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In Dirac semimetals, interband mixing has been known theoretically to give rise to a giant orbital diamag-
netism when the Fermi level is close to the Dirac point. In Bi1−xSbx and other Dirac semimetals, an enhanced
diamagnetism in the magnetic susceptibility χ has been observed and interpreted as a manifestation of such giant
orbital diamagnetism. Experimentally proving their orbital origin, however, has remained challenging. The cubic
antiperovskite Sr3PbO is a three-dimensional Dirac electron system and shows the giant diamagnetism in χ as
in the other Dirac semimetals. 207Pb NMR measurements are conducted in this study to explore the microscopic
origin of diamagnetism. From the analysis of the Knight shift K as a function of χ and the relaxation rate T1

–1

for samples with different hole densities, the spin and the orbital components in K are successfully separated.
The results establish that the enhanced diamagnetism in Sr3PbO originates from the orbital contribution of Dirac
electrons, which is fully consistent with the theory of giant orbital diamagnetism.

DOI: 10.1103/PhysRevB.103.115117

I. INTRODUCTION

Dirac semimetals [1,2], whose band crossing is protected
by the crystalline symmetry, have attracted considerable in-
terest, largely because of the expected topological properties.
The formation of unusual surface states is a direct conse-
quence of the nontrivial topology of their band structure with
Dirac dispersions [3]. The Berry curvature around the Dirac
node gives rise to unconventional responses to magnetic fields
such as a nontrivial phase shift in quantum oscillations [4,5]
and a chiral anomaly [6,7]. So far, the research effort has
focused mainly on such intraband Berry curvature and related
physics. However, it may be tempting to note that interband
effects should not be dismissed here; a nontrivial topology of
band mixing between the conduction and the valence bands
can lead to an interband Berry connection [8] and gives
rise to exotic phenomena as in the case for the intraband
topological effect. The giant orbital diamagnetism of Dirac
electrons [9,10] may be viewed as such an interband topolog-
ical effect. This mechanism is distinct from the other kinds of
magnetisms originating from itinerant electrons, Pauli param-
agnetism and Landau diamagnetism, which are scaled by the
density of states of itinerant electrons at the Fermi level.
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A large diamagnetism of the order of 10–4 emu/mol,
larger than the expected Larmor core diamagnetism of ∼
10–5 emu/mol, was recognized long ago in the measurements
of bulk magnetic susceptibility in semimetal Bi [11], which
is known to host massive three-dimensional Dirac bands
with a small number of electrons. The large diamagnetism
of Bi was found to be further enhanced by Sb-doping in
Bi1−xSbx [12,13], which reduces the number of electrons
in the Dirac bands [14]. Eventually the diamagnetism is
maximized when the Fermi level EF lies in the Dirac mass-
gap [Fig. 1(a)] with Sb x > xc = 0.07. Recently discovered
three-dimensional (3D) Dirac semimetals also show a large
diamagnetism of similar magnitude in the bulk magnetic sus-
ceptibility [15–18], when their EF is located near the Dirac
points.

The microscopic origin of the giant diamagnetism in Dirac
semimetals, in particular, Bi1−xSbx, has been a subject of
intense theoretical debate over decades. The early attempts
to understand it as a Landau diamagnetism failed to explain
the maximized diamagnetic response when EF lies in the
gap. The orbital magnetism of Dirac bands in the presence
of interband effects was then proposed to be the origin [9],
which can explain the enhancement of diamagnetism towards
the Dirac point reasonably and has been accepted as the the-
oretical picture behind the giant diamagnetism. One of the
intuitive pictures for the theoretical understanding of giant
orbital diamagnetism is based on the E-linear density of states
D(E⊥), where E⊥ is a two-dimensional kinetic energy for the
momentum perpendicular to the applied field. When Dirac
electrons are confined in Landau levels under a magnetic field,
the average energy gain and loss are not balanced, in contrast
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FIG. 1. Giant orbital diamagnetism of Dirac electrons. (a)
Schematic energy dispersion of a massive Dirac electron band (left)
and the expected giant orbital diamagnetism as a function of the
Fermi level EF (right). � is a Dirac mass gap. The orbital diamag-
netism takes a maximum with EF in the Dirac mass gap. (b) Energy
density E⊥D(E⊥) as a function of E⊥ for a Dirac band (left) and an
ordinary parabolic band (right). E⊥ and D(E⊥) represent the kinetic
energy originating from the two-dimensional momentum perpendic-
ular to the applied field and the density of states as a function of E⊥,
respectively. The Landau levels in a magnetic field with spin up and
down are indicated by the blue and the red lines, respectively. The
average E⊥ of the Landau levels in a magnetic field, to which the
gray shaded area of the zero field D(E⊥) condenses, is indicated by
the gray dashed lines. They are larger than the average E⊥ of the
corresponding gray shaded area (black dashed line) for the Dirac
band but identical to that for the normal parabolic band.

to the case for ordinary parabolic bands with constant D(E⊥)
[10] [Fig. 1(b)], which increases the total free energy of Dirac
bands under a magnetic field and gives rise to a diamagnetism.
Note that the orbital diamagnetism comprises the contribu-
tions from all the electrons occupying the Dirac bands, not
only from the electrons around the EF, as in the Pauli spin
paramagnetism and the Landau (orbital) diamagnetism. This
picture naturally explains the maximally enhanced orbital sus-
ceptibility when the EF lies in the Dirac mass gap.

