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Geometric entanglement in integer quantum Hall states
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We study the quantum entanglement structure of integer quantum Hall states via the reduced density matrix
of spatial subregions. In particular, we examine the eigenstates, spectrum, and entanglement entropy (EE) of the
density matrix for various ground and excited states, with or without mass anisotropy. We focus on an important
class of regions that contain sharp corners or cusps, leading to a geometric angle-dependent contribution to the
EE. We unravel surprising relations by comparing this corner term at different fillings. We further find that the
corner term, when properly normalized, has nearly the same angle dependence as numerous conformal field
theories (CFTs) in two spatial dimensions, which hints at a broader structure. In fact, the Hall corner term is
found to obey bounds that were previously obtained for CFTs. In addition, the low-lying entanglement spectrum
and the corresponding eigenfunctions reveal “excitations” localized near corners. Finally, we present an outlook
for fractional quantum Hall states.
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I. INTRODUCTION

Restricting observations to a spatial subregion of a quan-
tum system, such as as a cold two-dimensional electron gas
(2DEG), gives information about the entire system due to the
presence of entanglement. Rather than studying specific ob-
servables localized in the region, one can examine the reduced
density matrix, which is obtained by taking the full density
matrix and tracing out degrees of freedom outside the region
of interest. Due to the large amount of information stored
in that reduced density matrix, it is often advantageous to
study parts of it, such as subset of its eigenstates, spectrum
(called the entanglement spectrum), and more simply, the en-
tanglement entropy (EE). The latter is a positive number that,
heuristically speaking, quantifies how much entanglement ex-
ists between a region and its complement.1

The entanglement spectrum and EE have been par-
ticularly useful in revealing the topological properties of
two-dimensional (2D) quantum systems [1–5], such as quan-
tum Hall states. Indeed, the topological EE, which depends
on the topology of the subregion not its geometry, gives
insight about the anyons present in a topologically ordered
state. The shape or geometrical dependence of the reduced
density matrix also contains rich information about the sys-
tem. The geometrical aspects have been particularly studied
for the ground states of gapless quantum systems, such as
conformal field theories, through the EE [5–19]. In this work,
we analyze the geometrical properties of the reduced density
matrix for a particularly simple class of topological states,

1This is true at sufficiently low temperatures.

the integer quantum Hall (IQH) states. Although idealized
IQH wave functions represent noninteracting fermions, they
nevertheless possess a rich spatial entanglement structure. As
we shall show, certain entanglement properties of IQH states
closely resemble those of strongly interacting quantum critical
systems in two spatial dimensions.

A. Entanglement entropy in quantum Hall states

More precisely, the von Neumann EE of a subregion A in
a state described by a density matrix ρ is given by S(A) =
−TrA ρA ln ρA, where ρA is the reduced density matrix of A
obtained by tracing out degrees of freedom in the complement
Ac: ρA = TrAc ρ. In this work, we consider pure states ρ =
|ψ〉〈ψ |. The EE for a spatial bipartition of a quantum Hall
state described by a trial wave function at filling ν, an example
being the electronic Laughlin state at ν = 1

3 , should take the
general form

S(A) = c
LA

�B
− γtop − γgeo + · · · , (1)

where LA is the perimeter of subregion A, which we take
to be much larger than the magnetic length LA � �B, and
the ellipsis denotes terms that vanish at large LA/�B. The
first term is the area (or boundary) law that is generally
present for the low-energy states of local Hamiltonians with-
out a finite Fermi surface. Here, the magnetic length �B plays
the role of the microscopic (UV) length scale. In contrast,
in a lattice model this role would be played by the lattice
spacing, whereas a UV cutoff would appear in a continuum
quantum field theory. Let us now examine the subleading
corrections parametrized by γ , as these contain more useful
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information about the state. First, γtop � 0 is the universal
topological contribution arising from the topological order
associated with the gapped phase [1–5]. It detects the presence
of anyon excitations, and is thus absent at integer filling for
fermions. As its name suggests, γtop does not depend on the
geometry of subregion A. This term has been widely studied,
and can be obtained using topological quantum field theory
(TQFT). For example, for Laughlin states at frational fill-
ing ν = 1/m, with m odd, it is γtop = 1

2 ln m [1]. The next
term, γgeo, is a geometric contribution. For Laughlin states,
it is “universal” in the sense that, just as γtop, it does not
depend on �B or any other scale. It is a pure number that
only depends on the shape of subregion A and the state under
consideration.

