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Dynamics of electronically phase-separated states in the double exchange model
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We present extensive large-scale dynamical simulations of phase-separated states in the double exchange
model. These inhomogeneous electronic states that play a crucial role in the colossal magnetoresistance phe-
nomenon are composed of ferromagnetic metallic clusters embedded in an antiferromagnetic insulating matrix.
We compute the dynamical structure factor of these nanoscale textures using an efficient real-space formulation
of coupled spin and electron dynamics. Dynamical signatures of the various underlying magnetic structures
are identified. At small hole doping, the structure factor exhibits a dominating signal of magnons from the
background Néel order and localized modes from magnetic polarons. A low-energy continuum due to large-
size ferromagnetic clusters emerges at higher doping levels. Implications for experiments on magnetoresistive
manganites are discussed.
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I. INTRODUCTION

Phase separation is ubiquitous in systems dominated by
nonlinear and nonequilibrium processes [1,2]. In particular, it
has been observed in the intermediate state of numerous first-
order phase transitions [3]. Nanoscale phase separation also
underpins many of the intriguing functionalities of strongly
correlated electron materials [4–9]. A prominent example is
the colossal magnetoresistance (CMR) phenomenon observed
in several manganese oxides [7–11], in which a small change
in magnetic field induces an enormous variation of resis-
tance. Detailed microscopic studies have revealed complex
nanoscale textures consisting of metallic ferromagnetic clus-
ters embedded in an insulating matrix [12–14]. It is believed
that CMR arises from a field-induced percolating transition of
the metallic nanoclusters in such mixed-phase states [15–17].

Considerable experimental and theoretical effort has been
devoted to understanding the origin of these complex meso-
scopic textures in manganites and other correlated systems.
An emerging picture is that such inhomogeneous states re-
sult from the competition between two distinct electronic
phases with nearly degenerate energies [9,10]. Microscopi-
cally, the double-exchange interaction [18–20] is considered a
major mechanism for electronic phase separation. The double-
exchange model describes itinerant electrons interacting with
local magnetic moments through the Hund’s rule coupling.
Since electrons can gain kinetic energy when propagating in a
sea of parallel spins, an instability occurs when ferromagnetic
domains favored by doped carriers compete with the back-
ground antiferromagnetic order. The tendency toward phase
separation is further enhanced by factors such as long-range
Coulomb interaction, quenched disorder, and coupling to or-
bital and lattice degrees of freedom [10].

The magnetization dynamics of the hole-doped manganites
L1−xAxMnO3, where L is a trivalent lanthanide ion and A is a
divalent alkaline earth ion, has also been extensively studied

experimentally [21–26]. The majority of the investigations
focused on the ferromagnetic phase with optimal hole doping,
which is also the regime exhibiting pronounced CMR effect.
While the spin-wave spectrum of some ferromagnetic man-
ganites such as La1−xSrxMnO3 seems well described by the
double-exchange model [27,28], intriguing unconventional
magnetic behaviors have also been reported. For example,
the spin wave dispersion of manganites with a lower critical
temperature is significantly softened near the Brillouin zone
boundary. Moreover, the magnon excitations close to zone
boundary also exhibit an enhanced broadening. Theoretically,
the anomalous spin-wave excitations have been attributed to
a host of diverse mechanisms including higher-order effects
of spin-charge coupling [29–31], magnon-phonon interac-
tion [32,33], orbital fluctuations [34], and disorder effect [35].

Despite extensive studies on the spin-wave excitations of
the ferromagnetic regime, the spin dynamics of the phase-
separated states has received much less attention. It remains
poorly understood how the resultant spatial inhomogeneity
affects the elementary excitations, which intrinsically involve
strongly coupled spin and electron degrees of freedom. Impor-
tant issues such as the spectrum of coupled electron-magnon
dynamics in the phase-separated states have yet to be studied
theoretically. The difficulty is partly due to the lack of efficient
numerical methods. In particular, the absence of translation
invariance in a mixed-phase state renders most momentum-
based techniques inapplicable. For example, although the
magnon spectrum of the ferromagnetic phase has been com-
puted using generalized spin-wave theories that include the
electron-spin interaction [27–31], these momentum-based cal-
culations cannot be applied to the phase-separated states of the
DE model.

In order to properly account for the spatial inhomogene-
ity, effective classical or semiclassical spin models, in which
the electron degrees of freedom were integrated out before-
hand, were employed to compute the magnetic excitation
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spectrum [36,37]. However, the subtle interplay between the
quantum electron degrees of freedom and the spin dynamics,
even treated classical, cannot be captured in such empirical
approach. To more properly include the electron effects, an
adiabatic dynamical scheme, which integrates out the elec-
trons on the fly of the simulations, have been used to study
the dynamical phenomena in inhomogeneous states [38,39].
These approaches, similar to the Born-Oppenheimer approx-
imation in quantum molecular dynamics [40], assume a fast
relaxation of the electron gas. Since the electrons are as-
sumed to remain in the instantaneous equilibrium states,
the adiabatic dynamics not only cannot capture phenomena
involving fast electron dynamics but also fails to describe
dynamical phenomena with out-of-equilibrium electrons. A
detailed discussion of adiabatic versus nonadiabatic spin dy-
namics, in the context of semiclassical spin-density waves,
can be found in Ref. [41]. We also discuss the various dy-
namical modeling for double-exchange-type models in the
Appendix.