Despite the progress in the theoretical understanding of
the origin of giant diamagnetism, its experimental verification
has remained challenging, as it requires a separation of the
orbital component from the spin component. The expected
orbital diamagnetism from Dirac electrons of the order of
10–4 emu/mol is large but still could be comparable to the spin

Pauli paramagnetism, for example, when bands other than the
Dirac bands contribute and/or the g factor is enhanced from
2. Magnetic resonance techniques, in principle, could ana-
lyze the contributions from different origins. The microscopic
magnetism of Bi1−xSbx has been studied by nuclear magnetic
resonance (NMR) [19], muon spin rotation (μSR) [20,21],
perturbed angular distribution [22,23], and β-NMR [24]. The
verification of the orbital character of diamagnetism using
these techniques, however, has been far from complete. In the
case of NMR, the large electric quadrupole interaction of a nu-
clear spin I � 1 in 209Bi NMR has imposed critical constraints
on the detailed analysis of the electronic contribution and the
separation of spin and orbital contributions. An NMR study on
an I = 1/2 nuclear spin system, without electric quadrupole
and phonon interactions, should be a promising approach to
verify the orbital origin of the giant diamagnetism in Dirac
semimetals. Dirac semimetals containing appropriate nuclear
species, however, have been limited.

Sr3PbO, the material we study here, is a member of the
antiperovskite family A3T tO (A = Ca, Sr, Ba, Eu; T t = Si,
Ge, Sn, Pb) [25] and is theoretically proposed to be a 3D mas-
sive Dirac electron system [26,27] with topological surface
states [28,29]. The cubic antiperovskite structure of Sr3PbO is
shown in Fig. 2(a), where the Pb atoms are on the corners of
cubic unit cell and the Sr atoms form an octahedron surround-
ing the O atom at the center. In the ionic limit, the valence
states of constituent ions can be expressed as Sr2+

3Pb4–O2–.
In the reported band structures [26], the valence and the con-
duction bands indeed consist of the fully occupied 6p orbitals
of Pb4– and the empty 4d orbitals of Sr2+, respectively. The
6p and the 4d bands overlap marginally and a gap opens
almost everywhere on the band crossing plane. The C4 rota-
tional symmetry, however, protects the band crossing at six
equivalent points on �-X lines [Fig. 2(b)], which leads to six
moderately anisotropic 3D Dirac bands free from the other
parabolic bands. The 3D Dirac band has a very small mass gap
of ∼10 meV, which is created by the admixture of higher en-
ergy orbital states via spin-orbit coupling. The six Dirac bands
merge at −125 meV below the Dirac points, giving rise to a
saddle point. Below the saddle point, multiband Fermi sur-
faces are expected to emerge when the Fermi level lies in this
region. This region is essentially away from the Dirac physics.
The presence of 3D Dirac electrons in Sr3PbO is supported
by recent experiments [18,30], which show the presence of
extremely light mass (∼ 0.01me ) holes and B-linear magne-
toresistance. Angle-resolved photoemission spectroscopy on
a sister compound Ca3PbO confirms the Dirac dispersion of
the valence band predicted by band calculations [31].

The Pb antiperovskite should provide a promising arena
for NMR studies of Dirac semimetals to verify the orbital
character of the giant diamagnetism from Dirac electrons, as
207Pb hosts I = 1/2 nuclear moment in contrast to 209Bi. Here,
we report 207Pb NMR and magnetic susceptibility χ studies of
the 3D Dirac system Sr3PbO. An enhanced diamagnetism is
observed in the magnetic susceptibility χ as in Bi and other
3D Dirac systems. Using the Korringa relation with the spin-
lattice relaxation rate T1

–1, we show that the spin contribution
Kspin in K cannot account for the enhanced diamagnetism. The
K-χ plot can be analyzed as the superposition of the spin
and the orbital contributions with distinct hyperfine coupling
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FIG. 2. Basic electronic structure and bulk magnetic susceptibility in Sr3PbO antiperovskite. (a) and (b) Crystal structure and the first
Brillouin zone for Sr3PbO antiperovskite. Six Dirac points [red points in (b)] are protected by C4 rotational symmetry along �-X lines. The
blue line parallel to the (110) direction connects two Dirac points, between which a saddle point (SP) exists. (c) Field dependence of Hall
resistivity ρxy in the zero-field limit. The slopes yield the hole densities 1.6 × 1018, 5.0 × 1019, 2.0 × 1020 and 2.2 × 1020 cm–3 for samples
A, C, D, and E, respectively. (d) Total carrier density as a function of the Fermi energy (EF ) obtained from a band calculation, which gives
the estimates of EF (dashed lines) for samples A, C, D, and E as –45, –125, –235, and −250 meV, respectively, from the experimental hole
densities obtained from (c). (e) Schematic band structure of Sr3PbO antiperovskite for a k axis along the blue line in (b), which is divided into
three regimes, the Dirac bands (red area), the saddle point (SP) and the multibands (blue area). The Dirac bands enclosed by the gray dashed
rectangle give rise to the giant orbital diamagnetism as illustrated in Fig. 1(a). (f) Temperature dependence of magnetic susceptibility χ for
samples A, C, and E (solid lines). The magnitude of diamagnetic susceptibility increases with decreasing the hole density p, in particular very
rapidly from sample C to A. By subtracting Curie-like contributions at low temperatures, the intrinsic behaviors of χ are estimated (dashed
lines).