An important class of shapes has corners or cusps, such as
a triangle or a square. The EE of such nonsmooth subregions
has been extensively studied in the ground states of gapless
Hamiltonians, such as conformal field theories [8,11–14,18–
24]. It was found that the subleading correction γ contains
a contribution diverging logarithmically with the perimeter∑

i a(θi ) ln(LA/ε), where ε is a short-distance cutoff. The
prefactor

∑
i a(θi ) depends on the geometry of A through

the angles of its corners θi. In a variety of states, it was
shown that the corner function a(θ ) captures key information
about long-distance physics of the quantum critical state, and
shows surprising universality. As a concrete example, when
the corner is nearly smooth θ ≈ π , the corner function yields
the stress tensor central charge CT of conformal field theo-
ries in two spatial dimensions [13,14,22]. This central charge
controls the two-point function of the stress tensor (thus of the
energy density), as well as the finite-frequency shear viscosity.

In ground states of gapped systems, like quantum Hall
states, the logarithmic divergence is cut off by the finite cor-
relation length. In that case, we expect that a polygon-shaped
region will yield the following subleading term, with i again
labeling the corners:

γgeo =
∑

i

a(θi ) (2)

that does not diverge with the size of region A, in contrast to
critical states. For trial wave functions such as the Laughlin
states, the corresponding corner function a(θ ) is a pure num-
ber independent of all scales. For the quantum critical states
described above, this pure number is multiplied by a logarithm
a(θ ) ln(LA/ε), which preserves the cutoff (ε) independence
of a(θ ). The function a(θ ) has been computed numerically
for the integer quantum Hall state at ν = 1 [25]. However,
the physical information encoded by this function remains
unknown, even in the simplest case at ν = 1. It has yet to be
computed at fractional fillings.

In this work, we revisit the calculation of a(θ ) at ν = 1
using analytical insights as well as high-precision numerics.
We also study the entire reduced density matrix ρA through
its Schmidt spectrum and eigenstates. We further extend our
calculations to the ground state at filling ν = 2, as well as to
the excited state at ν = 1 obtained by filling the first Landau
level and leaving the lowest Landau level (LLL) unoccupied.
When only the first LL is occupied (zeroth level empty), we
find surprising relations to the results for the ground state at
ν = 1, helping shed light on the physics encoded in the corner

FIG. 1. Comparison of corner functions (as functions of the
corner angle θ ) for various systems in two spatial dimensions, nor-
malized by the smooth-limit coefficient σ . The integer quantum
Hall ground states at fillings ν = 1, 2 are computed in this work.
The boson conformal field theory (CFT) corresponds to noninter-
acting massless relativistic bosons [16], which have the same corner
function as the large-N O(N ) Wilson-Fisher fixed point [23]. The
Dirac CFT is a theory of massless Dirac fermions [16], while the
holographic CFT corresponds to a strongly interacting supersymmet-
ric CFT described by the AdS/CFT correspondence. Data markers
correspond to lattice simulations (except for the holographic CFT
[20]), while continuous lines correspond to the ansatz (10), except
for the boson and Dirac CFT where a more precise ansatz is used
[16].

function. We push the comparison further by comparing the
corner function to the one obtained for various conformal field
theories in two spatial dimensions, including gapless Dirac
fermions. We find that the Hall corner function, when properly
normalized, has a surprisingly close shape dependence to the
conformal theories, as shown in Fig. 1. We also examine the
role of anisotropy on the EE, and show that it strongly af-
fects its shape dependence. Going beyond the EE, we analyze
the low-lying entanglement spectrum and the corresponding
eigenfunctions, which reveal “excitations” localized near cor-
ners. Finally, we study a different type of corner where two
tips touch at a point (“hourglass”), and we extract a universal
quantity via the mutual information.

