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Robustness of helical hinge states of weak second-order topological insulators
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Robustness of helical hinge states of three-dimensional weak second-order topological insulators (WSOTIs)
against disorders is studied. The pure WSOTI is obtained from a weak Z2 first-order topological insulator through
a surface band inversion. Both bulk states and surface states in the WSOTI are gapped, and in-gap valley-
momentum locked helical hinge states are topologically protected by the surface valley-Chern number. In the
presence of weak disorders, helical hinge states are robust against disorders while the quantized conductance
of the states is fragile due to the intervalley scattering. As disorder increases, the system undergoes a series of
quantum phase transitions: from the WSOTI to the weak first-order topological insulator, then to a diffusive
metal and finally to an Anderson insulator. Our results thus fully establish the WSOTI phase as a genuine state
of matters and open a door for the second-order valleytronics that allows one to control the valley degree of
freedom through helical hinge states.
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I. INTRODUCTION

Topological insulators (TIs) characterized by topological
invariants and robust boundary states have attracted great
interest because of their exotic properties. The band inver-
sion resulting in nonzero Chern numbers of a band is the
central theme of topological materials. The nonzero topolog-
ical invariants give rise to a bulk-boundary correspondence
and the necessity of gapless boundary states in the band
gap. The standard paradigm of the first-order TIs (FOTIs)
claims that a d-dimensional insulator with band inversion
has (d − 1)-dimensional in-gap boundary states [1–10]. In
three dimensions (3D), FOTIs are strong (weak) when the
number of surface Dirac cones is odd (even). In the presence
of the time-reversal symmetry, a weak FOTI (WFOTI) has
zero principle Z2 index ν0, at least one nonzero weak index
(ν1, ν2, ν3), and an even number of Dirac cones on surfaces
not perpendicular to (ν1, ν2, ν3). With this understanding of
FOTIs, most recent activities have been focused on higher-
order TIs with a generalized bulk-boundary correspondence
[11–33]. The new paradigm is that, with band inversions on a
d-dimensional manifold and its submanifolds, gapped bands
in the manifold and its submanifolds of dimensions larger
than d − n can have gapless states in a boundary submanifold
of dimension d − n. For example, a 3D second-order TI has
gapless states on the sample hinges inside its bulk and surface
band gaps [12,14–16,18,19,22]. These hinge states have been
predicted and observed in real materials, e.g., bismuth crystals
[34] and magnetic axion insulator Bi2−xSmxSe3 [35].

As a well-accepted paradigm, hinge states appear at the
intersections of two surfaces of different topological classes
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when the surface Dirac cones of a 3D FOTI are gapped. Hinge
states could be either chiral [14] or helical [15,16,19,22],
depending on whether the number of surface Dirac cones is
odd or even. Robustness of those states against disorders is
a fundamental issue because disorders exist inevitably in all
materials and hinge states must survive in disorders in order
to be a genuine state. Chiral hinge states can survive in random
media due to the absence of backward scattering [36], while
inter-spin/valley scatterings are allowed in helical hinge states
and may result in the disappearance of these states through
Anderson localizations at an infinitesimally weak disorder.
The occurrence of this scenario, however, contradicts a gen-
eral belief that the in-gap hinge states should persist at finite
disorders until the surface state gap closes [37–39]. Hence,
whether disorder-induced backward scatterings can destroy
the helical hinge states is not clear and should be examined.

In this work, we report a weak second-order TI (WSOTI)
generated from a WFOTI with a time-reversal-like symmetry
through band inversion of its surface states. Different from
other reported helical hinge states [15,16,19,22] that lock the
momentum with spins, carriers in different valleys of WSOTIs
move to the opposite directions along a hinge. In clean cases,
such helical hinge states are characterized by the quantized
valley-Chern number. They survive in the presence of weak
but finite disorders, similar to the surface states in WFO-
TIs. Helical hinge states can be identified by the dominate
occupation probability on hinges and negligible occupation
probability in the bulks and on the surfaces. With increasing
disorders, a gap-closing transition from WSOTI to WFOTI
happens at a critical disorder Wc1 at which gaps of surface
Dirac cones close. Moreover, with further increasing disor-
ders from Wc1, the WFOTI becomes a diffusive metal (DM)
and finally an Anderson insulator (AI). Electronic transport
through helical hinge states is also studied. We find that the
quantum resistance is the sum of an intrinsic contribution from
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the topological states and an extrinsic part from the intervalley
scatterings that is proportional to system sizes. These results
cast the authenticity of helical hinge states that provide a way
to manipulate the valley degree of freedom.

The paper is organized as follows: In Sec. II, we demon-
strate the model of the WSOTI in the clean limit and show that
helical hinge states in clean WSOTIs can be characterized by
the quantized valley-Chern number. Through two independent
numerical approaches, we substantiate the robustness of the
helical hinge states against weak disorders in Sec. III. The
electronic transport through helical hinge states is studied
in Sec. IV. In Sec. V, we elaborate a phase diagram of the
WSOTI in the presence of strong disorders, and a summary is
given in Sec. VI.