In this paper, we present the first large-scale nonadia-
batic dynamical simulations of the phase-separated states
in the single-band double exchange model based on an ef-
ficient real-space method for the entangled dynamics of
electrons and spins. In our approach, the time evolution of
the many-electron wave function, which remains a Slater de-
terminant in double-exchange model, is described by a von
Neumann equation for the reduced density matrix, which
is coupled to the Landau-Lifshitz dynamics for spins. By
starting from various initial states that represent the thermal
ensemble of the system, trajectories of spins are obtained
by numerically integrating the coupled spin-electron dynam-
ical equations. The dynamical structure factor of the highly
inhomogeneous phase-separated states is then computed via
the space-time Fourier transform of the spin trajectories. Our
results reveal intriguing coexistence of ferromagnetic and
antiferromagnetic magnons at large hole doping. Dynamical
signatures of magnetic polarons and ferromagnetic metal-
lic clusters are also identified. In particular, an abundance
of low-energy magnons is found to arise from the metallic
clusters.

The rest of the paper is organized as follows. In Sec. II
we discuss the single-band double-exchange (DE) model and
its various low temperature phases. Numerical methods used
to simulate the equilibrium phases of the DE model are also
discussed, with an emphasis on the linear-scaling quantum
Langevin dynamics method. We next present in Sec. III our
nonadiabatic spin-electron dynamics method. In this frame-
work, the evolution of the DE system is governed by the
Landau-Lifshitz equation for classical spins, coupled to the
von Neumann equation for electron correlation function or
reduced density matrix. In Sec. IV, we apply our nonadi-
abatic dynamics to compute the dynamical structure factor
of electronically phase-separated states in the DE model.
Analysis of dynamical signatures associated with magnetic
polarons, metallic clusters, and background Néel order are
also presented. We summarize our work and discuss future
applications of our methods in Sec. V. A detailed account
of the various dynamical modeling, including the Langevin
thermalization method, adiabatic as well as nonadiabatic
Landau-Lifshitz dynamics, is given in the Appendix.

II. DOUBLE-EXCHANGE MODEL AND LANGEVIN
DYNAMICS

We consider the square-lattice double-exchange (DE)
model [18–20], which is one of the most representative mod-
els that exhibit spontaneous electronic phase separation. The
Hamiltonian of single-band DE model reads

Ĥ = −t
∑
〈i j〉

(ĉ†
iα ĉ jα + H.c.) − J

∑
i

Ŝi · ĉ†
iασαβ ĉiβ, (1)

where repeated indices α, β imply summation. The first term
describes the electron hopping: ĉ†

iα creates an electron with
spin α = ↑,↓ at site i, 〈i j〉 indicates the nearest neighbors, t
is the electron hopping constant. The second term represents
the Hund’s rule coupling between electron spin and the local
magnetic moments represented by spin operator Ŝi. In order
to achieve large-scale simulations, we will use either classical
or semiclassical approximation for the local spins.

The equilibrium phases of this square-lattice DE model
have been extensively studied theoretically [42–44]. Exactly
at half filling, the local spins develop a long-range Néel order
in the T = 0 insulating ground state. At small electron den-
sities, on the other hand, a metallic state with predominantly
ferromagnetic (FM) spin correlation emerges as the ground
state. Near half filling with a small hole doping, the FM metal
becomes unstable against either a noncollinear magnetic spiral
or phase separation [42–45] depending on the strength of
the Hund’s coupling J . In the large-J regime, the instability
of the FM phase leads to phase separation with coexisting
FM and Néel domains, as directly verified in Monte Carlo
simulations [42].

To obtain the equilibrium phases of the DE system, in-
cluding the phase-separated states, conventional Monte Carlo
simulations are applied to sample the classical spin configu-
rations of the DE Hamiltonian. This is because for a given
spin configuration, the DE Hamiltonian, which is quadratic in
fermion operators, is essentially a tight-binding model, hence
can be exactly solved. For each spin update {Si} → {S′

i},
one first computes the free-energy difference �F = F ′ − F ,
where the free energy for a given spin configuration is ob-
tained by integrating out the electrons

F ({Si}) = −kBT lnZc = −kBT ln Trc exp[−βĤ({Si})].

