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Lindblad equation approach to the determination of the optimal working point in nonequilibrium
stationary states of an interacting electronic one-dimensional system: Application to the spinless

Hubbard chain in the clean and in the weakly disordered limit
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Using the Lindblad equation approach, we derive the range of the parameters of an interacting one-dimensional
electronic chain connected to two reservoirs in the large bias limit in which an optimal working point (corre-
sponding to a change in the monotonicity of the stationary current as a function of the applied bias) emerges in the
nonequilibrium stationary state. In the specific case of the one-dimensional spinless fermionic Hubbard chain,
we prove that an optimal working point emerges in the dependence of the stationary current on the coupling
between the chain and the reservoirs, both in the interacting and in the noninteracting case. We show that the
optimal working point is robust against localized defects of the chain, as well as against a limited amount of
quenched disorder. Eventually, we discuss the importance of our results for optimizing the performance of a
quantum circuit by tuning its components as close as possible to their optimal working point.
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I. INTRODUCTION

Connecting a mesoscopic device with two or more elec-
tronic reservoirs, biased at different temperatures or chemical
potentials, gives rise to finite currents flowing through the sys-
tem, between the reservoirs. At a low bias, the (equilibrium)
transport properties of the system are well accounted for, both
analytically and numerically, within linear response approach
[1]. Conversely, when the system is driven to the nonequi-
librium regime (large bias), a fully analytical approach is
in practice unfeasible, due to the strong dependence of the
dynamics on the system and on the reservoirs separately, as
well as on the nature of the coupling between the two of them
[2].

Despite the technical difficulties to approach it, the large
bias regime is of great interest, as it is directly related to,
e.g., control of heat flow [3], as well as quantum information
processing [4]. For this reason, a large number of theoretical
approaches has been developed to investigate the nature of
nonequilibrium states, both in noninteracting as well as in
interacting systems, such as the Landauer-Buttiker formalism
[5,6], the quantum master equation approach [7,8], the renor-
malization group techniques [9,10] (including the functional
renormalization group approach [11]), and the bosonization
methods [12–14]. Yet, each of these methods has only a
limited range of applicability and, typically, none of them is
able to fully catch all the relevant aspects of nonequilibrium
physics, due to the complexity of the systems, to the strength
of the interaction, to the peculiar nature of the stationary states
that eventually set in, etc.

Therefore, to fully recover the nonequilibrium physics,
one has to resort to a fully numerical approach, possibly
complemented, when possible, with (approximate) analytical

methods. In fact, when connected to one or more reservoirs,
(open) quantum systems can be described through a mas-
ter equation, aimed to represent the true quantum evolution
after integrating over the reservoir degrees of freedom. The
derivation of such an equation usually relies on the so-called
Markovian approximation, which consists of neglecting mem-
ory effects under the assumption that the bath relaxation
time is much shorter than the characteristic timescales of the
system [15,16]. The Lindblad equation (LE) [8] is among
the most used master equations: It stems from modeling
the reservoirs as local “jump” operators injecting, or remov-
ing, particles through the boundaries of the system. Aside
from its universality, the LE can be readily approached by
means of a number of numerical methods, including quan-
tum Monte Carlo techniques [17–19], time-dependent density
matrix renormalization group (t-DMRG) [20–23], or current
density functional approach [24].

Most of the literature concerning the numerical approach
to the LE has been focused onto quantum XXZ spin chains
connected to reservoirs. The XXZ spin-1/2 spin chain, in-
deed, provides a remarkable paradigmatic model where to
address several key issues, such as the interplay between
integrability breaking and asymptotic evolution of the sys-
tem towards an appropriate nonequilibrium stationary state
(NESS) [25], the characterization of the NESS by looking at
the real-space average magnetization in the z direction and
at the stationary spin current flowing through the chain, the
effects of isolated impurities as well as of quenched disorder
on the NESS [23,26], and so on. In addition, the quantum
XXZ spin chain is well known to map onto a model for
spinless interacting one-dimensional lattice fermions (which
throughout the paper we dub “spinless fermionic Hubbard
model” (1HM), according to the widely used terminology
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[27,28]), via Jordan-Wigner transformation [29]. Finally, it
has been shown that it is possible to realize quantum spin-
1/2 XXZ spin chains with tunable impurities at pertinently
engineered junctions of one-dimensional Josephson junction
arrays [30–33].

A typical feature characterizing the NESS in the XXZ
spin-1/2 spin chain is the tendency of the system, driven
out of equilibrium, to develop ferromagnetic domains, sep-
arated by domain walls that conspire to reduce the spin-flip
rate and, therefore, to reduce the nonequilibrium stationary
spin current through the chain [25,34]. Similarly, the NESS
in the 1HM is characterized by the emergence of domains
in the chain with uniform charge distributions, separated by
charge domain walls that generate a counter field reducing
the total current Ist flowing across the system in the NESS.
The domain walls give rise, at large enough bias between the
reservoirs, to a remarkable negative differential conductance
(NDC), that is, to a region in which the current decreases
if the bias increases. The NDC is a feature of mesoscopic
systems, such as semiconductor superlattices [35], interacting
quantum gases [36], single molecule junctions [37], carbon
nanotubes [38], graphene transistors [39], and quantum dots
coupled to electrodes [40]. Also, it can arise as an effect of
electron-phonon coupling [41]. In a quantum chain driven out
of equilibrium the NDC emerges as a combined effect of the
coherent many-body correlations and the incoherent charge
pumping in the chain from the reservoirs [25].

In general, quantum transport properties in many-body sys-
tems strongly depend on the interplay between bulk hopping
processes, electron-electron interaction, noise and impurity
distribution, and boundary driving strength [42–44]. Typi-
cally, at small bias, the current induced in the system exhibits
Ohmic law behavior, linearly increasing with increasing ap-
plied bias. The change in the monotonicity of Ist as a function
of the applied bias necessarily implies the existence of an
“optimal working point” (OWP), at which Ist takes the max-
imum value, given the other system parameters. In the 1HM
the dependence of the OWP on the interaction has been exten-
sively discussed in Ref. [19] (a similar analysis in the XXZ
chain has been performed in Ref. [25]). It has been found
that, if the coupling strengths between the reservoirs and the
1HM are fixed, a necessary condition to recover the OWP
is having a nonzero interaction between the electrons. More
generally, making a quantum system that is part of a quantum
circuit work at the OWP means maximizing the current flow
supported by that part of the circuit at a given bias. Identifying
the OWP for each component of the circuit is a necessary
preliminary step to eventually make the circuit operate at its
maximum possible efficiency. Moreover, an analogous opti-
mization procedure for, e.g., the energy transport would have
striking consequences for optimizing the control of the energy
transfer between different part of mesoscopic devices. In ad-
dition, the OWP can be associated with nontrivial effects like
the tendency to enhance nonuniformities [45–47] or the Gunn
effect [48–50]. Finally, it is worth noticing how the emergence
of the OWP is a typical behavior found in fundamental traffic
flow diagrams [51,52], where the free flow phase and the
congested phase are separated by an optimal value of the
density, at which the traffic flow (the “current”) is maximum.
In fact, this observation would suggest that a quantum chain

(or a network) at large bias might potentially work as a “quan-
tum simulator” of the fundamental traffic flow diagram, with
potentially countless applications to real-life problems. There-
fore, characterizing the OWP and its emergence as a function
of the system parameters is of the utmost importance for the
implementations of controlled quantum circuits [53–57]. It
is, therefore, crucial to extend the analysis of Ref. [19] to
a larger manifold in parameter space, which should possibly
include parameters such as the coupling strengths between the
reservoirs and the 1HM, the amount of disorder in the system,
and so on.

In this paper we systematically analyze the emergence and
the characteristics of the OWP in the current Ist in the NESS
in interacting one-dimensional electronic systems connected
to reservoirs, in the large bias limit. Complementing and
extending the analysis of Ref. [19], we search for the OWP
by considering how Ist changes as a function of the coupling
strengths between the reservoirs and the electronic system.
To drive the system toward the NESS, we implement the
Lindblad master equation for a graph of N sites connected
with two or more reservoirs. In particular, we treat the interac-
tion within mean field (MF) approximation. Verifying, when
possible, the consistency of our results with the one already
present in the literature, we check that, while allowing us for
considerably simplifying the calculations, our method enables
us to catch all the fundamental features characterizing the
NESS, such as the dependence of Ist on the system parameters
and the stationary distribution of the particle density in real
space.

Specifically, after presenting our approach in the general
case of an interacting electronic system defined on a graph
connected to an arbitrary number of reservoirs, we address
the case study of a 1HM in the large bias limit, first with
homogeneous system parameters, then adding a single (“site”
or “bond”) impurity to the chain, and eventually in the pres-
ence of a finite amount of quenched disorder in the system.
In all the cases we focus on, we characterize the NESS in
terms of the dependence of Ist on the coupling strengths be-
tween the reservoirs and the electronic system, and of the
stationary distribution of the particle density in real space.
Doing so, we show that, as a function of the tuning param-
eters, the OWP emerges at the NESS even in the absence of
electronic interaction. Moreover, we directly check that in the
noninteracting as well as in the interacting case, the OWP is
pretty robust against defects in the chain (isolated impurities),
as well as against a moderate amount of quenched disorder.
Independently tuning the interaction strength and the amount
of disorder, we construct the phase diagram of the system
in the disorder-interaction strength parameter space and, in
particular, we draw the transition region beyond which the
OWP disappears, Ist becomes zero, and the whole system
undergoes a Griffiths-like transition from a conducting to an
insulating phase. Eventually, we check that our phase diagram
is consistent with the one derived in Ref. [23].

Besides characterizing the NESS and the emergence of the
OWP, taking advantage of the simplicity and of the effective-
ness of our method, we can follow the evolution in time of
our system toward the NESS, with no need for running long
lasting numerical simulations. This allows us to map out, in
various cases of interest, the details of how the 1HM evolves
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toward the NESS in real time. In particular, doing so we argue
how the NESS is largely independent of the state we begin
with and, in this respect, how it is a “universal” property of
the chain-plus-reservoir system. Also, we indirectly address
the interplay between the integrability and the evolution of the
system toward the NESS. In general, the conservation laws
associated to the integrability [58–60] are known to prevent
the system from thermalizing toward a state characterized
by a macroscopic hydrodynamical behavior in its transport
properties [61,62]. Breaking the integrability by adding a local
impurity term to the otherwise integrable Hamiltonian should
definitely trigger an evolution toward a well defined NESS
[63]. Yet, we directly verify that the evolution and the NESS
itself barely depend on whether the chain is homogeneous or
with an isolated impurity. This highlights how coupling the
chain to the reservoirs already breaks the integrability, thus
letting the system evolve toward the NESS and, therefore,
how, in this specific case, adding an additional impurity to the
chain has very little effect, if none at all, on the time evolution
toward the NESS and on the NESS itself.

