
PHYSICAL REVIEW B 103, 115135 (2021)

Momentum-dependent electron-phonon coupling in charge density wave systems

Jean-Paul Pouget
Laboratoire de Physique des Solides, CNRS UMR 8502, Université de Paris-Sud, Université Paris-Saclay, 91405 Orsay, France

Enric Canadell
Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus Bellaterra, 08193 Barcelona, Spain

Bogdan Guster
Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Chemin des étoiles 8, B-1348 Louvain-la-Neuve, Belgium

(Received 16 December 2020; revised 24 February 2021; accepted 5 March 2021; published 18 March 2021)

Many charge density wave (CDW) systems exhibit q(T ) electron-hole modulations continuously varying with
T and saturating upon cooling at an incommensurate value even if the maximum occurring in the electron-hole
Lindhard response does not exhibit such a thermal shift. Using a simple RPA argument we show that the
experimental q(T ) can be understood if the electron-phonon coupling (EPC) g(q), necessary to set coupled
electronic and structural modulations, is momentum dependent. In this analysis, the sense of variation of
q(T ) depends upon the sign of ∂g(q)

∂q and its amplitude of thermal variation is controlled by the electron-hole
coherence length (or CDW rigidity) in the modulation direction. This model quantitatively accounts for the
thermal dependence of q(T ) in the one-dimensional (1D) CDW system K0.3MoO3 (blue bronze) both in its CDW
ground state and in its pretransitional CDW fluctuation regime. We suggest that such a general analysis can be
extended to account for the q(T ) dependence observed in other 1D and 2D CDW systems such as the transition
metal di- and trichalcogenides as well as the lanthanide and rare-earth tritellurides. Using a detailed analysis of
the low frequency phonon spectrum of the blue bronze, we then propose a new scenario for the q dependent
EPC, where g(q) is due to a momentum-dependent hybridization between the critical phonon branch bearing the
Kohn anomaly and other low-lying phonon branches. This allows obtaining a sign of ∂g(q)

∂q in agreement with that
deduced from the analysis of q(T ). Finally, we propose that similar hybridization effects could also be relevant
for other 1D and 2D CDW systems exhibiting a thermally dependent modulation.

DOI: 10.1103/PhysRevB.103.115135

I. INTRODUCTION

Many low-dimensional metals undergo electron-hole or
density wave instabilities associated with an anisotropic
band structure which often coexists with electron-electron or
Cooper pairing interactions. This generally leads to complex
phase diagrams exhibiting intertwinned orders where in many
cases spin or charge density wave (SDW or CDW) modula-
tion coexists or competes with superconductivity [1]. Typical
examples can be found among the cuprates [2], transition
metal dichalcogenides [3], and organic conductors [4]. In low-
dimensional metals, the momentum-dependent q maximum
of the electron-hole response (below refereed to as Lindhard
function for noninteracting electrons) arises from the nesting
of a large portion of electronic states located at each side of the
Fermi level [1]. This is typically the case of one-dimensional
(1D) electronic systems where the Lindhard function exhibits
a maxima for q = 2kF which diverges upon cooling (kF is
the Fermi wave vector of the 1D band structure) [5]. When
the electron gas is coupled to a phonon branch through the
electron-phonon coupling (EPC), the electron-hole instability
drives a Peierls transition below TCDW stabilizing a CDW
modulation together with a periodic lattice distortion (PLD) in

quadrature with the CDW [6]. This 2kF weak coupling Peierls
scenario is well documented from ab initio calculations of
the Lindhard function in 1D conductors such as the blue
bronze K0.3MoO3 [7] and the transition metal trichalcogenide
NbSe3 [8]. However, such a scenario is not clearly established
for two-dimensional (2D) electronic systems like 2H-NbSe2

and CeTe3 because their Lindhard response does not exhibit
clear-cut q maxima [9]. Thus, more elaborate microscopic
approaches taking into account explicitly the wave vector
dependence of the EPC g(k, q) [10,11] have been recently
developed for the case of the transition metal dichalcogenides
[12–15]. Scenarios where the CDW modulation is mainly
selected by the sizably q dependent EPC have also been pro-
posed [16–18].