(2)

Then the Metropolis formula: P = min(1, e−�F/kBT ) is used
to determine whether the proposed spin update is ac-
cepted. However, repeated calculation of �F based on,
e.g., exact diagonalization, can be overwhelmingly time
consuming. Efficient linear-scaling techniques, such as the
kernel-polynomial method (KPM), often have to be used in
order to achieve large-scale equilibrium simulations of the
DE model [46–48]. However, even with KPM, most local
spin-update Monte Carlo methods are not very effective. Here
we adopt an efficient adiabatic Langevin dynamics method
combined with a gradient extension of the KPM [49–51] to
obtain equilibrium phase-separated states. In this approach,
the time evolution of the classical spins is governed by the
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stochastic model-A dynamics [52]

dSi

dt
= −α

∂F
∂Si

+ ξi(t ) = αTi + ξi(t ), (3)

where α is a damping coefficient, and ξi(t ) is a δ-correlated
fluctuating force satisfying 〈ξi(t )〉 = 0, and 〈ξμ

i (t )ξν
j (t ′)〉 =

2αkBT δi jδμνδ(t − t ′). An implicit Lagrangian multiplier is
used to enforce the constant-length constraint |Si(t )| = 1.
Following standard procedure by deriving the associated
Fokker-Planck equation, it can be shown that the steady-
state configurations are described by the desired Boltzmann
distribution.

It should be noted that the Langevin equation (3) describes
pure relaxational dynamics of the DE system, which com-
pletely ignores the precessional dynamics of spins. In this
sense, one cannot apply it to model the general dynamical
phenomena. However, for the purpose of sampling spin con-
figurations in equilibrium, the Langevin method is sufficient
and very effective, especially compared with the Monte Carlo
method. An alternative approach is the quantum version of
the stochastic Landau-Lifshitz-Gilbert dynamics [41], which
incorporates both precession and relaxation spin dynamics;
see Appendix for more details. However, as already noted
in the Introduction, such approach is based on the adiabatic
approximation. As a result, it cannot be used to describe
dynamical process with a timescale shorter than the electron
relaxation times.

III. LANDAU-LIFSHITZ VON NEUMANN DYNAMICS

The adiabatic Landau-Lifshitz dynamics, which is similar
to the Born-Oppenheimer approximation in quantum molec-
ular dynamics [40], is based on the assumption that the
time-scale of electron motion and that of spin dynamics are
well separated. Assuming much faster electronic relaxation,
the electrons are assumed to remain in equilibrium for any
given spin configuration. Consequently, such a dynamical
model does not account for the feedback of spin dynam-
ics to the electronic degrees of freedom. More importantly,
even without Gilbert damping and stochastic noise, the total
energy of the DE system is not conserved under the adia-
batic Landau-Lifshitz dynamics. The adiabatic approximation
is thus inadequate for describing the fundamental entangled
dynamics of coupled electron-spin system. We note that adi-
abatic dynamics for spin-density waves has been formulated
in Ref. [41]. Moreover, adiabatic ab initio spin dynamics has
also been developed based on the adiabatic approximation of
the time-dependent density functional theory [53–55].

To go beyond the adiabatic approximation, one needs to
treat the electron dynamics on an equal footing with the
spin dynamics. Here we present a nonadiabatic dynamics
method for the DE system, which is similar in spirit to
the Ehrenfest method in quantum molecular dynamics sim-
ulations [40,56,57]. We assume that the quantum state of
the DE system is a direct product state: |	(t )〉 = |
(t )〉 ⊗
|�(t )〉, where |
〉 and |�〉 denote the spin and electron wave
functions, respectively. Consistent with the classical approx-
imation for spins, we assume |
〉 is a direct product of
single-site spin state: |
(t )〉 = ∏

i |φi(t )〉. This is equivalent
to a mean-field approximation for the quantum spins. We then

define time-dependent local moment Si(t ) = 〈φi(t )|Ŝi|φ(t )〉
as the expectation value of the spin operator.

By tracing out the spin degrees of freedom, the evolu-
tion of the electron wave function |�(t )〉 is described by the
Schrödinger equation with a time-varying DE Hamiltonian

ih̄
d|�(t )〉

dt
= Ĥe({Si(t )})|�(t )〉, (4)

where the effective electron Hamiltonian is defined as

Ĥe({Si}) = 〈
(t )|Ĥ|
(t )〉, (5)

and Ĥ is the DE Hamiltonian in Eq. (1). Next, to derive
the spin dynamics, we switch to the Heisenberg picture. The
equation of motion for vector Si(t ) is then

dSi

dt
= i

h̄
〈[Ĥ, Ŝi]〉, (6)

where 〈· · · 〉 means expectation value computed using the full
quantum state |	〉. Using the product nature of the spin state
|
〉, the above equation can be expressed as the standard
Landau-Lifshitz (LL) equation

dSi

dt
= Si × ∂E

∂Si
, (7)

where the effective energy is

E ({Si}) = 〈�(t )|Ĥe|�(t )〉. (8)

It is worth noting that the equivalence between Landau-
Lifshitz dynamics and the mean-field type approximation
for quantum spin dynamics has been pointed out in earlier
works [58,59]. Since the linearized Landau-Lifshitz equation
is equivalent to the leading-order Holstein-Primarkoff expan-
sion, the above treatment can also be viewed as a semiclassical
dynamics for quantum spins in the DE model. We also note
that classical spin approximation is widely used in the study
of CMR phenomena. Our approach here thus corresponds to
the dynamical generalization of the classical picture used for
DE-type systems.

