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Triangular lattice Majorana-Hubbard model: Mean-field theory and DMRG on a width-4 torus
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Majorana modes can arise as zero-energy bound states in a variety of solid state systems. A two-dimensional
phase supporting these quasiparticles, for instance, emerges on the surface of a topological superconductor with
the zero modes localized at the cores of vortices. At low energies, such a setup can be modeled by Majorana
modes that interact with each other on the Abrikosov lattice. In experiments, the lattice is usually triangular.
Motivated by the practical relevance, we explore the phase diagram of this Hubbard-like Majorana model using
a combination of mean-field theory and numerical simulation of thin torus geometries through the density matrix
renormalization group algorithm. Our analysis indicates that attractive interactions between Majoranas can drive
a phase transition in an otherwise gapped topological state.
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I. INTRODUCTION

The past decade has seen tremendous progress in the quest
for realizing a localized Majorana fermion in the laboratory.
The so-called Majorana zero mode (MZM) is a zero-energy
mid-gap excitation that arises as a localized quasiparticle in
some low dimensional systems [1–5]. A defect supporting a
MZM is perhaps the simplest manifestation of a non-Abelian
anyon. And since a non-Abelian anyon is the key ingredient in
braiding based topological quantum computation, Majoranas
are a subject of topical interest [6,7].

Vortices in a 2D superconductor with chiral p-wave pairing
harbor MZMs at their cores [8]. Fu and Kane showed that such
an effective p-wave pairing can be realized at the interface of a
s-wave superconductor and a strong topological insulator [5].
Zero modes that are completely isolated from each other are
ideal from the perspective of implementing unitary quantum
gates via braiding vortices. In practice, though, the MZMs are
exponentially localized at best, with a scale set by the co-
herence length of the superconductor under question, thereby
causing the MZM wave-functions to overlap [9]. When the
mid-gap states are well separated from the rest of the quasi-
particle spectrum, at thermal energy scales below the gap,
the effective Hamiltonian describing the zero modes is a sum
of local terms involving pairwise Majorana operators. In the
presence of a vortex lattice with a finite density of zero modes,
it is then natural to describe the system with a Hubbard-like
tight-binding model for MZMs.

One appealing feature of the Fu-Kane proposal is that the
topological insulator’s chemical potential μ can be tuned to
control the MZM wave-function overlaps. In particular, when
μ coincides with the surface state’s Dirac point, the interface
superconductor exhibits an emergent chiral symmetry that
prevents the Majorana modes from hybridizing [10,11]. In
the vicinity of this neutrality point, with the single-particle
tunneling amplitudes greatly reduced, four fermion terms are

the leading perturbation and the system is, therefore, strongly
interacting.

The prospect of realizing interacting Majorana models has
opened doors to a host of exotic proposals and predictions
[12,13]. Extensive studies of 1D MZM chains have found
that these models show supersymmetry, with some exhibiting
phase transitions belonging to the tricritical Ising universal-
ity class [14–19]. In 2D, Majorana Hamiltonians on square
[20–22], kagome [23], and honeycomb lattices [24] also have
interesting phase diagrams. Further, lattices of MZMs have
been shown to enable new schemes of surface code quantum
computation [25,26].

On the experimental front, there is now promising evidence
for zero modes in the vortex cores of topological supercon-
ductors [27–30]. A common feature of such experiments is
that the Abrikosov lattice is triangular; as the best packed
lattice in 2D, this arrangement accommodates the maximum
intervortex separation. Given this context, a study of MZMs
on the triangular lattice is highly relevant. A few earlier works
have considered the role of disorder in this setup at a noninter-
acting level [31–34]. Our objective here is to understand the
role of interactions. Pursuant to this goal, we analyze plau-
sible spontaneous symmetry breaking within the framework
of a self-consistent mean-field theory (Sec. IV) and study the
model numerically using the density matrix renormalization
group (DMRG) algorithm [35–37] (Sec. V). To begin, we
introduce the model and discuss its symmetries.