constants, consistently with the analysis of the Korringa re-
lation. The estimated orbital hyperfine constant indicates the
delocalized nature of electrons in charge of the large orbital
susceptibility. These results strongly affirm that the enhanced
diamagnetism originates from the giant orbital susceptibility
of Dirac electrons.

II. METHOD

Five batches of 1g of polycrystalline Sr3PbO, A–E, were
synthesized from PbO and 3–5% excess amount of Sr metal
from the stoichiometry in a sealed tantalum ampoule, as
reported previously [25]. All the syntheses and the measure-

ments were conducted without exposing the samples to air
because the samples are extremely air sensitive.

The magnetization of the powder samples of Sr3PbO was
measured by a commercial superconducting quantum inter-
ference device (SQUID) magnetometer (Quantum Design
MPMS) with an applied magnetic field of 7 T. The powder
samples were sealed in a glass tube with a small amount of
helium gas during the measurements. The magnetization of
the glass tube without the sample was measured separately.
The background correction was conducted by subtracting the
scanning pattern of the SQUID signal without the sample from
that with the sample. The magnetization of the sample was
then calculated by fitting the scanning pattern of the SQUID
signal after the subtraction of the background. The Curie-like
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contribution from the impurities at low temperatures was es-
timated by a fitting of the magnetization M(T) at 7 T between
10 and 50 K with M = M0 + C/T . M0 is a constant, T is the
temperature and C is a fitting parameter.

The 207Pb NMR measurements were conducted using
a Carr-Purcell-Meiboom-Gill multiecho sequence with 10
echoes for samples A–C and a conventional spin-echo se-
quence for samples D and E. The powder samples were
immersed in a high-quality mineral oil, sealed in straws
with epoxy resin inside an argon-filled glove box, and then
mounted in an NMR coil. The magnetic field B ∼ 7 T
was calibrated by the 63Cu NMR spectrum of the coil us-
ing a gyromagnetic ratio γ /2π = 11.2893305 MHz/T and
Knight shift K = 0.200%. NMR spectra were obtained by a
combination of Fourier transformation and frequency sweep
(Fourier-Step-Sum technique). The origin of the peak shift � f
is defined as γ B with a gyromagnetic ratio of 207Pb γ /2π =
8.9072353 MHz/T [32]. The NMR Knight shift K = � f /γ B
was determined from the NMR frequency shift of the I = 1/2
nucleus. The spin-lattice relaxation rate T1

–1 was derived from
a single-exponential fit of a relaxation curve collected by a
standard inverse saturation recovery method.

The density functional theory (DFT) calculation was per-
formed using the QUANTUM ESPRESSO package [33,34] with
the relativistic PAW dataset, setting the wave function and
charge density cutoffs to 50 and 400 Ry, respectively. The
maximally localized Wannier functions (MLWF) are derived
using the WANNIER90 package [35]. We put s- and px,y,z-like
orbitals on the Pb site and dx2−y2,zx,yz-like orbitals on the three
Sr sites in the unit cell as the initial guess functions. Together
with the spin degrees of freedom, this forms a 26-band model
[(one s orbital, three p orbitals, and 3 × 3 d orbitals) × (2
spins)]. We set –3.3 eV to 1.486 eV (measured from EF )
as a frozen energy window, i.e., the spectral features within
this energy range are faithful to the DFT results up to mi-
nor errors caused by limited number of momentum sampling
points.

The effective model used in our analysis is a tight-binding
model whose basis orbitals are MLWFs derived from the DFT,
which allows us to incorporate the saddle points in the band
structure into the following calculation of magnetic suscepti-
bility.

In the calculation of magnetic susceptibility, we start from
the Hamiltonian H = Hkin + H1 with

Hkin = ∑
iaσ, jbσ ′

tiaσ, jbσ ′c†
iaσ c jbσ ′ , (1)

H1 = μB
∑
ia

(
2Sz

i + Lz
ia

)
Bz. (2)

The hopping integrals in Hkin are from the MLWF method
with the Peierls phase added by hand for the magnetic field.
Lz in H1 is the z component of the (local) angular momentum,
l = 1 for Pb-6p orbitals and l = 2 for Sr-4d orbitals.