A related phenomena, which has not yet received a suitable
explanation, is that in many cases the CDW modulation wave
vector q(T ) is found to vary with temperature between TCDW

and 0 K by a few percent. Table I reports selected examples
of 1D and 2D CDW systems where q(T ) varies upon cooling
below TCDW with a phenomenological thermally activated law

δq(T ) = q(T ) − 2kF ∝ e
−�eff
kBT , (1)
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TABLE I. Selected 1D and 2D metals presenting a CDW ground
state with a continuous thermal variation of q(T ) below TCDW. The
0 K modulation wave vector 2kF is indicated together with the
relative variation δq(T )

2kF
between 0 K and TCDW. The effective energy

�eff defined by Eq. (1), and determined from experimental data with
an accuracy of 10%, is also given. In the blue bronze K0.3MoO3 the
deviation ε at 0.75b* which ranges from 5 × 10−4 to 40 × 10−4 in
the literature [19] is ascribed to sample nonstoichiometry.

δq(T )/2kF

Compound TCDW 2kF (0 K) in �eff (K) Ref.
[0 K, TCDW]

K0.3MoO3 180 K (0.75-ε)b* −1.54% 525 [19]
NbSe3 144 K 0.241b* +1.5% 550 [26]
2H -NbSe2 33.5 K 0.327a* −1.5% ∼100 [23,27]
TbTe3 333 K 0.291c* +2.1% 500 [28]

which involves an effective energy �eff. In the compounds
of this table the modulation saturates at 0 K at an incom-
mensurate q(0) value [2kF in Eq. (1)], and the continuous
variation of q(T ) does not exhibit any evidence of lock-in
transition at a commensurate value. A typical q(T ) variation is
shown in Fig. 1 for K0.3MoO3 [19]. Note that similar activated
thermal dependencies are also observed in three-dimensional
(3D) metallic CDW systems such as α-U [20]. This ther-
mally activated wave vector dependence is observed both for
δq(T ) in sinusoidal CDW systems (K0.3MoO3, NbSe3) and
for the nδq(T ) harmonics in nonsinusoidal CDW systems (α-
U, 2H-NbSe2, TbTe3). Since the same behavior is observed
regardless of the shape of the modulation, δq(T ) does not
originate from the development of harmonics of modulation or
nucleation of discommensurations separating commensurate

FIG. 1. Thermal dependence of the experimental CDW modu-
lation wave vector q(T ) in the b chain direction of K0.3MoO3 and
the alloy K0.3Mo1−xVxO3 with x = 2.8%. The continuous lines are
fits of δq(T ) below TCDW for K0.3MoO3 using ξ SC

eh (T ) given by
Eq. (15) (blue line) and above TCDW of K0.3MoO3 as well as for
K0.3Mo1−xVxO3 at any T , using ξM

eh (T ) taken from Eq. (9) or Ref. [7]
(red lines). In the blue bronze data shown here, q(0) = 0.7495(5)b∗

[19]. The experimental data are taken from [22].

domains [21]. In 1D CDW systems this dependence is not
due to the electron-hole response itself because, as recently
verified for K0.3MoO3 [7] and NbSe3 [8], the maxima of the
Lindhard response does not vary appreciably with tempera-
ture.

An important observation is that the thermal variation
δq(T ) of the critical wave vector of quasi-1D pretransitional
CDW fluctuations, measured above TCDW in the metallic
phase of the blue bronze, varies in continuity with δq(T )
measured below TCDW [19] (Fig. 1). A δq(T ) of the same
magnitude is also measured for residual quasi-1D CDW fluc-
tuations in the disordered blue bronze when a large amount
of V, which substitutes Mo, is able to suppress the Peierls
transition [22] (Fig. 1). These facts mean that the thermal
dependence of δq(T ) should be related to the intrachain mech-
anism of the Peierls instability and that the interchain coupling
plays a minor role. Therefore it is difficult to rationalize
these data on the basis of the recent proposal that δq(T ) is
controlled by the thermal dependence of the 3D CDW order
parameter [23].