The rest of the paper is organized as follows: Section II
describes how to obtain the reduced density matrix, entangle-
ment spectrum, and EE for IQH states. Section III contains
the results for these quantities for simple regions that contain
a corner. Section IV describes the effects of mass anisotropy
on the EE. Section V studies a new type of region where
two corners touch at a point. This geometry can be used to
to define a quantum mutual information that is independent
on the microscopic information of the IQH states. Finally,
in Sec. VI we summarize our main findings and present an
outlook for interacting systems, including fractional quantum
Hall states. Appendices A and B provide detailed information
regarding our numerical results.
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FIG. 2. The “arrow-shaped” subregion A and its complement in
an infinite cylinder of circumference Ly. A has two corners of angles
θ and 2π − θ . The arrows on the top and bottom of the drawn
rectangle indicate the equivalent points.

II. ENTANGLEMENT IN INTEGER QUANTUM HALL
STATES

The IQH system can be described by considering the fol-
lowing single-electron Hamiltonian in the Landau gauge:

H = p2
x

2me
+ (py + eBx)2

2me
, (3)

where me is the effective mass of the electrons. On a cylinder
of circumference Ly (shown in Fig. 2), the eigenstates of H are
the usual Landau level (LL) wave functions of energy En =
h̄ωc(n + 1

2 ):

φn,k (x, y) = dn eikyHn
(
x + k�2

B

)
exp

(
− (x + k�2

B)2

2�2
B

)
,

n = 0, 1, 2, . . . . (4)

The y periodicity leads to discrete wave vectors k = 2πm/Ly

with m ∈ Z. The key scale of the problem is the magnetic
length �B = √

h̄/eB, and the cyclotron frequency ωc = eB/me

gives the gap betwee LLs. Hn are Hermite polynomials, and
the normalization coefficient is dn = π−1/4/

√
2nn!�BLy. For

IQH states, the system’s wave function is obtained by entirely
filling one or more LLs with electrons of every y momentum
k. We will consider the ground states at ν = 1 and 2. We will
also study a special excited eigenstate at ν = 1 where every
electron is in the n = 1 LL, which we will call the first LL
excited state. In our analysis, we shall set �B = 1.

We want to study the reduced density matrix of these states
for various subregions A of the cylinder. In particular, we will
examine the entanglement spectrum, EE, and eigenstates of
the reduced density matrix ρA. Since we deal with noninteract-
ing electrons, we can use the method developed in [26]. The
eigenvalues of ρA can be computed from the eigenvalues of
the correlation function Cr,r′ = 〈c†

rcr′ 〉 restricted to subregion
A, where averages are computed in the state of the total system
A ∪ Ac. For our IQH states, it is possible to discretize this
eigenvalue problem, as shown in [25], by diagonalizing a
block matrix given by

F (n,n′ )
k,k′ (A) =

∫
A

d2r φn,k (r)φ∗
n′,k′ (r) , (5)

where for each pair of momenta {k, k′} one has a block cor-
responding to the occupied LLs. In the simplest case of the
IQH at ν = 1, the block is only a number. For the IQH at
ν = 2 we have a 2 × 2 block corresponding to n = 0, 1; the

(0,1) and (1,0) off-diagonal elements measure the overlap in
A between electrons in the LLL and the first LL. For nu-
merical computations to be possible, one needs to truncate
the infinite-dimensional F matrix. The natural way to do so
is to work with matrices with {k, k′} smaller than a certain
cutoff. This amounts to considering only states φn,k centered
not too far from the cut. Increasing the cutoff should then
lead to convergent results since far away electrons contribute
negligibly to the entanglement between A and Ac.