The paper is organized as follows:
(i) In Sec. II we present the model Hamiltonian for an

interacting electronic system defined over a generic graph. We
therefore discuss our MF approach to the electronic interac-
tion, apply it to the graph system Hamiltonian, and derive the
corresponding LE. Eventually, we write down the conditions
defining the NESS and explicitly solve them in the absence of
interaction.

(ii) In Sec. III we present a specific application of our
approach to a noninteracting electronic chain connected to
two reservoirs at its endpoints. By sampling Ist and the charge
density distribution from the equilibrium to the large bias
limit, as well as by varying the strength of the coupling be-
tween the chain and the reservoirs, we show that an OWP
emerges, even in the absence of interaction, when considering
Ist, as a function of the coupling strength, taken in the large
bias limit.

(iii) In Sec. IV we extend the analysis of Sec. III to the
1HM connected to two reservoirs at the endpoints of the chain,
at a generic value of the electronic interaction. Doing so, we
evidence the rich set of phases generated in the system by
turning on the interaction, by particularly focusing on the
conductor to insulator phase transition that emerges, in the
large bias limit, at strong enough values of the interaction
itself and on its effects on the OWP.

(iv) In Sec. V we analyze how adding an impurity term to
the homogeneous 1HM Hamiltonian affects, in the large bias
limit, the evolution of the system toward the NESS and the
NESS itself. Specifically, we focus on two different types of
impurities: a “site” impurity, realized by altering on a single
site the otherwise uniform chemical potential and a “bond”
impurity, realized by changing the electronic hopping strength
of a single bond of the chain.

(v) In Sec. VI we analyze the effects of a finite density of
impurities (quenched disorder) in the 1HM by systematically
discussing the phase diagram of the system, in the large bias
limit, in the disorder strength interaction space, and how the
NESS and the OWP are affected by the simultaneous pres-
ence of a finite disorder strength and of a nonzero electronic
interaction.

FIG. 1. (a) Sketch of a generic graph described by the Hamilto-
nian H in Eq. (1): The blue dots represent generic sites connected to
“internal” sites only, while the red dots represent sites connected to
the external reservoirs as well. A straight line connecting two sites
represents a nonzero hopping strength and/or a nonzero interaction
strength between the two sites. (b) The special graph we discuss in
detail in our paper: a linear chain connected to two reservoirs at its
endpoints through two red dots.

(vi) In Sec. VII we summarize our results and discuss
possible further perspectives of our work.

(vii) In Appendix we present a simple variational calcula-
tion that, despite its simplicity, is able to qualitatively catch
the main features of the NESS that emerge in the chain in
the large bias limit, both in the homogeneous case and in the
presence of a single site impurity.

II. MODEL HAMILTONIAN AND LINDBLAD EQUATION

As a model Hamiltonian for a system of spinless, interact-
ing electrons over an N-site graph, we use H , given by

H = −
N∑

j �=k=1

Jj,kc†
j ck −

N∑
j=0

μ jc
†
j c j +

N∑
j �=k=1

Uj,kn jnk . (1)

In Eq. (1), c j, c†
j are, respectively, the single-fermion creation

and annihilation operator at lattice site j, satisfying the canon-
ical anticommutation relations {c j, c†

j′ } = δ j, j′ . n j = c†
j c j is

the fermion number operator at site j. Jj,k is the single-
fermion hopping strength between sites j and k, μ j is the
chemical potential at site j, and Uj,k is the density-density
interaction strength between sites j and k. Equation (1) com-
prises the most general spinless Hubbard-like Hamiltonian for
lattice spinless fermions (see, e.g., Ref. [64] for a compre-
hensive review about the one-dimensional Hubbard model).
In principle, we allow any site of the lattice to be connected
to an external reservoir. In Fig. 1(a), we provide a sketch
of the corresponding graph, with the blue dots representing
generic sites and the red dots sites connected to the external
reservoirs, as well as to other sites of the graph. A straight line
connecting two sites represents a nonzero hopping strength
and/or a nonzero interaction strength between the two sites.
Following the same drawing code, in Fig. 1(b) we show the
simple graph representing the system on which we focus most
of the discussion of the following sections: a linear chain
connected to two reservoirs at its endpoints.
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To describe the dynamics of the system represented by H
in Eq. (1), once it is connected to the external reservoirs, we
resort to the master equation (ME) approach to open quantum
systems [8,65]. Within the ME equation framework, we de-
rive the effective dynamics of the system by integrating over
the reservoir degrees of freedom. Doing so, we resort to the
so-called Markovian approximation, consisting of neglecting
memory effects under the assumption that the bath relaxation
time is much shorter than the characteristic timescales of the
system [15,16]. Eventually, we derive the LE for the open
system connected to the reservoirs. The LE is among the most
used master equations [66–69]: Its general form consists of a
first order differential equation for the time evolution of the
system density matrix ρ(t ), given by

ρ̇(t ) = −i[H, ρ(t )] +
∑

k

(
Lkρ(t )L†

k − 1

2
{L†

k Lk, ρ(t )}
)

.

(2)
The first term at the right-hand side of Eq. (2) is the

so-called Liouvillian that describes the unitary evolution de-
termined by H . The second term, the so-called Lindbladian,
includes dissipation and decoherence on the system dynam-
ics. It depends on the so-called “jump” operators Lk , which
are determined by the coupling between the system and the
reservoirs. Specifically, the Liouvillian describes the unitary
evolution brought by H , while the Lindbladian includes the
dissipation and the decoherence in the dynamics.

In the following, we consider reservoirs that locally inject
to or extract fermions from a generic site j of the lattice, at
given and fixed rates. Consistently, we describe the injecting
and extracting reservoirs at site j in terms of the Lindblad
operators Lin, j and Lout, j , given by

Lin, j = √
� jc

†
j

Lout, j = √
γ jc j, (3)

with � j and γ j being the coupling strengths, respectively,
determining the creation and the annihilation of a fermion at
site j.

Once we determine ρ(t ) by solving Eq. (2), we compute
the (time dependent) expectation value of any observable O,
O(t ) using

O(t ) = Tr[Oρ(t )]. (4)

Taking into account Eq. (4) and using the identities

[A, BC] = B[A,C] + [A, B]C

[A, BC] = {A, B}C − B{A,C}
Tr([A, B]) = 0, (5)

with A, B,C being operators acting over the same Hilbert
space, we employ Eq. (2) to write down the ME directly for
O(t ). Specifically, we obtain

d

dt
O(t ) = Tr(Oρ̇(t )) = iTr[[H, O]ρ(t )]

+
∑

k

(Tr[L†
k OLkρ(t )] − 1

2
Tr[{L†

k Lk, O}ρ(t )]). (6)

For the sake of our analysis, in the following we will need
to compute the average value of the occupation number for a

generic site j of the system, n j (t ) = Tr[n jρ(t )], as well as of
the currents flowing from the reservoirs into the site j, Iin, j (t ),
or from site j to the reservoir, Iout, j (t ). These are given by

Iin, j (t ) = �i(1 − n j (t ))

Iout, j (t ) = γin j (t ), (7)

so that the net current exchanged at time t between the reser-
voirs and the site j is given by I j (t ) = Iin, j (t ) − Iout, j (t ). In
addition, we also need to derive the average value of the
current flowing between two connected sites of the graph, say
j and k, I j,k . This is given by

I j,k (t ) = −iJj,kI j,k (t ) + c.c., (8)

with I j,k (t ) = Tr[c†
j ckρ(t )] and with c.c. denoting the com-

plex conjugate.
In principle, solving the full set of Lindblad equations for

n j (t ), Iin, j (t ), Iout, j (t ), and I j,k (t ) would allow us to recover
the full current pattern over a generic N-site graph connected
to external reservoirs. However, on increasing N , solving the
Lindblad equations, even numerically, becomes soon a pretty
formidable task to achieve. Indeed, we should solve a hierar-
chical set of equations in which the expectation values of any
combination of N creation and annihilation operators depends
on the expectation values of combinations of N + 2 creation
and annihilation operators. In order to exactly describe the
system dynamics we should in principle compute the evolu-
tion of all the matrix elements of the density matrix, whose
dimension is 2N . Apparently, this becomes soon a hardly
accomplishable task, even resorting to a fully numerical ap-
proach. For this reason, in the following we resort to a MF
approximation, by replacing any occurrence of four-fermion
operators with the corresponding approximated expression
derived by means of a pertinent Hartree-Fock MF decoupling.
Eventually, we check the consistency of our method with a
fully numerical approach [19] by comparing the correspond-
ing results in small-size (i.e., L � 16) systems. In particular,
we set

n jnk ≈ n j (t )nk + nk (t )n j − I j,k (t )c†
kc j − Ik, j (t )c†

j ck (9)

with the first two contributions at the right-hand side of Eq. (9)
corresponding to the Hartree terms and the second two contri-
butions to the Fock ones. An important observation to ground
the validity of Eq. (9) is that we are assuming an overall
repulsive interaction between fermions. This rules out the
possibility of p-wave superconducting pairing (anomalous)
correlations, which would otherwise have to be accounted for
by adding the corresponding anomalous (pairing) term to the
right-hand side of Eq. (9).

Going through the MF decoupling, we trade H for the
corresponding MF Hamiltonian H̄ (t ), given by

H̄ (t ) =
N∑

j,k=1

c†
j {[H0] j,k + [HU (t )] j,k} ck

≡
N∑

j,k=1

c†
j [H̄(t )] j,k ck, (10)
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with

[H0] j,k = −Jj,k − μ jδ j,k

[HU (t )] j,k = −Uj,kI j,k (t ) + δ j,k

N∑
i=1

Uj,ini(t ). (11)

From Eqs. (10) and (11), we see that, within MF approx-
imation, H is traded for the bilinear Hamiltonian H̄ (t ), with
effective time-dependent parameters determined by the time
evolution of the system. As a result, the LE becomes nonlin-
ear. In particular, for our system made of N interconnected
points, it can be written in matrix form as

˙̂C(t ) = i[H̄t (t ), Ĉ(t )] + �̂ − 1
2 {(�̂ + γ̂ ), Ĉ(t )}, (12)

with the matrix H̄(t ) introduced in Eq. (10), the bilinear
expectation matrix elements [Ĉ(t )]i, j = ni(t )δi, j + Ii, j (t )[1 −
δi, j], and the system-bath coupling matrix elements [�̂]i, j =
δi, j�i and [γ̂ ]i, j = δi, jγi.