II. CLEAN WSOTI

A clean WSOTI can be modelled by the following Hamil-
tonian in the momentum space

hbulk(k) = t sin k2�
1 + (M − t (cos k2 + cos k3))�2

+ t sin k3�
3 + t sin k1�

4 + B�31. (1)

Here, �μ=1,2,3,4,5 = (s1 ⊗ σ1, s2 ⊗ σ1, s3 ⊗ σ1, I2 ⊗ σ3, I2 ⊗
σ2) are the four-by-four nonunique gamma matrices with sμ

and σμ being the Pauli matrices acting on spin and orbital
spaces, respectively. ID is the identity matrix of dimension
D. Hopping energy t = 1 is chosen as the energy unit. Equa-
tion (1) is invariant under the reflection symmetry of � =
(I2 ⊗ σ1) such that �h(k1, k2, k3)� = h(−k1, k2, k3). Beside
the reflection symmetry, our model of B = 0 has a time-
reversal-like symmetry. This can be clearly seen from the
commentator of � = −i(I2 ⊗ σ2)K with the Hamiltonian.
Here, I2 is the two-by-two identity matrix acting on the
spin space (a reason for � called time-reversal-like operator,
instead of time-reversal operator) and K is the complex con-
jugation operation, such that �2 = −1 and �−1 = −�. For
B = 0 and M ∈ (0, 2), Eq. (1) is a WFOTI that can be char-
acterized by the Z2 indexes (ν0, ν1ν2ν3) = (0, 001) [40–42].
Such a Z2 index guarantees two Dirac cones on the surfaces
not perpendicular to the vector (0,0,1), e.g., yz facets. For
B > 0, the last term within the surface state subspace acts like
an effective Dirac mass [14]. To see it, we derive the low-
energy effective Hamiltonian of the surface Dirac cones on the
yz facets with open boundary condition (OBC) applied in the
x direction. The effective Hamiltonian, expanded around two
Dirac cones (valleys) K = (0, 0) and K ′ = (±π,±π ), reads
(see Appendix A for a detailed derivation)

hsurface(p‖ = (p2, p3)) =
[

hS(p‖) 0
0 T hS(p‖)T−1

]
(2)

with hS(p‖) = t p2τ1 + t p3τ3 + (B − t ′2 p2
2/2)τ2. τ1,2,3 are the

Pauli matrices in the basis of the zero-energy surface states
wave functions. The upper and lower blocks are for K and
K ′ related by the pseudo-time-reversal symmetry represented
by T = −iτ2K . In what follows, we denote K and K ′ by
ηi = ±1. If the two facets are separated by a distance, the
Newton mass t ′ decays exponentially with the distance such
that the band inversion is prevented, while if they meet at
the reflection plane of x = 0, t ′ = t/2. Equation (2) has been
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FIG. 1. (a) Schematic plot of a WSOTI. Hinge states (black ar-
rows) of different valleys are antiparallel. The dark yellow plane is
x = 0. (b) Energy spectrum E (k3) of Eq. (1) for M = t, B = 0.2t .
Colors encode log10 p2. Red dotted line locates E = 0.02t . (b) Spa-
tial distribution of the in-gap helical states k3 = ka,b,c,d shown in (b).
Colors encode log10 |ψi|2.

widely used to describe quantum spin Hall systems, e.g.,
HgTe/CdTe quantum well, where the helical states come in
Kramer pairs with spin-momentum locked [4]. Analogously,
we expect helical states appear on the plane of x = 0 as well
but with a valley-momentum locked, i.e., electrons in hinge
channels that behave as massless relativistic particles with a
given valley pseudospin is locked to its propagating direction,
see Fig. 1(a).

Figure 1(b) shows the energy spectrum E (k3) of model
(1) on a rectangle sample of size L‖/

√
2 × L‖/

√
2 × L⊥ with

periodic boundary condition (PBC) in the z direction and
OBCs on surfaces perpendicular to (110) and (11̄0). Colors
in Fig. 1(b) encode the common logarithmic of participa-
tion ratio, defined as P2(E ) = 1/

∑
i |ψi(E )|4. Here |ψi(E )|

is the normalized wave function amplitude of energy E at
site i. P2 measures the number of sites occupied by state of
E [43–45] and allows one to distinguish hinge states from
the bulk and surface states easily. Clearly, for M = t and
B = 0.2t , two pairs of gapless hinge modes appear. Those
near k3 = 0 (k3 = π ) are described by the up (down) block of
Eq. (2), see Appendix B. Wave function distributions of four
specific hinge states ka,b,c,d of energy E = 0.02t are shown
in Fig. 1(c). States of ka and kb (kc and kd ), respectively,
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propagating along ±z directions, are localized on the same
hinge x = 0, y = L‖/2 (x = 0, y = −L‖/2).

In quantum spin Hall systems where spin sz is a good quan-
tum number, spin-Chern numbers play the role of topological
invariant. Similarly, we employ the valley-Chern number
Cvalley to measure the topology of the surface states in the
clean limit that tells the emergence of helical hinge states.
Cvalley, widely used in layered-graphene systems by studying
the valley Hall effect [46–48], is defined as

Cvalley = CK − CK ′ (3)

with CK and CK ′ being the valley-Chern number for K and
K ′, respectively. The summation of the Berry curvature over
all occupied states of electrons in a valley ηi gives Cηi =
ηisgn[B]/2 = ±1/2, see Appendix C for more details. Thus,
the valley-Chern number is quantized to 1.