II. THE MODEL

The self-adjoint nature of Majorana operators γp = γ †
p ,

together with the requirement of having a Hermitian Hamil-
tonian, dictates that a lattice hosting MZMs is described by

H0 = it
∑
〈pq〉

ηpqγpγq, (1)

where p and q label nearest-neighbor sites and the fermionic
operators obey {γp, γq} = 2δpq. The purely real prefactor t is
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FIG. 1. (a) A Z2 gauge for the triangular lattice that we adopt
in this work. Hopping along (against) the directions indicated incurs
a phase of +i (−i). The two sublattices of the rectangular Bravais
lattice are shown in red and blue. (b) Ordering of MZM operators in
the three plaquette interaction terms.

interpreted as the probability amplitude for a quasiparticle
to tunnel between two vortices. The antisymmetric matrix
ηpq = ±1 indicates the sign of the phase i acquired in a
tunneling process. At this point, the choice of ηpq is arbi-
trary because one may redefine γp → −γp without altering
the MZM anticommutation relations. The ambiguity can be
understood as a Z2 gauge freedom inherent to the system. The
product of phases along a closed loop, however, corresponds
to Z2 flux and is gauge invariant—a fact that is encapsulated
in the Grosfeld-Stern rule [38]. Figure 1(a) shows one possible
gauge choice that is relevant to Majoranas on a triangular
vortex lattice [31,39]; the corresponding H0 has been written
out explicitly in Appendix A. Note that gauge fixing im-
poses a rectangular Bravais lattice with a two-site unit cell.
An alternate gauge would modify ηpq, but would not reduce
the number of the sublattice degrees of freedom. With this
Hamiltonian as the starting point, we shall use its symmetries
to determine the form of interactions.

A. Symmetries

Due to the Z2 gauge, H0 is not always manifestly invariant
under lattice transformations. For example, translation by one
site along the direction c [see inset of Fig. 1(a) for the di-
rections referred to in the following] does not map the model
onto itself. The reason being that symmetries involving Ma-
jorana modes are represented projectively. Correspondingly,
conventional symmetry operations should be supplemented
with gauge transformations.

While the Bravais lattice is rectangular, the symmetries
of Hamiltonian (1) are dictated by the underlying triangu-
lar lattice. In addition to discrete translations Tμ along the
directions μ = a, b, c [40], a π/3 rotation about any lattice
site also leaves H0 invariant. Though the antiunitary time
reversal operation � (i → −i) and reflections Rx/y about x/y
Cartesian axes are not symmetries by themselves, the product
�Rx/y commutes with the Hamiltonian. The gauge factors ac-
companying each of these symmetries are outlined explicitly
in Appendix B.

B. Interactions

Because the Majorana operator at any site squares to iden-
tity, interactions necessarily involve four neighboring sites. In
a square lattice, for example, these are the zero modes at the
corners of an elementary square [20]. In a triangular geome-
try, three different orientations of rhomboidal plaquettes are
possible, with each kind tessellating the entire lattice exactly
once. Summing over all such terms, we have

HI = g
∑

[P1 + P2 + P3] with Pν = γpγqγrγs, (2)

where g is the interaction strength. The three kinds of pla-
quettes Pν (ν = 1, 2, 3) and the ordering of MZM operators
in each term is shown in Fig. 1(b). With this choice, it can
be verified that HI obeys all the symmetries of H0. Under
the action of �Rx, for instance, P1 ↔ P3 and P2 remains
invariant.

Henceforth, we denote the full Hamiltonian as H = H0 +
HI and set t = 1, unless specified otherwise. The number of
unit cells along the two independent axes will be identified by
Nx and Ny.

III. TWO LIMITS

A. Strong coupling

As mentioned previously, in a Fu-Kane realization of the
MZM lattice, the topological insulator’s chemical potential
provides a knob to tune the zero mode overlap amplitudes.
At neutrality, t = 0 and hence H = HI. In this limit, the
model possesses a few interesting features that we briefly
comment on.

