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We calculated the magnetic Compton profiles (MCPs) of Ni using density functional theory supplemented by
electronic correlations treated within dynamical mean-field theory (DMFT). We present comparisons between
the theoretical and experimental MCPs. The theoretical MCPs were calculated using the Korringa-Kohn-
Rostoker method with the perturbative spin-polarized 7T-matrix fluctuation exchange approximation DMFT
solver, as well as with the full potential linear augmented plane-wave method with the numerically exact
continuous-time quantum Monte Carlo DMFT solver. We show that the total magnetic moment decreases with
the intra-atomic Coulomb repulsion U, which is also reflected in the corresponding MCPs. The total magnetic
moment obtained in experimental measurements can be reproduced by intermediate values of U. The spectral
function reveals that the minority X, Fermi-surface pocket shrinks and gets shallower with respect to the density

functional theory calculations.
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I. INTRODUCTION

The electron momentum distribution, through its depen-
dence on the ground-state wave functions, is a powerful
quantity for understanding many-body effects in solids [1].
Compton scattering experiments, which involve measuring
the energy distribution of inelastically scattered photons
which have impinged on electrons within the sample being
studied, are able to measure a projection (integration over
two momentum components) of the underlying electron mo-
mentum distribution [2]. Since the photons scatter from the
occupied momentum states, Compton scattering is sensitive
to the Fermi surfaces of metals.

While other experimental techniques such as photoemis-
sion spectroscopy (PES, and its angle-resolved counterpart,
ARPES) give excellent insight into the many-body in-
teractions present, it is important to remember that the
photoemission process is a complex excitation of the whole
system. Indeed, any interaction of the photo hole with the
electron quasiparticle would invalidate a claim to be a mea-
surement of the ground state. Thus, Compton scattering is a
uniquely powerful probe of the ground-state many-body wave
function [3]. In recent years, Compton scattering has been
used to reveal the electronic structure and Fermi surfaces [4]
in electronically complex materials such as substitutionally
disordered alloys [5,6] and compounds with high vacancy
concentrations [7]. Most relevantly, Compton scattering is
able to probe the electron correlations within many complex
materials [8—11]. Therefore, Compton scattering offers a valu-
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able and complementary perspective on electronic structure
and, in particular, a window onto electron correlations in
different regimes of composition, temperature, and magnetic
field from those which other probes can reach.

When x rays are inelastically scattered by the electrons
in solids, the scattered photon-energy distribution is Doppler
broadened because of the electrons’ momentum distribution
p(p) [12,13]. In practice, this is measured through the double
differential scattering cross section d’c /dQ2dw for a given
infinitesimal solid angle d2 and energy dw of the scattered
photon, respectively. The incident energy of the monochro-
matic x rays and the scattering angle are fixed during the
experiment, and the scattering cross section is measured as
a function of the photon energy. If the scattering event is
described within the impulse approximation [14,15], the scat-
tering cross section is proportional to the Compton profile,
d?*o /dQedw  J(p,), which is the one-dimensional (1D) pro-
jection of the electron momentum distribution, p(p), along the
scattering vector p.,

J(p.) = / f p(®)dpsdp,. )

If the incident photon beam has a component of circular po-
larization, the scattering cross section contains a term which
is spin dependent. This term may be isolated from the charge
scattering by either flipping the direction of the sample mag-
netization or the photon helicity parallel and antiparallel with
respect to the scattering vector, resulting in a magnetic Comp-
ton profile (MCP), Jimae(p;) [16]. In analogy to the Compton
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profile, the MCP is defined as the 1D projection of the spin-
polarized electron momentum density,

Jong(p2) = f / '@ — o' Odpdp,. (@)

Electronic structure calculations are particularly useful for
the interpretation of MCPs and these can be calculated from
the spin-dependent momentum distributions. Density func-
tional theory (DFT) [17-20] is by far the most widely used
method with its immense success in predicting properties of
the solid state. However, treating electron correlation in an
effective one-particle framework results in notable discrepan-
cies with experiment, even with the best available functionals.
Over the last decade, it has been demonstrated that within
the combined DFT and dynamical mean-field theory (DMFT)
[21-23], the so-called DFT + DMFT approach [24,25], many
of the electronic ground-state properties of d-metal elements,
their alloys, and compounds can be well described [24-26].
Early developments of DFT + DMFT were of the one-shot
type of calculation, in which a DFT computation is first con-
verged and the subsequent DFT Hamiltonian is supplemented
with a local Coulomb interaction for the correlated orbitals
[24,27-29]. Then, in a separate step, the interacting prob-
lem is solved self-consistently within DMFT. Fully charge
self-consistent approaches have been implemented [30-33]
as well, in which both DFT and DMFT are converged si-
multaneously. For some materials, the correlation-induced
modification in the charge density can be significant, while
in others, this was shown not to be the case. However, to
be consistent with the DFT concepts, charge densities [p(r)]
should be potential [V (r)] representable (o = V), which is
only achieved by full self-consistency [20].