We would like to discuss the material relevance of the
predicted WSOTI before moving further. The WSOTI is a
direct consequence of the band inversion of surface states of
WFOTIs. Remarkably, a recent experiment verified the emer-
gency of WFOTI phase in quasi-one-dimensional bismuth
iodide with the same Z2 index studied here [49,50]. Besides,
it is found that band inversion of surface states can happen
in bismuth with respect to certain crystal symmetries [34,35].
We thus expect bismuth is an ideal material to search for the
helical hinge states. Rather than electronic systems, WSOTIs
may be also found in other systems like photons, where the
WFOTI has already been visualized [51] and a band inversion
can be artificially induced in principle.

III. STABILITY AGAINST DISORDERS

To study the robustness of the helical hinge states against
disorders, we add a random onsite potential V = ∑

i c†
i viI4ci

to the lattice model of Hamiltonian Eq. (1), where c†
i (ci)

is the electron creation (annihilation) operator at site i. vi

distributes randomly in the range of [−W/2,W/2]. Disorders
break the lattice translational symmetry so that Cvalley is not
good anymore. Yet, we can still use the L‖ = L⊥ = L depen-
dence of ηW,L(E ) = 〈∑i∈Hinge |ψi,E (W, L)|2〉 to characterize
hinge states, where the sum is over all the lattice sites on
two hinges of x = 0, y = ±L/2 and 〈· · · 〉 denotes ensemble
average. ηW,L(E ) measures the distribution on the hinges.
Naturally, for states with dominated occupation probability on
hinges, ηW,L(E ) approaches a finite value for L 
 1, while
for surface and bulk states, ηW,L(E ) should decrease with L
algebraically.

Let us focus on E = 0. Numerically, we use the retarded
Lanczos method to find the eigenfunction of the nearest level
around E = 0 of the disordered bar and calculate ηW,L and
ζW,L accordingly. In our scenario, we first use the KWANT
package [52] to construct a Hamiltonian matrix H out of
tight-binding model Eq. (1). We then solve the eigenequation
Hψ = Eψ using the SCIPY library [53] to obtain the required
eigenenergies and eigenfunctions. In Fig. 2(a), we display
ηW,L as a function of W for various L [52,53]. Apparently,
there exists a critical disorder Wc1/t � 1.2 ± 0.2 below which
all curves merge and form a plateau at ηW,L � 0.65, see the
orange line. Mergence and plateau of ηW,L are strong indica-
tions of helical hinge states at a finite disorder. For W > Wc1,
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FIG. 2. (a) ηW,L as a function of W for various L. Each data is
averaged over more than 100 samples. (b) ρ(E ) for L = 200 and
various W : solid (dash) lines are for W < Wc1 (W > Wc1). Here,
M = t , B = 0.2t , and L‖ = L⊥ = L.

ηW,L decreases with L. As shown below, they are surface states
for W > Wc1, featured by a finite size-independent occupation
probability on surfaces as L → ∞.

More insights can be obtained by investigating how disor-
ders affect the gap of surface states through the self-consistent
Born approximation (SCBA) [54–56], where the self-energy
is given by


 = W 2/(48π2)
∫

BZ
[(E + i0)I4 − hsurface(p‖) − 
]−1d p‖.

(4)
We write 
 as 
 = 
0I4 + ∑5

μ=1 
μγ μ with γ 1,2,3,4,5 =
(τ1 ⊗ I2, τ3 ⊗ I2, τ2 ⊗ σ3, τ2 ⊗ σ3, τ1 ⊗ σ3, τ3 ⊗ σ3). For E=0,

1,3,4,5 = 0 and 
0 is a pure imaginary number, i.e., 
0 =
i(−1/τ ). Then, we obtain (see Appendix D)

1

τ
= 1

τ

W 2

48π2t2

∫
BZ

d p‖
p2

2 + p2
3 + (

B̃ − p2
2/4

)2 − 1/τ 2
, (5)

where the Dirac mass is renormalized as B̃ = B + 
2. Here,
τ is the lifetime of the zero-energy surface states, i.e.,
ρsurface(E = 0) ∝ 1/τ . For W < Wc1, 1/τ = 0 and surface
states are gapped at E = 0, while for W > Wc1, finite τ

solutions are allowed and ρsurface(E = 0) �= 0. Thus, with in-
creasing W , we expect the WSOTI undergoes a gap-closing
transition at the critical disorder Wc1 whose approximate
solution is determined from Eq. (5) with B̃ = B is Wc1 =
t (24π/(ln[16

√
2/B]))1/2. The closed-form solution indicates

that Wc1 increases with B, which measures the width of the
surface gap, and explains qualitatively Fig. 2(a).