From the discussion above, we understand that the spec-
trum of the correlator C is of great importance. It is actually
directly related to the entanglement spectrum (ES) which is
defined as the spectrum of − ln ρA (up to a shift of the zero
of the spectrum). Indeed, we can first relate the ES to the
single-particle spectrum of the entanglement Hamiltonian HA

defined as ρA = 1
Z exp(−HA) [27], which in the case of free

fermions is a free-fermion quadratic Hamiltonian restricted
to subregion A: HA = ∑

r,r′∈A
hr,r′c†

rcr′ . The eigenvalues ε of h

(which we refer to as the spectrum of HA) can be obtained
from the eigenvalues of the correlation matrix by the relation
hT = ln ( 1−C

C ) [26]. In this work, we numerically compute
the eigenvalues λ of the correlation matrix C. The relation
between the two spectra is then given by the matrix relation
given just above or, equivalently, by λ = 1

1+eε = nF (ε), where
nF is the Fermi-Dirac distribution. We will from now on refer
to the single-particle spectrum of HA as the ES since one can
reconstruct the full spectrum of ρA from the eigenvalues of h.

III. CORNER ENTANGLEMENT

We are interested in computing the ES and various EEs
for IQH states (in which γtop vanishes), for domains A with
nonsmooth boundaries, and with a perimeter that far exceeds
the magnetic length LA/�B � 1. In contrast, for smooth re-
gions (where smoothness is defined relative to the scale �B)
the residual part of the EE γgeo vanishes [28,29], as can be
seen for a flat cut on the cylinder (see below). This makes
the corner geometry even more important for the states under
consideration. We will calculate the corner contributions to
the EE and ES of the arrow-shaped subregion of an infinite
cylinder of circumference Ly presented in Fig. 2, where the
smooth cut is obtained by setting θ = π . Note that due to the
periodicity in the y direction, A contains two corners of angles
θ and 2π − θ .

A. Entanglement spectrum

As can be seen in Fig. 3, the presence of corners results
in a deformation of the ES compared to that of a smooth
cut for the ν = 1 and filled first LL states. In the case of a
smooth cut, an analytical formula exists for the ES of the
ν = 1 state [28], and, in general, for all ES of filled nth LL
states. For a smooth cut in the y direction, the spectrum can
be expressed as a function of the y momentum k. At small k,
we can easily show that an even n (including n = 0) results
in a linear dispersion ε(k) ∝ k, whereas, for an odd n, we
have ε(k) ∝ k3. A sublinear dispersion was also previously
observed in the first LL excited state for smooth subregions
(using a spherical geometry instead of the cylinder) [30]. For
the simplest case of the ν = 1 IQH ground state (n = 0),
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(a) (b)

FIG. 3. Entanglement spectra. The continuous lines are the spectra associated to a smooth cut, while the discrete points correspond to
arrow-shaped domains of corner angle θ . Each spectrum associated to a nonsmooth cut is presented in increasing order, with integer spacing,
with the zero pseudoenergy point centered at the origin. In order to compare the smooth and nonsmooth results, the spectra associated to the
smooth cut are presented not as functions of y momentum k, but of kLy

2π
.

the linear dispersion matches the dispersion of a chiral mode
on a physical edge, in agreement with the connection be-
tween entanglement cuts and physical edges [4]. For the first
LL excited state (all fermions have n = 1 wave functions),
the dispersion is cubic at small k, and thus does not have
the expected dispersion for the corresponding physical edge
mode.

For the ν = 2 state, it is harder to determine the influence
of corners directly on the entanglement spectrum. The reason
is that in the smooth case, there are actually two eigenvalues
for each k, as shown in Fig. 4(a). A similar spectrum was
obtained on the sphere [30]. After computing the eigenvalues
numerically for the case of the “arrow-shaped” domain with
θ = π/2, we obtain couples of roughly the same value at low
pseudoenergy, which we guess would belong to deformations
of the two distinct smooth spectra. The degeneracy is broken
as the pseudoenergies move away from zero. This situation is
shown in Fig. 4(b).