One of the most studied simple metallic system that
presents signatures of electronic correlations is the fcc itin-
erant ferromagnetic Ni. It is known that the DFT alone cannot
reproduce the dispersionless feature at a binding energy of
about 6 eV, which is known as the “6 eV satellite” [34].
The valence-band photoemission spectrum of Ni shows a 3d
bandwidth that is about 30% narrower than the value obtained
from the DFT calculations. Similarly, the exchange splitting
in both the local spin-density approximation (LSDA) and
the generalized gradient approximations (GGA) [35] over-
estimates the experimental splitting by approximately 50%
[36-39]. The combined DFT + DMFT describes the occupied
3d bandwidth of Ni, and reproduces the exchange splitting
and the 6 eV satellite structure in the valence band [40—42]. In
addition to this, DFT 4+ DMFT has shown the consequences
of the local moment in ambient and Earth-core-like conditions
[43]. Further information about the electronic structure of Ni
can be extracted by using Compton scattering.

The MCPs of Ni have been calculated by using various
DFT implementations and their extensions. Features asso-
ciated with the Fermi surface (as a consequence of bands
crossing the Fermi energy) seen in experiment [44] were
generally reproduced with good agreement, notwithstanding
the distinct discrepancy at low momenta which points towards
some inaccuracies in the position of the spin-polarized bands
with respect to the Fermi level. It has also been shown that
the negative polarization of the itinerant s- and p-like band
electrons can be observed [45,46] and the discrepancy with

respect to the theoretical predictions was attributed to the
insufficient treatment of correlations present in the standard
DFT exchange-correlation functionals at low momentum [45].
The directional Compton and magnetic Compton profiles have
also been computed in combination with DMFT [47-49],
which facilitated a discussion of the anisotropy of the elec-
tronic correlations of Ni as a function of the on-site Coulomb
interaction strength, U. Those theoretical comparisons with
the experimental data led to the conclusion that the theoretical
MCPs improved when the local correlations are taken into
account, which also extends to the total Compton profiles.

In this work, we focus on the calculation of the momentum
distribution and related quantities within the framework of
many-body theory. We have used two approaches on the DFT
side, namely, Korringa-Kohn-Rostoker (KKR) [31,50,51]
which is a spin-polarized relativistic multiple-scattering the-
ory implementation, and a full potential linear augmented
plane-wave approach implemented in the ELK code [52].
For the many-body solvers, we used the perturbative spin-
polarized T-matrix fluctuation exchange approximation (SPT-
FLEX) [53,54] in combination with KKR [31], and the
numerically exact continuous-time quantum Monte Carlo
(CT-QMC) [55,56] in combination with the ELK code [52].
We show that while the experimental magnetic moment can
be obtained by varying U, the Ni MCP shapes have a weak
dependence on U. These results further indicate the impor-
tance of the effects beyond the local approximation of DMFT.

II. COMPTON AND MAGNETIC COMPTON PROFILES
WITH DFT + DMFT

Over the last few decades, substantial progress has been
made in the development of computational tools and libraries
that combine DMFT with electronic structure methods in the
framework of DFT + DMFT [24,25]. All these implemen-
tations can be divided into two subgroups according to the
employed schemes for constructing the local orbitals and
the definition of the so-called correlation subspace in which
the DMFT equations are solved. One of the subgroups uti-
lizes the local atomic orbitals constructed from the atomic
solutions, which cover a wide energy window of the DFT
(Kohn-Sham) wave functions, and is implemented in almost
all existing electron codes with different flavors such as linear
muffin tin orbital (LMTO) [57,58], exact muffin tin orbital
(EMTO) [30,59], and KKR [31]. The other popular choice
is the set of localized Wannier wave functions, which is cur-
rently realized as an independent interface in various codes,
including VASP [60], QUANTUM ESPRESSO [61], SIESTA [62],
ABINIT [63], WIEN2K [64], and ELK. The ELK code has been
interfaced with the TRIQS/DFTTOOLS application [65,66] to
enable DFT + DMFT calculations with ELK and the TRIQS
library [67] (we refer to this as the ELK-TRIQS package). Prior
to the description of the computational procedure for the
(magnetic) Compton profiles, we briefly present the steps of
the fully charge-self consistent DFT 4+ DMFT calculation.