Because terms quadratic in the Majorana operators are
absent, the Z2 gauge is no longer relevant and the size of the
unit cell reduces to one. Since we now have an odd number
of Majoranas per unit cell, periodic boundary conditions and
translation symmetry dictate that the ground state is at least
two-fold degenerate [16]. It is important to note that this
degeneracy is intrinsically dependent on the system’s linear
dimensions. For periodic systems with one odd length (ei-
ther Nx or Ny is odd) [41], the two degenerate states belong
to different fermionic parity sectors and the degeneracy can
be attributed to underlying supersymmetry. With two even
lengths (both Nx and Ny are even), on the other hand, the
degeneracy is a result of anticommutation of translation op-
erators along the two axes.

When the system is defined on a torus and the number
of unit cells in each direction is even, observe that chang-
ing the sign of zero mode operators at every alternate red
site in Fig. 1(a) results in HI picking up an overall negative
sign, while still preserving the fermionic anticommutation
relations. Therefore attractive and repulsive interactions are
equivalent. When Nx or Ny is odd, however, one cannot ensure
that the sign on every other red site is flipped because of
periodic boundary conditions. Energy spectra, obtained nu-
merically for small systems, confirm this reasoning.

We emphasize that these analytical arguments do not apply
when the strong coupling limit is perturbed because even an
infinitesimal t introduces the Z2 gauge.
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FIG. 2. The energy spectrum of an infinite strip geometry with
an open boundary along the y direction. Nontrivial topology of the
bands leads to chiral edge states that traverse the gap. The color scale
denotes the normalized expectation value of the ŷ position operator.
Physically relevant momenta are marked by the unshaded region.

B. Noninteracting limit

Let us now look at the ground-state properties of the model
in the opposite limit, i.e., in the absence of interactions. Em-
ploying translation symmetry, it is convenient to work with
momentum space operators that can be shown to obey the
relation {γk, γk′ } = δk,−k′ or γ−k = γ

†
k . This property, which

is a manifestation of the self-adjoint nature of the zero modes
in real space, implies that operators at k and −k are not
independent. Taking this into account, the Hamiltonian H0 =∑′

k �
†
k hk�k is obtained by considering only one-half of the

Brillouin zone. We indicate this with a prime over the sum.
Therein, �k = (γ r

k , γ b
k )T and (r, b) label the two sublattices

according to color. The Bloch Hamiltonian reads

hk = 2t

(−2 sin(k · d1) D(k)
D(k)∗ 2 sin(k · d1)

)
, (3)

where D(k) = i[1 − e−ik·d1 + e−ik·d2 + e−ik·(d1+d2 )] and d1 =
(1, 0) and d2 = (0,

√
3) are the Bravais lattice vectors with

the intervortex distance set to unity. Diagonalizing hk leads to
the gapped dispersion

E±
k = ±2

√
2t

√
3 − cos(2kx ) − 2 sin(kx ) sin(

√
3ky). (4)

As a consequence of the background Z2 flux, a gapped
band structure of MZMs can be topologically nontrivial
with a nonzero Chern number C. Indeed, we find that C =
sign(t ) [42]. In a geometry with open boundaries, the model
exhibits edge states that connect the bulk bands, as depicted in
Fig. 2. In order to understand the effect of interactions on this
spectrum, in the following section, we treat the weak coupling
regime using mean-field approximation.

IV. MEAN-FIELD THEORY

Phase diagrams of previously studied Majorana-Hubbard
models suggest that interactions can give rise to a Peierls-like
instability and the zero modes prefer a dimerized configu-
ration over a translationally invariant state [20,43]. Such a
hybridization between two Majoranas results in a spinless
Dirac fermion state, which can be filled or empty depending

FIG. 3. The mean-field hopping amplitudes that connect (a) red
and (b) blue sublattices (located at the center of each figure) to their
respective nearest and next nearest neighbors. {τ1, τc, τc̄} and τ2 de-
note the first- and second-neighbor hopping amplitudes, respectively.

on whether the interactions are attractive or repulsive. In the
square lattice, for instance, translation along either x or y
axis can be broken, thereby leading to a fourfold degenerate
ground state [20].