All these features mean that, beyond specific microscopic
models, there is a quite general mechanism governing the
thermal dependence of the CDW modulation wave vector
q(T ). Below, using a simple RPA mechanism of the Peierls
transition, we propose that the thermal shift of the modulation
momentum δq(T ) is caused by a q dependent EPC g(q), where
the k dependence of g(k, q) has been neglected. To provide
support for this statement we calculate the thermal variation
of δq(T ) above and below TCDW for the blue bronze. Our
calculation shows that the thermal dependence of δq(T ) is
controlled by the rigidity of the CDW sublattice, defined as
its response to a momentum variation via the thermal de-
pendence of the electron-hole coherence length ξeh(T ). This
allows obtaining the magnitude and sense of variation of the
momentum dependence of the EPC |g(q)|. A long time ago
it was shown [24] that the momentum dependence of the
EPC in transition metals has an electronic origin and recent
works [12–15] have extended this idea for transition metal
dichalcogenides. Below we propose an additional mechanism
of the momentum dependence of the EPC. More precisely we
propose that g(q) can be due to hybridization of low-lying
phonon branches of the same symmetry near 2kF , including
the critical phonon mode responsible of the PLD below TCDW

and which presents a stronger EPC with the low-dimensional
electron gas than the other phonon branches.

II. RESULTS AND DISCUSSION

A. Thermal dependence of the modulation wave vector

1. In the metallic state

In this section we use the simplest formalism developed
to analyze the Peierls transition in 1D conductors [5] as
well as to treat the density wave instabilities in conduc-
tors of higher dimension [25]. We neglect electron-electron
effects which apparently do not play a dominant role in
the physics of low-dimensional metals like transition metal
bronzes and chalcogenides which do not exhibit magnetism
and Mott-Hubbard localization effects. We thus consider that
the dominant interaction driving a 2kF -like CDW ground state
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is the EPC. The EPC theory in metals explicitly derives a
momentum-dependent coupling g(k, q) [11]. This wave vector
dependence is often neglected for simplicity in earlier theories
developing the CDW instability. However, there are still un-
explained experimental facts such as the thermal variation of
the CDW modulation wave vector considered in this section,
which clearly prove that the assumption of a nonmomentum
variation of the EPC should be revised.

According to the RPA approximation, the CDW instability
in the metallic state is driven by the divergence of the response
function

χCDW(q) = χeh(q)

1 − D2(q)
, (2)

where D2(q) is the structured electronic susceptibility includ-
ing the momentum-dependent EPC g(k, q) [29],

D2(q) = 1

h̄	0(q)

∑
k

| g(k, q) |2 f (εk ) − f (εk+q)

εk+q − εk
. (3)

If the k dependence of the EPC is neglected [30], then

D2(q) ≈ λ(q)χeh(q), (4)

where χeh(q) is the Lindhard response and λ(q) is the q
dependent reduced EPC:

λ(q) = |g(q)|2
h̄	0(q)

. (5)

In Eq. (5) |g(q)| is the modulus of the EPC and 	0(q) is
the bare frequency of the critical phonon mode which drives
the PLD. The wave vector of the modulation is given by
minimization of the denominator in Eq. (2) where D2(q)
is approximated by Eq. (4) or maximization of the product
λ(q)χeh(q):

∂ ln λ(q)

∂q
+ ∂ ln χeh(q)

∂q
= 0. (6)

In the metallic state of the Peierls chain, χeh(q) has a maxi-
mum at 2kF and a Lorentzian shape for δq = q − 2kF :

χeh(q) = χeh(2kF )

1 + (δqξeh )2
. (7)

From Eq. (7) it can be deduced at first order in δq that if λ(q)
depends of q, then q shifts from 2kF by

δq(T )

2kF
= kF

∂ ln λ(q)

∂q

1

[2kF ξeh(T )]2
. (8)

The sign of δq(T )
2kF

is that of the logarithmic derivative ∂ ln λ(q)
∂q ,

and the thermal dependence of δq(T ) is governed by the
inverse square of the electron-hole coherence length ξeh(T ).

In the 1D fluctuation regime of the Peierls chain above
TCDW one simply has [31]

ξM
eh (T ) =

√
7ζ (3)h̄vF

4πkBT
, (9)

where vF is the Fermi velocity. In real materials ξM
eh (T )

can be directly obtained from the inverse half-width at half-
maximum (HWHM) of the Lorentzian shape in the chain
direction of the ab initio Lindhard function [Eq. (7)] [7,8].