Using Eq. (12) we can describe a generic system, nonin-
teracting as well as interacting (in this latter case within MF
approximation). Letting the system evolve with t , it asymp-
totically flows to a NESS, which we determine from the
condition ˙̂C(t ) = 0. In particular, in the noninteracting case,
we can find analytical solutions for the Ĉ matrix characteriz-
ing the NESS, Ĉ∗, by imposing ˙̂C∗ = 0 in Eq. (10). In order to
present the solutions in a simple, compact form, we define the
column vectors Ĉ f and �̂ f by “flattening” the tensors Ĉ and �̂,
that is by setting Ĉ f ≡ ([[̂C]1,1, . . . , [Ĉ]1,N , . . . [Ĉ]2,N , . . .)t

and by analogously defining �̂ f . As a result, we find

[Ĉ∗] f = [M̂1 − M̂2]−1�̂ f , (13)

with the N2 × N2 matrices M̂1 and M̂2 defined as

M̂1 =
{

i[H0]t − 1

2
[�̂ + γ̂ ]

}
⊗ IN×N

M̂2 = IN×N ⊗
{

i[H0] + 1

2
[�̂ + γ̂ ]

}
, (14)

with IN×N being the N × N identity matrix.
In the interacting case, as we discuss above, resorting to

the MF approximation, induces nonlinearities in Eq. (12),
resulting in a much richer set of possible NESSs depending
on the values of the system parameters. Apparently, in this
case Eq. (13) no longer applies and, in order to find the corre-
sponding fixed points, we have to resort to a fully numerical
approach. In the following, we apply Eq. (12) to different
systems of physical interest, both in the noninteracting as well
as in the interacting case.

III. ONE-DIMENSIONAL NONINTERACTING CHAIN

As a first application of the LE introduced in the previous
section, we now study a single, L-site fermionic chain in
the noninteracting limit. Following the notation introduced in
Eq. (1), we set Jj,k = J if j, k label nearest neighboring sites
of the chain, 0 otherwise, μ j = μ, that is constant chemical
potential, independent of j, and Uj,k = 0 ∀ j, k. Accordingly,

the chain Hamiltonian Hc is given by

Hc = −J
L−1∑
j=1

{c†
j c j+1 + c†

j+1c j} − μ

L∑
j=1

c†
j c j . (15)

We assume that the chain is coupled to two reservoirs
at its endpoints corresponding to the sites j = 1 and j = L.
Both reservoirs can inject electrons into the chain and absorb
electrons from the chain. Therefore, the coupling between the
chain and the reservoirs is described by a total of four, in
principle independent, coupling strengths, �1, γ1, �L, and γL.
When recovering the above couplings from the microscopic
theory, we see that they can be expressed in terms of the Fermi
distribution function at the chemical potential of the reservoir
f and of the reservoir spectral density at the chemical potential
of the reservoir g. Specifically, we obtain [15,70]

�i = gi fi

γi = gi(1 − fi ), (16)

with (labeling each reservoir with the index of the site it is
connected to) i = 1, L.

As paradigmatic regimes, we consider the symmetric driv-
ing, corresponding to g1 = gL = g, f1 = 1

2 (1 + f ) and fL =
1
2 (1 − f ), and the large bias regime, corresponding to f1 = 1
and fL = 0. In the symmetric case we parametrize the reser-
voirs in terms of the overall coupling g and of the difference
f = f1 − fL (assuming, without loss of generality, f1 � fL,
0 � f � 1). f ≈ 0 corresponds to the linear response regime.
In the large bias limit, the system is driven to the out-of-
equilibrium regime, in which the reservoir coupled to site 1
acts as an electron “source” by only injecting electrons in the
chain from the reservoir, and the reservoir coupled to site L
acts as an electron “drain” by only absorbing electrons from
the system. As a result, electrons enter the chain at site 1
and must travel all the way down to site L, in order to be
able to exit the chain. Accordingly, the boundary dynamics
is determined only by the coupling strengths �1 and γL, while
the bulk dynamics only depends on the hopping strength J .

Due to the asymmetric role played by the couplings be-
tween the chain and the reservoirs, we see that, even in the
absence of interaction, our system can reach a NESS, provided
one waits a long enough time (note that, in the case of sym-
metric couplings, in order for the system to reach a NESS in a
finite time one has to have a nonzero interaction [19]). To evi-
dence this point, in Fig. 2 we draw Iin,1(t ) and Iout,L(t ), as well
as nj (t ) at selected lattice sites, in a noninteracting L = 25
chain with J = 1 and μ = 0 connected to two reservoirs, with
the parameters selected as discussed above. In particular, in
Figs. 2(a), 2(c) 2(e), 2(g), and 2(i), we draw both Iin,1(t ) (blue
curve) and Iout,L(t ) (yellow curve) as a function of time (mea-
sured in units of J−1) by initializing our system at t = 0 and
by assuming that n j (t = 0) = 0 ∀ j. Moving from plot to plot,
we change the couplings to the reservoirs, �1, γL, as detailed
in the figure caption. By synoptically looking at all the plots,
we note the important common feature that, whatever the
values of �1 and of γL are, the chain always reaches a NESS at
a finite time tNESS, corresponding to the point where the blue
and the yellow curves merge into each other. In addition to
tNESS, we also evidence other (preceding) values of t at which
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FIG. 2. a): I1,in(t ) (blue curve) and Iout,L (t ) (yellow curve) cur-
rents as a function of time t (on a logarithmic scale) measured in units
of J−1, in an L = 25 chain with J = 1 and μ = 0, taken to the large
bias regime for (�1 = 0.25, γL = 0.25); b) n1(t ) (blue curve), n5(t )
(yellow curve), n10(t ) (green curve), n15(t ) (red curve), n20(t ) (purple
curve), and n25(t ) (orange curve) computed in the same chain as we
used to draw a). The vertical dashed lines mark the boundaries of
the plateaus corresponding to quasistationary NESSs (see the main
text for the discussion of this point); c) Same as in a), but with
(�1 = 1, γL = 1); d) Same as in b), but with (�1 = 1, γL = 1); e)
Same as in a), but with (�1 = 2, γL = 2); f) Same as in b), but with
(�1 = 2, γL = 2); g) Same as in a), but with (�1 = 0.25, γL = 2); h)
Same as in b), but with (�1 = 0.25, γL = 2); i) Same as in a), but
with (�1 = 2, γL = 0.25); l) Same as in b), but with (�1 = 2, γL =
0.25). All the plots are drawn by setting J = 1 and μ = 0.

the currents reach values that stay stationary for pretty large
intervals of time.

To physically interpret the onset of the plateaus in the
current, in Figs. 2(b), 2(d) 2(f), 2(h), and 2(l) we display n j (t )
at selected sites of the chain as a function of t . In particular,
in each plot we show n1(t ) (blue curve), n5(t ) (yellow curve),
n10(t ) (green curve), n15(t ) (red curve), n20(t ) (purple curve),
and n25(t ) (orange curve). The values of �1, γL are the same
as for the corresponding plots at the left-hand side (see figure
caption for details). Overall, we observe a similar qualitative
behavior for all the plots, with �1 and γL only affecting nu-
merical values of the various quantities. At the start, we see

that electrons enter from site j = 1 and start to fill the chain
by propagating to the right. During this “pure filling” phase
all the local densities increase in time, in decreasing order,
from the one corresponding to the leftmost site ( j = 1). In
particular, at about t = 1 (marked by the leftmost dashed ver-
tical line in the plots), the entering current and density at the
boundary site j = 1 reach “quasistationary” values that keep
constant for a large interval of values of t and only depend on
�1 (and on J , of course). These values correspond to what
would be the “true” NESS solution in the thermodynamic
limit, L → ∞. Instead, in our chain the finite size effects
determine a breakdown of the NESS above. Indeed, at t ∼ 10
(second dashed vertical line from the left), electrons have had
enough time to reach the endpoint of the chain opposite the
injection point. Accordingly, the density at j = L starts to
grow. At the same time, the outgoing current increases with a
slope depending on γL. However not all the electrons reaching
the endpoint of the chain exit to the right-hand reservoir: A
finite fraction of them is backscattered toward the left-hand
endpoint. This gives rise to a “countercurrent,” flowing from
the right to the left and to a corresponding further increase of
the local densities, this time in reverse order ( j = L first). The
countercurrent and the further increase of the local densities
are exactly the features that take the system out of the first
putative NESS to a second putative NESS, corresponding to
the second shorter plateau in the plots of Fig. 2. They are
a consequence of having a finite-L chain and, as we argue
above, are expected to disappear as L → ∞, where the pu-
tative NESS becomes the actual NESS of the system.

Going further ahead in time, at t ∼ 28 (third dashed ver-
tical line from the left), the countercurrent hits the left-hand
endpoint of the chain, with the effect of further increasing
n1(t ) and of reducing the incoming current. At this point, the
second NESS breaks down as well. Going ahead in time, we
see that electrons propagate back and forth inside the chain,
with a series of consecutive bounces that manifest themselves
in the plots as a series of steps and plateaus, until the system
reaches the “true” asymptotic NESS. The number, the size,
and the distance of the steps, as well as the details of the
asymptotic NESS, depend in a nontrivial way on �1 and γL.

Looking at the plots in Fig. 2 we readily note that the NESS
is characterized by the convergence (in time) of Iin,1(t ) and
of Iout,L(t ) towards a single, time independent value of the
current, Ist, that is a typical feature of the stationary state.
Moreover, we also see that n j (t ) at any site j �= 1, L flows
toward a unique value nst, thus yielding a profile of the real
space electron density in the NESS, nst, j , constant everywhere
but at the endpoints of the chain. Whether the system is in-
teracting or not throughout all the paper, we characterize the
NESS in terms of Ist and of nst, j , in particular referring to nst in
the flat part of the density profile. In the noninteracting case,
both Ist and nst can be analytically determined. Specifically,
using Eq. (14), we obtain

Ist = lim
t→∞{�1(1 − n1(t )) − γ1n1(t )}

= lim
t→∞{−�L(1 − nL(t )) + γLnL(t )}

= 4J2(�1γL − γ1�L )

(�1 + γ1 + �L + γL )[4J2 + (�1 + γ1)(�L + γL )]
. (17)
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FIG. 3. (a) Ist computed in the L = 25 chain for J = 1 and μ =
0 both as a function of �1 and γL in the large bias limit; (b) Ist as
a function of f and g in the symmetric regime �1 = γL . Red areas
correspond to high values of Ist , blue areas to low values (see the
color code for details).