Substituting the explicit form of the DE Hamiltonian
Eq. (1) into the above Landau-Lifshitz equation, we obtain

dSi

dt
= −JSi × σαβ ρiβ,iα (t ). (9)

Here we have defined the time-dependent single-electron den-
sity matrix or correlation function

ρiα, jβ (t ) ≡ 〈�(t )|ĉ†
jβ ĉiα|�(t )〉. (10)

Since the DE Hamiltonian is bilinear in fermion operators, the
many-electron wave function |�(t )〉 remains a single Slater-
determinant state if it is a pure state initially. However, the
integration of the Slater determinant is rather cumbersome
numerically and has only been used for rather small size
simulations [60,61].

Instead of evolving the Slater determinant wave function,
one could equally describe the electron dynamics in terms of
the reduced density matrix based on the Heisenberg picture.
An additional advantage of this formulation is that it can
account for the initially mixed quantum states. Details of the
generalization to include the ensemble average of the initial
states can be found in the Appendix. To describe the electron
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(a) (b) (c) (d) (e)f = 0.43 f = 0.45 f = 0.465 f = 0.48 f = 0.498

FIG. 1. Upper panels: density plots of the onsite electron number n(ri ) = 〈ĉ†
i,α ĉi,α〉 in sample phase-separated states for varying electron

filling fraction f = ∑
i n(ri )/2N , where N is the number of lattice sites, obtained from Langevin dynamics simulations on a 60 × 60 lattice

with Hund’s coupling J = 6t and temperature T = 5 × 10−4t . The corresponding dynamical structure factors S(q, ω) averaged over tens of
independent initial states are shown in the lower panels. The high-symmetry points of the Brillouin zone are � = (0, 0), X = (π, 0), M =
(π, π ).

dynamics in our formalism, we define a time-dependent “first-
quantization” Hamiltonian matrix

Hiα, jβ = −ti jδαβ − JSi · σαβ δi j . (11)

The DE model in Eq. (1) can then be expressed as

Ĥ =
∑
i, j

∑
α,β

Hiα, jβ ĉ†
iα ĉ jβ. (12)

In terms of matrix H , the reduced density matrix satisfies the
von Neumann equation

dρ

dt
= i[ρ, H]. (13)

Substituting Eq. (11) for H to the above equation yields

dρiα, jβ

dt
= i(tik ρkα, jβ − ρiα,kβ tk j )

+ iJ (Si · σαγ ρiγ , jβ − ρiα, jγ σγ β · S j ). (14)

It can be readily verified that the total energy of the system
E = 〈H〉 = Tr(ρH ) is a constant of motion. The numerical
efficiency of integrating the von Neumann equation can be
improved with optimized sparse-matrix multiplication algo-
rithms. A similar formulation has been developed for the
semiclassical dynamics of spin density waves in the Hubbard
model [41].

IV. DYNAMICAL STRUCTURE FACTOR OF
PHASE-SEPARATED STATES

To compute the dynamical structure factor of the phase-
separated states, the initial state is prepared using the KPM
Langevin simulations at a temperature of T = 5 × 10−4 t . A
few examples of such mixed-phase states on a 60 × 60 square
lattice are shown in the upper panels of Fig. 1. The red region

corresponds to the half-filled insulating background with the
antiferromagnetic order, while the green and blue regions
indicate metallic FM domains with low electron density. Inter-
estingly, in addition to forming the FM puddles, a fraction of
the doped holes are self-trapped in a composite object which
can be viewed as the magnetic analog of polaron [62–65].

For each of the initial configurations prepared by the
Langevin simulations, a fourth-order Runge-Kutta method
is used to integrate the nonadiabatic Landau-Lifshitz-von
Neumann equations, i.e., Eqs. (9) and (A27). From the nu-
merically obtained spin trajectories Si(t ), we compute the
dynamical correlation function

S (q, t ) = 〈Sq(t ) · S∗
q(0)〉, (15)

where Sq(t ) ≡ ∑
i Si(t ) exp(iq · ri )/

√
N is the spatial Fourier

transform of the instantaneous spin configuration, and 〈· · · 〉
denotes the ensemble average over independent initial states
of a given temperature. The dynamical structure factor is then
given by

S (q, ω) =
∫

S (q, t )e−iωt dt

= 1

N

∑
i j

∫
dt〈Si(t ) · S j (0)〉e−iωt dt, (16)

which is essentially the space-time Fourier transform of the
spin-spin correlator C(ri j, t ) = 〈Si(t ) · S j (0)〉. Importantly,
the dynamical simulation here is completely deterministic
and energy conserving. The lower panels of Fig. 1 show the
S (q, ω) of phase-separated states with five different electron
filling fractions; each is averaged over 50 distinct initial states.