We can derive the magnetic susceptibility by expanding
the Green’s function for H as a series of Bz, and there is a
prescription to carry out this expansion in a gauge invariant
manner [36]. Without H1, the formula has been derived in

Refs. [37,38]. Adapting the techniques in Refs. [36,38] to
include H1, we end up with the formulas

χ = χorbital + χcross + χspin, (3)

χorbital = e2

4h̄2 T̃r (
xy + γxy)g
xyg + (x ↔ y) , (4)

χcross = i
μBe

h̄
T̃rMg(
xy − 
yx )g, (5)

χspin = −μ2
BT̃rMgMg. (6)

The contributions from χcross and χspin are absent without
H1. Here, T̃r is a shorthand notation of T

N

∑
ωn,k

Tr, g =
(iωn − Hk )−1 with Hk being the Fourier-transformed Hkin

without the Peierls phase, M = 2Sz + Lz, and 
αβ = γαgγβ .
γμ (γμν) is defined as γμ = ∇μHk (γμν = ∇μ∇νHk), where
∇μX = ∂X

∂kμ
+ i[ε̂μ, X ] with (ε̂μ)ab = δabεaμ, where εaμ is the

μ component of the position of orbital a in a unit cell.

III. RESULTS AND DISCUSSION

A. Carrier density and Fermi level

Five polycrystalline samples of Sr3PbO from different
batches A–E with different hole densities (p) from ∼ 1018 to
∼1020 cm–3 were investigated. The Hall resistivity ρxy in the
zero-field limit gives positive Hall coefficients RH = + 3.8,
0.13, 0.032, and 0.029 and cm–3/C [Fig. 2(c)], yielding hole
densities p = 1.6 × 1018, 5.0 × 1019, 2.0 × 1020, and 2.2 ×
1020 cm–3 for samples A, C, D, and E, respectively. Sample
B should have a comparable but only slightly smaller p than
sample C, judging from the NMR data. The donors very likely
correspond to 0.01–1% level of cation defects and/or excess
oxygens, which are introduced partially to relax the extremely
reduced anionic state of Pb4–. The result of band calcula-
tions in Fig. 2(d) indicates that the experimentally observed
hole densities correspond to EF being –45, –125, –235, and
−250 meV (measured from the center of the mass gap) for
samples A, C, D, and E, respectively. These EF s are indicated
by the dashed lines in the schematic band picture shown in
Fig. 2(e). The EF of sample A lies in the Dirac band region
while that of sample C (and B) is around the saddle point and
those of samples D and E are in the multi-Fermi surface region
below the saddle point. The Dirac physics should manifest
itself almost exclusively in sample A.

B. Bulk magnetic susceptibility

The magnetic susceptibilities χ (T ) for three samples A,
C, and E, shown in Fig. 2(f), are found to be all diamagnetic.
The magnitude of diamagnetism increases with decreasing the
hole concentration p and hence increasing EF from E to A.
The increase from samples C and E to sample A with EF in
the Dirac bands is particularly significant and as large as of
the order of 10–4 emu/mol, which is comparable to the large
diamagnetism observed in other Dirac semimetals [15,16]. An
appreciable temperature dependence is observed particularly
for sample A. The χ (T ) of sample A shows a clear decrease
with lowering temperature to ∼30 K, which should be an
intrinsic behavior of magnetic susceptibility. This is followed
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FIG. 3. NMR spectra, Knight shift K and spin lattice relaxation rate T1
–1 in Sr3PbO antiperovskite. (a) NMR spectra for samples A–E at

a temperature T = 150 K. The peak positions systematically shift to the negative side upon decreasing the hole density p. The hole density p
and the Fermi level EF for each sample are displayed in Figs. 2(d) and 2(e). (b) Temperature dependence of the NMR Knight shift K (T ) for
samples A-E. Note the positive correlation between K (T ) and χ (T ) in Fig. 2(f) is indicative of the positive hyperfine coupling constants Aspin

and Aorb. (c) Temperature dependencies of the spin-lattice relaxation rate divided by temperature (T1T )–1(T ) for samples A-E. The Korringa
law, (T1T )–1 = constant (black dashed line) holds well. A crossover from T independence to T 2 dependence (red dashed line) for sample A
reflects the strongly energy dependent density of states of Dirac electrons. (d) Fermi energy EF dependence of (T1T )–1/2 at 100 K (closed
circles), which is scaled well with the calculated partial density of states for Pb 6p orbitals at EF , Dp−orb (black line).

by a Curie-like increase very likely associated with magnetic
impurities (0.01% level of s = 1/2 impurities) at low temper-
atures. The other samples with a high hole density (EF ) show
a monotonic increase of χ (T ) from room temperature down
to 2 K, with a clear Curie-like behavior of similar magnitude
as sample A at low temperatures. It is not possible, however,
to fit the χ (T ) behavior for samples C and E over entire
temperature range only with a Curie-Weiss contribution and
a constant offset, particularly at high temperatures above 100
K. This indicates the presence of very weak but appreciable
increase of the intrinsic χ (T ) [dashed lines in Fig. 2(f)] with
lowering T in samples C and E at least at high temperatures
above 100 K where the Curie contribution is negligibly small.
Note that the weak temperature dependence of the intrinsic
χ (T ) for samples C and E is negative, opposite to that of
sample A.