Along similar lines, the triangular lattice presents three
equivalent directions a, b, and c for translation symmetry
breaking. To explore such a tendency, we focus on the sce-
nario where the zero modes dimerize along c [44]. In the
dimerized state, one may anticipate that the tunneling ampli-
tudes on consecutive bonds along c would differ in magnitude.
We denote them by τc and τc̄. The rest of the first-neighbor
amplitudes would remain identical (τ1). These parameters
have an intuitive origin in the mean-field context: turning on
interactions renormalizes the nearest-neighbor hoppings from
their bare value t . Further, a Wick’s expansion of the four
fermion plaquette terms shows that interactions also generate
second-neighbor tunneling amplitudes (τ2), which conform
to the symmetries of H0 and are, therefore, allowed. The
parameters τ j with j ∈ {c, c̄, 1, 2}, shown in Fig. 3, motivate
the definition of a mean-field Hamiltonian

HMF = i
∑

k=c,c̄,1
〈pq〉

τkηpqγpγq + iτ2

∑
〈〈pq〉〉

ηpqγpγq, (5)

where γp and γq are MZM operators on the bond labeled by
τ j . With the ground-state wave function |�MF〉 of HMF as a
variational ansatz, minimization of the energy 〈�MF|H |�MF〉
with respect to τ j leads to the mean-field self-consistency
equations (see Appendix C)

τc = τc̄ = t − g(2
c + 2
c̄ − 
2),

τ1 = t − g(4
1 − 
2),

τ2 = g

6
(4
1 + 
c + 
c̄). (6)

Therein, we have defined the expectation value of pairwise
Majoranas on the bond corresponding to τ j by 
 j = 〈iγpγq〉,
with the convention that the operators are ordered in accor-
dance with the direction of the Z2 gauge on the bond.

It is interesting to note that the first relation in (6) implies
that τc = τc̄ for any g and, thereby, precludes an ordered
phase. To understand this result, consider the following
argument. The square lattice Majorana-Hubbard model in-
volves only one kind of plaquette and pairing MZMs along
a given direction minimizes the energy of one-half of the pla-
quettes. At strong enough interactions, such a state is favored
by the system as a whole [20]. In the present case, we have
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FIG. 4. The values of τ j determined self-consistently using
Eq. (6). In the noninteracting limit, τ1 = τc̄ = τc = t , as expected,
and any finite g renormalizes the nearest-neighbor tunneling am-
plitudes, while introducing next-nearest-neighbor hopping. The
spectrum of (5) is gapped for all g, except at the mean-field critical
point gMF

c ≈ −0.73 where curves intersect.

three kinds of plaquettes Pν . If the MZMs were to dimerize
along c, say, then the energy of one-half of P1 would be
minimized. Nevertheless, as these plaquettes constitute only
one-sixth of the total number of interaction terms, such a
configuration is energetically unfavorable. In this manner, the
geometric frustration inherent to the triangular lattice distin-
guishes it from a square lattice of Majoranas.

The self-consistent τ j , shown in Fig. 4, further indicate
that all the effective nearest-neighbor hopping amplitudes
vary identically and τ2 is nonzero at any finite coupling. For
g > gMF

c ≈ −0.73, the mean-field spectrum is gapped. In the
absence of interactions, HMF reduces to H0 because τc = τc̄ =
τ1 = t and τ2 = 0. Based on this, we deduce that for g > gMF

c ,
HMF is in the same topological phase as H0. At gMF

c , all τ j

coincide and the dispersion exhibits two quadratic band cross-
ings, as noted in Appendix D. In general, the Berry flux at a
quadratic touching is either 0 or ±2π . The spectra in Fig. 5
show that the latter holds true here and C = 3 for g < gMF

c . In
other words, gMF

c marks a topological phase transition.

