2,
the electric and magnetic fields are noncollinear and this ge-
ometry will be useful in analyzing the planar Hall effect, as
well as LMC in a noncollinear geometry that has nontrivial
implications in a lattice model as well as for tilted Weyl
fermions even in the linear approximation.

Keeping terms only up to linear order in the electric field,
Eq. (7) takes the form

Dχ

[
v

χz
k + eB

h̄
sin γ

(
�χ · vχ

k

)] =
∑

η

∑
k′

W ηχ

kk′
(
�

η

k′ − �
χ

k

)
.

(9)
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In order to solve the above equation, we first define the valley
scattering rate as follows:

1

τ
χ

k

= V
∑

η

∫
d3k′

(2π )3

(
Dη

k′
)−1

W ηχ

kk′ . (10)

One would assume that when γ = π/2, due to the electric and
magnetic field both being parallel to the ẑ axis the azimuthal
symmetry is retained in the problem. However, due to the

tilting of the Weyl cones the azimuthal symmetry is destroyed
even for parallel electric and magnetic fields, and therefore the
above integration (and all other subsequent integrations) must
be performed both over θ and φ when either (i) the Weyl cones
are tilted and/or (ii) γ �= π/2. Note that finite lattice effects
by themselves do not break azimuthal symmetry. The radial
integration is simplified due to the delta function in Eq. (6).

Substituting the scattering rate from Eq. (6) in the above
equation, we have

1

τ
χ

k

= VN

8π2h̄

∑
η

|U χη|2
∫∫∫

(k′)2 sin θ ′Gχη(θ, φ, θ ′, φ′)δ
(
ε

η

k′ − εF
)(
Dη

k′
)−1

dk′dθ ′dφ′, (11)

where N now indicates the total number of impu-
rities, and Gχη(θ, φ, θ ′, φ′) = {1 + χη[cos θ cos θ ′ +
sin θ sin θ ′ cos(φ − φ′)]} is the Weyl chirality factor defined
by the overlap of the wave functions. Since quasiclassical
Boltzmann theory is valid away from the nodal point such that
μ2 	 h̄v2

F eB, therefore, without any loss of generality we
will assume that the chemical potential lies in the conduction
band.

Including orbital magnetic moment effects, the energy
dispersion ε

χ

k is in general a function of several parameters in-
cluding the chirality index, i.e., ε

χ

k = ε
χ

k (E0, k, a, χ, B, θ, γ ).
This equation has to be inverted in order to find a constant
energy contour kχ = kχ (E0, ε

χ

k , a, B, θ, γ ). For the case of
lattice Weyl fermions, a closed-form analytical solution is not
feasible and we will resolve to a numerical solution for kχ .
For tilted Weyl fermions in the linearized spectrum approxi-
mation, it is possible to invert the equation as will be shown
shortly.

The three-dimensional integral in Eq. (11) is then reduced
to just integration in φ′ and θ ′. The scattering time τ

χ

k depends
on the chemical potential (μ), and is a function of the angular
variables θ and φ:

1

τ
χ
μ (θ, φ)

= V
∑

η

∫∫
βχη(k′)3∣∣vη

k′ · k′η∣∣ sin θ ′Gχη
(
Dη

k′
)−1

dθ ′dφ′,

(12)

where the prefactor βχη = N |U χη|2/4π2 h̄2. The Boltzmann
equation [Eq. (9)] assumes the form

hχ
μ(θ, φ) + �χ

μ(θ, φ)

τ
χ
μ (θ, φ)

= V
∑

η

∫∫
βχη(k′)3∣∣vη

k′ · k′η∣∣ sin θ ′Gχη
(
Dη

k′
)−1

�η
μ(θ ′, φ′)dθ ′dφ′.

(13)

We make the following ansatz for �χ
μ(θ, φ):

�χ
μ(θ, φ) = [

λχ − hχ
μ(θ, φ) + aχ cos θ

+ bχ sin θ cos φ+cχ sin θ sin φ
]
τχ
μ (θ, φ), (14)

where we solve for the eight unknowns (λ±1, a±1, b±1, c±1).
The left-hand side in Eq. (13) simplifies to λχ + aχ cos θ +
bχ sin θ cos φ + cχ sin θ sin φ. The right-hand side of

Eq. (13) simplifies to

V
∑

η

βχη

∫∫
f η(θ ′, φ′)Gχη

[
λη − hη

μ(θ ′, φ′) + aη cos θ ′

+ bη sin θ ′ cos φ′ + cη sin θ ′ sin φ′]dθ ′dφ′, (15)

where the function

f η(θ ′, φ′) = (k′)3∣∣vη

k′ · k′η∣∣ sin θ ′(Dη

k′
)−1

τχ
μ (θ ′, φ′). (16)

The above equations, when written explicitly, take the form of
seven simultaneous equations to be solved for eight variables
(see Appendix B for details). The last constraint comes from
the particle-number conservation∑

χ

∑
k

gχ

k = 0. (17)

Thus, Eqs. (14)–(17) can be solved together with Eq. (12),
simultaneously for the eight unknowns (λ±1, a±1, b±1, c±1).
Due to the complicated nature of the problem, the associ-
ated two-dimensional integrals with respect to {θ ′, φ′}, and
the solution of the simultaneous equations are all performed
numerically. Before we proceed further, we will divide our
results into two broad classes. The first class considers the ef-
fects of introducing a natural lattice cutoff for Weyl fermions
without considering tilting of the Weyl cones. In the second
class, we consider effects due to tilting the Weyl cones in
the linearized spectrum approximation, that is without con-
sidering effects due to a finite lattice cutoff. Although our
formalism can handle the generic case of tilted lattice Weyl
fermion, the reason for this division is because effects due
to lattice and due to tilting of the Weyl cones can in fact be
considered independent of each other, and linearized approx-
imation speeds up the numerical computation. The combined
effect from the two gives the net result.