From Eq. (17), we see that, as it must be, Ist is independent
of L: The length of the chain only affects the time windows
corresponding to each putative NESS. Similarly, defining nst

as

nst = lim
t→∞

1

L − 2

L−1∑
i=2

ni(t ), (18)

we obtain

nst = 4J2(�1+�L )+γ 2
1 �L+�1[(2γ1+�1)�L+(γL+�L )2]

(�1+γ1+�L+γL )[4J2+(�1+γ1)(�L+γL )]
,

(19)

which, as expected, is independent of L as well.
From Eq. (19) we see that nst = 1/2 for any values of f

and g in the symmetric regime and for �1 = γL in the large
bias regime. At variance, at generic values of �1 and γL and
in the large bias regime, we find

nst = �1
(
4J2 + γ 2

L

)
(�1 + γL )(4J2 + �1γL )

. (20)

To highlight the main features of our chain in the absence
of interaction, in Fig. 3 we plot Ist both as a function of �1

and γL in the large bias limit [Fig. 3(a)] and as a function
of f and g in the symmetric regime �1 = γL [Fig. 3(b)],
while in Fig. 4 we plot nst in the large bias regime. Two
interesting features emerge. First, we observe the emergence
of an OWP in the �1 − γL parameter space at which Ist is
maximum. Specifically, from Fig. 3 we see that the OWP
corresponds to f = 1 (largest possible bias) and to symmetric
couplings, �1,max = γL,max = gmax = 2. Second, synoptically
considering Ist in Fig. 3 and nst in Fig. 4, we note that the
former is, in general, a nonmonotonic function of the latter. In
particular, we see that for both high and low values of nst, Ist is
lower than its maximum value 1/2. This is a typical behavior
found in fundamental traffic flow diagrams [51,52], where the
free flow phase and the congested phases are separated by an
optimal value of the density, at which the traffic flow (the
“current”) is maximum. So, from Figs. 3 and 4 we see that
our system might potentially work as a “quantum simulator”
of the fundamental traffic flow diagram. Aside from the fasci-
nating correspondence with the traffic flow phase diagram, we

FIG. 4. nst computed in the L = 25 chain for J = 1 and μ = 0 as
a function of �1 and γL in the large bias limit. Red areas correspond
to high values of nst , blue areas to low values (see the color code for
details).

definitely evidence how pertinently managing the couplings
between the chain and the reservoirs may affect in a nontrivial
way the current propagation into the system.

In order to compare the LE formalism with alternative
approaches to nonequilibrium transport problems, such as
the nonequilibrium Green function or the Landauer-Büttiker
method, we refer to the detailed analysis of Ref. [71]. In
particular, we note that, while we do not expect any substan-
tial qualitative difference between the results obtained within
those two methods and ours, in order to exactly reproduce the
results using the LE method for U = 0 one should general-
ize the LE to the case of multisite reservoirs, as extensively
discussed, and rigorously proven, in Ref. [71], where it is
shown how the expression for the nonequilibrium steady-state
current of a quantum chain coupled to two multisite reservoirs
at both boundaries, each one consisting of LRes sites, reduces
back to the Landauer-Büttiker formula for the electronic cur-
rent through a tunneling junction in the limit LRes → ∞ and
for a small voltage bias between the two reservoirs. We now
generalize our discussion to the case in which a nonzero
electron interaction turns on in the chain.

IV. ONE-DIMENSIONAL SPINLESS HUBBARD CHAIN

Turning on a finite onsite interaction strength U in the
chain described by Hc in Eq. (15), we get the Hamiltonian
Hi given by

Hi = −J
L−1∑
j=1

{c†
j c j+1 + c†

j+1c j} − μ

L∑
j=1

c†
j c j + U

L−1∑
j=1

n jn j+1.

(21)
Hi in Eq. (21) is 1HM Hamiltonian over an L-site chain [64].
To recover it from the generic H in Eq. (1), we simply set N =
L, [H0] j,k = −J{δ j,k+1(1 − δk,L ) + δ j,k−1(1 − δk,1)} − μδ j,k ,
and [HU ] j,k = U {δ j,k+1(1 − δk,L ) + δ j,k−1(1 − δk,1)}.

Besides being a paradigmatic model for one-dimensional
correlated electronic systems, the 1HM also provides an
equivalent description of an XXZ spin-1/2 quantum spin
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chain, which is mapped onto it via the Jordan-Wigner transfor-
mation [29]. Therefore, by the same token, when connecting
the external reservoirs to the 1HM described by Hi in
Eq. (21), we also recover a means to study the spin current
across a quantum spin chain connected to external reservoirs
[19,24,25,72]. Moreover, the 1HM has also been shown to
effectively describe a one-dimensional lattice model of inter-
acting bosons in the limit of strong onsite repulsion between
bosons, once the chemical potential is tuned so as to make
the states at each site populated with n and n + 1 bosons to
be degenerate with each other [73]. Therefore, we expect our
analysis of the interacting fermionic chain to be of relevance
for all the different physical systems effectively described by
the 1HM.

Hi in Eq. (21) is a simple, prototypical example of a
strongly correlated fermionic model. While the LE approach
can be implemented in order to study the equilibrium prop-
erties of a quantum system, we do not expect that the mean
field approximation works in the equilibrium case for one-
dimensional electronic chains. Instead, in this regime different
methods, such as the functional renormalization group [74]
or the thermodynamic Bethe ansatz [75], can be used to
study the phase diagram of the system. Both methods can be
successfully extended to nonequilibrium systems: The ther-
modynamic Bethe ansatz can be implemented successfully to
analyze nonequilibrium homogeneous quantum chains [76]
or quantum impurity models [77]; nonequilibrium extensions
of the functional renormalization group approach have been
proposed to study the nonequilibrium properties of a quantum
wire coupled to two reservoirs [10,11].

In one spatial dimension, it is well known that to analyt-
ically describe equilibrium physics of the 1HM, one has to
resort to sophisticated mathematical techniques such as the
bosonic Luttinger liquid (LL) approach (see, for instance, Ref.
[78] for a comprehensive review on the subject). As LL is
basically a low-energy, long-wavelength effective theory for
the correlated fermionic system, its applications to strongly
out-of-equilibrium states such as the ones we discuss here are
not straightforward, not even after resorting to clever out-of-
equilibrium implementation of the method such as the one
based on the nonequilibrium functional renormalization group
approach [11]. As it is out forward in detail in Refs. [19,23]
and as we discuss in detail in the following, the NESS that sets
in the nonequilibrium chain corresponds to a (combination of)
highly-excited states of Hi in Eq. (21), which are expected to
be out of reach of the standard LL approach. Moreover, while
a nonequilibrium renormalization group approach might in
principle be employed to recover the NESS in the nonequilib-
rium 1HM, the unavoidable technical difficulty of extending
the approach beyond the regime of weak coupling between
the reservoirs and the system makes it pretty challenging to
recover the density profile and the current pattern character-
izing the NESS. At variance, as we highlight below, our MF
approximation provides a simple analytical means to access
features of the NESS that are in good agreement with results
recovered within alternative numerical methods [19,23,25].

In general, U can either be positive or negative. In the
following we restrict ourselves to the U � 0 case only. The
negative-U 1HM can nevertheless be straightforwardly an-
alyzed by methods analogous to the ones we employ here.

Also, in all our calculations, we set μ according to the
condition that, at equilibrium, the chain is half filled. This
implies choosing μ so to cancel the chemical potential renor-
malization due to a finite U . A simple calculation provides
the condition μeff = 0 with μeff = μ + U

2 . In the follow-
ing, we assume that this condition is already satisfied unless
explicitly stated otherwise. To analyze the 1HM connected
to the external reservoirs, we systematically implement the
MF decoupling of Eq. (9). In fact, at the price of using
an effective, time-dependent Hamiltonian in the LE, the MF
massively eases the numerical solution of the LE compared
to fully numerical approaches [19,24,25,72,79], thus allowing
for exploring pretty large windows of variations of the system
parameters.

Applying Eq. (9) to the interaction Unjn j+1, we obtain the
corresponding MF decoupling

Unjn j+1 → U {n j (t )n j+1 + n jn j+1(t )

− I j+1, j (t )c†
j c j+1 − I j, j+1(t )c†

j+1c j}, (22)

with the explicit dependence on t of the average values being a
direct consequence of the nonequilibrium due to the coupling
to the reservoirs. In principle, to determine the time evolution
of the system within MF approximation, we have to solve
Eq. (2) for ρ(t ) using the Lindblad operators in Eq. (3) and
the time-dependent Hamiltonian H̃i(t ), given by

H̃i(t )

= −
L−1∑
j=1

{[J+UI j+1, j (t )]c†
j c j+1+[J+UI j, j+1(t )]c†

j+1c j}

−
L∑

j=1

[μ+Unj−1(t )(1 − δ j,1)+Unj+1(t )(1 − δ j,L )]n j .

(23)

Nevertheless, H̃i(t ) contains time-dependent averages of
operators, which require the explicit knowledge of the density
matrix at time t , in order to be computed. For this reason,
we numerically solve the nonlinear ME equations [Eq. (6)],
directly written for the time-dependent averages nj (t ) and
I j, j±1(t ). Numerically integrating the nonlinear equations and
taking the large-time limit of the final result, we eventually
extend to the interacting case the characterization of the NESS
in terms of Ist and of nst, j .

In Fig. 5 we plot Iin,1(t ) (blue curve) and Iout,L(t ) (yellow
curve) as a function of t (on a logarithmic scale) measured
in units of J−1, in an L = 20 chain with J = 1 and μeff = 0,
in the large-bias regime, with �1 = γL = g = 1, for U = 1
[Fig. 5(a)], and for U = 0 [Fig. 5(b)]. In both cases we set the
initial state of the chain with nj (t = 0) = 0 ∀ j. While from
the qualitative point of view we see no relevant differences
between the two plots, quantitatively we note a remarkable
reduction in Ist for U = 1. Such behavior is known from
numerical simulations to emerge in the out-of-equilibrium
chain, due to the peculiar nonequilibrium charge density dis-
tribution (spin magnetization distribution in the corresponding
XXZ spin chain) that sets in the system at the NESS [19,23].
While we extensively discuss this point in the following of
this section, we now consider Fig. 6, where we plot the
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FIG. 5. (a) Iin,1(t ) (blue curve) and Iout,L (t ) (yellow curve) cur-
rents as a function of time t (on a logarithmic scale) measured in units
of J−1, in an L = 20 interacting chain with U = 1, taken to the large
bias regime for �1 = γL = g = 1, J = 1, and μeff = 0. (b) Same as
in (a) but with U = 0.

average particle densities at various sites, computed for the
same values of the system parameters we used to draw Fig. 5,
for U = 1 (left-hand plot) and for U = 0 (right-hand plot).
Specifically, in both plots we draw n1(t ) (blue curve), n5(t )
(yellow curve), n10(t ) (brown curve), n15(t ) (orange curve),
and n20(t ) (purple curve). Apparently, the interacting case
is qualitatively similar to the noninteracting one, except that
it takes a longer time for the sites distant from the current
injection point to be filled with particles, due to the repulsive
interaction between electrons.