TABLE II. kF
∂ ln λ(q)

∂q in selected CDW systems deduced [Eq. (8)]

from calculated or experimentally determined [ξeh(T )]−1 and the ex-
perimental δq(T )/2kF . kF

∂ ln λ(q)
∂q is given with an error bar estimated

from the uncertainties on the determination of q(T ) and [ξeh(T )]−1.

Compound T [ξeh(T )]−1 kF
∂ ln λ(q)

∂q Ref.

K0.3MoO3 T > TCDW HWHM of χeh(q) −8.1 ± 1.6 [7]
K0.3MoO3 T < TCDW Eq. (15) −9.5 ± 1.4 -
K0.3Mo1−xVxO3 T < 300 K HWHM of χeh(q) −7.8 ± 1.6 -
x = 2.8%
NbSe3 TCDW 0.024b* +4 ± 1.4 [8]

[HWHM of χeh(q)]
2H -NbSe2 TCDW 0.046a* −0.8 ± 0.24

(HWHM of the
squared Kohn

anomaly [Eq. (10)]

[16]

TbTe3 TCDW 0.030c* +2.0 ± 0.8
(HWHM of the
squared Kohn

anomaly [Eq. (10)]

[17]

ξM
eh (T ) can be also extracted from the curvature of the Kohn

anomaly experimentally measured near 2kF and given by

(
ξM

eh

)2 = 1(
	2

0 − 	2
2kF

) ∂	2
q

∂q2
, (10)

where 	q is the q dependent Kohn anomaly whose minimum
occurs at q = 2kF , and 	0 is the frequency of the bare phonon
mode bearing the Kohn anomaly. Here ξM

eh (T ) is obtained ac-
cording to Eq. (10) from the HWHM of the squared frequency
of the Kohn anomaly.

In the 1D compounds K0.3MoO3 and NbSe3, where the
total Lindhard response is a sum of individual Lorentzians
[7,8], the ξM

eh (T ) considered in Table II is obtained from the
inverse HWHM of the 2kF response. This procedure cannot be
applied for 2D materials such as 2H-NbSe2 and the lanthanide
and rare-earth tellurides because the calculated Lindhard func-
tion is broad and not really peaked at the critical CDW wave
vector [9,32]. This is due to the absence of important nest-
ing effects for a large portion of electronic states. However,
recent calculations [12,13] using a model band structure for
2H-NbSe2 have shown that, due to the momentum-dependent
EPC g(k, q), a peak occurs in D2(q) at the CDW modulation
wave vector. This model thus leads to the formation of a
well defined Kohn anomaly at this wave vector in agreement
with experimental measurements. In addition, it predicts the
thermal variation of the CDW wave vector in the related VSe2

compound [14]. Thus, in the case of dichalcogenides and
tritellurides we will use the ξM

eh (T ) values (Table II) obtained
with Eq. (10) from the curvature of the Kohn anomaly exper-
imentally measured for 2H-NbSe2 [16] and TbTe3 [17]. Note
that in the case of the blue bronze, ξM

eh (T ) deduced from the
curvature of the Kohn anomaly consistently amounts to ξM

eh (T )
deduced from the inverse HWHM of the Lorentzian shaped
Lindhard function [7].

Equation (9) inserted into Eq. (8) leads to a T 2 dependence
of δq(T )

2kF
. Such a thermal dependence is quantitatively observed

over a large T range for the CDW modulation wave vector of
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the 2.8% V substituted blue bronze which does not exhibit
a long range CDW order [22] (Fig. 1). Taking ξM

eh (T ) from
the inverse HWHM of the Lorentzian profile of the ab initio
electron-hole response of the blue bronze [7], the best fit of
δq(T )
2kF

leads to kF
∂ ln λ(q)

(∂q) ≈ −8.1 and −7.8 for the pristine blue
bronze above TCDW and the 2.8% V substituted blue bronze
for the whole T range, respectively (Table II).