A. Noncollinear E and B fields without tilting of the Weyl cones
for lattice Weyl fermions

Including orbital magnetic moment effects, the energy dis-
persion assumes the form of the following transcendental
equation

2h̄k2ε
χ

k = 2h̄k2E0 sin(ka) + eχE0 sin(ak)B[cos(θ ) sin γ

+ sin θ cos φ cos γ ]. (18)
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The above equation has no closed-form solution for the mo-
mentum kχ , and therefore the constant Fermi energy contour
in k space is evaluated numerically. The semiclassical band
velocities evaluated in spherical polar coordinates are

v
χ

k = E0a cos(ak)

h̄
− uχ

2 cos(ak)βθφ

h̄ak2
+ 2uχ

2 sin(ak)βθφ

h̄a2k3
,

v
χ

θ = uχ

2 sin(ak)(−dβθφ/dθ )

h̄a2k3
, v

χ

φ = uχ

2 (−dβθφ/dφ)

h̄a2k3 sin θ
,

uχ

2 = −eχE0Ba2/2h̄, (19)

where βθφ = (sin θ cos φ cos γ + cos θ sin γ ).

B. Noncollinear E and B fields with tilting of the Weyl cones
in the linear approximation

Since tilting and lattice cutoff effects are physically in-
dependent of each other, we treat these effects separately.
Linearizing the Hamiltonian in Eq. (1) around the nodal point,
we obtain

Hk = χ h̄vF k · σ + tχ
x kx + tχ

z kz, (20)

where we define vF = aE0/h̄, tχ
i = T χ

i a. The expression for
the constant energy contour becomes

kχ =
ε

χ

k +
√(

ε
χ

k

)2 − lχχξevF Bβθφ

lχ
, (21)

where lχ = 2h̄vF + 2tχ
z cos θ + 2tχ

x sin θ cos φ, while the
semiclassical velocities take the following form:

vχ
x = vF

kx

k
+ tχ

x

h̄
+ v

χ

2

k2

[
cos γ

(
1 − 2k2

x

k2

)
− 2 sin γ kxkz

k2

]
,

vχ
y = vF

ky

k
+ v

χ

2

k2

[
cos γ

(−2kxky

k2

)
+ sin γ

(−2kykz

k2

)]
,

vχ
z = vF

kz

k
+ tχ

z

h̄
+ v

χ

2

k2

[−2 cos γ kxkz

k2
+ sin γ

(
1 − 2k2

z

k2

)]
,

v
χ

2 = χevF B

2h̄
. (22)

III. RESULTS

We now present our main results in a format as schemati-
cally presented in Fig. 1.

A. LMC for lattice Weyl semimetal in the absence of tilt

We first discuss the results for the lattice model of a Weyl
semimetal without considering the effects of tilting of the
Weyl cones. Since the effects of tilting of the Weyl cones are
independent of lattice effects, tilting of the Weyl cones will
be considered subsequently. The obtained LMC is found to
be quadratic in magnetic field, and thus we expand the LMC
as σzz(B) = σzz0 + σzz2B2. The linear-in-B term σzz1, which
is zero here will become crucial for our analysis when we
introduce tilting of Weyl fermions, as discussed later on. The
longitudinal magnetoconductance switches sign from positive
to negative at a critical value of αc

i (γ , EF ), i.e., the coeffi-
cient σzz2 becomes negative when αi > αc

i (γ , EF ) as shown in
Figs. 2(a)–2(c). At a fixed relative orientation of the magnetic

FIG. 2. (a)–(c) Phase plot of the quadratic coefficient of the lon-
gitudinal magnetoconductance for a lattice model of untilted Weyl
fermions as a function of Fermi energy and intervalley scattering
strength αi for various different angles of the magnetic field. We
explicitly map the zero-LMC contour in the EF − αi space where
the change in sign of LMC occurs. At higher Fermi energies, the
switching of LMC sign from positive to negative happens at a lower
threshold of αi = αc

i due to nonlinear lattice effects. Second, ori-
enting the magnetic field direction away from the electric field also
lowers the threshold value of αc

i . (d) Quadratic LMC coefficient in
the limit of vanishing intervalley scattering strength αi as a function
of the Fermi energy and angle of the magnetic field.

field (γ ), the threshold of αc
i decreases as the Fermi energy is

increased.
Within the linear approximation of a Weyl cone one obtains

straight-line contour separating positive and negative LMC
areas with a constant αc

i as a function of EF instead of a curved
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contour. Nonlinear lattice effects lower the critical value of
αc

i highlighting the fact that lattice effects can assist driving
the system to exhibit negative LMC. The explicit zero-LMC
contour plotted in Fig. 2 separates positive and negative LMC
regions.

A very interesting feature emerges when the magnetic field
is oriented further away from the electric field, in which case
the αi becomes smaller. Now, from Figs. 2(a)–2(c), we note
that even when αi = 0, i.e., in the absence of any intervalley
scattering, there is an upper energy cutoff beyond which LMC
becomes negative. This feature is specifically highlighted in
Fig. 2(d) where we plot σzz2 as a function of EF and angle γ ,
in the limit of vanishing intervalley scattering strength αi. This
feature specifically points out the fact that lattice effects in
Weyl fermions can independently produce negative LMC even
in the absence of a finite intervalley scattering, a previously
unknown result. For parallel electric and magnetic fields, the
LMC is primarily positive even when lattice effects start to
become important and becomes negative only at very high
Fermi energies near the band edge. When the magnetic field
is oriented away from the electric field, even small nonlin-
ear lattice effects can produce negative LMC. As one would
expect, the nonlinear effects matter more (less) when the
Fermi energy is farther away (nearer) from the Weyl nodes
because conductivity is essentially a Fermi surface quantity.
We recover this result of linearized dispersion [73] in the limit
EF 
 E0.

The planar Hall effect on the other hand does not display
any sign change due to nonlinear lattice effects and displays
the standard sin(2γ ) trend as a function of the angle γ . Thus,
we do not explicitly plot this behavior. PHE will be discussed
in detail for tilted Weyl fermions subsequently.