Since the Néel order parameter, characterized by the
wave vector Q = (π, π ) at the M point, is not a conserved
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FIG. 2. The power spectrum I (ω) = ∑
i∈C |S̃i(ω)|2 of (a) a mag-

netic polaron and (b) a FM metallic cluster consisting of roughly 20
spins. Here the sum runs over spins in the FM domain of these object.
The inset shows the electron density plot n(ri ) = 〈c†

iαciα〉. With a
large Hund’s coupling J = 6t , the size of the magnetic polaron is
rather small, with a radius of roughly three lattice constants.

quantity, the fluctuations of the associated Fourier compo-
nent S̃(Q, t ) ≡ ∑

i Si(t ) eiQ·ri produce a huge artifact in the
raw data of the dynamical structure factor. Interestingly, we
found that the drifting of this Goldstone mode of finite lattices
exhibits a 1/ω power-law behavior, extending to very high
energies. This observation thus allows us to systematically
remove the large artificial signal in the vicinity of the M
point. The S (q, ω) shown in Fig. 1 were obtained after this
subtraction.

The dynamical structure factor in the vicinity of half filling
is dominated by the background antiferromagnetic spin-wave
excitations, as shown in Fig. 1(e). The pronounced signals
around the M point correspond to the Goldstone modes of
the underlying Néel order. As mentioned above, the doped
holes in this regime are localized by the self-induced po-
tential in a magnetic polaron. Numerically, each polaron is
found to accommodate nearly exactly one hole. To under-
stand the nature of the associated spin excitations, we focus
on the dynamics of a single magnetic polaron. We first per-
form relaxational dynamics on a perturbed half-filled Néel
state (by flipping a center spin) with exactly one electron
removed to obtain the initial states. From the spin dynam-
ics, we compute the power spectrum I (ω) ≡ ∑

i∈C |S̃i(ω)|2,
where S̃i(ω) = ∫

Si(t )e−iωt dt and the summation is over five
spins at the center of the polaron. The computed spectrum,
shown in Fig. 2(a), is characterized by prominent peaks at,
e.g., ω/t = 0.05, 0.25, 0.49, corresponding to eigenenergies
of the spin-wave excitations localized at the magnetic polaron.
Importantly, these localized magnons contribute to the flat
bands seen in S (q, ω).

With increasing hole doping, the antiferromagnetic spin-
wave dispersion is still visible, yet with gradually reduced
strength. Some of the flat bands due to magnetic polarons
also persist. An intriguing new feature is the emergence of a
continuum of low-energy magnons throughout the whole Bril-
louin zone. It is tempting to associate this continuum with the
metallic FM clusters whose size also grows with increasing
hole doping; see Fig. 1. To this end, we examine the spectrum

FIG. 3. Top panels show the density plot n(ri ) = 〈c†
iαciα〉 of one

particular phase-separated state for filling fractions (a) f = 0.465
and (b) f = 0.498. The simulated system size is 60 × 60. The corre-
sponding spatial profile of spin excitations F (ri ) = ∫ ω2

ω1
|S̃i(ω)|2 dω

is shown in panels (c) and (d), respectively, where ω1 = 0.006283
and ω2 = 0.09425.

of metallic clusters of varying shapes and sizes. Similar to
the preparation of the magnetic polaron, we manually create
such structures by carefully tuning the hole doping with the
cluster size. Figure 2(b) shows the I (ω) of a sample cluster
consisting of roughly 20 spins. A few pronounced peaks,
corresponding to the dominant quantized magnons, can be
seen in the spectrum. While the intensity and position of these
peaks depend on the geometric details of the FM clusters, a
common feature of the cluster spectrum is the appearance of
numerous low energy modes.

To further investigate the nature of these low-energy
magnons, we compare their spatial profile F (r) with the
corresponding electron density plot n(r) for a particular
initial state, as demonstrated in Fig. 3 for two electron fill-
ing fractions. Here the magnon profile function is defined
as the integral of the spin Fourier components F (ri ) =∫ ω2

ω1
|S̃i(ω)|2 dω over a finite band [ω1, ω2] of small energies.

In the case of electron filling n = 0.465, where the system is
spontaneously segregated into FM domains of various sizes
in an AFM background, the dominant spin excitations in this
energy range are from the FM clusters of the doped holes;
see Figs. 3(a) and 3(c). For even smaller hole doping with
f = 0.498, the intensity plot of F (r) exhibits a complex
long-wavelength pattern of the Néel background as shown in
Fig. 3(d). Distinctive signals can be seen that are contributed
from the small-size magnetic polarons.

We next examine the spectral distribution of low-energy
spin excitations of the phase-separated states. Figure 4(a)
shows the log-log plot of the dynamical structure factor
S (q, ω) versus ω at a few selected wave vectors. Each curve
is again obtained after averaging over tens of different mixed-
phase configurations. These distributions exhibit an abrupt
drop above a band edge Eb ∼ 0.5t , indicating the absence of
magnon density of states at high energies; see also the density
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FIG. 4. (a) The dynamical structure factor S(q, ω) versus ω

at a few selected wavevectors q for filling fraction f = 0.465.
(b) The frequency dependence of the spin excitation spectrum
I(ω) ≡ ∑

q S(q, ω)/N integrated over the whole Brillouin zone, at
varying electron filling fractions. The curves are shifted vertically for
clarity. The dashed line shows the ω−2.1 power-law dependence.

plots in Fig. 1. While the dynamical structure factor at the
three different q’s shows rather distinct ω dependences at high
energies, a pronounced increase of S (q, ω) at small ω can be
seen for all three wave vectors shown in Fig. 4(a).