A. DFT(4+DMFT) using KKR

The calculation scheme within the KKR method is based
on the Green’s function formalism of multiple-scattering
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theory [50]. The details of the DFT + DMFT implementation
within the fully relativistic multiple-scattering KKR method
have been reported previously [31]. It is important to note that
the flexibility of KKR lies in utilizing the Dyson equation
to relate the Green’s function of a perturbed system to the
Green'’s function of a suitable unperturbed reference system.
In KKR, the central quantity is the multiple-scattering path
operator 7, which is used to compute the real-space Green’s
function. In the most general relativistic form, the scattering
path operator is represented in the site basis with site index
R, and the total angular momentum with combined index
A(x, n), with spin-orbit ¥ and magnetic i quantum numbers.
Electronic correlations can be included by supplementing the
scalar real-valued local single-particle potential provided by
the DFT with a self-energy that is energy dependent, complex
valued, and nonlocal. The Dyson equation allows for the com-
putation of the single-particle Green’s function G(r,r’, E)
with respect to a reference system. The r and r’ are defined rel-
ative to the center of an atomic cell corresponding to a specific
site, and the reference system is described by a one-electron
Hamiltonian containing the DFT potentials located on the
regular lattice sites [31,68]. The single-site Dirac equation is
solved and the wave function is matched to the free-electron
solution at the boundary of the atomic cell. Subsequently,
the single-site scattering matrix 7§, ,(E) is obtained, which in
turn provides the expression for the scattering path operator
tRR (E), connecting the sites R and R'. Within this basis,
emeloying the four-component wave functions of the regular
[Z A(X>(r, E)] and irregular [J/'f(x)(r, E)] solutions of the Dirac
equation [69], the Green’s function can be written as

Gr.x' E)= )Y Z{(x Eyt{8 (E)Z}* (' E)

AN

=Y 2R By (' Eyor' — )
A

+ IR (e, EYZZ (0 EYO(r — 1) ]6rr, (3)

where 6(r) is the step function. Note that in the case of a
complex non-Hermitian self-energy X(r,r’, E), one has to
distinguish between the left- and right-hand-side solutions of
the single-site Dirac equation [69]. The left-hand-side solu-
tions are denoted by the “x” symbol as an upper index.

The DMFT solver used in the current implementation is the
relativistic version of the so-called SPT-FLEX [53,54], which
is formulated on the complex (Matsubara) axis. In contrast to
the original formulation of FLEX [70], the particle-particle
and the particle-hole channels are treated differently [53,54].
The particle-particle processes renormalize the effective in-
teraction, which is added into the particle-hole channel. The
particle-hole channel itself describes the interaction of elec-
trons with the spin fluctuations, which represents one of the
most relevant correlation effects in Ni. Here we employed
the SPT-FLEX solver which uses a rotationally invariant for-
mulation for the interaction and is self-consistent in charge
and self-energy [31]. Once the self-energy is computed within
the many-body solver, it is returned directly into the Dirac
equation [31].

In order to compute the electron momentum density, the
momentum operator is diagonalized in the crystal basis set,
and its eigenfunctions are used to construct the Green’s func-
tion in the momentum representation, G, (p, E) [71]. The
spin-projected momentum density p°(p) can then be directly
computed as [71]

L[
p%(p) = ——/ Im G, (p, E)dE, “)
7 Jo

where o = 1 ({) represents the spin projections. The energy
integration in Eq. (4) is performed in the complex plane along
the contour that encloses the poles of the one-particle Green’s
function. The corresponding Compton and magnetic Compton
profiles are computed using Eqgs. (1) and (2).

B. DFT(+DMFT) using ELK-TRIQS

The DFT + DMFT framework within the ELK-TRIQS pack-
age (which will be referred to as ELK 4+ DMFT throughout)
starts with a self-consistent calculation at the DFT level. The
DFT density of states (DOS) is then used to identify an
appropriate “correlated” energy window that contains the de-
sired orbitals. For this selected energy window, the so-called
Wannier projectors [28,65,72] are constructed, which are used
to project the lattice Green’s function onto the localized
Wannier-orbitals representation. The resulting local Green’s
function serves as an input to the DMFT. Here we employ the
CT-QMC solver to obtain the self-consistent solution of the
DMEFT equations. The self-consistently obtained self-energy
(with the double counting removed) is then upfolded back
to the Bloch basis so that it is suitable to update the lattice
Green’s function.

The charge density matrix is obtained from the lattice
Green'’s function by summing over the Matsubara frequencies.
This is then used to generate the total DFT + DMFT density
matrix, which is generally nondiagonal in the Kohn-Sham
basis. However, this total density matrix can be diagonalized
into the orthonormal Loéwdin-type basis [73] with a new set of
diagonal DFT 4+ DMFT occupations N{k’(r and wave functions
¢f<7,;(1')’ as described in Ref. [65], which are then used to
update the electron density by

p(r) =Tre > N¥7 97 (0)[of ()] )

¢k

Here, o is the spin index and ¢ is the eigenstate index. The
DFT + DMFT results presented in this work are obtained by
the fully charge self-consistent method with spin-polarized
DFT inputs. Fully charged self-consistency is achieved by
updating p(r) from the DFT + DMFT occupations and wave
functions. Subsequently, the Kohn-Sham equations are solved
once, and the new Wannier projectors are generated for the
next fully charged self-consistent cycle.

In the current implementation of the DMFT framework,
the effective Anderson impurity problem corresponding to
the correlated many-body system is solved by the CT-QMC
method [55] using the TRIQS/CTHYB application [56]. The
CT-QMC methods have different formulations, namely, the
interaction expansion (CT-INT) [74], the auxiliary-field (CT-
AUX) [75], and the hybridization expansion (CT-HYB) [76].
We use the CT-HYB formulation for all finite temperatures.