B. LMC in tilted Weyl semimetal for parallel electric
and magnetic fields

First, we discuss the case of tilted Weyl fermions when the
electric and magnetic fields are held parallel to each other,
i.e., γ = π/2. In this case the PHE contribution is expected to
vanish and hence only LMC is discussed.

1. Weyl cones tilted along the magnetic field direction
with opposite orientation

Figure 3 presents the results of LMC σzz(B) as a function
of magnetic field when the two Weyl cones are tilted along
the direction of the magnetic field but oriented opposite to
each other, i.e., t1

z = −t−1
z , and tχ

x = 0. In the absence of any
intervalley scattering and tilt, the LMC is always positive,
quadratic in the magnetic field, and symmetric about B = 0
as expected. Now, retaining the intervalley scattering to be
zero, a finite tilt introduces a linear-in-B term in the LMC
and thus also introduces a corresponding asymmetry around
B = 0, i.e., now the value of the magnetoconductance depends
on the direction of magnetic field, or more generally it is
dependent on the orientation of the magnetic field with respect
to the direction of the tilt. Note that the B-linear term survives
because the tilts of the Weyl cones are opposite to each other.
For higher tilt values (∼ �0.4) the linear-in-B term domi-
nates over the quadratic term and the LMC is observed to be
linear in the relevant range of the magnetic field.

FIG. 3. Longitudinal magnetoconductance σzz(B) in the case
when the Weyl cones are tilted in the direction of the magnetic field
(ẑ) axis, but are oriented opposite to each other (t1

z = −t−1
z ). (a) LMC

as a function of magnetic field for various tilt parameters in the
absence of intervalley scattering (αi = 0). For a finite small tilt t1

z

the LMC is asymmetric about zero magnetic field, but still appears
to be quadratic. When the tilt is large, LMC is predominantly linear
in B, (b) LMC in the presence of a finite intervalley scattering αi.

In the presence of finite intervalley scattering, there is a
qualitative change in the behavior of LMC, i.e., above a criti-
cal value αc

i (t1
z ), LMC switches sign from positive to negative.

In order to better understand this behavior, we expand the
longitudinal magnetoconductance as σzz(B) = σzz0 + σzz1B +
σzz2B2, where each coefficient σzz j corresponds to the jth
order in the magnetic field. The calculated LMC as a function
of the magnetic field is then fit according to the above equation
to obtain the coefficients σzz j . The linear and quadratic coef-
ficients are plotted in Fig. 4. For small intervalley scattering
strength the linear and quadratic coefficients are similar in
their magnitude, and therefore the behavior with respect to the
magnetic field has an overall quadratic trend. When αi crosses
threshold value αc

i , the linear coefficient dominates and LMC
switches sign as a function the magnetic field. Note that in
the absence of any tilt, the linear coefficient is always zero
and the LMC switches sign when αi = 0.5 [73]. However, for
even small values of t1

z , the linear coefficient dominates over
the quadratic coefficient and the sign reversal in LMC occurs
below αi = 0.5.
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FIG. 4. (a), (b) Linear (σzz1) and quadratic (σzz2) coefficient of the
LMC when the Weyl cones are tilted in the direction of the magnetic
field (ẑ) axis, but are oriented opposite to each other (t1

z = −t−1
z ).

Below αi ∼ 0.05, the coefficients are similar in magnitude and LMC
has an overall quadratic trend. For large enough αi the linear coef-
ficient dominates over the quadratic coefficient leading to an overall
linear-in-B LMC as well as a change in sign of LMC. (c) Quadratic
coefficient over a larger range exhibiting a change of sign.

2. Weyl cones tilted along the magnetic field with same orientation

Figure 5 presents the results of LMC as a function of
magnetic field when the two Weyl cones are tilted in the same
direction with respect to each other in the direction of the mag-
netic field, i.e., t1

z = t−1
z , and tχ

x = 0. We first note that LMC is
always quadratic in B because the B-linear coefficients cancel
out (as they appear with a chirality sign that is opposite for the
two Weyl cones). When the intervalley scattering strength is
small, LMC is always positive, however, for large intervalley

FIG. 5. Longitudinal magnetoconductance σzz(B) in the case
when the Weyl cones are tilted in the direction of the magnetic
field (ẑ) axis, and are oriented in the same direction to each other
(t1

z = t−1
z ). LMC switches sign with the inclusion of αi whenever

αi > αc
i (tz ).

strength the behavior depends on the relative magnitude of
the tilt parameter. If the magnitude of the tilt is small, the
magnetoconductance switches sign, but this is opposed for
large enough values of the tilt parameter.

In Fig. 6 we present the phase plot of the quadratic coeffi-
cient σzz2. The sign of the quadratic coefficient corresponds to
the sign of LMC in this case as the linear-in-B term is absent.
We also map out the contour in αi − t1

z space where the change
in sign of LMC occurs. When αi � 0.5 and |t1

z | � 0.6, LMC is
observed to be negative, but remains positive and has a weak
dependence on αi when |t1

z | � 0.6. The LMC is determined
by the interplay of αi and t1

z and the tilt parameter opposes the
change in sign of LMC due to intervalley scattering and its
contribution dominates when |t1

z | � 0.6.

3. Weyl cones tilted perpendicular to the magnetic field

When the Weyl cones are tilted orthogonal to the direction
of the magnetic field, i.e., t1

x = ±t−1
x �= 0 and tχ

z = 0, we find
the qualitative trend is very similar to the previously discussed
case of tχ

x = 0 and t1
z = t−1

z �= 0. Due to the qualitative sim-
ilarities with Figs. 5 and 6, we do not explicitly plot the
behavior.
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FIG. 6. The quadratic coefficient of LMC is plotted as a function
of αi and t1

z when the Weyl cones are tilted in the direction of the
magnetic field (ẑ) axis, and are oriented in the same direction to
each other (t1

z = t−1
z ). The sign of the coefficient also corresponds

to the sign of LMC. The contour separating positive and negative
LMC regions is also clearly shown.