The overall density of states (DOS) of the low-energy
magnons can be inferred from the spectral function I (ω) =∑

q S (q, ω)/N , which is the dynamical structure factor av-
eraged over the whole Brillouin zone. Figure 4(b) shows
the log-log plots of the numerical spectral function I (ω) for
three different filling fractions. Interestingly, they show strong
similarities with each other, especially with increasing hole
doping. At high energies, one can see a clear band edge and a
shoulderlike feature. The distribution functions I (ω) develop
a sharp peak at ω → 0, which indicates a significant increase
in the magnon DOS at small ω. The nearly linear segments in
the log-log plot of Fig. 4(b) suggest a power-law behavior. It
is worth noting that a similar disorder-induced peak at ω → 0
also appears in the magnon DOS in different localized spin
models [66,67].

In our case, these low-energy magnons can be viewed as
descending from the zero-energy modes of individual isolated
FM clusters. These zero modes acquire a finite energy through
coupling to the Néel background. For short-range spin-spin
interactions, this energy shift of the zero modes is expected
to scale as the circumference of the FM cluster. Since the
electron-mediated spin interactions are long ranged, the en-
ergy shift might scale differently. For simplicity, we assume
a power-law relation ω ∼ s1/� between the acquired energy
ω of the zero mode and the size s of the FM puddle. For
example, � = 2 corresponds to the case ω ∼ �, where � is the
linear cluster size. The density of states ρ(ω) is then related to
the distribution of s through ρ(ω) ∼ n(s) ω�−1. In the vicinity
of the cluster percolation transition, one expects a power-law
cluster-size distribution n(s) ∼ 1/sτ for large clusters; here τ

is the Fisher’s exponent [68]. This in turn indicates a power-
law DOS ρ(ω) ∼ 1/ω� (τ−1)+1. Numerically, we find that �

is very close to 1 [69].

V. SUMMARY AND OUTLOOK

To summarize, we have presented an efficient numeri-
cal framework for the real-space dynamical simulation of
the double-exchange model. Focusing on the regime with
small hole doping, we compute the dynamical structure fac-
tor of the electronically phase-separated states. In particular,
we found an emerging low-energy magnon continuum that
is attributed to the quasi-zero-modes of large-size metal-
lic FM clusters. Such abundance of low-energy magnons
has been observed in recent neutron-scattering measurement
of ferromagnetic manganites La0.7Ca0.3MnO3 close to op-
timal doping [26]. We have also observed the coexistence
of FM and AFM magnons in the dynamical structure fac-
tor with larger hole doping, a result consistent with recent
experiment [70]. Our work thus opens an avenue for dynam-
ical simulations of electronic inhomogeneous states in other
systems.

It is worth pointing out that magnon spectrum in real
materials also depends on factors such as long-range dipole-
dipole or Coulomb interactions, anisotropy, charge-phonon,
and charge-orbital coupling. Our goal here is to examine
the intrinsic effects of phase separation on the coupled
electron-spin dynamics. While several mechanisms, such as
magnon-phonon interaction [32,33], orbital fluctuations [34],
and disorder effect [35], have been proposed to explain the
unusual softening and broadening of spin waves in some
manganites, recent experiment [26] highlighted the possi-
bility that this anomalous behavior could be simply caused
by the electronic phase separation. With our efficient for-
mulation, it is now possible to quantitatively study the FM
magnons in the mixed-phase state, which will be left for future
study.
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APPENDIX: DYNAMICAL MODELING FOR
DOUBLE-EXCHANGE SYSTEMS

Most numerical investigations of the double-exchange
(DE) systems [18–20] have so far focused on their equilibrium
properties. In particular, extensive Monte Carlo simulations
and dynamical mean-field theory calculations have been used
to obtain the phase diagrams. However, dynamical simula-
tions of inhomogeneous phases in DE models have yet to be
explored. In this Appendix, we discuss the various dynam-
ics of the double-exchange (DE) system and their numerical
formulations. We first review the adiabatic spin dynamics,
which is analogous to the Born-Oppenheimer approxima-
tion in quantum molecular dynamics simulations [40]. Next
we discuss the nonadiabatic Ehrenfest dynamics for cou-
pled electron-spin systems. Finally we present details of the
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Landau-Lifshitz-von Neumann method for the nonadiabatic
dynamics of the DE system.

1. Adiabatic spin dynamics

In the adiabatic approximation, which is similar to
Born-Openheimer approximation for quantum molecular dy-
namics [40], electrons are assumed to quickly relax to the
equilibrium state corresponding to the instantaneous spin
configuration {Si}. One can thus define an effective energy
functional for the spins by integrating out electrons

F ({Si}) = −kBT lnZc ≡ −kBT ln Trc(e−βH), (A1)

which is essentially the canonical free energy of the electrons.
Here β = 1/kBT is the inverse temperature, and we have also
defined the electron partition function Zc. This free energy
can also be written as

F = E − TS, (A2)

where E is the internal energy

E = 〈H〉 = 1

Zc
Trc(e−βH H), (A3)

and S is the entropy of the electron system. In terms of
the eigenenergies εm = εm({Si}), which are functions of the
instantaneous spin configuration, the electron energy and en-
tropy can be expressed as

E =
∑

m

εm fm, (A4)

S = −kB

∑
m

[ fm ln fm + (1 − fm) ln(1 − fm)], (A5)

where fm = 1/(exp(βεm) + 1) is the Fermi-Dirac function for
the electron occupation. For simplicity, here we have set the
zero of the electron energy to be the chemical potential.