The enhanced diamagnetism in sample A with the EF in
the Dirac bands should represent the same large diamagnetism
observed in Bi1−xSbx and other Dirac semimetals, which

cannot be described naively by the conventional kinds of
magnetisms. The core diamagnetism is estimated to be –8.5 ×
10–5 emu/mol for Sr3PbO [39], which should not depend ap-
preciably on the 1% level of cation defects or excess oxygens.
The Pauli paramagnetism calculated from the density of states
in the band calculation is only of the order of 10–5 emu/mol
assuming p ∼ 2 × 1020 cm–3 and g = 2 for sample E, not as
large as the difference of susceptibilities between samples A
and E. At this point, however, the possibility of an enhanced
g-factor, which could account for the difference, cannot be
excluded completely.

C. Giant diamagnetism in NMR Knight shift
207Pb NMR measurements for samples A–E were con-

ducted to verify the orbital origin of giant diamagnetism
experimentally. The NMR spectra at 150 K are shown in
Fig. 3(a). A systematic shift of the peak position as a function
of p (and hence EF ) is observed from sample A to E, implying
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that the NMR peaks originate from the bulk Sr3PbO. We note
that the observed shifts are different from those of possible
impurity phases such as 1.081%, –0.034% and 0.444% for
metallic Pb, PbO, and PbO2 [40], respectively. The presence
of subpeaks in samples A and B are attributed to inhomo-
geneity/phase separation where small region(s) with a slightly
different hole density from the main phase coexists (see also
Fig. S3 in the Supplemental Material [41]).

The p and T dependence of the NMR Knight shift K (T )
[Fig. 3(b)], determined from the NMR spectra, is intimately
related to those of the bulk magnetic susceptibility χ (T )
shown in Fig. 2(f). K (T ) decreases with decreasing p from
sample E to sample A, particularly from sample B and C
to sample A. With increasing temperature, K (T ) for sample
A shows an appreciable increase while samples E–B show
a very weak decrease of K (T ) in parallel to those of χ (T ).
The close correlation between K (T ) and χ (T ) indicates that
K (T ) captures the p and T dependence of χ (T ) including the
enhanced diamagnetism. The separation of spin and orbital
contributions in K (T ) should provide a clue to identify the or-
bital origin of enhanced diamagnetism. Note that the observed
results on powder samples should not be affected by a random
orientation of grains because of the cubic crystal structure of
Sr3PbO.

The NMR Knight shift K is comprised of several con-
tributions as K (T ) = Kchem + Kspin(T ) + Korb(T ), essentially
the same as the bulk magnetic susceptibility. Kspin and Korb

are spin and orbital contributions, respectively. Each term is
proportional to the respective susceptibilities χspin and χorb

via the respective hyperfine coupling constants Aspin and Aorb

as Kspin = Aspinχspin/NAμB and Korb = Aorbχorb/NAμB. Here,
NA and μB are the Avogadro constant and the Bohr magneton,
respectively (hereinafter we omit NAμB). Aspin and Aorb are, in
principle, different. The chemical shift Kchem does not depend
on T and p and gives a constant offset to K. The relationship
between K (T ) and χ (T ) for samples A, C, and E, the K-χ
plot, is shown in Fig. 4(a), confirming the close correlation
between K (T ) and χ (T ). To exclude the influence from the
extrinsic Curie contribution, we plot here data only for T >

50 K. The K (T )-χ (T ) relationship for each sample is linear
with almost common slopes among different samples. These
straight lines for different samples, however, shift upward
upon going from samples A to E with decreasing EF and
do not fall onto a universal K (T )-χ (T ) line, which strongly
suggests that both χspin and χorb give appreciable contributions
to the observed K (T ) with distinct Aspin and Aorb. The T
dependence of K (T ) is highly likely dominated by one of the
two contributions, as the K (T )-χ (T ) slope originating from
the T dependence is universal. A correlation between K (T )
and χ (T ) that is always positive implies that both Aspin and
Aorb are positive.

D. Korringa behavior in NMR spin lattice relaxation rate

The Korringa behavior of the spin-lattice relaxation rate
T1

–1, (T1T )–1 = constant, is observed for all samples A–E
over a wide temperature range as shown in Fig. 3(c), which
provides us with important hints to estimate Kspin and hence
Korb. The magnitude of (T1T )–1, which is proportional to
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Fermi level EF for each sample are displayed in Figs. 2(d) and 2(e).
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[dashed line in Fig. 2(f)] was used for the plot. The orbital hyperfine
coupling constant Aorb = 88 ± 14 kOe/μB can be estimated from a
linear fit to the K (T )-χ (T ) relationship for sample A (red line),
where the spin contribution Kspin is almost zero. An upward deviation
for samples C and E from the red line can be attributed to Kspin. The
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of Korb ∼ 0. The crossing point between the red line and the black
dashed line represents the chemical shift Kchem and the core magnetic
susceptibility χ0. (See the main text.) (b) Knight shift K (T ) as a
function of the spin-lattice relaxation rate (T1T )–1/2 for sample E to
sample A. The spin contribution Kspin expected from the Korringa
relationship T1T Kspin