B. Entanglement excitations

In addition to the eigenvalues of the correlator Cr,r′ , one
can study its eigenfunctions. Let us focus on the ν = 1
ground state for brevity. One can reconstruct a (continuous)
eigenfunction of C, for an eigenvalue λ, from the associ-
ated discrete eigenvector of the F matrix as follows [25]:
ψ (x, y) = ∑

k φ∗
0,k (x, y)Ak , with Ak the components of the

normalized eigenvector associated with the eigenvalue λ. We
find that the eigenfunctions associated with the low-lying part
of the eigenspectrum ε localize close to the entanglement cut,
as shown in Fig. 5. They decay exponentially fast at beyond
a few magnetic lengths of the cut, as expected. We observe
that the zero pseudoenergy eigenfunction has equal maxima at
both corners, as shown in Figs. 5(c) and 5(d). The further the
pseudoenergies ε are from zero, the further the eigenfunctions
are located from the cut. We observe a gradual disappearance
of one or the other maximum when transitioning from ε = 0
to |ε| > 0. For the computations, we used Ly = 25 and θ = π

2 .

(a) (b)

FIG. 4. Entanglement spectra in the ν = 2 ground state. Again, the spectrum associated to the nonsmooth cut is presented in increasing
order with integer spacing.
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FIG. 5. Eigenfunctions of the correlator C. The light gray region (dotted line for the contour plot) in each panel represents the entanglement
cut between A and Ac. The ε = 0 eigenfunction has zero pseudoenergy to machine precision.

Even though the eigenfunctions of C are defined only on A,
we have decided to show their extensions to the whole space
A ∪ Ac. Not surprisingly, if we had chosen the left side of the
cut as A, we would have found that the new eigenfunctions of
energy ε would be our old eigenfunction with energy −ε.

We mention that similar behavior was observed for the
eigenfunctions obtained in a geometry where the corner is
adjacent to a physical boundary [31].

C. von Neumann entanglement entropy

We can compute the von Neumann EE with the relation

S(A) =
∑

λ

[−λ ln(λ) − (1 − λ) ln(1 − λ)]. (6)

For pure states, since S(A) = S(Ac), the corner function has
reflection symmetry about θ = π : a(θ ) = a(2π − θ ). The
two corners of our arrow-shaped region thus contribute a(θ ) +
a(2π − θ ) = 2a(θ ). Also, the smooth limit gives a(π ) = 0
by definition since the corner is absent in this limit. We can
use this fact to determine the proportionality constant c of
the area law in Eq. (1) [28]. The corner function for the von
Neumann EE is then obtained for our arrow-shaped domain A
by subtracting the area law:

a(θ ) = −1

2
[S(A) − cLA], (7)

where the perimeter of A is LA = 2
√

�2
x + (Ly/2)2. Equation

(7) holds in the limit LA � 1 so that terms of O(1/LA) are
negligible. The required size of LA is discussed in Appendix B.

We show the high-precision numerical results for the corner
function in Fig. 6 for the ν = 1, 2 ground states and for the
filled first LL excited state. A subset of the ν = 1 data was
previously obtained (to a lower precision) in [25]. Some of
the numerical data used to produce this figure are presented in
Table II of Appendix A.

First, we observe that the three curves show the same small
and large angle behavior, which we will discuss in more detail
below. In addition, one may naively expect that the ν = 2
ground state would have a corner function that is the double

FIG. 6. Corner functions for our three IQH states as a function of
the opening angle θ . Each curve behaves as 1/θ at small angles, and
(θ − π )2 in the smooth limit.
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FIG. 7. Ratio of corner functions for the ground states at ν =
1, 2. It nearly equals the naively expected value 2, but is clearly below
it.

of the one at ν = 1. However, the situation is not as simple
since the n = 0 and 1 wave functions are not only distinct,
but also they are not orthogonal on subregion A, which leads
to off-diagonal elements in the correlation matrix F , Eq. (5).
Surprisingly, Fig. 7 shows that the ratio of the ν = 1, 2 corner
functions is almost constant and equal to 2, but is nevertheless
clearly below this naive value. In Fig. 6, we also see that
the first LL excited state has the largest corner function, even
exceeding the one at ν = 2. This is again due to the fact that
the contributions from different LLs are not additive.