V. NUMERICAL PHASE DIAGRAM

Beyond mean-field theory, analytical techniques to study
the model are scarce. In order to address the phase diagram

FIG. 5. The spectra of HMF on a strip for self-consistent τ j when
(a) g = −1.0 and (b) g = 0.5. As before, the color scale denotes the
normalized expectation value of the ŷ position operator and only one-
half of the Brillouin zone is physical. The edge states show that the
transition at gMF

c separates phases with C = 3 and C = 1.
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FIG. 6. (a) The energy gap as a function of inverse system size
for different values of the coupling g. The dashed line is a linear fit
to the data. A bond dimension of up to 1100 states in the DMRG
sweeps ensures that the truncation errors are less than 10−7. The
largest system size considered is N = 48, which corresponds to 96
Majorana modes. (b) Fermionic parity of the two lowest states in the
spectrum as a function of interaction strength.

while fully accounting for the quantum correlations, we rely
on DMRG. The simplest variation of the 2D model that in-
cludes all three kinds of plaquettes while being amenable to
numerics is a ladder with four legs, which is equivalent to
Ny = 2 in our notation.

To implement the Hamiltonian, we map the Majorana de-
grees of freedom to spinless Dirac fermions, which provide
a formally equivalent yet more convenient representation (see
Appendix A). Since two Majorana modes compose one Dirac
fermion, in the new basis one obtains a two-leg ladder with
N = 2Nx fermions. The model with open boundaries, as dis-
cussed previously, exhibits edge states that interfere with the
determination of the bulk gaps. To circumvent this, we focus
on tori with periodicity along y and antiperiodic boundary
conditions along x—this choice is found to be helpful for the
purpose of converging on the excited states. As a check, the
DMRG code has been benchmarked against exact diagonal-
ization for small system sizes.

We begin by studying the gap to the first excited state
as a function of system size. On the basis of the mean-field
analysis one would anticipate the spectrum to be gapped for
different values of coupling strength, except possibly at the
transition. Unexpectedly, signatures of a gapless phase emerge
for a range of attractive interactions, as seen in Fig. 6(a). An
interesting feature is that the gaps are system size dependent:
in the gapless phase, when Nx is even, for instance, the first
excited state is exactly degenerate with the ground state, so
for the sake of clarity only gaps corresponding to odd Nx are
shown. While larger systems would be ideal in ascertaining
the vanishing gap, the cons of imposing periodic boundaries,
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FIG. 7. (a) Entanglement entropy, which has been averaged over
neighboring bonds (see text), in a periodic system of length N = 50
at g = −3. The conformal distance is plotted on the horizontal axis
and the dashed line is a linear fit whose slope corresponds to c.
(b) Central charge as a function of the coupling. We find that c
remains unity for values as low as g = −20.

in conjunction with the fact that fermionic parity is the only
symmetry at our disposal, limit the accessible system sizes.

In addition to the gap, another quantity that distinguishes
the two phases is parity of the first excited state. As shown
in Fig. 6(b), it switches from odd to even as g is reduced.
Treating this as a criterion, the transition can be identified at
gc ≈ −0.56. Moreover, as discussed in Appendix E, behavior
of the ground-state energy, and its derivatives, with respect to
the coupling suggests that the transition is of second order.