2 = S is indicated by the gray dashed line. The
black dashed line indicates a modified Korringa relationship with an
enhanced Korringa constant S∗ ∼ 6.3 S, which assumes a dominant
spin contribution and hence almost zero orbital contribution, Korb ∼
0, for heavily doped samples B–E. Note that the extrapolation of the
black dashed line to (T1T )–1/2 = 0 gives an estimate of the chemical
shift Kchem with the assumption of Korb ∼ 0 for samples B–E. The
large and additional negative shift of sample A should be ascribed to
the orbital contribution, Korb.
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the square of the electron density of states D(EF ) at EF ,
increases systematically with increasing p (decreasing EF )
from samples A to E, which can be reasonably understood as
the increase of D(EF ). Indeed, as seen in Fig. 3(d), (T1T )–1/2

at 100 K for the samples with different EF are scaled well
with the calculated D(EF ) for the 6p orbitals of Pb, implying
that (T1T )–1/2 captures the D(EF ) that determines the spin
contribution in χ (T ) and K (T ). For sample A with the low-
est hole density, a clear upward deviation from the Korringa
behavior can be seen at high temperatures, which can be
reasonably ascribed to the T dependence of the thermally
averaged density of states around EF , 〈D(E )2〉T [42–45]. As-
suming strongly E-dependent D(E ) ∝ (E–EDP)2 around the
Dirac points at E = EDP, the T dependence of T1

–1 for sample
A can be reproduced well [solid line in Fig. 3(c)], yielding
EF –EDP ∼ −60 meV [open square in Fig. 3(d)], roughly con-
sistent with that estimated from the hole concentration and the
band calculation (for details, see the Supplemental Material
[41]). We also note that the orbital contribution to T1

–1 was
theoretically estimated to be at least an order of magnitude
smaller than the observed spin contribution [46]. Possible en-
hancement of orbital contribution from that based on Ref. [46]
was discussed [47]. The good scaling of D(E) and (T1T )–1/2,
however, indicates the orbital contribution can be neglected.

E. Giant orbital diamagnetism of Dirac electrons

Confirming that (T1T )–1/2 is a good measure of D(EF ),we
can estimate roughly the spin contribution Kspin in the ob-
served K. The Korringa relation, T1T Kspin

2 = S, yields the
linear dependence of Kspin on (T1T )–1/2 with the slope S1/2.
For a simple metal with an isotropic Fermi surface, the Kor-
ringa value S is determined by the gyromagnetic-ratio of the
nuclei under observation, γn, and the gyromagnetic-ratio of an
electron, γe, as S = h̄/4πkB × (γe/γn)2. The p dependence of
the g factor could modify the Korringa relationship as Kspin

is in proportion to g [48]. The consistency of K-(T1T )–1/2

and K-χ relationships, which we will discuss below, however,
indicates that the p dependence of the g factor should not be
appreciable within the range of p investigated here and that g
is unlikely to be strongly modified from 2. The plot of K as a
function of (T1T )–1/2 is shown in Fig. 4(b). K decreases with
decreasing (T1T )–1/2, a measure of the density of states, from
sample E to sample A, much more rapidly than the expected
linear relationship Kspin = S1/2(T1T )–1/2 (gray dashed line).
The strongly nonlinear decrease of K from sample E can
be naturally explained by the superposition of an additional
orbital contribution Korb, which increases rapidly with increas-
ing EF (decreasing p) towards the Dirac mass gap.

It is known that the effective Korringa value S∗, inferred
from an experimentally observed slope of K-(T1T )–1/2, is
often larger than S calculated from the gyromagnetic ratio by
more than a factor of 2 even in a simple metal. The black
dashed line with an enhanced S∗ ∼ 6.3 S in Fig. 4(b) connects
the data for all the heavily doped samples from E to B. This
assumes that K is fully dominated by Kspin (Korb ∼ 0) for
these samples and therefore gives the upper-bound estimate
for Kspin. Considering that the EF s of samples E–B are outside
the Dirac band regime, the assumption of Korb ∼ 0 for them
highly likely captures the reality better than the S∗ = S limit.

Even with the maximum estimate of Kspin, Fig. 4(b) clearly
indicates that a large orbital contribution must be incorporated
to account for the enhanced diamagnetic K for sample A.

Taking a closer look at Fig. 4(b), we recognize the two
important features to identify the orbital and the spin contribu-
tions in the K-χ plot. First, within the Korringa relationship,
the spin contribution in low-p sample A is negligibly small
as compared with those of the other samples. Second, the
K-(T1T )–1/2 line for each sample, representing the correlation
between the T dependences of K (T ) and (T1T )–1/2 of a given
sample, has a negative slope (dotted lines) for sample C and
E and an almost infinite slope for sample A. They do not
follow at all the linear behavior with a positive slope expected
from the Korringa relationship. This very likely implies the
presence of an additional T-dependent contribution to K (T )
other than Kspin, which is small but dominates the slope of
K-(T1T )–1/2 line for each sample and can be ascribed naturally
to Korb(T ).