For a CDW system where λ(q) is given by Eq. (5) it follows
that the CDW critical wave vector is defined by

kF
∂ ln λ(q)

∂q
= 2kF

∂ ln |g(q)|
∂q

− kF
∂ ln 	0(q)

∂q
. (11)

With a q dependent bare frequency of the phonon branch bear-
ing the Kohn anomaly in the blue bronze [7] of 	′

0(2kF )kF

	0(2kF ) =
+0.46, one obtains 2kF

∂ ln |g(q)|
∂q ≈ −7.6 for the momentum-

dependent reduced EPC in the metallic state. kF
∂ ln λ(q)

∂q cannot
be determined in the metallic phase of other CDW compounds
considered in Table I because no measurements of δq(T ) have
been performed above TCDW.

2. In the Peierls ground state

In the semiconducting ground state of the Peierls chain
with a thermally dependent gap �, the q dependent free en-
ergy is the sum of a 1D electronic part and the energy cost for
setting the CDW modulation [31]

F (q) =
∫ �

0
�′χeh(q,�′)d�′ + N (EF )�2

λ(q)
. (12)

The electronic free energy minimum for q = 2kF is expressed
as Fel(2kF ) = −N (EF )�2 where N (EF ) is the density of
states at the Fermi level of the metallic state. At the lowest
order in δq, the electronic part of the free energy can be
developed as [31]

Fel(q) ≈ Fel(2kF )
[
1 − (

δqξ SC
eh

)2]
, (13)

where ξ SC
eh , the electron-hole coherence length in the Peierls

ground state, quantifies the rigidity of the CDW lattice with
respect to a variation of its modulation wave vector. The
modulation wave vector is thus fixed by the minimum of the
product λ(q)Fel(q) and consequently, Eq. (8) is recovered.

The calculation of ξ SC
eh is quite tedious. For a simple Peierls

chain with a full gap opening (�), it can be shown that within
the mean-field approximation, in the low temperature limit
kBT << �/2 [31,33],

ξ SC
eh (T ) = 2h̄vF

√
kBT

π�3
e

�
2kBT . (14)

Equation (14) shows that the electron-hole coherence
length (CDW rigidity) increases exponentially upon cooling.
This feature qualitatively accounts for the exponential de-
crease of δq(T ) for the compounds quoted in Table I. Note
however that the Peierls gap � entering in Eq. (14) depends
upon the temperature as it does the order parameter η of the
Peierls transition (� = η�0). Note also that the prefactor of
the exponential varies with T . Both effects explain why �eff

in Table I is only a fraction of the 0 K Peierls gap �0.

From Eq. (14) one can also write (2kF ξ SC
eh )−1 as [31]

(
2kF ξ SC

eh

)−1 ≈ �2

8kBT EF

(�0 − �)

�0
= �2

0

4kBT EF
η2(1 − η),

(15)

where EF ≈ h̄vF kF has been used. When Eq. (15) is inserted
into Eq. (8) a nice fit of the thermal dependence of δq of the
blue bronze below TCDW = 180 K is obtained (see Fig. 1),
using a Peierls gap �0 = 150 meV, a Fermi energy EF ≈
0.65 eV, and the thermal dependence of the order parameter
η(T ) given by the square root of the relative variation of
intensity of the 2kF satellite reflections [34]. From this fit one
deduces that kF

∂ ln λ(q)
∂q ≈ −9.5, whose value is comparable to

those previously obtained in the metallic phase (see Table II).
kF

∂ ln λ(q)
∂q cannot be determined in the CDW ground state of

other CDW compounds considered in Table I because below
TCDW an expression more elaborate than Eq. (15) should be
used. In these compounds, the modulation does not open
a full Peierls gap in the band structure and the materials
remain (semi)metallic below TCDW. Also, additional thermal
excitation processes should influence the rigidity of the CDW
lattice. Nevertheless, an estimation of kF

∂ ln λ(q)
∂q can be ob-

tained using Eq. (8) with δq(T )
2kF

determined at TCDW and (ξM
eh )−1

obtained at TCDW from either the HWHM of the ab initio
χeh(0, 2kIII

F , 0) component of the upper Peierls transition of
NbSe3 [8] or the HWHM of the squared frequency of the
Kohn anomaly in the case of 2H-NbSe2 [16] and TbTe3 [17]
[see Eq. (10)]. Such estimated (ξM

eh )−1 values are indicated in
Table II.