Dispersion relation of the hinge states in the clean limit
is linear in p3 near two valleys (see Appendix B). Since
disorders do not change the linear dispersion relation within
the framework of SCBA, we expect a constant density of
helical hinge states for |E | < �1 with �1 being the gap of
surface states for W < Wc1. This behavior is confirmed by
numerical calculations of the average density of states (DOS),
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FIG. 3. (a) 〈R〉 as a function of W for L⊥ = L‖ = L = 16, 20,

24, 32 (from down to up). (b) 〈R〉 versus L⊥ for W/t = 0.3, 0.5,

1, 0.8, 1.2 (from down to up) and L‖ = 10. Dotted lines are fitted
by Eq. (6). Inset: The obtained Lm as a function W . Black solid line
is a fit of Lm = ct2/W 2 with c = 92. Cyan dashed lines locate the
intrinsic resistance h/(2Cvalleye2). Here, M = t and B = 0.2t . Each
data point is averaged over 1000 samples.

defined as ρ(E ) = 〈(∑8L3

q=1 δ(E − Eq))〉/(8L3) with Eq being
the eigenvalues of the systems. We calculate ρ(E ) through the
kernel polynomial method [57] and plot those for L = 200
and various W/t from 0.3 to 1.8 in Fig. 2(b). The average
ρ(E ) of the disordered bar of L = 200 for various W that are
obtained from 10 ensembles with 1024 Chebyshev moments.
Indeed, ρ(E ) is independent of W and E within |E | < �1 and
W < Wc1, while �1 decreases with W . For W > Wc1 � 1.2t ,
the constant ρ(E ) fades, and ρ(E = 0) increases with W .
Hence, the constant DOS can be another fingerprint of the
helical hinge states, akin to chiral hinge states [36].

IV. ELECTRONIC TRANSPORT

We have also investigated the electronic transport through
helical hinge states by using the Landauer-Büttiker formula
to calculate the two-terminal resistance R of the Hall bar
connected by two semi-infinite leads along the z direction.
The dimensionless resistance of a disordered bar between two
clean semi-infinite leads at a given Fermi level E can be cal-
culated by R = h/(e2Tr[T T †]) with T being the transmission
matrix [58]. We focus on W < Wc1 and E = 0. Figure 3(a)
plots the 〈R〉 versus W for various L‖ = L⊥ = L. For W = 0,
R displays a perfect quantum plateau at h/(2e2). In the pres-
ence of disorders, 〈R〉 notably increases with W and L, even
for very small disorders. Furthermore, we investigate how 〈R〉
depends on system sizes. Figure 3(b) shows 〈R〉 as a function
of L⊥ for various W and a fixed L‖. We find that 〈R〉 is linearly
increased with L⊥ and can be well described by the following
formula

〈R〉 = h

e2

(
1

2Cvalley
+ L⊥

Lm

)
(6)

with Lm being a characteristic length but independent of L‖,
see Appendix E. Remarkably, very similar features have also
been observed in quantum spin Hall systems with spin dephas-
ings [59].

Equation (6) can be understood as follows. Unlike chiral
hinge states, helical hinge states always suffer from the in-
tervalley scattering caused by short-range disorders such that
the resistance plateau at W = 0 are destroyed. Indeed, one
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FIG. 4. (a) ρbulk(E ) for various W >Wc1 and L = L‖ = L⊥ = 200.
Solid (dashed) lines are for W < Wc2 (W > Wc2). (b) ζW,L versus W
for various L = L‖ = L⊥. Here, M = t and B = 0.2t .

can treat Eq. (6) as a combination of an intrinsic resistance
h/(2Cvalleye2) coming from the nontrivial topology of surface
states and an extrinsic resistance due to the intervalley scatter-
ing. The latter should be proportional to L⊥ and independent
of L‖, while Lm is a length acting like mean free length, i.e.,
Lm ∼ vgτm with 1/τm being the intervalley scattering rate and
vg being the group velocity. Through Fermi’s golden rule,
we obtain Lm ∼ t2/W 2 (see Appendix E), which accords well
with numerical data, as shown in the inset of Fig. 3(b).

V. STRONG DISORDERS

To have a complete picture, we study the fate of WSOTIs
under stronger disorders. For W > Wc1, the surface energy gap
�1 is closed while the bulk energy gap �2 remains finite. The
system becomes a WFOTI. The conclusion is confirmed by
demonstrating that the mid-bulk-gap states are localized on
the surfaces. Akin to WSOTIs, WFOTIs survive up to a higher
disorder Wc2 at which �2 = 0 and the system transforms into
a DM beyond Wc2. Figure 4(a) shows the calculated density
of bulk states ρbulk(E ), obtained by applying with PBCs on all
directions so that no surface and hinge states are allowed, for
various disorders W > Wc1. Clearly, there is always a finite
bulk gap for W < Wc2 � 3t . Also, these results demonstrate
that the nonzero ρ(E ) around E = 0 for W > Wc1 shown in
Fig. 2(b) is from the contributions of surface states.