To characterize the NESS, we look at the dependence of
Ist and of nst, j on the system parameters, starting from the
interaction strength U . In Fig. 7, we plot Ist as a function of
U for specific values of the interaction, ranging from U = 0
to U = 2. Ist is finite, though decreasing with U , as long as
U
J � 2. At U

J = 2, Ist becomes zero and keeps zero at any U >

2J . Apparently, this is a conductor-to-insulator transition that,
once one goes through the appropriate Jordan-Wigner trans-
formation, is the analog of the behavior of the spin current
across an XXZ chain connected to two reservoirs kept at large
bias, when the Ising anisotropy � > 1 (which corresponds to
U
J > 2 in our units) [25].

About the onset of the insulating phase, it is worth pointing
out here that it is different from the Mott transition toward
the insulating charge density wave (CDW) phase that takes
place at large enough U in the 1HM close to half filling [78].
Indeed, the CDW sets in as an ordered, staggered pattern in
the spatial charge distribution in the equilibrium state of the
chain. Instead, in the nonequilibrium 1HM we recover a fully
different NESS, as we discuss in detail next.

FIG. 6. (a) n1(t ) (blue curve), n5(t ) (yellow curve), n10(t ) (brown
curve), n15(t ) (orange curve), and n20(t ) (purple curve) as a function
of time t (on a logarithmic scale) measured in units of J−1, in an
L = 20 interacting chain with U = 1, taken to the large bias regime
for �1 = γL = g = 1, J = 1, and μeff = 0. (b) Same as in (a) but with
U = 0.

FIG. 7. Ist as a function of U in an L = 20 chain with J =
1, μeff = 0, computed in the large bias limit, with �1 = γL = g = 1
(orange squares) and with �1 = γL = g = 2 (blue circles). There is
an apparent conductor to insulator transition at U = 2 in both cases.

To discuss the nonequilibrium NESS in the interacting
model, we refer to Ref. [25], where it is noted how, when
connecting a spin-1/2 XXZ spin chain with � > 1 to two
fully polarized spin reservoirs with opposite spin polarizations
(which corresponds to our large bias limit), the reservoirs
induce a net magnetization within the chain along the same
direction of their spin polarization. Since the reservoirs are
oppositely polarized, at strong enough interaction, a domain
wall arises at the center of the chain, where smoothly though
rapidly (in real space) the magnetization profile matches the
opposite “asymptotic” values (see Fig. 3 of Ref. [25] for
details). The formation of the domain wall strongly suppresses
the spin current across the chain, thus effectively inducing a
transition between a “spin conducting” and a “spin insulating”
phase. By analogy, in our case we expect a charge domain
wall to emerge in the real space profile of nst, j at U

J = 2. To
check this point, in Fig. 8 we plot nst, j , at each site of an L =
20 chain with J = 1, μeff = 0, taken to the large bias limit,
with �1 = γL = g = 2 and with U = 0 (blue circles—blue
interpolating curve), U = 0.5 (orange squares—orange inter-
polating curve), U = 1 (green rhombi—green interpolating

FIG. 8. nst, j at each site j of an L = 20 chain with J =
1, μeff = 0, computed in the large bias limit, with �1 = γL = g =
2, and with U = 0 (blue circles—blue interpolating curve), U =
0.5 (orange squares—orange interpolating curve), U = 1 (green
rhombi—green interpolating curve), U = 1.5 (red triangles—red
interpolating curve), and U = 2 (purple rotated triangles—purple
interpolating curve)
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FIG. 9. (a) Ist as a function of f , with g set so that Ist is maximum,
computed in an L = 20 chain with J = 1, μeff = 0, and U = 0 (blue
curve), U = 0.5 (yellow curve), U = 1 (green curve), U = 1.5 (red
curve), and U = 2 (purple curve). (b) Maximum value of Ist as a
function of g in the large bias regime for g = �1 = γL . The system
parameters and the color code for the curves drawn at different values
of U are the same as in the left-hand plot. (c) Ist as a function of f ,
with g set so that Ist is maximum, computed in a chain with J = 1,
μeff = 0, U = 2, with L = 4 (blue dots, blue interpolating curve) and
with L = 16 (yellow squares, yellow interpolating curve).

curve), U = 1.5 (red triangles—red interpolating curve), and
U = 2 (purple rotated triangles—purple interpolating curve).
While the plot at U = 2 apparently matches the corresponding
one, drawn at � = 1, in Fig. 3 of Ref. [25], for U

J < 2, we see
extended flat regions in the profile of nst, j , eventually bending
upward or downward close to the endpoints of the chain.

In Appendix, we provide a physical interpretation of the
behavior of Ist and of nst, j . In particular, resorting to a simple
though qualitatively effective variational method which com-
bined a pertinent MF approach to the 1HM [80], we argue
how, in order for our system to support a finite Ist for U

J � 2,
there has to be a flat region of values in nst, j throughout the
middle part of the chain with a, respectively, upward and
downward turn close to the endpoints of the chain that are re-
quired to match nst,1 and nst,L as determined by the constancy
of Ist. On increasing U , the flat region shortens until it shrinks
at U = 2 by taking a “kinklike” profile with a corresponding
blocking of the current transport (Ist = 0) for U � 2 [19,25].
Therefore, when characterizing the NESS by looking at Ist and
of nst, j , we are apparently led to associate the emergence of
a flat density region in the middle of the chain with a finite
value of the stationary state current and, at variance, a kinklike
profile in the density plot with a blocking of the charge flow,
that is, with Ist = 0. The bending of the flat density profile as
U
J increases corresponds to the reduction of Ist at increasing

U , which we display in Fig. 5.
To discuss the emergence of the OWP in the extended

parameter space including U and the coupling strengths, we
first, following Ref. [19], look at the maximum value of Ist as
a function of f in an L = 20 chain with J = 1, μeff = 0 in the
symmetric case and for various values of U [Fig. 9(a)]. Then,
we extend the parameter space by considering Ist as a function

FIG. 10. (a) Iin,1(t ) (blue curve) and Iout,L (t ) (yellow curve) cur-
rents as a function of time t (on a logarithmic scale) measured in
units of J−1, in an L = 20 interacting chain with J = 1, μeff = 0, and
U = 2, taken to the large bias regime for �1 = 1, γL = g = 1, J = 1,
with the system prepared at t = 0 in the state with nj (t = 0) = 1 ∀ j.
(b) n1(t ) (blue curve), n5(t ) (yellow curve), n10(t ) (green curve),
n15(t ) (orange curve), and n20(t ) (purple curve) as a function of time
t (on a logarithmic scale) measured in units of J−1 in an L = 20
interacting chain with J = 1, μeff = 0, and U = 2, taken to the large
bias regime for �1 = 1, γL = g = 1, J = 1, with the system prepared
at t = 0 in the state with nj (t = 0) = 1 ∀ j.

of g in the same chain, in the large-bias limit, for �1 = γL = g
[Fig. 9(b)] at increasing values of U . As in Ref. [19], we find
that, at finite U > 0, an OWP emerges at a value of fOWP at
which Ist reaches its maximum value. Moreover, the larger U ,
the more fOWP is pushed towards lower values of f . In addi-
tion, from Fig. 9(b), we also recover one of the most important
original results of our work, that is that turning on U is not a
necessary condition to get the OWP (see also Appendix for a
separate discussion of this point). Indeed, we see a maximum
in the plots of Ist as a function of g even when U = 0, provided
we tune the system at the large-bias limit. So we directly prove
that by increasing the number of tuning parameters, we may
recover the OWP even in regions in parameter space where it
does not emerge if the system is close to the equilibrium. More
specifically, to make a quantitative comparison with the results
of Refs. [19,25], we focus on the purple curve of Fig. 9(a). Ap-
parently, this exhibits a reasonable qualitative agreement with
the purple (bottom) curve of Fig. 11 in Ref. [19], though with
a stronger bending toward the zero-current axis as L → 20,
which is motivated by the slightly larger total number of sites
(20 rather than 16) and by the observation that the system
should be insulating in the thermodynamic limit at U

J = 2.
More generally, the MF approach is expected to underestimate
fluctuations in short chains and therefore to work fine for long
enough chains. To check this point, in Fig. 9(c) we plot Ist

as a function of f with the same system parameters used to
draw Fig. 9(a) for L = 4 (blue dots, blue interpolating curve)
and for L = 16 (yellow squares, yellow interpolating curve).
We note a better agreement between the corresponding plots
of Fig. 11 of Ref. [19] relative to the longer chain (L = 16)
rather than the shorter one (L = 4).

To conclude this section, we briefly discuss the depen-
dence of the NESS on the initial state of the system. This is
an important point to verify to make sure that the NESS is
unique and there are no “bifurcations” in the time evolution
described by Lindblad equations, which in some cases may
affect the time evolution of the system toward the NESS [68].
In particular, in Fig. 10(a) we show Iin,1(t ) (blue curve) and
Iout,L(t ) (yellow curve) as a function of time t in the same
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system as the ones we have used to derive Figs. 5 and 6
but with the initial state characterized by nj (t = 0) = 1 ∀ j.
While the evolution in time of the two currents is completely
different from the one that we report in Fig. 5(a), we see that as
t → ∞, they converge to the same Ist as in the case in which
one has n j (t = 0) = 0 ∀ j. For comparison, in Fig. 10(b) we
draw n1(t ) (blue curve), n5(t ) (yellow curve), n10(t ) (green
curve), n15(t ) (orange curve), and n20(t ) (purple curve) as a
function of time t . Except for the green curve, we find an ac-
ceptable consistency with the values of nst, j extrapolated from
Fig. 6(a). Since the density is a local operator, it is strongly
affected by the finite size of the chain, by the distance from the
reservoirs, etc. It is likely that working with longer chains and
extrapolating the results over a longer time would wash out
this discrepancy as well. So we may readily infer that though
the initial states in the two cases are completely different, the
NESS in the two systems is the same, independently of the
initial state.

We now discuss the effects of nonzero disorder on the
time evolution of our system and on the formation of the
corresponding NESS. To do so, we first discuss the case of a
single isolated defect in the chain (an “impurity”). Therefore,
we consider a finite density of random impurities in the chain
(“quenched disorder”).

V. A SINGLE IMPURITY IN THE CHAIN AT LARGE BIAS

Impurities in a quantum chain can be either realized by
tuning μeff at a site j̄ to a value μd different from all the
other sites (“site impurity”) or by changing the electronic
hopping strength of a single bond of the chain (“bond im-
purity”). While the equilibrium physics of impurities in the
1HM (or in the XXZ spin-1/2 quantum spin chain) can be
analytically addressed within a number of effective methods
such as LL approach [30,81–86], it is definitely challenging to
analytically deal with transport across impurities in the 1HM
connected to reservoirs in the large bias limit, even after re-
sorting to powerful analytical methods such as the functional
renormalization group approach developed in Ref. [11]. Nev-
ertheless, as we discuss in this section, despite its simplicity
our MF approach is able to catch the relevant physics of the
NESS state in the out-of-equilibrium 1HM.