B. The momentum-dependent EPC

From the electron-hole coherence lengths obtained in the
previous section, it is possible to obtain the kF

∂ ln λ(q)
∂q values

reported in Table II. The strongest rate of variation of λ(q)
is obtained for the blue bronze, whereas those for NbSe3

and TbTe3 are two and four times smaller, respectively. For
2H-NbSe2, kF

∂ ln λ(q)
∂q is one order of magnitude smaller. Note

that the sign of the derivative ∂ ln λ(q)
∂q is that of δq(T )

2kF
. As the

phonon measurements show that the slope kF
∂ ln 	0(q)

∂q is very

small in TbTe3 and 2H-NbSe2, one has ∂ ln λ(q)
∂q ≈ 2kF

∂ ln |g(q)|
∂q .

Note that if the EPC is independent of T , δq(T ) should scale
with the thermal dependence of the inverse square of the
electron-hole coherence length ξeh(T ).

Taking the average of kF
∂ ln λ(q)

∂q in the metallic and
semiconducting phases of the blue bronze and subtracting
kF

∂ ln 	0(q)
∂q in Eq. (11),

2kF
∂ ln |g(q)|

∂q
≈ −8 (16)

is obtained. The momentum dependence of the EPC of the
blue bronze can be simply obtained by integration of Eq. (16),
which leads to

|g(q)| = |g(2kF )|e
−8(q−2kF )

2kF , (17)

where, according to the estimation of Ref. [7], |g(2kF )| ≈
20 meV. Equation (17) shows that the EPC strongly varies
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with q. In particular, |g(q)| decreases considerably when q
increases.

Our analysis is at variance with recent proposals stating
that for transition metal dichalcogenides and lanthanide and
rare-earth tritellurides [16–18] the wave vector dependence
of the EPC g(q) drives the CDW instability by exhibiting a
maximum at the experimental CDW modulation momentum
(note that this assumption is also considered in certain sections
of Refs. [12,13]). In such a case one should have a zero
rate of momentum variation of the EPC, ∂ ln |g(q)|

∂q = 0, at the
CDW modulation wave vector. Thus, according to Eq. (8)
this leads to δq

2kF
= 0, which contradicts the experimental data

(Table I). Also, we point out that the proposal of Refs. [16–18]
arises from an incomplete analysis of the momentum depen-
dence of the damping of the critical soft mode. In the RPA
approximation the q dependent damping is proportional to
|g(q)|2 [18]. However there is no reason for this term to
vary critically at TCDW. Experimentally, the damping of the
Kohn anomaly behaves critically at TCDW, as assessed by the
enhancement of its 2kF peak intensity and narrowing of its
linewidth [16,17,35]. Such a feature cannot be accounted for
by a simple RPA analysis. The critical behavior of the Kohn
anomaly damping means that the dominant contribution is
due to the anharmonicity induced for example by the low
frequency critical 2kF CDW/PLD fluctuations. This effect,
whose explanation goes beyond the RPA approximation, has
been explicitly considered in the case of the Peierls chain [36].

C. Influence of the soft phonon mode hybridization
in the momentum dependence of g(q)

The largest momentum variation of g(q) found in the blue
bronze together with the analysis of its low energy phonon
spectrum shown in Fig. 2 [7,35], justify the proposal of a new
mechanism for the momentum variation of the EPC, which is
different from the purely electronic one recently suggested for
the transition-metal dichalcogenides [12,13,15].

The scenario proposed for the 1D CDW blue bronze system
relies on the hybridization of the soft optical (Opt.) branch
polarizing longitudinally segments of four octahedra which
form the repeat unit of the 1D chain running along b (for
more structural details see [7]), with the acoustic branch also
polarized along the direction of the four octahedra segments
(LA2 at the A point). More precisely, Fig. 2 shows that the
optical mode forms along the MA reciprocal direction a valley
of soft phonons whose frequency increases when reaching the
A point where it hybridizes with the LA2 acoustic branch.
The 2kF Kohn anomaly is located within the q range where
the frequency of the Opt. branch 	0(q) sizably increases
rendering more efficient its hybridization with the acoustic
branch. It is thus easy to understand that the EPC should
decrease significantly when for a q increase the hybridization
of the polar Opt. branch (where the molybdenum off center
displacement within the octahedra is strongly coupled with
the 1D electron gas) with the LA2 branch (of weaker EPC) is
enhanced.