Stronger evidence of the WFOTI-DM transition is given in
Fig. 4(b), which displays ζW,L = 〈∑i∈Surface |ψi,E=0(W, L)|2〉
as a function of W for various L‖ = L⊥ = L. One should
not confuse ζW,L, the distribution of state E = 0 on surfaces,
with ηW,L, the distribution on hinges. The identification of the
nature of state E = 0 thus can be guided by the following
observations: (1) For hinge and surface states, ζW,L proceeds
toward a finite constant in L → ∞. (2) For bulk states, ζW,L

decreases with L and scales with L as 1/L for large enough
systems. Following such criteria, we determine Wc2 � 3t such
that the system is a WFOTI for Wc2 > W � Wc1, while it
becomes a DM for W � Wc2.

Anderson localization occurs at extremely strong disorders
Wc3 > Wc2, and the system becomes an insulator for W > Wc3.
The Anderson localization transition from a diffusive metal to
an Anderson insulator at a large disorder Wc3 is investigated
through the finite-size scaling analysis of the PR P2(W, L) for
a given disorder W and a system size L‖ = L⊥ = L. Near Wc3,

115118-4



ROBUSTNESS OF HELICAL HINGE STATES OF WEAK … PHYSICAL REVIEW B 103, 115118 (2021)

(a) (b)

FIG. 5. (a) ln YL as a function of W for M = t and B = 0.2t .
(b) Scaling function ln YL = ln f (L|W − Wc3|ν ).

PR follows the one-parameter scaling function

P2(W, L) = LD[ f (L/ξ ) + CL−y]. (7)

Here, D is the fractal dimension, ξ is the correlation length
and diverges as ξ ∝ |W − Wc3|−ν with ν being the critical ex-
ponent characterized the universality of Anderson localization
transition. y is the exponent of the irrelevant scaling variable,
C is a constant, and f (x) is the unknown scaling function.

To study such a transition, we introduce a quantity
YL(W ) = P2L−D − CL−y. The recognition of the critical dis-
order is guided by the following observations: (1) For DMs
(AIs), YL(W ) increases (decreases) with L. (2) At the critical
disorder, YL(W ) is independent of L. (3) Near the critical
disorders, YL(W ) is the scaling function f (x = L/ξ ) with
ξ ∝ |W − Wc3|ν . By following the approach demonstrated in
Ref. [60], we perform a chi-square fit of the numerically cal-
culated P2(W, L) by Eq. (7) and obtain Wc3/t = 18 ± 1, ν =
1.7 ± 0.3, y = 0.9 ± 0.2, and C = 0.9 ± 0.1. The goodness-
of-fit is Q = 10−2, indicating the fitting is acceptable [61]. We
then plot ln YL as a function of W in Fig. 5(a), where curves
for different L merge at a single point Wc3. The unknown
scaling function is also obtained, see Fig. 5(b). There are
two bundles in Fig. 5(b) with the upper (lower) standing for
diffusive metals (Anderson insulators). The obtained critical
exponent ν is closed to that of the Gaussian unitary ensemble
established before [36,62].

VI. CONCLUSION

In short, we have theoretically demonstrated the gen-
uineness of WSOTIs with valley-momentum locked helical
hinge states. Such hinge states are featured by the quan-
tized valley-Chern number in the clean limit and are robust
against disorders until the band gap of surface states col-
lapses. However, the normal quantized conductance of 1D
channel is destroyed by disorders. With further increasing
disorder, quantum transitions from WSOTI to WFOTI and
from WFOTI to DM happen in order. At very strong disor-
ders, the system becomes an insulator through the Anderson
localization transition.
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APPENDIX A: LOW-ENERGY SURFACE HAMILTONIAN

In Appendix A, we derive the low-energy effective Hamil-
tonian for the surface states. We first expand Eq. (1) near the
Gamma point � = (0, 0, 0)

hbulk(p) = t p2�
1 +

(
M̃ + t

2

(
p2

1 + p2
1

))
�2 + t p3�

3 + t p1�
4,

(A1)

where p = k − � and M̃ = M − 2t . The lattice constant is
set to 1. Periodical boundary conditions (PBCs) on y and z
directions and the open boundary condition (OBC) in the x
direction are assumed first. We split Hamiltonian (A1) into
two parts, hbulk = h0

bulk + h1
bulk with

h0
bulk(∂x ) = −it∂x�

4 +
(

M̃ − t

2
∂xx

)
�2 (A2)

and

h1
bulk(p‖) = t p2�

1 + t

2
p2

2�
2 + t p3�

3 + B�31. (A3)

Here p‖ = (p2, p3), M = t , and B = 0.2t . We treat h1
bulk as

a perturbation since B = 0.2t � |M̃| = t . We would like to
show that the zero-energy solution of h0

bulk(∂x ) is topological
surface states. To begin, we perform a unitary transformation

h̃0
bulk(∂x ) = Uh0

bulk(∂x )U −1 (A4)

with U = exp[iπs1/4] ⊗ exp[−iπσ1/4] (rotating around the
x axis by ±π/2 in spin and orbital spaces). h̃0

bulk(∂x ) is easy to
solve since it is block diagonalized. Consider the upper block
of h̃0

bulk(∂x ) first. For E = 0 states, we have[
0 M̃ − t∂xx/2 − t∂x

M̃ − t∂xx/2 + t∂x 0

][
ψ1

ψ2

]
= 0. (A5)

We choose exp[−λx] as trial solutions and obtain

ψ1 = d1 exp[(1 + i)x] + d2 exp[(1 − i)x]