Given this effective spin energy F , the torques acting on
spins can be defined as

Ti = −∂F
∂Si

. (A6)

This torque can also be thought of as an effective local ex-
change field, which plays a central role in spin dynamics. For
example, the pure relaxational dynamics, or model A [52], is
described by the following stochastic equation

dSi

dt
= −α

∂F
∂Si

+ ξi(t ) = αTi + ξi(t ), (A7)

where α is a damping coefficient, and ξi(t ) is a δ-correlated
fluctuating force satisfying

〈ξi(t )〉 = 0,
〈
ξ

μ
i (t )ξν

j (t ′)
〉 = 2αkBT δi jδμνδ(t − t ′). (A8)

An implicit Lagrangian multiplier is used to enforce the con-
straint |Si(t )| = 1. This equation can also be viewed as the
Langevin dynamics of the spins [49,50], which has proven
a powerful method for simulating equilibrium phases of the
DE systems. More generally, the spin dynamics is described
by the stochastic Landau-Lifshitz or Landau-Lifshitz-Gilbert
(LLG) equation [71–73]

dSi

dt
= −Si × (Ti + ξi ) − αSi × (Si × Ti ). (A9)

Here the first term on the right hand side describes the energy-
conserving precessional dynamics of spins, while the second
term represents the dissipation effect. This stochastic LLG
equation can be used to simulate both equilibrium or nonequi-
librium magnetic dynamical phenomena. However, it should
be noted that electrons are assumed to be in quasiequilibrium
state within the adiabatic approximation.

The most time-consuming part of such adiabatic dynamical
simulations, either the relaxational or the LLG dynamics, is
the computation of the torque in Eq. (A6) due to itinerant
electrons. Using Eqs. (A2) and (A4) for the electron free-
energy and internal energy, respectively, the derivative of F is
given by

∂F
∂Si

=
∑

m

fm
∂εm

∂Si
+

∑
m

εm
∂ fm

∂Sm
− T

∂S
∂Si

.

Using Eq. (A5) for the electron entropy, it can be shown after
some algebra that the last two terms in the above expression
cancel each other. This can also be derived directly from the
free-energy expression

F = −kBT
∑

m

(1 + e−βεm ). (A10)

Taking the derivative with respect to spin, we have
∂F
∂Si

= −kBT
∑

m

e−βεm

1 + e−βεm

∂ (−βεm)

∂Sm

=
∑

m

fm
∂εm

∂Si
. (A11)

A similar result has been obtained previously in the context
of quantum molecular dynamics [74,75]. To further simplify
this expression, we write the electron Hamiltonian in terms
of quasiparticle number operators: H = ∑

m εmn̂m, where the
eigenenergies depend on the instantaneous spin configuration
εm = εm({Si(t )}). We thus have

∂Ĥ
∂Si

=
∑

m

n̂m
∂εm

∂Si
. (A12)

Next we average over the electrons and use the the identity
〈n̂m〉 = fm. We then obtain a generalization of the Hellmann-
Feynman theorem

Ti = −
〈
∂H
∂Si

〉
= − 1

Zc
Trc

(
e−βH ∂H

∂Si

)
. (A13)

From the explicit form of the DE Hamiltonian in Eq. (1), we
can further simplify the expression Eq. (A13) (note: repeated
greek indices imply summation over spins)

Ti(t ) = Jσαβ ρ∗
iβ,iα (t ), (A14)

where we have introduced the quasiequilibrium one-electron
correlation function or density matrix

ρ∗
iα, jβ (t ) ≡ 〈ĉ†

jβ ĉiα〉 = 1

Zc
Trc(e−βH({Si (t )})ĉ†

jβ ĉiα ). (A15)

The density matrix can be straightforwardly computed from
the eigenvalues and eigenvectors of the Hamiltonian matrix
Eq. (11). However, exact diagonalization for ρ∗

iα, jβ is not fea-
sible for large-scale simulations, since its computational time
scales cubically with the system size. Linear-scaling method
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for the calculation of density matrix can be achieved using,
e.g., the kernel polynomial method (KPM) or recent machine
learning techniques.