In the limit of small angles, we observe the scaling

a(θ ) = κ

θ
+ . . . (8)

for all three states considered. This small-angle divergence is
also observed in CFTs [8,20]. For the ν = 1 state, we numeri-
cally obtain κ ≈ 0.276 by analyzing the behavior of θa(θ ) for
sufficiently small angles (θ ≈ 0.05). The κ coefficients for the
three states are given in Table I.

In the nearly smooth limit, we have

a(θ ) = σ (θ − π )2 + σ̃ (θ − π )4 + O[(θ − π )6] (9)

owing to the nonsingular nature of the θ → π limit, which
is in contrast to the pole obtained as θ → 0 [Eq. (8)]. Only
even powers appear due to the reflection symmetry mentioned
above, a(θ ) = a(2π − θ ). For the ν = 1 state, we obtain σ ≈
0.028 36 and σ̃ ≈ 0.0019. The values of σ for the two other
states under study are given in Table I. Those results were
obtained by fitting numerical values of a(θ )

(θ−π )2 for angles near
π (θ ≈ 3.05) to the expected quadratic behavior.

FIG. 8. Comparison between numerical values of the corner
function for the ν = 1 and 2 ground states to the ansatz made in
[13]. We see that the agreement between the numerical points and
the ansatz, represented by the dotted lines, is excellent. The inset
shows the ratio between the numerical corner function (interpolated)
and the ansatz.

It is interesting to note that a simple ansatz proposed in
[13] gives an approximate analytical formula for the corner
function, which is exact at both asymptotic limits:

a(θ ) 
 μ1
(π − θ )2

θ (2π − θ )
− μ2[1 + (π − θ ) cot θ ], (10)

where μ1 = 2π κ−3πσ
π2−6 and μ2 = 3

π
2κ−π3σ
π2−6 are determined by

the inputted smooth and sharp limit coefficients. It is inter-
esting to note that the function multiplied by μ2 appears in
the result for the particle variance for a pie-shaped region of
opening angle θ not only for the integer quantum Hall ground
state at ν = 1 [32], but also for a very large class of classical
and quantum states [33]. We note in passing that this ansatz
also works for the Rényi entropies, which will be studied in
the next subsection. From Fig. 8, we see that Eq. (10) works
very well for both fillings. By construction, the ratio between
the ansatz and the numerical data approaches unity at small
and large angles.

The leading constant σ in Eq. (9) is particularly important
as we can use it to define a normalized corner function:
a(θ )/σ . The normalized corner functions for the ν = 1, 2
ground states are shown in Fig. 1, where they are compared to
a variety of ground states of gapless two-dimensional systems
described by CFTs. We note that for CFTs, the corner function

TABLE I. Coefficients for the asymptotic behavior of aα (θ ) for Rényi indices α = 1, 2. Numerical values presented for σα are rounded,
and were stable up to their last digit. The same goes for values presented in Table II of Appendix A, and in the end of Sec. IV. The error on
numerical values of all κα is estimated at ±0.001.

α = 1 α = 2

ν = 1 Filled first LL ν = 2 ν = 1 Filled first LL ν = 2

σα 0.02836 0.06895 0.05603 0.02064 0.07614 0.04152
κα 0.276 0.727 0.542 0.192 0.627 0.387
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(a) (b)

(c)

FIG. 9. θaα (θ ) as a function of corner angle θ for the first five integer Rényi indices.

a(θ ) comes multiplied by a logarithm ln(LA/lUV) owing to
gapless nature of the state. This logarithm does not spoil the
universality of a(θ ) but only of the constant subleading term.
We observe that the normalized corner functions for these Hall
states are in fact bounded below by the one for the massless
Dirac fermion CFT, and upper bounded by the massless boson
CFT. In particular, this means that the Hall functions exceed
the lower bound that holds for all CFTs [18],

a(θ )/σ � 8 ln [1/ sin(θ/2)] (11)

although the Hall Hamiltonian has a priori nothing to do
with a CFT in two spatial dimensions. A stronger bound was
conjectured to hold for CFTs in [34]: a(θ )/σ is minimal for
a strongly coupled supersymmetric CFT that is holographi-
cally dual, via the AdS/CFT correspondence of string theory,
to Einstein gravity in one higher dimension. In Fig. 1, it
can indeed be seen that the ν = 1, 2 curves are above the
holographic one. These findings suggest that the conjectured
bound of [34] could extend to a much broader class of quan-
tum systems. In particular, the bound holds for the first LL
excited state (not shown in Fig. 1) since a(θ )/σ for that state
exceeds the normalized corner functions of both the ν = 1, 2
ground states.