ψ2 = c1 exp[−(1 + i)x] + c2 exp[−(1 − i)x]. (A6)

We consider the two opposite surfaces located at x = Lx/2
and x = −Lx/2 with Lx measuring the distance between two
surfaces. The surface state on x = −Lx/2 is given by ψ2.
Boundary condition requires that ψ2(x = −Lx/2) = 0, and
the zero-energy wave function reads

ψ2 = ψ− = 2c exp[−x − Lx/2] sin[−x − Lx/2]

⎡
⎢⎣

0
1
0
0

⎤
⎥⎦, (A7)
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where c is determined by
∫ Lx/2
−Lx/2 |ψ−|2dx = 1,

c =
√

2

1 − exp[−2Lx](sin[2Lx] − cos[2Lx] + 2)
. (A8)

Similarly, the surface state on x = Lx/2 is given by ψ1,

ψ1 = ψ+ = 2c exp[x − Lx/2] sin[x − Lx/2]

⎡
⎢⎣

1
0
0
0

⎤
⎥⎦. (A9)

The subscript ± denote surface states on x = ±Lx/2, respec-
tively. For the lower block of Eq. (A4), we find two additional
zero-energy surface states solutions φ±:

φ+ = 2c exp[x − Lx/2] sin[x − Lx/2]

⎡
⎢⎣

0
0
0
1

⎤
⎥⎦ (A10)

and

φ− = 2c exp[−x − Lx/2] sin[−x − Lx/2]

⎡
⎢⎣

0
0
1
0

⎤
⎥⎦. (A11)

Having obtained the four zero-energy surface solutions, the
effective Hamiltonian in the space spanned by the four surface
states is

hS(p‖) =
∫ ⎡

⎢⎢⎣
ψ

†
+

φ
†
+

ψ
†
−

φ
†
−

⎤
⎥⎥⎦(

Uh1
bulk(p‖)U −1

)
[ψ+ φ+ ψ− φ−]dx

= (t p2s1 − t p3s2 + Bs3) ⊗ σ0 + t ′

2
p2

2s3 ⊗ σ1. (A12)

Here,

t ′ = t (2c2 exp[−Lx](sin[Lx] − Lx cos[Lx])). (A13)

If the two opposite surfaces are well separated, say Lx 
 1,
t ′ � 0 is negligible. However, if the two surfaces meet at the
plane of x = 0 such that Lx � 0, t ′ = t/2. In this case, hinge
states emerge if OBCs are applied in the y direction. To obtain
a clearer picture, we further perform a unitary transformation
to Eq. (A12) with U ′ = exp[−iπs1/4] ⊗ exp[iπσ2/4]:

h̃S(p‖) = U ′hS(p‖)U ′−1. (A14)

h̃S(p‖) is now block diagonalized with the upper and
the lower blocks being t p2τ1 + t p3τ3 + (B + t ′ p2

2/2)τ2 and
t p2τ1 + t p3τ3 + (B − t ′ p2

2/2)τ2, respectively. Here, τ1,2,3 are
the Pauli matrices acting on the subspaces {| − ψ+ + iφ+ +
ψ− − iφ−〉, |iψ+ − φ+ − iψ− + φ−〉}. Since band inversion
can only happen on the lower block of h̃S(p‖) for B = 0.2t >

0. We thus ignore the upper block and keep the lower block
only:

hS(p‖) = t p2τ1 + t p3τ3 + (
B − t ′ p2

2/2
)
τ2. (A15)

Likewise, we can find the effective Hamiltonian of the surface
states near R = (π, π, π ) reads

T hS(p‖)T−1 = t p2τ1 + t p3τ3 − (
B − t ′ p2

2/2
)
τ2, (A16)

where we introduce a pseudo-time-reversal symmetry opera-
torT = −iτ2K with K being the complex conjugate. The total
effective Hamiltonian thus reads

hsurface(p‖) =
[

hS(p‖) 0
0 T hS(p‖)T−1

]
, (A17)

where the upper and lower blocks refer to valleys K = (0, 0)
and K ′ = (π, π ), respectively.

APPENDIX B: LOW-ENERGY HAMILTONIAN
OF HELICAL HINGE STATES

In Appendix B, we show the existence of helical hinge
states, which locate on the boundary of two surfaces inter-
sected on the plane of x = 0. At this stage, we apply OBCs
in the y direction to Eq. (A17) and keep the PBC in the z
direction such that p3 is still a good quantum number. We
consider two boundary surface (x, y) = (0, L‖/2), (0,−L‖/2)
and replace p2 by −i∂y. Consider the upper block of Eq. (A17)
first. Again, we split it into two parts with Lx = 0 (t ′ = t/2)

h0
S(∂y) = −i∂yτ1 + (B + t∂yy/4)τ2 (B1)

and

h1
S(p3) = t p3τ3. (B2)

Similarly, we treat Eq. (B2) as a perturbation and demonstrate
that zero-energy solutions of Eq. (B1) are hinge states local-
ized at the two boundaries (x, y) = (0, L‖/2), (0,−L‖/2). For
E = 0, we have[

0 t∂y + (B + t∂yy/4)
t∂y − (B + t∂yy/4) 0

][
�1

�2

]
= 0. (B3)

The equation has solutions of exp[−η1(2)y] with (recall
B/t = 0.2)

tη2
1/4 + tη1 + B = 0 → η1,± = 2(−1 ±

√
1 − B/t ) < 0

and

tη2
2/4 − tη2 + B = 0 → η2,± = 2(1 ±

√
1 − B/t ) > 0.