C. LMC in tilted Weyl semimetal for noncollinear electric
and magnetic fields

Naively, one would expect that the longitudinal magne-
toconductance will be qualitatively similar for noncollinear
fields to collinear electric and magnetic fields. However, there
are certain subtle nontrivial features that emerge. We will
discuss each of these below.

1. Weyl cones tilted along the z axis with same orientation

For the same orientation of the Weyl cones, the linear-in-
B contribution to the LMC is absent. Thus, the sign of the
quadratic coefficient corresponds to the sign of LMC. One
would therefore expect that the qualitative behavior in this
case would again be similar to that observed in Fig. 5, how-
ever, we find that this is not the case. In Fig. 7 we plot the sign
of LMC as a function of the tilt t1

z and intervalley scattering
αi for a particular orientation of noncollinear electric and
magnetic fields.

FIG. 7. The sign of longitudinal magnetoconductance for non-
collinear fields as a function of intervalley scattering strength and tilt
parameter, when the cones are tilted along the same direction parallel
to the z axis.

FIG. 8. The sign of longitudinal magnetoconductance for non-
collinear fields as a function of intervalley scattering strength and tilt
parameter, when the cones are tilted along the same direction parallel
to the x axis.

As γ → π/2 (parallel E and B fields), we recover the
result presented in Fig. 5, i.e., the shape of zero-LMC contour
resembles a U (as in Fig. 7). Specifically, when |t1

z | � 0.6
critical value of αi where the sign change occurs is around 0.5.
When γ is directed away from π/2 the shape of the zero LMC
contour looks like a curved trapezoid instead of U . The evo-
lution from one to the other can be noted in Appendix C. This
feature can be understood as a combination of two factors: for
parallel field configuration, finite tilt and intervalley scattering
drives the system to change the sign of LMC from positive to
negative (as seen in Fig. 5), and second for noncollinear fields
along with a finite αi (even when t1

z = 0) drives the system
to change LMC sign from positive to negative at a lower
critical intervalley scattering strength [73]. The combination
of these two assisting factors shapes the zero LMC contour in
the current scenario.

2. Weyl cones tilted along the x axis with same orientation

From the previous discussions, it is suggested that the
qualitative behavior of LMC for the three scenarios (a) {t1

z =
t−1
z �= 0, tχ

x = 0}, (b) {t1
x = t−1

x �= 0, tχ
z = 0}, and (c) {t1

x =
−t−1

x �= 0, tχ
z = 0} is similar to each other for collinear elec-

tric and magnetic fields. Therefore, rotating the magnetic field
along the xz plane (shifting γ away from π/2) is not expected
to change any qualitative behavior. On the contrary, we find
that this is not the case. Let us focus on cases (a) and (b). The
qualitative similarity for parallel electric and magnetic fields
is given by the following properties: (i) LMC is quadratic in
B, (ii) LMC switches sign from positive to negative above
a critical intervalley scattering strength, (iii) LMC always
remains positive if the tilt parameter is above a critical tilt
value (�0.6), as also suggested by the shape of zero-LMC
contour (U shaped). When the fields are not parallel, then in
case (a) the zero-LMC contour assumes the form of a curved
trapezoid (Fig. 7). The corresponding contour for the present
case (b) assumes a different form as seen in Fig. 8. In this case,
the region of negative LMC expands in the parameter space
along with the reduction of the critical intervalley strength.
The reduction of the critical intervalley strength can again be
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FIG. 9. LMC for noncollinear electric and magnetic fields when
the Weyl cones are tilted along the x axis and oppositely oriented
to each other. A finite tilt is noted to result in a small linear-in-B
contribution that enhances in the presence of intervalley scattering.
The sign of LMC shows a striking change compared to Fig. 6.

understood as a combination of the two factors like in the
previous case (i) finite tilt and intervalley scattering drives the
system to change the LMC sign from positive to negative, and
second when the fields are noncollinear, finite intervalley scat-
tering independently drives the system to change LMC sign
from positive to negative much below. The different shape
of the contour (negative LMC filling out the parameter space
instead of assuming a curved trapezoid) is essentially because
the cones are now tilted along the x direction and the magnetic
field has an x component to it, which is qualitatively different
from the tilt occurring in the z direction. The complete evolu-
tion can be noted in Appendix C.

3. Weyl cones tilted along the x axis with opposite orientation

In Sec. III B we noted that when the Weyl cones are tilted
perpendicular to the magnetic field axis, the qualitative be-
havior is independent of their mutual orientation. We find
that when the field acquires even a small component along
the direction of the tilt axis, the qualitative behavior of the
LMC is strikingly different for different mutual orientations.
Directing the magnetic field even slightly away from the z
axis changes the qualitative behavior when t1

x = −t−1
x , as a

B-linear component is added in the LMC response. This is
because the magnetic field now has an x component and the
tilts are oppositely oriented to each other (though tilted along
the x axis). Figure 9 presents the plot of LMC σzz as a function
of the magnetic field when the angle of the magnetic field
is slightly shifted away from the direction of the magnetic
field. A finite tilt results in a small linear-in-B contribution
that is enhanced in the presence of intervalley scattering. The
complete evolution is plotted in Appendix C.