115144-3



JAMES, SEKANIA, DUGDALE, AND CHIONCEL

PHYSICAL REVIEW B 103, 115144 (2021)

CT-HYB operates on an imaginary time and frequency (Mat-
subara) axis. Therefore, analytical continuation is necessary
to produce spectral functions on the real-frequency axis. The
latter suffers from the finite-precision arithmetic, which tends
to amplify numerical noise and produce unphysical artifacts.
These issues may be especially severe for multiorbital prob-
lems with complicated spectral lines.

The computation of the electron momentum density p(p),
however, does not involve analytical continuation. It is for-
mally derived from the Fourier transformed real-space wave
functions ¥/, (r) and, in practice, is determined by using the
tetrahedron interpolation method for the discrete k mesh [77].
The calculated electron momentum density has the form

2

/ exp(—ip - 1), (X)dr| . (6)
\%4

p’(p) =Y _n7,
k.n

where ny , are occupation functions with eigenstate index
n. The electron momentum density within the DFT formal-
ism is computed using the Kohn-Sham wave functions and
occupation functions. Equation (6) can also be used in the
DFT + DMFT formalism, but now with the corresponding
DFT + DMFT wave functions and occupation functions. By
doing so, the direct impact of the nonphysical artifacts of
the analytical continuation on the electron momentum den-
sity can be circumvented. The occupations, as well as other
observables, are implicitly dependent on the wave functions.
The changes in these quantities are coupled to those in the
wave functions and are hard to disassociate. Once the electron
momentum density has been calculated, J(p;) and/or Jyag(p;)
can be determined by Egs. (1) and (2).

III. COMPUTATIONAL DETAILS AND RESULTS

Both KKR and ELK self-consistent computations were per-
formed with the same parameters for the crystal structure (a =
3.52 A) and the same parametrization for the DFT exchange-
correlation potential, LSDA [78]. The ELK DFT calculations
used a 20 x 20 x 20 k mesh, which proved to be sufficient
for the k-point convergence of the self-consistent calculation.
The KKR calculations within atomic sphere approximation
were performed on a 57 x 57 x 57 k mesh, and a semicircular
complex contour was used with 40 energy points enclosing
the one-particle poles of the Green’s function. The minor
differences in the density of states and spectral functions can
be attributed to the different approaches within ELK and KKR.

Sightly more significant differences are expected to appear
at the DFT 4+ DMFT level. Both approaches use a rotationally
invariant form for the interacting Hamiltonian. The multi-
orbital interaction has been parameterized by the average
screened Coulomb interaction U and the Hund’s exchange
coupling J. The values of U and J are sometimes used as
fitting parameters, although recent developments allow the
computation of the dynamic electron-electron interaction ma-
trix elements exactly [79]. It was shown [80] that the static
limit of the screened energy-dependent Coulomb interaction
led to the U parameter being in the energy range of 2 to
4 eV for all 3d transition metals. Previous DMFT calculations
showed that these U and J parameters provide the best de-
scription of the ground-state properties related to the structure

and different spectroscopic measurements for many of the 3d
metals [40,53,81,82]. In a considerable number of studies of
bulk fcc Ni, the excellent agreement with the experimental
results was obtained by setting J = 0.9 eV [40,47-49,83],
the value which we also use here. Besides, these U and J
parameters are in line with constrained random-phase approx-
imation (cRPA) calculations of 3d transition metals [80,84].
Note, however, that the multiorbital interacting Hamiltonian
is formulated in different basis sets. In KKR + DMFT, the
local atomic basis set is used [31,68] and, consequently, the
many-body problem is formulated within the d block. Cor-
relation effects are felt by other orbitals only through the
self-consistency cycle. In contrast, with the ELK + DMFT,
the Wannier projectors are constructed such that the Ni-d
states, which are completely within the used correlated en-
ergy window of [—10, 3] eV, are captured. Further essential
parameters for the CT-QMC computation [56] are the num-
ber of sweeps (4.2 x 10%) and the inverse temperature 8 of
40 eV~!. In both methods, the spin-polarized around-mean-
field double-counting term (AMF) [85,86] was employed.

The ELK + DMFT spectral function presented in
Sec. IIIC was calculated by analytically continuing the
DMFT self-energy using the LineFitAnalyzer technique
of the maximum entropy analytic continuation method
implemented within the TRIQS/MAXENT application [87].

The different descriptions of the potentials, full potential in
ELK and the atomic sphere approximation (ASA) in KKR, also
lead to the difference in the calculated chemical potentials.
Within the KKR + DMFT method, the self-energy is added
into the Kohn-Sham-Dirac equation [31,68], and the chem-
ical potential is updated to conserve the number of valence
electrons similarly as in the DFT loop. The ELK + DMFT,
using the Wannier projectors instead, updates the electron
density from which a new set of Kohn-Sham eigenvalues
and eigenvectors is generated and the corresponding chemical
potential is obtained. The difference in the DFT 4+ DMFT
chemical potential with respect to the DFT values is, at most,
a few-tenths of an eV. The different solvers produce slightly
different values for the real parts of the self-energies at the
chemical potential. An important point here is the double
counting and, even though the functional form is the same for
both KKR + DMFT and ELK + DMFT, the slightly different
values in the occupation matrix produce slightly different
double-counting values.