Then,

�1 = f1 exp[−η1,+y] + f2 exp[−η1,−y]

�2 = e1 exp[−η2,+y] + e2 exp[−η2,−y]. (B4)

The hinge state localized at (x, y) = (0,−L‖/2) is given by
�2, and boundary condition �2(y = −L‖/2) = 0 requires that

e1

e2
= exp[η2,−L‖/2]

− exp[η2,+L‖/2]
, (B5)

and normalization condition requires that

e = 1

exp[(η2,+ + η2,−)L‖/2]

√
2(η2,+ + η2,−)η2,+η2,−

(η2,+ − η2,−)2
,

(B6)
where we have assumed that L‖ 
 1. Then, the hinge state
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solution reads

�0,−L‖/2 =
√

8B

t − B
exp[−2(y + L‖/2)]

× sinh

[
−2

√
1 − B

t
(y + L‖/2)

]⎡
⎢⎣

0
1
0
0

⎤
⎥⎦. (B7)

For the hinge states localized at (x, y) = (0, L‖/2) (given by
�1), we obtain

�0,L‖/2 =
√

8B

t − B
exp[2(y − L‖/2)]

× sinh[−2
√

1 − B/t (y − L‖/2)]

⎡
⎢⎣

1
0
0
0

⎤
⎥⎦. (B8)

Likewise, we can calculate the zero-energy hinge states for the
other valley [lower block of Eq. (A17)]

�0,−L‖/2 =
√

8B

t − B
exp[−2(y + L‖/2)]

× sinh

[
−2

√
1 − B

t
(y + L‖/2)

]⎡
⎢⎣

0
0
1
0

⎤
⎥⎦ (B9)

and

�0,L‖/2 =
√

8B

t − B
exp[2(y − L‖/2)]

× sinh

[
−2

√
1 − B

t
(y − L‖/2)

]⎡
⎢⎣

0
0
0
1

⎤
⎥⎦. (B10)

Since we have obtained the four zero-energy hinge states so-
lutions [Eqs. (B7)–(B10)], the effective Hamiltonian spanned
by these states is

hhinge(p3) =

⎡
⎢⎣

t p3 0 0 0
0 −t p3 0 0
0 0 −t p3 0
0 0 0 t p3

⎤
⎥⎦. (B11)

APPENDIX C: VALLEY-CHERN NUMBER

The quantized valley-Chern number can be used to charac-
terize helical hinge states in the clean limit. In the continuous
limit, the Chern number for a given valley ηi reads [46]

Cηi = 1

2π

∫
d�(p‖, ηi ). (C1)

Note that the Hamiltonian of surface states Eq. (2) of a given
valley can be written as h · τ with h = (hi, h j, hk ) being a
real vector. Therefore, the Berry curvature takes the following
form [63]:

d�(p‖, ηi ) = 1
4εi jk|h|−3hidh jdhk . (C2)

Here, εi jk is the Levi-Civita symbol. As h(p‖) is a function of
p‖, dh j = (∂pα

h j )d pα with α = 2, 3. Then,

�(p‖, ηi ) = 1

2|h|3 h ·
(

∂h
∂ p2

× ∂h
∂ p3

)
d p2d p3. (C3)

We can write h � (t p2, ηiB, t p3) since the Berry curvature are
strongly peaked at the valleys where |p| = 0. Then, the Chern
number of a single valley is

Cηi = 1

4π

∫ 2π

0

∫ +∞

0

−ηiBt2 pd pdθ

(t2 p2 + B2)3/2
d pdθ = ηisgn[B]

2
,

(C4)
with sgn[x] being the sign function. Therefore, the total
valley-Chern number, defined as Cηi=1 − Cηi=−1, is thus quan-
tized at 1.

APPENDIX D: CLOSED-FORM SOLUTION
OF CRITICAL DISORDERS

In Appendix D, we derive a closed form of Wc1. Within
the framework of self-consistent Born approximation, the self-
energy satisfies [55]


 = W 2

48π2

∫
1

(EF + i0)I4 − hS(p‖) − 

d p‖, (D1)

where hS (p‖), the up block of Eq. (A17), is

hS(p‖) = t p2γ
1 + t p3γ

2 +
(

B − t ′

2
p2

2

)
γ 3. (D2)

Here the five gamma matrices are defined as γ 1,2,3,4,5 =
(τ1 ⊗ I2, τ3 ⊗ I2, τ2 ⊗ σ̃3, τ1 ⊗ σ̃3, τ3 ⊗ σ̃3) with σ̃1,2,3 being
the Pauli matrices acting on the valley subspace. I2 and I4

are the two-by-two and four-by-four identity matrices, re-
spectively. The self-energy can be written as 
 = 
0I4 +∑