Let us now return to the K-χ plot in Fig. 4(a) with the infor-
mation from Fig. 4(b). As Kspin ∼ 0, the K-χ relationship for
sample A should represent that for the nonspin contributions,
K = Kchem + Korb = Kchem + Aorbχorb, which is indicated by
the red solid line in Fig. 4(a) and gives an estimate of
Aorb = 88 ± 14 kOe/μB. We can ascribe the slopes of the K-χ
lines of 83 ± 9 kOe/μB for sample C and 68 ± 22 kOe/μB

for sample E (green and blue dashed lines) close to Aorb =
88 ± 14 kOe/μB to the small but finite orbital contribution,
the weak T dependence of Korb(T ) and χorb(T ). The predomi-
nance of the orbital contribution Korb(T ) in the T dependence
of K (T ) can naturally account for the negative slopes of
K-(T1T )–1/2 for each sample in Fig. 4(b). For samples other
than sample A, the T dependences of Korb(T ) are weakly
negative and those of (T1T )–1/2 are very weakly positive. For
sample A, (T1T )–1/2 ∼ 0 and its T dependence is negligible as
compared with the other samples.

The almost parallel and upward shift of the K-χ lines for
samples C and E from the nonspin contributions line, K =
Kchem + Aorbχorb, in Fig. 4(a) should then represent the super-
position of an additional spin contribution Kspin = Aspinχspin.
As χspin is positive, Aspin should be positive and larger than
Aorb. The positive sign strongly suggests that Aspin is deter-
mined by an s-electron-like Fermi contact interaction, which
may be induced to the conduction electrons in the Pb 6p bands
by an sp hybridization or by a strong spin-orbit coupling of Pb
[49] as discussed in 209Bi NMR on half-Heusler compounds
[50]. The magnitude of Aspin, however, can be determined
only with arbitrariness without any further assumption. For
any positive Aspin larger than Aorb, one can choose Kspin and
χspin which satisfy Kspin = Aspinχspin and bring the K-χ lines
for samples C and E onto the nonspin contributions line
K = Kchem + Aorb + χorb (red line) with the shift of −Kspin and
−χspin (see also Fig. S5(a) [41]). The shifted K-χ points on
the nonspin contributions line represent K = Kchem + Aorbχorb

of each sample.
To further narrow down the choice of Aspin, Kspin and χspin,

the assumption of Korb = Aorbχorb ∼ 0 for samples C and
E may be reasonable, as their Fermi levels are located
outside the Dirac bands. Then the K-χ relationship over
samples C and E should constitute a universal nonorbital con-
tributions line, K = Kchem + Aspinχspin, neglecting the small
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temperature dependence of K and χ . The crossing point
between the nonorbital contributions line and the nonspin
line K = Kchem + Aorbχorb [red line in Fig. 4(a)] corresponds
to Kchem and the corresponding offset susceptibility χ0(=
χ–χspin–χorb). The nonorbital contributions line K = Kchem +
Aspinχspin with the assumption of Korb = 0 for samples C
and E can be roughly drawn as the black dashed line in
Fig. 4(a). This nonorbital line and the crossing point with
the nonspin line in Fig. 4(a) yields estimates of Aspin =
210 kOe/μB, Kchem = 0.055% (gray horizontal line), χ0 =
–8.1 × 10–5 emu/mol (gray vertical line), and Kspin ∼ 0.042%
and ∼ 0.102% for samples C and E, respectively (blue vertical
arrows). As shown in Fig. 4(b), the estimated Kspin (blue verti-
cal arrows) and Kchem (horizontal line) from Fig. 4(a) are fully
consistent with those estimated from the Korringa relation
with S∗ = 6.3S where Korb = 0 is also assumed. The χ0 ob-
tained above represents the core contribution to χ and agrees
well with the core susceptibility of –8.5 × 10–5 emu/mol
estimated from the atomic values in the literature [39],
which justifies the assumption of Korb = 0 as the first
approximation.

Using the Kchem and the χ0 consistently determined for
K-χ and K-(T1T )–1/2 in Figs. 4(a) and 4(b), a large dia-
magnetic orbital contribution in the Knight shift K and the
bulk magnetic susceptibility χ , Korb = –0.09% and χorb =
–5.4 × 10–5 emu/mol at 70 K and Korb = –0.06% and χorb =
–3.6 × 10–5 emu/mol at 300 K, are estimated for sample A.
These orbital contributions apparently dominate the distinct
diamagnetism in sample A of which Fermi level lies in the
Dirac bands. The distinct behavior of K and T1

–1 in sample
A was also observed in other two samples (see Fig. S1 [41]),
which confirms the reproducibility of our results.