A. Central charge and transition

Since the model is quasi one-dimensional and gapless, we
might expect low-energy behavior in the critical phase to be
represented by a conformal field theory (CFT). An important
quantity that characterizes a CFT is its central charge c, which
can be thought of as a measure of the gapless degrees of
freedom. If a periodic system of size N is described by a
CFT with central charge c, then the entanglement entropy of
a subregion of size x in the ground state is predicted to scale
as [45]

SN (x) = c

3
ln

[N

π
sin

(xπ

N

)]
+ S0, (7)

where S0 is a nonuniversal constant. The two-site unit cell
results in an oscillatory SN (x). Averaging the entropy across
neighboring bonds (x and x + 1) and assigning it to the middle
(x′ = x + 1/2) eliminates the oscillatory subleading terms and
aids the determination of c [46]. Following this prescription,
we find that the gapless phase belongs to the moduli space of
c = 1 conformal theories. While the value of central charge in
the two extended phases is unambiguous, its behavior in the

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5

g

0.0

0.1

0.2

0.3

v

-0.1364 x - 0.0743

FIG. 8. The velocities, obtained using Eq. (8), for different val-
ues of coupling in the vicinity of the transition. The dashed line is a
linear fit to the data.

vicinity of the transition is more difficult to establish. These
findings are summarized in Fig. 7.

To shed some light on the nature of the transition, we
approach it from within the critical phase. The velocity of
excitations, which describes the linearized CFT spectrum at
Fermi energy, can be estimated from a finite-size scaling of the
ground-state energy. Assuming that all excitations propagate
with the same velocity v, the energy density of a periodic
system is given by [47]

E0

N
= e∞ − πcv

6N2
+ . . . , (8)

where e∞ is the ground-state energy per site in the thermo-
dynamic limit and the ellipsis denotes finite size corrections.
The numerically determined velocities are shown in Fig. 8.
Observe that v vanishes as one approaches the phase transition
and a linear fit gives gc ≈ −0.54, which collates well with the
critical value signaled by the change in parity of the first ex-
cited state. A reliable extraction of v closer to the critical point
is complicated by the fact that the above procedure relies on
a precise knowledge of the central charge. More sophisticated
methods would be necessary to further characterize the phase
transition.

Collectively, the results presented in this section suggest
that when the interactions are attractive in nature, the physics
of a thin torus deviates from the mean-field predictions. In
particular, an extended critical phase replaces a gapped topo-
logical phase. The mean-field and DMRG phase diagrams are
sketched in Fig. 9.

FIG. 9. Comparison of (a) mean-field and (b) DMRG phase di-
agrams of the model. The stars denote the critical values at which
phase transitions occur.
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VI. CONCLUSIONS

There has been a growing body of evidence for MZMs in
experiments [27,48]. Recent scanning tunneling microscopy
studies of iron-based superconductors have observed distinct
zero-bias peaks at the cores of vortex defects [28–30]. In the
light of these developments, we have explored a Hubbard like
tight-binding model aimed at providing a low-energy descrip-
tion of zero modes in the experimentally pertinent triangular
vortex lattice.

In the absence of interactions, the model is a gapped Ma-
jorana Chern insulator. A self-consistent mean-field analysis
suggests that this phase persists for repulsive interactions and
there are no signatures of spontaneous symmetry breaking.
Strong enough attractive interactions, on the other hand, bring
about a topological transition into a phase with a higher Chern
number. Numerical simulation of tori agrees with the mean-
field picture for the repulsive regime. When the coupling is
tuned to a critical value, however, a gapless phase emerges.
It would be reasonable to suspect that some of the details are
artifacts of working with a small linear dimension along one
direction. In this regard, a comparative study of tori with larger
width is an interesting avenue for future studies.

ACKNOWLEDGMENTS

We thank Marcel Franz, Étienne Lantagne-Hurtubise, and
Chengshu Li for helpful discussions and comments on the
manuscript. This work was supported by the Max Planck-
UBC-UTokyo Centre for Quantum Materials and the Canada
First Research Excellence Fund, Quantum Materials and
Future Technologies Program. T.T. and I.A. acknowledge sup-
port from NSERC through Discovery Grant No. 04033-2016.
Part of the numerical work described here was performed
using the ITensor library [49].