2. Nonadiabatic Ehrenfest dynamics of double-exchange
systems

For nonadiabatic dynamics of the DE system, both elec-
trons and spins evolve with time according to their respective
governing dynamical equations. We first consider the case in
which the electrons are in a pure state described by an instan-
taneous many-electron wave function |�(t )〉. The evolution of
this wave function is governed by the Schrödinger equation

ih̄
d|�〉

dt
= H({Si(t )}) |�〉. (A16)

Here H is the DE Hamiltonian Eq. (1), which depends on
time through the spins. To describe the spin dynamics, one
then defines an effective energy E (�) ≡ 〈�|H|�〉, which is
the energy corresponding to the electron wave function |�〉.
The torques acting on spins are, again, given by the Hellmann-
Feynman formula

Ti = −∂〈�|H|�〉
∂Si

= −〈�|∂H
∂Si

|�〉. (A17)

Here we have neglected the derivatives ∂|�〉/∂Si since the
electron wave function |�〉 does not explicitly depend on
spins. Instead, as described above in Eq. (A16), the electrons
coupled to spins through a time-dependent Hamiltonian. For
a closed DE system, the energy conserving spin dynamics is
described by the Landau-Lifshitz equation, which is given by
Eq. (A9) with α = 0:

dSi

dt
= Si × 〈�|∂H

∂Si
|�〉 = −JSi × σαβ〈�(t )|ĉ†

iα ĉiβ |�(t )〉.
(A18)

These two coupled equations (A16) and (A18) offer a com-
plete description of the nonadiabatic dynamics for closed
DE-type systems [60,61,76], similar to the Ehrenfest dynam-
ics for quantum MD simulations [40].

Importantly, since the DE Hamiltonian is bilinear in
fermion operators, the many-electron wave function |�(t )〉 is
a time-dependent single Slater determinant state [77]

|�(t )〉 =
Ne∏

m=1

ψ̂†
m(t )|0〉, (A19)

where the time-varying quasiparticle operators satisfy the
Heisenberg equation of motion

dψ̂m

dt
= i

h̄
[Ĥ({Si(t )}), ψ̂m(t )] (A20)

and are subject to an initial condition such that {ψ̂†
m(0)} diag-

onalize the DE Hamiltonian at t = 0, i.e.,

Ĥ({Si(0)}) =
∑

m

εm ψ̂†
m(0)ψ̂m(0). (A21)

However, the numerical integration of the Slater determi-
nant is rather cumbersome. So far, this method has been
applied to study the photoinduced dynamics of rather small
lattices [60,61,76].

3. Landau-Lifshitz-von Neumann dynamics for DE systems

An alternative formulation of the nonadiabatic Ehrenfest
dynamics is based on the single-particle density matrix. This
approach also allows for inclusion of correlations in the initial
state in the nonadiabatic electron dynamics. To this end, we
switch to the Heisenberg picture and consider time-dependent
operators. We define an effective energy functional

E ({Si}) ≡ Tr[�̂(0)Ĥ({Si})] ≡
∑

λ

Pλ〈
λ|Ĥ({Si})|
λ〉.
(A22)

Here �̂(0) = ∑
λ Pλ|
λ〉〈
λ| denotes an initial many-electron

density matrix, and {|
λ〉} form an ensemble of initial many-
electron state. For the case of pure state, �̂(0) = |
〉〈
|, and
when |
〉 is given by the ground state |�〉, this energy is
reduced to the case discussed above. For application to ele-
mentary excitations of a finite-temperature thermal state, we
take |
λ〉 to be the many-electron eigenstates of the Hamilto-
nian at t = 0 and Pλ ∝ e−βEλ to be the Boltzmann distribution.

Given this energy functional, the torques acting on spins
are computed as

Ti(t ) = −∂Tr(�̂(0) Ĥ)

∂Si
= −Tr

(
�̂(0) ∂Ĥ

∂Si

)
= Jσαβ ρiβ,iα (t ).

(A23)

Note that repeated greek indices imply summation over spins.
Here we have also invoked the general Hellmann-Feynman
theorem for the second identity. In the third equality, we have
used the explicit form of the Hund’s rule coupling in DE
Hamiltonian (1) and introduced the time-dependent single-
electron density matrix

ρiα, jβ (t ) ≡ Tr[�̂(0) ĉ†
jβ (t ) ĉiα (t )]. (A24)

Substituting Eq. (A23) into the Landau-Lifshitz equation (A9)
and setting α = 0, we obtain

dSi

dt
= −JSi × σαβ ρiβ,iα (t ). (A25)

This spin dynamics equation has to be supplemented by the
equation of motion for the density matrix ρiα, jβ , which can
be obtained using the Heisenberg equation for the electron or
fermion operators, e.g.,

dĉiα

dt
= 1

ih̄
[ĉiα, Ĥ] = 1

ih̄
Hiα, jβ ĉ jβ. (A26)

The resultant equation is the von Neumann equation with
the one-particle Hamiltonian matrix Hiα, jβ , i.e., dρ/dt =
[H, ρ]/ih̄, or explicitly

dρiα, jβ

dt
= i

∑
k

(tik ρkα, jβ − ρiα,kβ tk j )

+ iJ (Si · σαγ ρiγ , jβ − ρiα, jγ σγ β · S j ). (A27)

The coupled ordinary differential equations (A25) and (A27),
called the Landau-Lifshitz-von Neumann dynamics, offer a
complete description for the evolution of the DE system.
Numerically, thanks to the sparsity of the Hamiltonian matrix,
the von Neumann Eq. (A27) can be efficiently integrated using
sparse matrix multiplication algorithms.
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