μ 
μγ μ, i.e.,


0 = − W 2

48π2

∫
EF + i0 − 
0

A(p‖)
d p‖, (D3)


1 = W 2

48π2

∫
t p2 + 
1

A(p‖)
d p‖, (D4)


2 = W 2

48π2

∫
t p3 + 
2

A(p‖)
d p‖, (D5)


3 = W 2

48π2

∫
B + 
3 − t ′ p2

2/2

A(p‖)
d p‖, (D6)

and 
4,5 = 0. Here A(p‖) = (t p2 + 
1)2 + (t p3 + 
2)2 +
(B + 
3 − t ′ p2

2/2)2 − (EF + i0 − 
0)2. It is easy to find that

1,2 = 0 since A(p‖) = A(−p‖), while B is normalized by
disorders as B̃ = B + 
3. On the other hand, the density of
states which relates to the imaginary part of 
0 is affected by
disorders as well. For EF = 0, 
0 is a pure imaginary number,
i.e., 
0 = i(−1/τ ), with τ being given by

1

τ
= 1

τ

W 2

48π2

∫
1

t2 p2
2 + t2 p2

3 + (
B̃ − t ′ p2

2/2
)2 − 1/τ 2

d p‖.

(D7)
Equation (D7) indicates that there exists a disorder strength
Wc1 below (above) which the density of zero-energy states is
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zero (nonzero), i.e., 1/τ = 0 (1/τ �= 0). The critical disorder
can be determined by

1 = W 2
c1

48π2

∫
1

t2 p2
2 + t2 p2

3 + (
B̃ − t ′ p2

2/2
)2 d p‖. (D8)

Equation (D8) is known as the gap equation [55]. To obtain
a closed-form solution of Wc1, we take the limit B̃ → B and
Lx → 0 (t ′ = t/2) in the right-hand side of Eq. (D8) and write
p2 = p cos θ and p3 = p sin θ . Then,

48π2t2

W 2
c1

=
∫∫

pd pdθ

(cos4 θ/16)p4+(1 − B cos2 θ/(2t ))p2 + (B/t )2
.

(D9)

For B/t � 1, the integral is∫ 2π

0

∫ ∞

0

pd p

(cos4 θ/16)p4 + (1 − B cos2 θ/(2t ))p2 + (B/t )2
dθ

� 1

2

∫ 2π

0
ln

[
16

B2 cos4 θ/t2

]
dθ � 2π ln

[
16

B/t

]
, (D10)

and Wc1 is

Wc1

t
=

√
24π

ln[16t/B]
. (D11)

APPENDIX E: MEAN FREE PATH OF ELECTRON
IN HELICAL HINGE STATES

In Appendix E, we calculate the mean free path of electron
in the helical hinge states. We consider state �0,L‖ [given by
Eq. (B8)] on the hinge passing through (x, y) = (0, L‖/2).
Electrons in the channel propagate along the z direction as
shown in Eq. (B11). Let ϒ�0,L‖ be the total scattering rate of
an electron in �0,L‖ :

ϒ�0,L‖ = ϒ�0,L‖ →�0,−L‖ + ϒ�0,L‖ →�0,L‖ + ϒ�0,L‖ →�0,−L‖ , (E1)

where the first term is the intranode scattering and the last two
terms are for the internode scattering. The scatting rates are
given by the Fermi’s golden rule. After some calculations, we
find

ϒ�0,L‖ →�0,−L‖ = 1

h̄

W 2B2L2
‖

3t (t − B)2
exp[−4(1 −

√
1 − B/t )L‖],

(E2)

which is the same as ϒ�0,L‖→�0,−L‖ . To derive Eq. (E2), we have
assumed that the energy dispersion of hinge states is linear in
p3 even in the presence of weak disorders. This is consistent
with the numerically obtained DOS shown in Fig. 2(b). We
can define a typical length scale

l0 = 1/(4(1 −
√

1 − B/t )) (E3)

such that

ϒ�0,L‖ →�0,−L‖ = ϒ�0,L‖ →�0,−L‖ ∼ exp [−L‖/l0]. (E4)

Thus, the scattering from �0,L‖ to �0,−L‖ and �0,L−‖ can be
ignored if L‖ 
 l0. In general, the system length considered in
this work is much larger than l0 � 2 for B/t = 0.2. Therefore,
ϒ�0,L‖ →�0,−L‖ = ϒ�0,L‖→�0,−L‖ = 0.

On the other hand, for the scattering from �0,L‖ to �0,L‖
which is localized at the same hinge, we have

|〈�0,L‖ |V |�0,L‖ 〉|2 = W 2a

12L⊥
. (E5)

Then, the total scattering rate in the limit of L‖ 
 l0 thus reads

1

τm
= ϒ�0,L‖ = ϒ�0,L‖→�0,L‖ = W 2

12h̄t
. (E6)

On the other hand, the group velocity of electrons in the hinge
channel �0,L‖ reads

vg = 1

h̄

d (t p3)

d p3
� t

h̄
. (E7)

Therefore, the mean free path Lm is

Lm ∼ |vg|τm ∼ t2

W 2
. (E8)
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