APPENDIX A: HAMILTONIAN AND COMPLEX
FERMION REPRESENTATION

Here we introduce a handy notation to denote the zero
mode operators. The two sites belonging to a unit cell located
at the position vector md1 + nd2 are labeled by γ r

m,n and γ b
m,n,

corresponding to the red and blue sublattices, respectively.
Here, d1 and d2 are the Bravais lattice vectors as before.
Periodicity along x and y corresponds to γ r

Nx+m,Ny+n = γ r
m,n.

Similar relation holds for the other sublattice.
As per the gauge depicted in Fig. 1(a), the noninteracting

Hamiltonian reads

H0 = it
∑
m,n

[
γ r

m,n

(
γ r

m+1,n + γ b
m,n − γ b

m−1,n

)

− γ b
m,n

(
γ b

m+1,n + γ r
m+1,n+1 + γ r

m,n+1

)]
. (A1)

And the three kinds of plaquette interactions that compose
HI are given by

P1 =
∑
m,n

[
γ r

m,nγ
r
m−1,nγ

b
m−2,nγ

b
m−1,n

+ γ b
m,nγ

b
m−1,nγ

r
m−1,n+1γ

r
m,n+1

]
, (A2)

P2 =
∑
m,n

[
γ r

m,nγ
b
m−1,n−1γ

r
m,n−1γ

b
m,n−1

+ γ b
m,nγ

r
m,nγ

b
m,n−1γ

r
m+1,n

]
, (A3)

P3 =
∑
m,n

[
γ r

m,nγ
r
m+1,nγ

b
m+1,nγ

b
m,n

+ γ b
m,nγ

b
m+1,nγ

r
m+2,n+1γ

r
m+1,n+1

]
. (A4)

When the two zero modes in a unit cell are combined into
a complex fermion, we have

γ r
m,n = c†

m,n + cm,n,

γ b
m,n = i(c†

m,n − cm,n). (A5)

The full Hamiltonian may now be expressed in this basis.

APPENDIX B: SYMMETRIES AND GAUGE
TRANSFORMATIONS

In terms of the operators γ r
m,n and γ b

m,n, the symmetries of
the model are as follows.

Translations. The action of Ta corresponds to translation by
a unit cell along the x axis and it is clearly a symmetry. Trans-
lation by a site along c also leaves the Hamiltonian invariant,
provided that it is accompanied by the gauge transformation

γ r
m,n → (−1)m+nγ b

m,n,

γ b
m,n → (−1)m+n+1γ r

m+1,n+1. (B1)

Reflections and time reversal. Assuming that the x axis
passes through the sites γ r

m,0, the product of reflection about x
and time reversal, Rx�, is given by

γ r
m,n → (−1)mγ r

m,−n,

γ b
m,n → (−1)m+1γ b

m,−n−1,

i → −i. (B2)

With the convention that the γ r
0,n sites lie on the y axis, the

combination Ry� corresponds to

γ r
m,n → (−1)nγ r

−m,n,

γ b
m,n → (−1)nγ b

−m−1,n,

i → −i. (B3)

Rotation by π/3. The sixfold rotation symmetry inter-
changes the two sublattices in a manner that is dependent on
the position of the sites with respect to the rotation center. For
clarity, we switch to a basis that is natural to the triangular
geometry and label the sites with the vectors r = mp + nq,
where p = (1, 0) and q = (1/2,

√
3/2). The Hamiltonian (1)

in this notation reads

H0 = it
∑
m,n

[
(−1)nγm,nγm+1,n + (−1)nγm,nγm,n+1

− γm,nγm−1,n+1
]
. (B4)

A clockwise rotation by π/3 corresponds to the transfor-
mation γm,n → sm,n γm+n,−m, with

sm,n =
{

(−1)m(−1)
n−1

2 , if n odd
(−1)

n
2 , if n even

. (B5)
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It is a simple exercise to check that (B4) is invariant
under this.