For the Hall states under study, it would be of interest to
determine the physical meaning of σ . For CFTs, σ has in fact

a very simple interpretation [14,34]: σ = π2CT /24, where
CT is the stress-tensor “central charge.” In other words, CT

determines the two-point function of the stress tensor (a local
operator) in the ground state of the CFT, which includes the
autocorrelations of the energy density. It would be interesting
to see whether σ for the Hall systems also possesses an inter-
pretation in terms of local observables.

D. Rényi entropies

We now study the Rényi EE Sα (A) of our IQH states,
where α is the Rényi index. Sα (A) obeys the following large
perimeter expansion:

Sα (A) = cα

LA

�B
−

∑
i

aα (θi ) + O(�B/LA), (12)

where we have temporarily reinstated �B. We can then
extract the corner functions by the same method as
above except now EEs are connected to ESs by Sα (A) =

1
1−α

∑
λ

ln [λα + (1 − λ)α]. Figure 9 presents the corner func-

tions for the first few integer Rényi indices, for each of our
IQH states.

One property of the Rényi EE is that it is decreasing as a
function of α. We indeed numerically verified this to be true
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FIG. 10. Comparison of Rényi EE for indices α = 1, 2 for the
two ground states at fillings ν = 1, 2.

when considering our “arrow-shaped” domain with two cor-
ners for multiple angles, regardless of the fact that the corner
function is decreasing as a function of α for the ν = 1 and 2
states, or that it exhibits a more complicated behavior for the
filled first LL state. In fact, the decrease in the proportionality
constant of the boundary law that is the dominant term in
the studied regime where LA � 1. It is worth noting that the
nonmonotonously decreasing behavior of the corner function
of the excited first LL state is clearly distinct from what is
obtained for the ground states at ν = 1, 2, as well as for the
massless bosons and Dirac fermion CFTs [16].

The same small- and large-angle behavior as described in
Sec. III C is observed for the Rényi corner functions aα (θ ).
The various coefficients for the asymptotic behavior are, in
this case, denoted by κα and σα , and their numerical values
are presented in Table I for α = 2.

We find that for the IQH states, the EEs of different
Rényi indices do not factorize, i.e., cannot be written as
aα (θ ) = f (α)a1(θ ). Indeed, if this were the case, the ratio
a2(θ )/a1(θ ) = f (2) would be a constant for all θ , which, as
shown in Fig. 10, is not the case for ν = 1 and 2 states. Inter-
estingly, the observed values for the ratio a2/a1 are relatively
close to what one would obtain if the Rényi index dependence
factorized with f (α) = (1 + α−1)/2, which is reminiscent of
one-dimensional CFTs [35].

IV. ANISOTROPIC STATES

In this section, we will study the effects of anisotropy on
the EE. Specifically, we will break the rotational symmetry of
the quantum Hall system by choosing different masses along
the x and y directions, which results in the following single-
particle Hamiltonian:

H = p2
x

2mx
+ (py + eBx)2

2my
. (13)

Such mass anisotropy is relevant for the description of 2DEGs
with anisotropic band masses (such as AlAs or Si), uniaxial
stress, or a tilted magnetic field. A more detailed discussion
about this can be found in Ref. [36]. The anisotropic single-

FIG. 11. Boundary-law coefficient for a smooth cut in the y di-
rection of the anisotropic quantum Hall state at filling ν = 1 as a
function of mass ratio mx/my.

electron wave function in the LLL becomes

φ0,k = 1

π
1
4
√

�BLy

(
mx

my

)1
8

eiky exp

(
−

√
mx

my

(
x + k�2

B

)2

2�2
B

)
.