D. PHC in tilted Weyl semimetals for noncollinear electric
and magnetic fields

1. Weyl cones tilted along the z axis with opposite orientation

As mentioned earlier, planar Hall conductance will be
nonzero when the electric and magnetic field are not parallel

FIG. 10. Normalized planar Hall conductivity σ ′
xz (prime indicat-

ing that the value is normalized with respect to the value at 0.5 T)
as a function of the magnetic field for different values of the tilt
parameter tχ

z (oppositely tilted Weyl cones) and at angles γ . A finite
tilt is observed to add a B-linear component that shifts the minima of
σ ′

xz away from B = 0. For a higher tilt value, the behavior is linear
for all relevant range of magnetic field.

to each other. In Figs. 10 and 11 we plot the normalized planar
Hall conductivity σ ′

xz as a function of the magnetic field for
different values of the tilt parameter tχ

z for oppositely tilted
Weyl cones. In the absence of intervalley scattering strength,
a finite tilt is observed to add a B-linear component that shifts
the minimum of the conductivity away from B = 0. For higher
values of tilt, the behavior is almost linear for all relevant
ranges of magnetic field. On the other hand, a finite intervalley
strength αi enhances the B-linear contribution, however, only
for tilted Weyl fermions. In Appendix D, we plot the normal-
ized planar Hall conductivity (σ ′

xz) as a function of the angle
γ for several values of tilt parameter tz for oppositely tilted
Weyl cones.

2. Weyl cones tilted along the x axis with opposite orientation

Figure 12 plots the normalized planar Hall conductance
σ ′

xz as a function of the magnetic field. Even in the ab-
sence of intervalley scattering, a finite tilt of the Weyl cones
along the x direction causes the planar Hall conductivity
to be linear in the magnetic field showing an asymmetry
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FIG. 11. Normalized planar Hall conductivity σ ′
xz (prime indicat-

ing that the value is normalized with respect to the value at 0.5 T) as a
function of the magnetic field for different values of the tilt parameter
tχ
z (oppositely tilted Weyl cones) and at angles γ . A finite intervalley

scattering strength αi enhances the B-linear contribution, however,
only in the presence of a finite tilt.

around B = 0. The presence of intervalley scattering further
enhances the B-linear contribution as shown in Fig. 13. A
subtle but yet important difference between this and the pre-
vious case is that in the current scenario, the planar Hall
conductivity remains zero when when γ = 0, i.e., when the
magnetic field points along the x direction because the direc-
tion is parallel with the direction of tilts in the Weyl cone.
On the other hand, when γ = 0, the planar Hall conduc-
tivity becomes finite and linear when the Weyl cones are
tilted along the z direction. This point is explicitly high-
lighted in Appendix D, where we plot σ ′

xz as a function
of γ .

E. LMC in an inversion symmetry-broken WSM

Here we will discuss the applicability of our results to
realistic Weyl materials. Specifically, our starting point is the
following linearized model of a Weyl semimetal that pre-
serves time-reversal symmetry but breaks inversion symmetry
[77,78]. For simplicity, the tilting of the cones is considered
only in one direction but the formalism can be generalized to

FIG. 12. Normalized planar Hall conductivity σ ′
xz for oppositely

tilted Weyl fermions along the x direction (prime indicates normal-
ization with respect to magnetic field at 0.5 T). In the absence of
intervalley scattering, a small tilt adds a linear-in-B component.

tilting in multiple directions as well:

Hib =
4∑

n=1

(χnh̄vF k · σ + h̄vF γnkzσ0). (23)

The system consists of four Weyl nodes located at
the points K = (±π/2, 0,±π/2) in the Brillouin zone.
In the above Hamiltonian, χn is the chirality, and γn

is the tilt. Specifically, (χ1, γ1) = (−χ2, γ2) = (χ3,−γ3) =
(−χ4,−γ4) = (−1, γ ), and the tilt parameter γ is considered
to be less than unity. This is also schematically represented
in Fig. 14. We consider four intranode scattering channels
(node n ⇐⇒ n) and four internode scattering channels (node
n ⇐⇒ n + 1mod 4), as also highlighted in Fig. 14. The in-
ternode scattering strength between node m and node n is βmn.
For simplicity, we neglect scattering between nodes (4 ⇐⇒
2) and nodes (1 ⇐⇒ 3) since they involve a large momentum
transfer. Intranode scattering at various nodes is qualitatively
the same, while the internode scattering channels can be di-
vided into two categories: (i) scattering between Weyl cones
of opposite chirality and opposite tilt orientation (1 ⇐⇒ 2)
and (3 ⇐⇒ 4), and (ii) scattering between Weyl cones of
opposite chirality and same tilt orientation (1 ⇐⇒ 4) and (2
⇐⇒ 3). Both of these cases have been discussed individually
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FIG. 13. Normalized planar Hall conductivity σ ′
xz for oppositely

tilted Weyl fermions along the kx direction (prime indicates nor-
malization with respect to magnetic field at 0.5 T). In the presence
of intervalley scattering strength, the linear-in-B component is en-
hanced, but only in the presence of a finite tilt.

FIG. 14. Model for an inversion asymmetric Weyl semimetal
with tilted Weyl cones. The colors of the Weyl cones are indicative of
chirality. The parameters βmn indicate internode scattering between
different nodes.

FIG. 15. LMC for inversion symmetry-broken WSM presented
in Eq. (23) for different tilt values. The interplay of internode scat-
terings β12 and β14 along with the tilt parameter governs the sign of
LMC. White region corresponds to positive LMC.

before, but here we consider the simultaneous effect of both
categories.

In order to solve for the longitudinal magnetoconductance
for this system, the formalism presented in Sec. II for two
Weyl nodes is generalized to a system of multiple nodes as
well with arbitrary values of tilt and chirality (see Appendix
E). The solution to the Boltzmann equation for the system
presented in Eq. (23) reduces to a system of 16 linear equa-
tions that are solved numerically for the unknown coefficients
{λn, an, bn, cn}.

Interestingly, we find that despite the presence of internode
scattering channels between cones of opposite tilt orientation,
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the linear-in-B LMC vanishes. To understand this behavior we
note from Fig. 4 that when tilt parameter changes sign (t1

z →
−t1

z ), the linear-in-B coefficient of LMC switches sign as well.
From Fig. 14 we thus note that the linear-in-B coefficient
generated by internode scattering channel (1 ⇐⇒ 2) will be
canceled by scattering channel (4 ⇐⇒ 3). On the other hand
the quadratic coefficient of LMC is an even function of the tilt
parameter for all the scattering channels, making the behavior
quadratic in magnetic field. From Figs. 6 and 4 we note that
there is a quantitative difference in the quadratic coefficient
for the two categories of internode scattering channel.