First of all, we recall that both the 1HM and XXZ spin
chains are integrable models. In general, the conservation laws
associated to integrability are known to prevent the system
from thermalizing toward a state characterized by a macro-
scopic hydrodynamical behavior in its transport properties
[61,62]. In this respect, a crucial problem is analyzing how
a perturbation breaking the integrability of the system (even
locally) affects the evolution toward the NESS in the large
bias limit [63]. In this direction, the simplest possible way
of breaking integrability is by just making the system inho-
mogeneous by adding a local impurity term to the otherwise
integrable Hamiltonian.

Following the approach of Ref. [23], in this section we
analyze how adding an impurity term to the Hamiltonian
in Eq. (21) affects the evolution of the system toward the
NESS and the structure of the NESS itself once the chain is
connected to the reservoirs out of equilibrium. For the sake
of simplicity in both cases, with no loss of generality, we

FIG. 11. (a) Ist as a function of L computed in the 1HM with a
site impurity of strength μd = 1.5, with J = 1 and U = 1.0 (blue
circles, blue interpolating curve), U = 1.7 (yellow squares, yellow
interpolating curve), U = 2.0 (orange triangles, orange interpolating
curve), and U = 3.0 (green rhombi, green interpolating curve). (b)
Ist as a function of L computed in the 1HM with a bond impurity
of strength Jd = 0.5, with J = 1 and U = 1.0 (blue circles, blue
interpolating curve), U = 1.7 (yellow squares, yellow interpolating
curve), U = 2.0 (orange triangles, orange interpolating curve), and
U = 3.0 (green rhombi, green interpolating curve).

symmetrically realize the impurity at the center of the chain,
which requires L to be odd for the site impurity and even for
the bond impurity.

To check the reliability of our method, in the case of the site
impurity we compare our results with the analogous ones of
Ref. [23] obtained within t-DMRG approach. Taking L odd,
we realize the site impurity by adding to Hi in Eq. (21) the
impurity Hamiltonian Hsite given by

Hsite = −μd n L+1
2

= −μd c†
L+1

2

c L+1
2

. (24)

As we have done in the homogeneous case, we characterize
the NESS by looking at Ist and at nst, j . To highlight the effects
of increasing the impurity interaction strength, in Fig. 12(a)
we show nst, j , computed in a 1HM with L = 19, J = 1, μeff =
0, and U = 0, in the large bias limit with �1 = γL = g = 2
with the impurity symmetrically located at site j̄ = 10, at

FIG. 12. (a) nst, j , computed in an HM with L = 19, J = 1, μeff =
0, and U = 0 in the large bias limit with �1 = γL = g = 2, with a site
corresponding to the Hamiltonian in Eq. (24) with μd = 0.0 (blue
dots, blue interpolating curve), μd = 0.5 (orange squares, orange
interpolating curve), μd = 1.0 (green rhombi, green interpolating
curve), μd = 1.5 (red upward pointing triangles, red interpolating
curve), and μd = 2.0 (purple downward pointing triangles, purple
interpolating curve). (b) nst, j , computed in an HM with L = 19,
J = 1, μeff = 0 in the large bias limit with �1 = γL = g = 2, with
a site corresponding to the Hamiltonian in Eq. (24) with μd = 1.5
computed for U = 0.0 (blue dots, blue interpolating curve), U =
0.5 (orange squares, orange interpolating curve), U = 1.0 (green
rhombi, green interpolating curve), U = 1.5 (red upward pointing
triangles, red interpolating curve), and U = 2.0 (purple downward
pointing triangles, purple interpolating curve).
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FIG. 13. (a) Ist as a function of μd computed in an HM with
L = 19, J = 1, μeff = 0, and U = 0 in the large bias limit with
�1 = γL = g = 2 with a site corresponding to the Hamiltonian in
Eq. (24). (b) The same as in (a) but with U = 1.5.

various values of the onsite chemical potential μd (see figure
caption for details). At variance, to evidence the effects of the
bulk interaction, in Fig. 12(b) we again show nst, j , computed
for the same parameters as in the left-hand plot, except that
now we fix μd = 1.5 and vary U from plot to plot (see figure
caption for details). Finally, to make sure that there are no
finite-size effects spoiling our results, we compute Ist as a
function of L for both the site impurity and the bond impurity
for selected values of U up to L ∼ 100, where, as we show in
Fig. 11(a) for the site impurity and in Fig. 11(b) for the bond
impurity, apparently Ist has reached its asymptotic value in the
thermodynamic limit.

By synoptically looking at the plots in Fig. 12, we readily
note that a nonzero μd triggers the emergence of a kink in
the middle of the chain, even for U

J � 2. This feature appears
similar to the formation of the kink in the middle of the chain
that marks the transition from the conducting to the insulating
phase of the nonequilibrium 1HM (see Ref. [25] as well as our
Appendix for a detailed discussion of this point). However, the
persistence of finite regions in real space where the density
keeps flat, a feature that is associated with the conducting
phase of the 1HM [23], is already a clue that the NESS in
the presence of a site impurity is only quantitatively, not qual-
itatively, different from the NESS that sets in the homogenous
chain for U

J � 2. To double check this conclusion, in Fig. 13
we plot Ist as a function of μd computed in the same L = 19
chain we used to derive the plots of Fig. 12, with J = 1,
μeff = 0, and U = 0 [Fig. 12(a)] and U = 1.5 [Fig. 12(b)] in
the large bias limit with �1 = γL = g = 2. Whether U = 0 or
U takes a finite value, we see that while turning on μd slightly
reduces Ist, at the same time the current keeps finite within
the NESS. This enforces the conclusion that turning on a site
impurity in the chain does not qualitatively affect the NESS.
Therefore, we conclude that in the case of a homogeneous
1HM, as well as in the presence of a site impurity, our system
flows toward a conducting NESS with an extended flat region
in the profile of nst, j in the middle of the chain and with a
finite value of Ist. In fact, as discussed in detail in Ref. [23],
for this range of values of U

J Ist is expected to scale with L
as L−ν with ν = 0, that is what is expected for a ballistic
conducting channel. Indeed, as we show in Fig. 11(a), that is
what we find within our MF approach, with also a reduction
in the (uniform) value of Ist as U

J increases, which is again
consistent with Ref. [23]. For U

J > 2, the chain turns into
a diffusive transport regime, characterized by an exponent
ν > 0, corresponding to a suppression of the current in the

FIG. 14. (a) nst, j computed in a 1HM with L = 20, J = 1, μeff =
0, and U = 0, in the large bias limit with �1 = γL = g = 2, with
the bond impurity symmetrically located between sites j̄ = 10 and
j̄ + 1 = 11, at Jd = 1.0 (blue dots, blue interpolating curve), Jd =
0.8 (orange squares, orange interpolating curve), Jd = 0.5 (green
rhombi, green interpolating curve), Jd = 0.2 (red upward pointing
triangles, red interpolating curve), and Jd = 0.1 (purple downward
pointing triangles, purple interpolating curve). (b) nst, j computed in
an HM with L = 20, J = 1, μeff = 0 in the large bias limit with �1 =
γL = g = 2, with the bond impurity symmetrically located between
sites j̄ = 10 and j̄ + 1 = 11 at Jd = 0.5 and with (blue dots, blue
interpolating curve), U = 0.5 (orange squares, orange interpolating
curve), U = 1.0 (green rhombi, green interpolating curve), U = 1.5
(red upward pointing triangles, red interpolating curve), and U = 2.0
(purple downward pointing triangles, purple interpolating curve).

thermodynamic limit. Again, this is consistent with the result
we display in Fig. 11(a), yet it is worth stressing that the
flow of Ist towards its thermodynamic limit, at increasing
values of L, is characterized by short-distance features such
as subleading power-law decays and/or small oscillations in
the current (in the bond impurity case). We believe that it
would be extremely interesting to recover analytical formulas
for those features, particularly concerning their relation to the
value of U

J and/or to the impurity strength, an issue that goes
beyond that scope of this work and which might possibly
require a pertinent implementation of sophisticated analytical
methods such as the ones discussed in Ref. [11].

Concerning the role of integrability and of integrability
breaking, we note how connecting the homogeneous 1HM to
the reservoirs already breaks the integrability of the model,
thus triggering a flow in real time toward a uniquely defined
NESS. Indeed, the very fact that adding an additional term
breaking the integrability (Hsite) gives rise to a feature (the
“central kink”) analogous to the ones arising at the endpoints
of the chain when it is connected to the reservoirs evidences
how in both cases we break integrability, which is consistent
with our results of Secs. III and IV.

We now discuss the case of a bond impurity, which we
symmetrically locate in the middle of an even-L chain. Specif-
ically, we use the impurity Hamiltonian Hbond given by

Hbond = −δJ {c†
L
2
c L

2 +1 + c†
L
2 +1

c L
2
}. (25)

In Fig. 14(a), we plot nst, j computed in a 1HM with L =
20, J = 1, μeff = 0, and U = 0 in the large bias limit with
�1 = γL = g = 2, with the bond impurity symmetrically lo-
cated between sites j̄ = 10 and j̄ + 1 = 11 at various values
of the total bond strength Jd = J + δJ (see figure caption
for details). At variance, to evidence the effects of the bulk
interaction, in Fig. 14(b) we again show the NESS particle
density in real space as a function of the position in the chain,
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FIG. 15. (a) Ist as a function of Jd computed in an HM with L =
20, J = 1, μeff = 0, and U = 0 in the large bias limit with �1 = γL =
g = 2, with the bond impurity corresponding to the Hamiltonian in
Eq. (25). (b) The same as in (a) but with U = 1.5.

computed for the same parameters as in the left-hand plot,
except that now we fix Jd = 0.5 and vary U from plot to plot
(see figure caption for details).

Aside from quantitative differences, the plots in Fig. 14
exhibit the same behavior as the ones in Fig. 12. Thus, we
conclude that changing the type of isolated impurity in the
chain does not substantially affect the charge-density distribu-
tion in the NESS. Again, the result in Fig. 14 is pertinently
complemented by looking at Ist as a function of Jd . Repeating
the analysis we have performed above in the case of a site
impurity, in Fig. 15 we plot Ist as a function of Jd in the
case U = 0 [Fig. 15(a)] and for U = 1.5 [Fig. 15(b)]. Also,
in Fig. 11(b) we draw plots of Ist as a function of L up to
L ∼ 100 and for various values of U

J , finding results qualita-
tively similar to the ones we display in Fig. 11(a) for the site
impurity.

Basically, the same conclusions we reach in the case of a
site impurity apply to Ist in the NESS in the presence of a bond
impurity. The main difference, due to the “directional” nature
of the bond impurity, compared to the site impurity is that,
in this case, the current is not symmetrically distributed about
Jd = 1.0 (corresponding to δJ = 0).