A. U-dependent spin and orbital magnetic moments

To identify the optimal value of U, or at least to narrow
the ab initio interval, we first analyzed the behavior of the
Ni ferromagnetic spin magnetic moment with respect to the
on-site Coulomb interaction U and fixed Hund’s rule coupling
J=09eV.

The ferromagnetic spin (m,) and orbital (m,) magnetic
moment as a function of the on-site Coulomb interaction U are
shown in Fig. 1. Both the ELK + DMFT and KKR + DMFT
results show a similarly decreasing spin magnetic moment
with increasing U, in quite close correspondence to each
other.

Contrary to the decreasing spin moment over the en-
tire U range, the orbital moment m, obtained in relativistic
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FIG. 1. Spin m, (up) and orbital my, (p) magnetic moment
as a function of the intrasite Coulomb potential U. Blue plus
signs and black crosses represent results of ELK(+DMFT) and
KKR(+DMFT) spin magnetic moment calculations, respectively. On
the right axis, we plot the KKR (red asterisks) orbital magnetic
moment (m1,). In all calculations, the Hund’s rule coupling parameter
J = 0.9 eV was used. The data points for U = 0.0 eV represent the
DFT calculations.

KKR + DMEFT calculations increases with the U values, pass-
ing the maximum value at U ~ 2.3 eV, and decreases upon
further increasing the value of U. Even for the largest value
of U (U = 3.0 eV in the presented calculations), the KKR +
DMEFT orbital magnetic moment is larger than the correspond-
ing DFT value by about 30%. Similar results have also been
previously reported in Ref. [88] and were interpreted as a
correlation-induced orbital moment enhancement.

Despite the different descriptions, it is satisfying to
see the good agreement between the results obtained
with both methods. For U = 2.0 eV, the calculated spin
moment matches best with experiment =0.56 up for
both DFT + DMFT methods and is within the ab initio
predictions for the 3d transition elements. These U = 2.0 eV
and J =0.9eV values are in agreement with that used
in the previous spin-polarized Ni angular correlation of
annihilation radiation (ACAR) study [83]. The experimental
spin moment originates from the polarized neutron diffraction
measurements by Ref. [89]. The total (spin + orbital)
measured magnetic moment, which the analysis relied on, was
subsequently revised by Ref. [90] to 0.616 up, and with which
our KKR +DMFT U =2.0eV calculation has excellent
agreement. Our chosen U and J values for ferromagnetic
fcc Ni have a higher J/U ratio compared to previous
(DFT+)DMFT studies in the paramagnetic phase [91]. For
other values of J, two different values of U are required to
match either spin or orbital moments, whereas for J = 0.9 eV
and U = 2.0 eV, we obtain an excellent agreement with both.
Magnetic Compton scattering, however, does not directly
provide information concerning the orbital moments, but
when combined with a superconducting quantum interference
device (SQUID) measurement of the total magnetic moment,
the orbital contribution can be inferred [92].

B. Magnetic Compton profiles

In the KKR(4+DMFT), the magnetic Compton profiles
are calculated from the spin-resolved momentum density
p%(p), which in turn is obtained as a contour integral of
the Green’s function in the momentum representation, given
by Eq. (4). In the ELK 4+ DMFT, the electron momentum
densities (and the MCPs) are computed through the wave
functions and occupation functions across the Brillouin zone
on the imaginary-frequency axis. The method of obtaining
the wave functions and occupation functions in ELK-TRIQS
is described in Ref. [65]. In both methods, the MCPs were
calculated within a sphere of radius 16 a.u. (|p| < 16 a.u.),
and then renormalized such that their areas were equal to the
corresponding spin magnetic moment.

To analyze the effects of correlation on the MCPs, we
calculated MCPs with the DFT 4+ DMFT method for a se-
ries of on-site interaction values U and Hund’s rule coupling
J = 0.9 eV by employing both KKR + DMFT and ELK +
DMFT. Figure 2 shows the Ni MCPs along the cubic
high-symmetry directions, obtained using the KKR(+DMFT)
[Figs. 2(a)-2(c)] and the ELK(4+DMFT) [Figs. 2(d)-2(f)] in
the momentum range 0 < p, < 8 a.u. The theoretical MCPs
have been convoluted with a Gaussian with a full width at half
maximum (FWHM) of 0.43 a.u. to represent the experimental
resolution.