In Fig. 15 we plot the quadratic coefficient of the LMC
(also corresponding to the sign of LMC) as a function of
internode scattering strengths for different values of the tilt
parameter γ . In the absence of any tilting, LMC is symmetric
in β12 and β14 exhibiting a change of sign from positive to
negative along a straight line contour from (0.5,0) to (0,0.5)
in the β12 − β14 parameter space. For nonzero values of tilt
parameter the curve first stretches along the β14 axis and then
along the β12 axis as per the expectations from Figs. 6 and 4.
The interplay of internode scatterings and the tilt parameter
governs the sign of LMC. In the limit of large tilt parameter
the LMC sign remains positive.

IV. DISCUSSIONS AND CONCLUSIONS

The linearity or nonlinearity of the bands is alone not a
sufficient criterion to produce a finite longitudinal magneto-
conductance (positive or negative) or planar Hall effect in
Weyl semimetals. In WSMs, it is in fact the topological nature
of the bands that gives rise to finite LMC and PHE. The
topological nature of the bands is manifest in the Berry curva-
ture and the orbital magnetic moment of the Bloch electrons.
Even though the bands no longer disperse linearly away from
the Weyl node, their topology is nevertheless preserved, as
also demonstrated by exact expressions for Berry curvature
and OMM in our prototype lattice model. We solved the
Boltzmann equation semianalytically for a lattice model of
Weyl fermions and noted that the inclusion of orbital magnetic
moment is crucial in obtaining negative LMC in the limit
of vanishing intervalley scattering, just like it is crucial in
obtaining negative LMC for strictly linearly dispersing Weyl
fermions in the presence of intervalley scattering [71]. This
points out to an important fact that nonlinear lattice effects can
produce negative LMC for weak magnetic fields irrespective
of the presence or absence of intervalley scattering. There-
fore, it is inconclusive to state that negative LMC for weak
magnetic fields in a Weyl semimetals necessarily points out to
the presence of intervalley scattering.

Since nonlinear lattice effects are intrinsically present in
real Weyl materials, likewise, the presence of a finite tilt is also
inevitable. Finite lattice effects and effects due to tilting of the
cones are largely independent of one another, and thus one
can solve the Boltzmann equation for tilted Weyl fermions in
the linearized approximation. The overall behavior is given by
a combination of both factors. We constructed several phase
diagrams in relevant parameter space that are important for
diagnosing chiral anomaly in Weyl materials. Specifically, we
examine the longitudinal magnetoconductivity σzz as well as
the planar Hall conductivity σxz for tilted Weyl fermions for

the four relevant cases when the cones are tilted in the same
or opposite direction along or perpendicular to the z direction,
i.e., (i) t1

x = t−1
x and tχ

z = 0, (ii) t1
x = −t−1

x and tχ
z = 0, (iii)

t1
z = t−1

z and tχ
x = 0, (iv) t1

z = −t−1
z and tχ

x = 0. Crucially, the
LMC is found to depend on the angle γ that determines the
orientation of the magnetic field with respect to the electric
field. When γ = π/2, the electric and magnetic fields are
parallel, and the LMC has a linear-in-B component only for
case (iv) that results in its asymmetry around B = 0. We found
that LMC when evaluated in the limit B → 0+ switches sign
as a function of intervalley scattering αi and the tilt parameter.
For cases (i), (ii), and (iii), LMC is symmetric around B = 0
and quadratic in magnetic field, however, it changes sign from
positive to negative depending on the magnitude of αi and
the tilt parameter. When γ �= π/2, the phase plots for cases
(i), (ii), and (iii) show nontrivial behavior. In particular, the
distinction between cases (i) and (iii) becomes evident due
to qualitatively different phase plots in the αi − tx space sep-
arating negative and positive LMC regions, which, however,
is quadratic in magnetic field. Specifically, the shape of the
zero-LMC contour is distinct in the two cases. Interestingly,
for case (ii), a linear-in-B component in LMC is added that
vanishes in the limit of parallel electric and magnetic fields.
This again results in qualitative different phase plots in the
αi − tz space as a function of γ . To summarize, the shape of
the zero-LMC contour in αi − t space as a function of the
angle γ is qualitatively distinct in each of the four cases.

Next, we discussed the applicability of our results to a
scenario much relevant to actual Weyl materials, i.e., the case
of a inversion symmetry-broken Weyl semimetal by extending
the Boltzmann formalism to tackle multiple nodes simulta-
neously. Interestingly, we find that despite the presence of
internode scattering between nodes of opposite tilt orientation,
the linear-in-B LMC coefficient vanishes for our model. We
find that the interplay of various internode scattering channels
along with the magnitude of tilt parameter governs the sign
of LMC. Lastly, we also discuss the planar Hall conductivity
σxz for each of the above cases. A linear-in-B component
to σxz is added in cases (ii) and (iv), which is further en-
hanced by a finite αi. The distinction between cases (ii) and
(iv) comes from the fact that in addition to sin(2γ ), a cos γ

and a sin γ trend to the planar Hall conductivity is as a
function of the angle γ for cases (iv) and (ii), respectively.
The cos γ and sin γ trends are enhanced due to intervalley
scattering.
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APPENDIX A: LATTICE WEYL FERMION

The Hamiltonian of a Weyl node with smooth lattice cutoff
can be expressed as

Hχ = χE0 sin(ak · σ ), (A1)

where k is measured from the nodal point, χ is the
chirality index, E0 is an energy parameter, and a is
constant with dimensions of length. Using the relations
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FIG. 16. Evolution of the phase diagram in the t1
z − αi parameter space as a function of the angle of the magnetic field γ , when the Weyl

cones are tilted along the same direction.