APPENDIX C: MEAN-FIELD SELF-CONSISTENCY
EQUATIONS

Assuming translational invariance and employing Wick’s
theorem, the energy density of the full Hamiltonian in the state
|�MF〉 can be evaluated as

〈H〉
N

= t (4
1 + 
c + 
c̄) + g[
2(4
1 + 
c + 
c̄)]

− g
[
8
2

1 + 
2
c + 
2

c̄ + 2
c
c̄
]
, (C1)

where N = NxNy is the system size. The goal is to find τi (i ∈
{c, c̄, 1, 2}) that satisfy ∂〈H〉/∂τi = 0, that is,

[t − g(2
c + 2
c̄ − 
2)]

(
∂
c

∂τi
+ ∂
c̄

∂τi

)

+ 4[t − g(4
1 − 
2)]
∂
1

∂τi

+ g(4
1 + 
c + 
c̄)
∂
2

∂τi
= 0. (C2)

In order to connect this with the mean-field Hamiltonian,
note that the definition of HMF motivates an alternate expres-
sion for 
 j . Namely,


 j = 1

ρ jN

〈
∂HMF

∂τ j

〉
= 1

ρ jN

∂EMF

∂τ j
, (C3)

where we have defined the bond dependent constants ρc =
ρc̄ = 1, ρ1 = 4, and ρ2 = 6. Observe that 
 j have been
related to EMF via the Hellmann-Feynman theorem, which
associates the expectation value of a derivative of an operator
with the derivative of its expectation value. And from the
definition (5), we know that

EMF

N
= 〈HMF〉

N
= τc
c + τc̄
c̄ + 4τ1
1 + 6τ2
2. (C4)

Simplifying the expression for ∂EMF/∂τi using (C3) leads to

τc
∂
c

∂τi
+ τc̄

∂
c̄

∂τi
+ 4τ1

∂
1

∂τi
+ 6τ2

∂
2

∂τi
= 0. (C5)

Finally, by comparing (C2) with the above relation (C5), one
obtains the expressions in Eq. (6).

APPENDIX D: MEAN-FIELD SPECTRUM

In momentum space, the mean-field Hamiltonian can be
written as

HMF =
∑

k

′�†
k

(
D1(k) D2(k)
D2(k)∗ −D1(k)

)
�k, (D1)

FIG. 10. The ground-state energy density (left axis) and its sec-
ond derivative (right axis) with respect to the coupling, obtained with
N = 30. (Inset) Profile of the first derivative in the same range of g.

where �k = (γ r
k , γ b

k )T, the sum is restricted to half of the
Brillouin zone, and

D1(k) = −4[τ1 sin(k · d1) + τ2 sin(k · d2)],

D2(k) = 2i
[
τc + τc̄e−ik·(d1+d2 ) + τ1

( − e−ik·d1 + e−ik·d2
)

+ τ2(eik·(d1−d2 ) − eik·d1 + e−2ik·d1 + e−ik·(2d1+d2 ) )
]
.

(D2)

The spectrum, ±
√

D1(k)2 + |D2(k)|2, displays a finite gap,
except when τ1 = τc = τc̄ = ±τ2. At the mean-field critical
point gMF

c , τ j = τ for all j and, consequently, the dispersion
simplifies to

E±
MF(k) = ±2

√
2τ [6 + 3 cos(2kx ) − cos(2

√
3ky)

+ 4 sin(kx ) sin(
√

3ky)(2 + cos(2kx ))]1/2. (D3)

Clearly, the energy vanishes at k = ±(π/2,−π/2
√

3). An
expansion in small momenta in the vicinity of these nodes
shows that the dispersion is in fact quadratic.

APPENDIX E: ORDER OF THE PHASE TRANSITION

While the first excited state shows a change in parity at gc,
signatures of the phase transition can also be found in the low-
est energy state. The ground-state energy density ε0 = E0/N
is a thermodynamic quantity and a discontinuity in its deriva-
tives indicates the order of the transition. We find that the
second derivative of ε0 shows indications of discontinuity very
close to the critical point (g ≈ −0.58), as shown in Fig. 10.
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