Starting with the presented DFT results, the MCPs show
good agreement with the experiment for p, > 2 a.u., but
these MCPs do not match the low-momentum region for any
of these high-symmetry directions. Our DFT results are in
good agreement with those previously presented in Ref. [44].
The MCP peak structures within the first Brillouin zone are
due to the exchange splitting, which in turn causes the ma-
jority and minority spin bands to cross the Fermi level at
different kp values (see Fig. 4 and Fig. 5). These peaks are
periodically repeated in the MCPs as these are the umklapp
contributions from higher zones (i.e., k + G, where G is
the reciprocal lattice vector). One of the advantages of the
effective one-particle framework of DFT calculations is the
possibility to decompose the total MCP into the contributions
originating from individual bands [44—46,93]. The dip in this
low-momentum region has been partly attributed to the con-
tribution of the so-called negative polarization of the s- and
p-like bands with respect to the positive contribution of the
d bands. At the same time, Refs. [44,93] note that another
source of discrepancy may be due to the d-like fifth band
(band numbering according to Ref. [44]), where Ref. [93]
attributes the shape of the contribution of this band to the
inconsistencies between the theoretical and the true Fermi sur-
face. These interpretations, based on the DFT band structures,
raise some interesting unsolved questions about the origin of
the discrepancy at low momentum. From the DFT results, the
predicted negative polarization contributions are not sufficient
to explain the low-momentum dip seen in the experimental
results. Dixon et al. [44] suggested that it was the deficient
representation of the d-electron correlations in LSDA (and
GGA), not just the negative polarization from the s and p elec-
trons, which was the potential cause for the low-momentum
experiment-theory disagreement [44]. Artificial shifts of
the bands around the Fermi level [94] showed improved
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FIG. 2. The Ni magnetic Compton profiles (MCPs) at [100], [110], and [111] high-symmetry directions (indicated on each plot) for
several intrasite Coulomb potential U and fixed Hund’s rule coupling J = 0.9 eV. (a)-(c) The KKR + DMFT MCPs results. (d)—(f) The
ELK + DMFT MCPs. The areas of each MCP have been normalized to their corresponding spin magnetic moment results given in Fig. 1. The
DFT + DMEFT results are complemented by the LSDA results from the respective ELK and KKR codes (dashed curves) and the experimental
measurements from Dixon et al. (dots with error bars) [44]. For clarity, the error bars are shown for every tenth data point. The computed
results have been convoluted with a Gaussian with a full width at half maximum (FWHM) of 0.43 a.u. to represent the experimental resolution.

agreement with the low-momentum MCP region. As cor-
relation effects lead to the shift of those bands naturally,
an improved theoretical description of the Ni MCPs can
be obtained by taking them into account. Recent studies
[47-49] also demonstrated that including the local correla-
tions through the DMFT framework reduces the discrepancy
between the theoretical and experimental MCPs of Ni.

Moving on to the DFT 4+ DMFT results, the large dips
near p, =0 a.u. in the high-symmetry directions are bet-
ter reproduced by the DFT + DMFT MCP for U > 2.3 eV.
On the other hand, for high momentum, p, > 2 a.u., region
U < 2.3 eV is a better choice. Although we are able to pro-
duce improved agreement (with respect to the DFT MCPs)
with the experiment at low momentum, p, < 1 a.u., DFT +
DMEFT fails to reproduce the experimental MCP for the [100]
and [110] directions [see Figs. 2(a), 2(d) and 2(b), 2(e)].
Along the nearest-neighbor direction [110], no U value was
found to suppress the peak at around p, = 0.6 a.u. Although
the general low-momentum disagreement is the case for
both implementations, there are some notable differences be-
tween the ELK + DMFT and KKR + DMFT results. Along
the [100] direction, Jyae(p,) for p, < 1 a.u. calculated with
ELK + DMFT for increasing values of U matches the exper-
imental MCP better than those obtained with KKR + DMFT.
The latter visibly overestimates the Jmqe(p;) (by almost the
same amount) for all U values considered. The opposite hap-
pens for the [111] direction. In this case, Jmae(p;) obtained
with KKR + DMFT matches the experimental values in the
p: <2 au. region for U > 2.3 eV, while ELK + DMFT re-
sults overestimate the experimental values for p, < 1 a.u. for
all considered values of U.

Although, in general, the low momentum is better de-
scribed with higher U values (see Fig. 2), the costs of this
is the poorer agreement with the experiment from 1 to about
5 a.u. This is because the area under the MCP, which is equal
to the corresponding spin moment for each U value in Fig. 1,
reduces with increasing U and is less than the experimental
value for U > 2.0 eV. Therefore, for the different U values,
an improvement in one momentum region of the MCP causes
another region to worsen in order to conserve the area.