To summarize, we have provided evidence that a single im-
purity in the chain (either a site impurity or a bond impurity)
does not qualitatively affect the NESS with respect to what
happens in a homogeneous 1HM. So, we expect no relevant
modifications in the location and in the characteristics of the
OWP with respect to the one emerging in the homogeneous
chain. In the next section, we extend this analysis to the
case of a finite density of impurities in the chain (quenched
disorder), particularly focusing on how, and to what extent,
the emergence of the OWP in the system in the large bias limit
is affected by the disorder.

VI. NESS AND OWP IN THE PRESENCE OF A FINITE
DENSITY OF IMPURITIES

In the previous section we argued how the OWP should
not be substantially affected by a single localized defect in the
chain. At variance, as it is well established how a finite amount
of disorder affects the transport properties of the system in
the NESS [87–89], we expect that it affects the OWP as well,
in principle even determining its disappearance in the strong
disorder limit. Motivated by these observations, in this section
we extend the analysis of the effects of the impurities by
considering the case in which a finite density of impurities

is present in the system by particularly focusing on the effects
of disorder on the OWP.

To introduce disorder in the 1HM we can, e.g., randomize
the chemical potential μ and/or the bond electron hopping
strength J and/or the interaction strength U , etc. Yet, apart
from differences in the structure of the final phase that are
realized in the system as a consequence of the disorder (see,
for instance, Ref. [90] for a comprehensive discussion about
this point), disorder is, in general, expected to substantially
affect the transport properties of the system especially in lower
dimensions [91]. Taking this into account and also to be able
to make a systematic comparison with the results of Ref.
[87], in the following we focus on a model with a random
chemical potential, corresponding to a random applied field in
the z direction in the XXZ spin chain discussed in Ref. [87].
Technically, we realize this by setting

μeff → μ j = μ̄ + δμ j, (26)

with j = 1, ..., L and with {δμ j} independent ran-
dom variables described by a probability distribution
P[{δμ j}] = ∏�

j=1 p(δμ j ). Specifically, we choose
p(δμ) to be the probability distribution for δμ with
average ¯δμ = ∫

dδμ δμp(δμ) = 0 and with variance
σ 2

μ = ∫
dδμ δμ2 p(δμ). As a result, we obtain

δμ j =
∫ �∏

r=1

dδμr P[{δμr}]δμ j = 0 (27)

δμiδμ j =
∫ �∏

r=1

dδμr P[{δμr}]δμiδμ j = σ 2
μδi, j,

with O[{δμ j}] denoting the ensemble average of a generic
functional of {δμ j} with respect to the probability distribution
P[{δμ j}]. We use the uniform probability distribution given
by

p(δμ) =
{

1
2
√

3σμ

, for − √
3σμ � V �

√
3σμ

0, otherwise
. (28)

Having assumed the probability distribution in Eq. (28), we
use it to estimate the disorder-averaged current distribution at
given values of σμ and U . In particular, having stated that in
the “clean” limit and at large bias the 1HM is insulating for
U
J > 2, in the following we focus on the interval of values
0 � U

J � 2. As for what concerns σμ, we restrict ourselves to
the interval 0 � σμ

J � 1 which, as we show in the following,
for the specific system we focus on, is enough to trigger a
transition to an insulating phase for any value of U , given the
values of the system parameters that we consider here.

We report in Fig. 16 our main result for Īst in the σμ − U
plane, obtained by ensemble averaging Ist derived in a 1HM
with L = 20 sites with J = 1, μ̄ = 0 in the large bias limit
with �1 = γL = g = 2 over N = 50 realizations of the disor-
der. As a main remark, we note an overall consistency with
the analogous diagram reported in Fig. 1 of Ref. [23] despite
the differences in the parameters of the systems considered in
the two cases.

As expected, the larger σμ (at fixed U ), the lower the
values of U at which the transition from the conducting to
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FIG. 16. Īst in the σμ − U plane, obtained by ensemble averaging
Ist derived in 1HM with L = 20 sites with J = 1, μ̄ = 0 in the large
bias limit with �1 = γL = g = 2 over N = 50 realizations of the
disorder. The color code for the value of Īst is summarized in the
side vertical bar.

the insulating phase takes place. This basically gives rise to
a “critical line” in the σμ − U plan, with a shading of the
transition line due to the disorder-triggered nature of the phase
transition. Indeed, the conductor to insulator phase transition
can be pictured as a proliferation of the “kinks” localized at
each defect in the chain, which eventually, at a strong enough
value of σμ, coalesce into a single larger kink distributed
throughout the whole chain. When this happens, the con-
duction gets blocked (similarly to what happens in the clean
system for U

J > 2). So, the mechanism appears to be anal-
ogous to what happens at the Griffiths phase transition in the
disordered system, with a similar effect on the spreading of the
critical line between the two phases [92–94]. To highlight
the combined effect of a finite U and a finite σμ in trigger-
ing the transition to the insulating phase, in Fig. 17 we plot
Īst along two cuts of Fig. 16, respectively, corresponding to
the segment σμ = 0.2, 0 � U � 2 [Fig. 17(a)] and to U =
0.5, 0 � σμ � 1 [Fig. 17(b)], computed in an L = 20 chain
with J = 1, μ̄ = 0 in the large bias limit with �1 = γL =
g = 2. In both cases, we clearly see the transition from the
conducting to the insulating regime. Apparently, following the

FIG. 17. (a) Īst computed in an L = 20 chain with J = 1, μ̄ =
0 in the large-bias limit with �1 = γL = g = 2 along the cut of
Fig. 16 corresponding to the segment σμ = 0.2, 0 � U � 2 and to
U = 0.5, 0 � σμ � 1. (b) Īst computed in the same system as in
(a) and evaluated along the cut of Fig. 16 corresponding to the
segment U = 0.5, 0 � σμ � 1.

FIG. 18. (a) Īst as a function of f in a 1HM with L = 20 sites with
J = 1, μ̄ = 0, U = 0 and �1 = γL = g = 2, computed by ensemble
averaging over N = 50 realizations of the disorder for different val-
ues of σμ. (b) Īst as a function of g in a 1HM L = 20 site with J = 1,
μ̄ = 0, U = 0 taken to the large bias limit with �1 = γL = g = 2,
computed by ensemble averaging over N = 50 realizations of the
disorder again for different values of σμ. In both panels we have set:
σμ = 0.0 (blue line), σμ = 0.5 (yellow line), σμ = 1.0 (green line),
σmu = 1.5 (red line), and σμ = 2.0 (purple line).

analysis of Ref. [87], our result implies that the localization
length of the system, L∗ (which is expected to be a function
of both σμ and U ), is always �L to allow for the disorder-
induced transition (in fact a crossover) to the insulating phase
in the L = 20 chain.

Having checked the consistency of our results with the
phase diagram of Ref. [87], we now discuss the effects of
the disorder on the OWP. To do so, we first move along the
horizontal line of Fig. 16 corresponding to U = 0. Repeating
the analysis of Sec. III in the presence of disorder, we compute
Īst as a function of f in a 1HM with L = 20 sites with J = 1,
μ̄ = 0, U = 0, with �1 = γL = g = 2, by ensemble averaging
over N = 50 realizations of the disorder and for different
values of σμ [Fig. 18(a)], as well as at nonequilibrium as a
function of g in the same system and using the same proce-
dure, again for different values of σμ [Fig. 18(b)].

Remarkably, from Fig. 18(b), we see that a limited amount
of disorder does not spoil our result that the OWP point in
Ist as a function of g appears in the chain when it is taken
out of equilibrium even when U = 0. Eventually, a strong
disorder washes out the OWP which, from Fig. 18(a), we find
to happen simultaneously with a reduction of Īst to 0, that is
to the phase transition from the conducting to the insulating
phase.

Consistent with our result that a limited amount of disorder
does not wash out the OWP at U = 0, we expect that the same
happens at U > 0. To check this guess, in Fig. 19 we plot Īst

computed in the same system as the one we used to derive
Fig. 18 but choosing U = 1.5. As expected, disorder does not
substantially affect the OWP, which proves to be pretty stable
against the presence of impurities in the chain, both in the
noninteracting case as well as for a finite value of U .

Our sampling analysis, combined with the overall phase di-
agram of the disordered 1HM in the σμ − U plane in Fig. 16,
let us infer that at any point of the phase diagram characterized
by a finite value of the ensemble averaged Īst, it is always
possible, in the large bias limit, to tune the system at the
OWP by pertinently operating over the parameters �1, γL, g,
and f . This result, together with our finding that tuning g
allows for recovering the OWP even when U = 0, shows
that the emergence of the OWP itself and the corresponding
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FIG. 19. (a) Īst as a function of f in a 1HM at equilibrium with
L = 20 sites with J = 1, μ̄ = 0, U = 1.5, and �1 = γL = g = 2,
computed by ensemble averaging over N = 50 realizations of the
disorder for different values of σμ. (b) Īst as a function of g in a
1HM L = 20 site with J = 1, μ̄ = 0, U = 1.5, taken to the large bias
limit with �1 = γL = g = 2, computed by ensemble averaging over
N = 50 realizations of the disorder again for different values of σμ.
In both panels we have set: σμ = 0.0 (blue line), σμ = 0.25 (yellow
line), σμ = 0.5 (green line).

onset of a negative differential conductivity in the chain are
pretty universal features, robust against both the electronic
interaction as well as the disorder in the chain.

VII. CONCLUSIONS

Using the Lindblad equation approach we have discussed
the main features of the NESS arising in an interacting one-
dimensional electronic chain connected to two reservoirs in
the large bias limit. To do so, we have characterized the
NESS by synoptically monitoring both the stationary current
Ist and the stationary charge distribution in real space nst, j ,
characterizing the NESS. In the noninteracting case, we were
able to do so within a fully analytical approach by providing
explicit formulas for Ist and nst, j in the NESS.

In the presence of a nonzero electronic interaction, we have
resorted to a MF approach to the interaction, which allowed
us to perform a systematic characterization of the NESS as a
function of the bias between the reservoirs, of the strength of
the couplings between the chain and the reservoirs, of the bulk
interaction in the chain, and, eventually, when breaking the
chain homogeneity with an isolated impurity as a function of
the type and of the strength of the impurity potential. Finally,
we have introduced a finite density of impurities in the chain
to discuss how the NESS depends on the amount of quenched
disorder as well.

Our analysis allowed us to characterize the emergence of
an OWP in the multiparameter space at which Ist is maxi-
mized with respect to the values of the various parameters.
Eventually, we showed that the OWP is robust against the
presence of a limited amount of disorder in the chain, while
a strong enough disorder washes it out by triggering, at the
same time, a disorder-induced transition from a conducting to
an insulating NESS. The importance of our results is strictly
related to the importance of both understanding the nature of
the OWP and, after that, of tuning a device at the OWP in a
large number of cases of physical interest.