sin θ = (expiθ − exp−iθ )/2i and exp {ia(σ · k)} = I cos θ +
i(σ · k̂) sin ak, one can rewrite the Hamiltonian in the fol-
lowing form (with θ and φ as polar and azimuthal angles,
respectively):

Hχ = χE0 sin(ak)

(
cos θ sin θe−iφ

sin θeiφ − cos θ

)
. (A2)

Here we are going to use the property of matrices that for a
matrix M = [. . .]N×N having eigenvalues,λ1, λ2, λ3, . . . , λN ,

and eigenfunctions α1, α2, α3, . . . , αN, respectively, then for
matrix CM, the same will be Cλ1,Cλ2,C.λ3, . . . ,CλN , and
α1, α2, α3, . . . , αN (where C is constant). Thus, the eigenval-
ues of the Hamiltonian are

ε(k) = ±E0 sin (ak), (A3)

and eigenfunctions for positive band with different chirality
are

|u+(k)〉 =
(

e−iφ cos θ
2

sin θ
2

)
, (A4)

|u−(k)〉 =
(−e−iφ sin θ

2
cos θ

2

)
. (A5)

The expressions for Berry curvature and orbital magnetic mo-
ments (OMM) are given by

�
χ

k = i∇k × [〈uχ (k)| ∇k |uχ (k)〉],

mχ

k = −ie

2h̄
〈∇kuχ (k)| ×[Hχ (k) − ε(k)] |∇kuχ (k)〉 , (A6)

from which one can easily find the expressions for Berry
curvature and OMM

�
χ

k = −χk
2k3

,

mχ

k = −eχE0 sin (ka)k
2h̄k3

. (A7)

APPENDIX B: BOLTZMANN TRANSPORT EQUATION

The Boltzmann equation is reduced to the form

Z = AZ − Y , (B1)

where

Z =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ+
a+
b+
c+
λ−
a−
b−
c−

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B2)

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α++F+ α++G+ α++I+ α++J+ α+−F− α+−G− α+−I− α+−J−
α++G+ α++O+ α++P+ α++Q+ α+−G− α+−O− α+−P− α+−Q−
α++I+ α++P+ α++S+ α++U + α+−I− α+−P− α+−S− α+−U −
α++J+ α++Q+ α++U + α++V + α+−J− α+−Q− α+−U − α+−V −
α−+F+ α−+G+ α−+I+ α−+J+ α−−F− α−−G− α−−I− α−−J−
α−+G+ α−+O+ α−+P+ α−+Q+ α−−G− α−−O− α−−P− α−−Q−
α−+I+ α−+P+ α−+S+ α−+U + α−−I− α−−P− α−−S− α−−U −
α−+J+ α−+Q+ α−+U + α−+V + α−−J− α−−Q− α−−U − α−−V −

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B3)

Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α++H+ + α+−H−
α++N+ − α+−N−
α++L+ − α+−L−
α−+M+ − α−−M−
α−−H+ + α−+H−
α−−N− − α−+N+
α−−L− − α−+L+
α−−M− − α−+M+

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B4)
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FIG. 17. Evolution of the phase diagram in the t1
x − αi parameter space as a function of the angle of the magnetic field γ , when the Weyl

cones are tilted along the same direction.

The relevant integrals involved in the above matrices are∫∫
dθ ′dφ′ f χ ′

(θ ′, φ′) = Fχ ′
,

∫∫
dθ ′dφ′ f χ ′

(θ ′, φ′)hχ ′ = Hχ ′
, (B5)

∫∫
dθ ′dφ′ f χ ′

(θ ′, φ′) cos θ ′ = Gχ ′
,

∫∫
dθ ′dφ′ f χ ′

(θ ′, φ′) sin θ ′ cos φ′ = Iχ ′
, (B6)

∫∫
dθ ′dφ′ f χ ′

(θ ′, φ′) sin θ ′ sin φ′ = Jχ ′
,

∫∫
dθ ′dφ′ f χ ′

(θ ′, φ′) sin2 θ ′ cos2 φ′ = Sχ ′
, (B7)

∫∫
dθ ′dφ′ f χ ′

(θ ′, φ′)hχ ′
(θ ′, φ′) cos θ ′ = Nχ ′

,

∫∫
dθ ′dφ′ f χ ′

(θ ′, φ′)hχ ′
(θ ′, φ′) sin θ ′ cos φ′ = Lχ ′

, (B8)
∫∫

dθ ′dφ′ f χ ′
(θ ′, φ′)hχ ′

(θ ′, φ′) sin θ ′ sin φ′ = Mχ ′
,

∫∫
dθ ′dφ′ f χ ′

(θ ′, φ′) cos2 θ ′ = Oχ ′
, (B9)

∫∫
dθ ′dφ′ f χ ′

(θ ′, φ′) sin θ ′ cos θ ′ cos φ′ = Pχ ′
,

∫∫
dθ ′dφ′ f χ ′

(θ ′, φ′) sin θ ′ cos θ ′ sin φ′ = Qχ ′
, (B10)

∫∫
dθ ′dφ′ f χ ′

(θ ′, φ′) sin2 θ ′ cos φ′ sin φ′ = U χ ′
,

∫∫
dθ ′dφ′ f χ ′

(θ ′, φ′) sin2 θ ′ sin2 φ′ = V χ ′
. (B11)