We did not find a single U value, within the ab initio range
of U values, which would simultaneously match both the low-
and high-momentum regions of the experimental profile
within its error. On the other hand, in the previous section, we
identified that the DFT + DMFT calculation with U = 2.0 eV
and J = 0.9 eV produces the best match between the calcu-
lated and experimental magnetic moment. To see how well the
DFT + DMFT MCPs for U = 2.0 eV match the experimental
MCPs from Ref. [44], and also to compare the results obtained
by two different packages and two distinct frameworks in
Fig. 3, we show the corresponding MCPs. Although the MCPs
calculated in the DFT 4+ DMFT framework for U = 2.0 eV
deviate from the experimental results in the momentum range
0 < p; < 1 auu., extending DFT with the DMFT framework
significantly improves the description of the experiment in
the range 1 < p, <2 au. For U = 2.0 eV, the structure of
the MCPs is well reproduced in all three high-symmetry di-
rections in this region where the dominant contributions are
made. DFT 4+ DMFT results also stay in reasonably good
agreement with the experiment for higher values of p,, from
p. = 2 a.u. onwards, but they tend to slightly underestimate
the tails, although they are within the experimental error. This
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FIG. 3. The comparison of the experimental Ni magnetic Comp-
ton profiles (MCPs) from Dixon et al. [44] (dots with error bars) with
the DFT results (solid and dashed curves) and the DFT + DMFT
results for the chosen U = 2.0 eV and J = 0.9 eV (dash-dotted and
dotted curves). For clarity, the error bars are shown for every tenth
data point. The MCPs are shown for the (a) [100], (b) [110], and
(c) [111] high-symmetry directions. The computed results have been
convoluted with a Gaussian with a full width at half maximum
(FWHM) of 0.43 a.u. to represent the experimental resolution. The
areas of each MCP have been normalized to their corresponding spin
magnetic moments given in Fig. 1.

is also a consequence of the calculations overestimating the
low-momentum region.

Overall, dynamic correlations improve the agreement with
the experimental data beyond the LSDA results. The results
including dynamic correlations also show the correct trend for
the low-momentum region p, < 2 a.u., where better MCPs are
obtained in comparison to the LSDA. LSDA overestimates
the MCP values almost in the entire region. As mentioned
earlier, since the areas under the MCPs directly equal the
spin moment (), the areas reduce with increasing U as per
Fig. 1. Nevertheless, since DFT + DMFT also overestimates
the experimental MCP values in the p, < 1 a.u. region, the
consequence is that the tails (high-momentum region) are
underestimated—after all, the areas beneath the MCP and
the U = 2.0 eV DFT + DMFT curves are almost equal. The
current results, however, do not allow us to infer the optimal
value for the on-site Coulomb interaction necessary to ob-
tain the best agreement with the experimental measurements.
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FIG. 4. The comparison of the unconvoluted high-symmetry di-
rection, (a) [100], (b) [110], and (c) [111], MCPs from the DFT
(solid and dashed curves) and the DFT + DMFT with U = 2.0 eV,
J = 0.9 eV (dash-dotted and dotted curves) calculations. The pro-
files in this figure are the unconvoluted counterparts of the MCPs
which are in Fig. 3.

Nevertheless, we see that U values in the range [1.7,2.3] eV
describe the on-site Coulomb interaction reasonably well (al-
most exactly within experiment error bars in the 1 < p, <2
a.u. range), in agreement with positron annihilation measure-
ments [83]. Similar conclusions have been drawn in previous
papers reporting the correlation effects upon the MCP of
Ni [47-49].

A direct comparison between the methods can be seen in
Fig. 4, where we plot the theoretical MCPs which have not
been convoluted with the experimental resolution. The results
produced with the two DFT 4+ DMFT implementations are
in excellent agreement. Therefore, we are confident that the
effect of the resolution on the MCPs does not hide any glaring
disagreements between the implementations.

Finally, we conclude that neither implementation produces
results (for all U values) that have a better overall agree-
ment with the experimental data than the other (within the
experimental error). The level of experiment-theory agree-
ment between the MCPs from both implementations varies
in different regions of momentum. Overall, the results from
the two implementations are in good agreement with minor
discrepancies due to the aforementioned differences discussed
at the beginning of Sec. III.
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FIG. 5. The ELK-DFT band structure and ELK + DMFT, DFT 4+ DMFT (U = 2.0 eV and J = 0.9 eV) spectral function for the majority
(left) and minority (right) spin. The DFT bands have been broken down in terms of their indices (using the same numbering as Dixon et al.
[44]) for discussions about the band contributions to the MCPs, and resemble those of Dixon et al. The insets are a zoomed image around the
X symmetry point (indicated by the gray outline) showing the differences between the theoretical treatments.

C. Spectral function

Features in the MCPs can be traced back to the form of
the spectral function which, for the noninteracting case, is
represented by the band structure. Figure 5 shows the DFT
band structure together with the DFT + DMFT k-resolved
spectral function along the high-symmetry directions in the
Brillouin zone from the ELK and ELK + DMFT calculations.
In the present DFT calculation, we confirm that the bands 5
and 6 of Fig. 5 only give a positive contribution to the MCPs,
whereas bands 1-4 have negative contributions to the MCPs
at low momentum.

In a many-body picture, however, such a band-resolved
interpretation is not possible. The spectral function in Fig. 5
shows the quasiparticle dispersion. The self-energy affects the
two spin channel spectral functions differently. A significant
part of the energy dependence of the self-energy is related
to the different occupations of the spin-polarized d states,
on which the MCPs are also dependent. Scattering processes
involving s electrons may be neglected as the corresponding
orbitals are almost completely filled [95].