The estimated Aorb ∼ 88 kOe/μB from the K-χ plot
implies the unconventional character of giant orbital diamag-
netism. Korb is normally driven by a van Vleck paramagnetic
susceptibility with Aorb = 2〈r–3〉 [51] determined by the dis-
tance r between the nuclei and the orbiting electrons. Aorb ∼
2000 kOe/μB is estimated for 6p orbitals of Pb [52], which
is one order of magnitude larger than the experimentally ob-
served Aorb ∼ 88 kOe/μB for the Dirac semimetal Sr3PbO.
The hybridization of Pb 6p Dirac holes with Sr 4d states and
other orbital states could reduce the calculated Aorb but not
an order of magnitude. The small Aorb ∼ 88 kOe/μB therefore
implies that the orbiting of spatially spread itinerant electrons,
not of those completely confined within the atomic orbitals, is
in charge of the observed large orbital diamagnetism. If Dirac
electrons were uniform free electron gas and not confined in
the atomic orbital at all, on the other hand, we would have
an estimate of Aorb < 1 kOe/μB [53], orders of magnitude
smaller than the experimentally observed Aorb ∼ 88 kOe/μB.
The drastic enhancement from the free electron estimate is
reasonable as the Dirac electrons in Sr3PbO are not com-
pletely free from the atomic orbital and hopping from one
atomic orbital to the others. These comparisons are fully
consistent with the theoretical picture of giant orbital dia-
magnetism based on the interband mixing of itinerant Dirac
electrons on the crystal lattice, which is distinct from the
conventional orbital magnetism of the Van Vleck type. The
hyperfine coupling from the orbiting of itinerant electrons has
not been understood on the microscopic level yet, which at
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FIG. 5. Theoretical calculation of magnetic susceptibility as a
function of the Fermi level EF for Sr3PbO antiperovskite. The Fermi
level EF dependence of magnetic susceptibility χ cal at 232 K (0.2 eV)
and 348 K (0.3 eV) (solid lines), calculated for tight-binding bands of
Sr3PbO by incorporating the interband effect. The diamagnetic con-
tributions from the core electrons χ0, which are temperature and hole
density independent constants, are not included in the calculation. To
compare with the experimental results, χ cal + χ0 should be used. A
large diamagnetism grows with approaching the Dirac mass gap. The
deconvoluted orbital contribution χ cal

orb at 232 and 348 K are shown
by the dashed lines. The experimentally determined EF for samples
A–E are indicated by the vertical dashed lines.

this point does not allow us a more quantitative estimate of
Aorb to compare with the experimental result.

F. Comparison with theoretical calculation

The hole-concentration p (hence Fermi level EF ) depen-
dence of the magnetic susceptibility χ (T ) in Fig. 2(f) and
the predominance of the orbital contribution in the enhanced
diamagnetism are reproduced by a theoretical calculation of
the magnetic susceptibility χ cal based on the expression in
Eqs. (3)–(6), which explicitly includes the interband effects.
Figure 5 indicates χ cal (solid lines) and its deconvoluted or-
bital component χ cal

orb (dashed lines) as a function of EF at
T = 232 K (0.2 eV) and 348 K (0.3 eV), calculated for the
tight-binding bands of Sr3PbO [27]. Note that the calculated
χ cal does not include the contribution from the core electrons
χ0, a p- and T-independent constant, and therefore represents
χ–χ0. An enhanced diamagnetism in χ cal shows up when EF

is in the Dirac band. Apparently, the orbital component χ cal
orb

dominates the enhanced diamagnetism. When EF lies below
the Dirac band regime, the calculated χ cal

orb is much smaller
than that in the Dirac band regime, which justifies the assump-
tion of Korb ∼ 0 for samples C and E. A small but appreciable
T dependence of χ cal is seen particularly in and near the Dirac
band regime in Fig. 5, which originates from the orbital con-
tribution χ cal

orb(T ) and changes sign from positive to negative
upon going away from the mass gap. This is consistent with
the increase and the decrease of experimental χorb(T ) and
χ (T ) with increasing T for sample A (EF = –45 meV) and
sample C (EF = –125meV), respectively. These qualitative
agreements between the theory and the experiment provide a
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further support for the validity of the above analysis of NMR
results.

Quantitatively, however, the calculation based on the tight-
binding model does not allow us to capture the details of
experimental results. χ cal for EF = –45 meV (corresponding
to sample A) shows an additional diamagnetic contribution of
∼ –2 × 10–4 emu/mol (essentially orbital in origin) as com-
pared to those for EF < –100 meV (samples B–E). This is
almost a factor of four larger than the experimental orbital
contribution χorb ∼ 0.5 × 10–4 emu/mol for sample A, which
is difficult to account for only by the strong EF dependence
of χ cal and the ambiguity in the estimate of EF . χ cal

orb and
χ cal appear to be overestimated within the framework of the
present calculation.

IV. CONCLUSION

In conclusion, our 207Pb NMR study of the 3D Dirac elec-
tron system Sr3PbO antiperovskite clearly revealed the orbital
origin of large diamagnetism observed in the bulk magnetic
susceptibility when its EF lies in the Dirac bands. This orbital
diamagnetism is distinct from the ordinary orbital magnetism
in that the orbiting electrons are not confined within the
atomic orbitals but hop between the atomic orbitals. These
observations are fully consistent with the microscopic picture

of giant orbital diamagnetism of Dirac electrons established
theoretically after the debates over decades and provide firm
experimental evidence of such. The calculated orbital suscep-
tibilities as a function of EF and T, based on the theories,
indeed reproduce qualitatively the experimentally isolated or-
bital contribution to the magnetic susceptibility. Our results
open up a fascinating possibility to further explore not only the
intraband effects but also the interband effects in topological
semimetals.
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