APPENDIX C: EVOLUTION OF THE LMC PHASE
DIAGRAM WITH MAGNETIC FIELD

In Fig. 16 we plot the evolution of the contour shape in
the t1

z − αi parameter space as a function of the angle of the
magnetic field γ . When γ is directed away from π/2 the shape
of the zero LMC contour looks like a curved trapezoid instead
of U . The critical value αc

i where the sign change first occurs
is seen to reduce and elongate its region from |tz| ≈ 0.5 when
γ = π/2 to |tz| ≈ 1 as γ → 0. In Fig. 17 we plot the evolution
of the contour shape in the t1

x − αi parameter space as a
function of the angle of the magnetic field γ . It is noted that
region of negative LMC expands in the parameter space along
with the reduction of the critical intervalley strength αc

i where
the sign change first occurs. The reduction of the critical inter-
valley strength can again be understood as a combination of
the two factors (i) a finite tilt and intervalley scattering (when
γ = π/2) drives the system to change the LMC sign from

positive to negative, and second directing the magnetic field
away from the z axis in the presence of intervalley scattering
(in the absence of tilt) drives the system to change LMC sign
from positive to negative much below the critical intervalley
strength. The different shape of the contour (negative LMC
filling out the parameter space instead of a curved trapezoid)
is essentially because the cones are now tilted along the x
direction and the magnetic field has an x component to it,
which is qualitatively different from the tilt occurring in the z
direction. Finally, in Fig. 18 we plot the evolution of the phase
diagram when the Weyl cones are tilted along the x direction
but oriented opposite to each other. Directing the magnetic
field even slightly away from the z axis changes the qualitative
behavior since a linear-in-B component is added in the LMC
response. This is because the magnetic field now has a finite
component along the tilt direction, and the tilts are oppositely
oriented to each other.

FIG. 18. Evolution of the phase diagram in the t1
x − αi parameter space as a function of the angle of the magnetic field γ , when the Weyl

cones are tilted opposite to each other.
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FIG. 19. Normalized planar Hall conductivity (σ ′
xz) as a function of the angle γ for several values of tilt parameter tz for oppositely tilted

Weyl cones. In the absence of tilt the behavior follows the trend sin(2γ ), while in the presence of tilt, a cos γ component is added. Beyond a
critical t c

z , the cos γ term dominates and σ ′
xz(π/2 + ε) changes from positive to negative, where ε is a small positive angle. A finite intervalley

scattering further enhances the cos γ trend (however, only in the presence of a finite tilt). Its effect is to lower the critical tilt t c
z where the sign

change occurs.

APPENDIX D: ANGULAR DEPENDENCE ON PHC

In Fig. 19 we plot the normalized planar Hall conductivity
(σ ′

xz) as a function of the angle γ for several values of tilt
parameter tz for oppositely tilted Weyl cones. In the absence
of tilt the behavior follows the trend sin(2γ ), while in the
presence of tilt, a cos γ component is added. Beyond a critical
t c
z , the cos γ term dominates and σ ′

xz(π/2 + ε) changes from
positive to negative, where ε is a small positive angle. A
finite intervalley scattering further enhances the cos γ trend
(however, only in the presence of a finite tilt). Its effect is to
lower the critical tilt t c

z where the sign change occurs.
In Fig. 20 we plot the normalized planar Hall conductivity

as a function of the angle γ for several values of tilt parameter
tx for oppositely tilted Weyl cones. In the absence of tilt, the
behavior follows the expected trend of sin(2γ ), while in the
presence of tilt, a sin γ component is added. Beyond a critical
value of the tilt (t c

x ), the sin γ term dominates the behavior
σ ′

xz never changes sign as a function of the parameter γ . A
finite intervalley scattering further enhances the sin γ trend
(however, only in the presence of a finite tilt). Its effect is to
lower the critical value of the tilt t c

x .

APPENDIX E: BOLTZMANN TRANSPORT FOR A SYSTEM
WITH MULTIPLE NODES

For a system with multiple Weyl nodes, the distribution
function at each node can be represented by f m

k . Generalizing
the formalism presented in the main text, the collision inte-

gral must take into account scattering between multiple Weyl
cones that may or may not be of the same chirality or tilt.
Thus, Icol[ f m

k ] can be expressed as

Icol
[

f m
k

] =
∑

p

∑
k′

W mp
k,k′

(
f p
k′ − f m

k

)
, (E1)

where the sum p runs over nodes, and scattering rate W mp
k,k′ in

the first Born approximation is given by

W mp
k,k′ = 2π

h̄

n

V
∣∣〈ψ p

k′
∣∣U mp

kk′
∣∣ψm

k

〉∣∣2
δ
(
ε

p
k′ − εF

)
. (E2)

The scattering potential profile U mp
kk′ can be chosen such that

scattering between all or some of the nodes (internode) as well
as within each node (intranode) is considered. Proceeding as
before, we define the valley scattering time τm

k as

1

τm
μ (θ, φ)

= V
∑

p

∫∫
βmp(k′)3∣∣vp

k′ · k′p∣∣ sin θ ′Gmp
(
Dp

k′
)−1

dθ ′dφ′,

(E3)

and the Boltzmann equation becomes

hm
μ (θ, φ) + �m

μ (θ, φ)

τm
μ (θ, φ)

= V
∑

p

∫∫
βmp(k′)3∣∣vp

k′ · k′p∣∣ sin θ ′Gmp
(
Dp

k′
)−1

�p
μ(θ ′, φ′)dθ ′dφ′.

(E4)

FIG. 20. Normalized planar Hall conductivity (σ ′
xz) as a function of the angle γ for several values of tilt parameter tx for oppositely tilted

Weyl cones. In the absence of tilt the behavior follows the trend sin(2γ ), while in the presence of tilt, a sin γ component is added. Beyond a
critical t c

x , the sin γ term dominates and σ ′
xz(π/2 + ε) changes from positive to negative, where ε is a small positive angle. A finite intervalley

scattering further enhances the sin γ trend (however, only in the presence of a finite tilt). Its effect is to lower the critical tilt t c
x where the sign

change occurs.
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Making the ansatz �m
μ (θ, φ) = [λm − hm

μ (θ, φ) + am cos θ +
bm sin θ cos φ + cm sin θ sin φ]τm

μ (θ, φ), and using the
particle-number conservation constraint, the Boltzmann

equation is reduced to a system of 4N equations to
be solved for 4N unknowns (N being the number of
nodes).
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