Within the DMFT approximation, the self-energy matrix
is diagonal in the angular momentum representation and is
independent of k. It is the orbital dependence of the self-
energy that produces a coupling between the terms of the
d®-multiplets [95], where the neglected k dependence of the
self-energy amounts to disregarding the hopping processes
of the two holes bound to the same Ni site. The CT-HYB
impurity solver captures the self-energy contributions relevant
for the strong ferromagnetic state such as repeated scattering
of paired holes, hole-hole, and hole-electron interactions as
these processes enter in the fully rotationally invariant for-
mulation of the Hubbard model and are parameterized by
the U and J parameters [82]. As Ni has a relatively large
bandwidth, the atomic multiplet structure is extended in the
energy range around —6 eV. Therefore, the expected satellite
in our treatment is a broad feature instead. The prominent

correlation effect of the DFT 4+ DMFT k-resolved spectral
function is to renormalize the position and width of the d
bands and significantly reduce the exchange splitting to about
0.3 eV at the L point (which we measured as the difference
between the majority and minority band centers). These are
direct consequences of the presence of the real part of the
DMEFT self-energy having a negative slope at Er. These fea-
tures are in good agreement with experiments [38,39] and are
in line with previous studies [40,41,43]. We observe that the
crossing of the bands at the Fermi level hardly changes for
the majority spin channel (see the left panel in Fig. 5). In
the minority bands, however, there are subtle changes around
the X point, where two X-hole pockets reside (see the inset in
the right panel in Fig. 5). These changes are less significant
for the MCPs, but are relevant in other experiments such as de
Haas—van Alphen and ARPES [96,97]. Previous experiment-
theory comparisons [96,97] have shown that DFT predicts
a second shallow minority hole pocket around X. This is
referred to as the minority X, hole pocket (related to minority
band 3 in Fig. 5), but there is no strong evidence of its presence
in the experiments. The present DFT + DMFT calculation
with U = 2.0 eV shows that the size of the minority X,-hole
pocket shrinks and also becomes shallower as compared to
the DFT results, but it does not vanish. These may indicate
that other correlation effects are required to suppress this band
below the Fermi level, or that the large effective mass of the
X;-hole pocket due to the shallowness of the corresponding
band around X (see the inset in the right panel in Fig. 5) might
have made its observation more challenging.

Contrary to previous interpretations based on the one-
particle description, it is not obvious that the negative
polarization contributions to the MCP (by the s and p
electrons) are the cause for the disagreement between the ex-
periment and the DFT and DFT 4+ DMFT computations. The
low-momentum disagreement is likely the consequence of the
other missing correlation effects beyond DFT + DMFT, such
as screening. As screening is a genuine many-body effect, it
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requires methods such as quasiparticle GW (QSGW). Such a
calculation for Ni was recently performed by Sponza et al.
[98]. The QSGW calculations produce an enhanced value for
the magnetic moment and exchange splittings. Nonetheless, in
supplementing the computations with DMFT in the combined
QSGW + DMFT, the values for the magnetic moment and
exchange splitting are in good agreement with the experiment.
We expect that a QSGW + DMFT calculation would likely
improve the MCPs, as these incorporate nonlocal and screen-
ing effects.

IV. CONCLUSION AND OUTLOOK

To conclude, we have presented results of two different
DFT + DMFT implementations to calculate the spin-resolved
momentum distributions o (p) and the magnetic Compton
profile Jiya(p;). Both of these implementations show excel-
lent agreement with each other, considering the differences in
their approaches to applying both DFT and DMFT and the
different challenges that these contribute to the calculations.

The DFT + DMFT spin moment calculations have the
same U dependence in both setups; the slight difference in
magnitude is likely due to the details of the implementations.
Although the spin moment improves to be comparable with
the experimental value, the shape of the MCP has a weak
U dependence, features in the profile such as umklapp peaks
remain relatively unchanged, and only the MCP contributions
are redistributed compared to the calculated DFT profiles.

For the U =2.0eV calculation, which reproduces the
experimental spin (and total) magnetic moments, the corre-
sponding spectral function reveals that the minority X, pocket

shrinks and gets shallower with respect to the DFT calcula-
tions, but nevertheless still survives. This small X, pocket is
likely to have a large effective mass and this may explain why
it was not observed in the de Haas—van Alphen experiment.

According to our combined DFT + DMFT approaches,
some arguments in previous DFT studies built upon the ex-
istence of negative polarization description are not sufficient
to explain the discrepancy between the theoretical and ex-
perimental MCP and low-momentum region. Instead, theories
including a nonlocal description of interaction and retardation
effects (i.e., energy-dependent screening) such as cluster-
DMFT, GW (QSGW), and beyond might be more suitable
to deliver a better description of the MCP in ferromagnetic
metals such as Ni. To truly resolve the intricacies which may
arise between the aforementioned theoretical frameworks, it
would be essential to remeasure the Ni MCPs with a higher
resolution. This will lead to further valuable understanding of
the many-body ground-state properties probed in momentum
space.
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