Generalizing such discussion, we suggest that since the
phonon spectrum of other CDW systems exhibits many
low frequency branches of the same symmetry, a simi-
lar hybridization mechanism could be at the origin of the

FIG. 2. Low frequency phonon branches of the blue bronze
(adapted from [7]). The optical (Opt.) and acoustic (LA2) branches
which hybridize are represented in blue and red, respectively. Note
the presence of a valley of soft optical phonons (hatched area). The
two other low frequency acoustic branches TA3 and TA1 are repre-
sented in green and black, respectively. The green ellipse highlights
the hybridization zone between optical and acoustic branches.

momentum variation of their EPC. Such a change, which
should be corrected by the weaker variation of the phonon
frequency, is approximately given by kF

∂ ln λ(q)
∂q reported in

Table II. In this scenario, the sign of the rate of variation
2kF

∂ ln |g(q)|
δq (related to the variation of δq

2kF
) depends on the fact

that the hybridization occurs for q larger than 2kF [negative
variation of |g(q)| when q increases, as found for the blue
bronze, Fig. 3(a)], or for q smaller than 2kF [positive variation
of |g(q)| for a q increase, Fig. 3(b)].

Here we suggest that the positive variation of δq
2kF

in TbTe3

is due to the hybridization of the TO critical mode with low
frequency optical and acoustic branches for q < 2kF [37].
We have recently found that a similar situation should occur
in transition metal trichalcogenides such as TaS3 with an

q

Ω

q

Ω

|g(q)|

δq
2k <0 δq

2k >0

|g(q)|

)b()a( 2kF 2kF

FIG. 3. Schematic representation of the hybridization (green cir-
cle) between an optical branch (in blue) strongly coupled to the
electron gas, and an acoustic branch (in red) less coupled to the
electron gas, which cause: (a) for q > 2kF , a decrease of |g(q)|
when q increases, and (b) for q < 2kF , an increase of |g(q)| when
q increases. The sign of variation of δq

2kF
related to this effect is also

indicated.
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important hybridization between the calculated LO critical
branch and transverse acoustic branches of the same symme-
try for q < 2kF [8]. The origin of the weaker momentum-
dependent electron-phonon coupling in 2H-NbSe2 could be
different. In this system the critical lattice dynamics appears to
be quite subtle because two low frequency longitudinal acous-
tic and optical phonon branches of the same �1 symmetry
exhibit a Kohn anomaly [38]. Also earlier phonon calculations
already evidence a momentum-dependent EPC for these indi-
vidual modes [39,40]. Finally, recent calculations of the shape
of the Kohn anomaly in the transition metal dichalcogenides
propose different mechanisms affecting the momentum de-
pendence of its EPC. Among them mode-mode coupling and
induced critical fluctuations [12,13], as well as anharmonicity
in the soft mode phonon dispersion of 2H-NbSe2 [41,42] have
been proposed. Note that in that respect our hybridization
model is a special case of mode-mode coupling theories.

III. CONCLUDING REMARKS

In conclusion, we have presented a simple and general ex-
planation of the thermal dependence of the modulation wave

vector observed in different classes of CDW systems. This
variation relies on the thermal dependence of the electron-
hole coherence length which fixes the rigidity of the CDW
sublattice with respect to a variation of its modulation wave
vector. This calculation allowed us to quantitatively obtain the
momentum variation of the EPC of K0.3MoO3 and to explain
its variation by the hybridization of a critical polar optical
branch, strongly coupled to the 1D electron gas, with a less
coupled acoustic branch. Finally, as similar δq(T ) variations
are observed in SDW materials such as Cr [43] and GdSi
[44], we suggest that Eq. (8) could also explain the thermal
dependence of the SDW modulation on the basis of a q
dependent coupling λ(q) = 2U (q) − V (q) involving nonlocal
Coulomb/exchange interactions [25].
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