Because of its simplicity, combined with its reliability,
which we checked by comparing our results to the ones
available in the literature about LE approach to nonequilib-
rium quantum systems, we plan to extend our approach to,

e.g., look for novel phases/phase transitions arising in the
phase diagram of junctions of interacting fermionic systems
[95–100] and/or spin chains [101–103] or to define system-
atical optimization procedure for the parameters determining
the working point of a quantum device and so on.
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APPENDIX: VARIATIONAL APPROACH TO THE
STATIONARY CURRENT AND TO THE REAL SPACE

CHARGE DISTRIBUTION IN THE NONEQUILIBRIUM
STATIONARY STATE

In this Appendix we present a simple variational ap-
proach to the “kink confinement” and to the corresponding
conductor-to-insulator phase transition, which we found in the
1HM connected to two reservoirs in the large bias limit. To do
so, we first of all remark that, via the (inverse) Jordan-Wigner
transformation, the Hamiltonian in Eq. (21) at μeff = 0 is
mapped onto the Hamiltonian for the XXZ spin chain in a
zero magnetic field HXXZ , given by

HXXZ = −J
L−1∑
j=1

{S+
j S−

j+1 + S−
j S+

j+1} + J�

L−1∑
j=1

Sz
jS

z
j+1, (A1)

with S+
j = c†

j eiπ
∑ j−1

t=1 c†
t ct and Sz

j = c†
j c j − 1

2 . In particular,
U
J < (>)2 in the 1HM corresponds to � < (>)1 in HXXZ in
Eq. (A1). Along the correspondence between operators in the
1HM and in the XXZ Hamiltonian, we find that the charge
density at site j and the current density through the link
between j and j + 1 in the former model are, respectively,
expressed in terms of operators in the latter model as

nj = Sz
j + 1

2

I j, j+1 = −iJ{S+
j S−

j+1 − S+
j+1S−

j }. (A2)

Once the reservoirs have driven the system towards the
NESS, the current must be uniform throughout the chain and
equal to Ist. At the same time, setting nst, j = 〈n j〉st, where
〈. . .〉st denotes averaging within the NESS, in the large bias
regime Ist is related to both nst,1 and nst, j through the relations

Ist = �1 [1 − nst,1] = �1

{
1

2
− 〈

Sz
1

〉
st

}

Ist = γL nst,L = γL

{
1

2
+ 〈

Sz
L

〉
st

}
, (A3)

with the relation with the average local magnetization in the
XXZ model explicitly evidenced. Choosing, as we have done
in Sec. IV, �1 = γL, implies therefore 〈Sz

1〉st = −〈Sz
L〉st ≡

mbou. Resorting to the XXZ spin chain framework we can
therefore adapt the semiclassical approach introduced in Ref.
[104] to discuss the kink dynamics for � � 1 to a generic
value of � and, in particular, to the case |�| � 1, which is the
one we focus on in Sec. IV.
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Following Ref. [104], we treat the spin operators in HXXZ

as classical variables, for which we make an appropriate varia-
tional ansatz. Computing the energy of the corresponding state
using Eq. (A1) supplemented with the constraints implied
by Eq. (A3) and minimizing the corresponding result with
respect to the variational parameters, we find out how the kink
solution varies as a function of the Ist as well as of U . Letting
�S j be our variational ansatz for the spin operator at site j (to

be eventually identified with 〈�S j〉st), we set (assuming that, at
the boundaries, the spins are fully polarized in the z direction,
due to the coupling with the reservoirs)

�S j ≡

⎡
⎢⎣
Sx

j

Sy
j

Sz
j

⎤
⎥⎦ =

⎡
⎢⎣

cos(ϕ j ) sin(ϑ j )

sin(ϕ j ) sin(ϑ j )

cos(ϑ j )

⎤
⎥⎦, (A4)

with ϑ j, ϕ j being smooth functions of the real space variable
so to enable us to treat them as smooth functions of a continu-
ous coordinate variable x. In order to choose Sz

j = cos(ϑ j ) so
to match the density profiles in Fig. 8, we make a “minimal”
variational ansatz, that is, we fit the magnetization profile with
a trial function depending on one variational parameter only.
As we discuss below, though being a pretty crude approxima-
tion, our variational ansatz is apparently good enough to allow
for qualitatively recovering all the key features highlighted in
Secs. III and IV. Specifically, we choose our trial function so
that (resorting to the continuous variable x)

Sz
j → 1

2

{
1

1 + e(x−�)
− 1

1 + e(L−x−�)

}

≡ 1

2
cos(ϑ (x = a j)), (A5)

with a being the lattice step and L being the length of the
chain. The only variational parameter entering the function in
Eq. (A5) is the length scale �.

To variationally determine �, we estimate the energy for
the Hamiltonian in Eq. (A1) corresponding to our variational
solution in Eq. (A5), E[�], by using the MF result of Ref. [80].
Doing so, we set

E[�] ≈ J

2

∫ L

0
dx

{(
d �S
dx

)2

− 2(� − 1)(Sz )2

}

= J

2

∫ L

0
dx

{(
dϑ (x)

dx

)2

+ sin2(ϑ (x))

(
dϕ(x)

dx

)2

− 2(� − 1) cos2(ϑ (x))

}
. (A6)

In addition to ϑ (x), E[�] also depends on ϕ(x). To deter-
mine this latter function we employ the current conservation
within the NESS, which implies that Ist is the same indepen-
dently of the position in the chain. Within MF approximation

FIG. 20. Ist as a function of U computed within our variational
approach in an L = 20 chain with J = 1 and μeff = 0 in the large
bias limit with �1 = γL = g = 2 (blue dots) and using the numerical
approach of Sec. IV with the same values of the system parameters
(orange squares).

[80], we get Ist = J sin2(ϑ (x)) dϕ(x)
dx . Therefore, we obtain

Ist ≈ J sin2(ϑ (x))
dϕ(x)

dx

⇒ dϕ(x)

dx
= Ist

J
sin−2(ϑ (x)). (A7)

Using Eq. (A7), we may rewrite Eq. (A6) as

E[�] = J

2

∫ L

0
dx

{(
dϑ (x)

dx

)2

+
(

Ist

J sin2(ϑ (x))

)2

− 2(� − 1) cos2(ϑ (x))

}
. (A8)

To explicitly put the right-hand side of Eq. (A8) in a form
depending on � only, we recall that, from Eq. (A3), we obtain

Ist = �1

{
1

2
− mbou

}
= �1

{
1

2
− cos(ϑ (0))

2

}
. (A9)

To recover the results of Figs. 7 and 8, we minimized, with
respect to �, E[�] computed at fixed �1 = γL = g = 2 and for
a given �. Once we had estimated in this way the parameter in
the trial function of Eq. (A5), we computed nst throughout the
chain as a function of U , as well as mbou. Knowing mbou, we
eventually used Eq. (A9) to compute Ist as a function of U . In
Fig. 20 we draw Isp computed within our variational approach
as a function of U in the large bias limit with �1 = γL = g = 2
(blue dots), together with the analogous quantity computed
using the numerical approach of Sec. IV (orange squares), in
an L = 20 chain with J = 1 and μeff = 0. While, possibly due
to our oversimplified choice for the trial wave function, there
is a rather weak quantitative agreement between the points, we
believe that the qualitative agreement is satisfactory enough
and witnesses the reliability of our method: Indeed, we see
that in both cases Ist monotonically decreases on increasing U
from 0 to positive values and eventually becomes 0 as soon as
U � 2, which is also consistent with Refs. [19,25]. Moreover,
as pointed out in Ref. [80], the effective continuum energy
functional in Eq. (A6) is expected to be mostly reliable for
� ∼ 1, corresponding to U

J ∼ 2 in our model, where, indeed,
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FIG. 21. nst as a function of x computed within our variational
approach in an L = 20 chain with J = 1 and μeff = 0 in the large
bias limit with �1 = γL = g = 2 and with U = 0 (blue circles—blue
interpolating curve), U = 1.5 (orange rhombi—orange interpolating
curve), U = 1.9 (green squares—green interpolating curve), and
U = 2.1 (red triangles—red interpolating curve). Note that, to ac-
count for errors induced by the crude approximations in our choice
of the trial function, the values of U are slightly larger than what is
expected from the numerical results of Sec. IV, yet the qualitative
agreement with the numerical results is pretty good.

the agreement between the two plots is pretty good even
quantitatively.

In Fig. 21, we plot nst within the NESS as a function of x
computed within the variational approach. Apparently, using
the variational approach allows us for recovering a pretty
good agreement with the trend evidenced in Fig. 8: As long
as the system supports a nonzero Ist, nst is flat at nst = 1

2
throughout the middle part of the chain, with a respectively
upward and downward turn close to the endpoints of the chain
that are required to match nst,1 and nst,L as determined by
the constancy of Ist. On increasing U , the extent of the flat
region gets reduced until the region shrinks at U = 2, where
nst takes a “kinklike” profile with a corresponding blocking of
the current transport (Ist = 0) for U > 2 [19,25].

Before concluding this Appendix, it is worth mentioning
that, by means of a simple extension of the crude variational
approach we discussed above, we are able to catch the remark-
able emergence of an OWP in the plot of Ist as a function of
�1 = γL = g, derived in the fully nonequilibrium limit f = 1
and in the noninteracting case U = 0. In fact, while, consistent
with Ref. [19], in Sec. IV we find no OWP when plotting Ist as
a function of f for �1 = γL = g and for U = 0, instead we do

FIG. 22. Ist computed using the variational approach at J = 1,
L = 20, and U = 0 at large bias as a function of γL = �1 = g (blue
curve) and as a function of γL = g at �1 = 2 (orange curve). The
reduction by a factor of 4 with respect to the numerical results of
Sec. III is consistent with the analogous reduction of Ist vs U in
Fig. 20 as U → 0.

find the OWP in the plot of Ist as a function of �1 = γL = g, as
we show throughout Sec. III as well as in Fig. 9(b). To recover
the OWP for U = 0 we used the energy functional in Eq. (A6)
with � = 0 and a variational function obtained by applying a
rigid translation by x0 to the function of Eq. (A5), that is

Sz
j → 1

2

{
1

1 + e(x−x0−�)
− 1

1 + e(L−x+x0−�)

}

≡ 1

2
cos(ϑ (x = a j)). (A10)

We determine the parameters � and x0 by imposing the
constraint that the values of mbou,1, mbou,L obtained from
Eq. (A10) are consistent with Eq. (A3). Doing so, we obtain
the plot in Fig. 22, where we draw Ist computed using the vari-
ational approach at J = 1, L = 20, and U = 0 at large bias, as
a function of γL = �1 = g (blue curve) and as a function of
γL = g at �1 = 2 (orange curve). In both cases the location
of the OWP is consistent with the results of Sec. III, though,
due to the pretty crude approximations behind our variational
approach, the calculated value of Ist is lower than the one
numerically computed by a factor of 4. Yet this is consistent
with the analogous reduction of Ist vs U in Fig. 20 as U → 0.
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