(14)

In the presence of anisotropy, the LL energy spectrum
becomes En = h̄ω̃c(n + 1

2 ), with the modified cyclotron fre-
quency ω̃c = eB√

mxmy
. For a smooth cut in the y direction, we

verify the boundary law of the von Neumann EE and obtain
the proportionality constant cy (y to indicate a smooth cut
along the y direction) for different mass ratios mx/my. As
shown in Fig. 11, cy approaches 0 as the mass ratio mx/my

tends to infinity, which is a consequence of the fact that
electrons become more localized along the x direction [see
Eq. (14)]. The opposite phenomenon occurs at small mass
ratio.

For our arrow-head geometry, the breaking of rotational
symmetry modifies the boundary law as follows:

2c
√

�2
x + (Ly/2)2 → 2

√
(cx�x )2 + (cyLy/2)2, (15)

where cx is the boundary-law constant that would be obtained
for a flat cut parallel to the x axis. By symmetry, cx at a given
mass ratio is given by cy with the ratio inverted cx(mx/my) =
cy(my/mx ). We note that cx = cy only if the masses are equal.
The corner contributions also inherit such a dependence on
orientation. In the presence of mass anisotropy, we denote the
corner function a(θ, û), where û is the unit vector parallel to
the bisector of the corner θ pointing inwards of subregion A.
By assuming that the contribution of a corner is unchanged
by a reflection of this corner along the x and/or y axis, which
seems reasonable considering the symmetries of the system,
we should still be able to extract the contribution of a corner
with bisector oriented along the x axis a(θ, x̂) from the same
arrow-shaped region of Fig. 2 used until now. We can then
study the dependence on the mass ratio mx/my of a corner
of this particular orientation, which is what is presented in
Fig. 12(a) for the ν = 1 state. From Fig. 12(b), we see that
the corner function for a given opening angle grows with the
mass ratio mx/my. This growth leads to a decrease of the total
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(a) (b)

FIG. 12. Mass ratio mx/my effect on the corner function, for corner with bisector along the x axis, in the anisotropic quantum Hall state of
filling ν = 1 for the arrow-shaped domain.

EE since the corner contribution appears with a negative sign
−∑

i a(θi, ûi ).
Finally, we observe a peculiar behavior of the orienta-

tion dependence of the corner function. By computing the
EE for a simple square with edges parallel to the x and y
axes (see Fig. 13), we observe no dependence of the cor-
ner function on the mass ratio, so that the corner function
(tested for mass ratios mx/my ∈ {2, 5, 50}) corresponds to
that for a unit mass ratio to at least eight significant digits:
a( π

2 , 1√
2
(x̂ + ŷ)) = 0.085 498 696. We also find by consider-

ing a rotated square with angle bisectors oriented along the x
and y axes (see Fig. 13), that the corner contribution a( π

2 , ŷ)
is that of a corner whose bisector is oriented along the x
axis a( π

2 , x̂) but with an inverted mass ratio, consistent with
the π/4 rotational symmetry. For example, we can extract
from a calculation with the arrow-shaped domain that the
contribution of a corner whose bisector is oriented along the x
axis that for a mass ratio mx/my = 1

2 , a( π
2 , x̂) = 0.048 184 8.

This way, when considering our tilted square, we should

have a( π
2 , ŷ) = − 1

2 (S − 2 cos π
4

√
c2

x + c2
yLy − 2a( π

2 , x̂)), i.e.,

the contribution from each corner with bisectors along the y
axis. This gives a( π

2 , ŷ) = 0.143 702, which is (to at least six
significant digits) a( π

2 , x̂) for a mass ratio mx/my = 2.

V. TIP-TOUCHING CORNERS

Until now, we have studied geometries for which the corner
contribution to the EE is additive [see Eq. (2)]. One instance

FIG. 13. Square subregions A and their complement on an infi-
nite cylinder of circumference Ly: the black square is aligned with the
x and y axes, while the blue one is rotated by π/4. In the presence of
mass anisotropy, they give different entanglement entropies.

where this additivity fails is when two or more corners touch
at their tip. As an example, consider the von Neumann EE in
the ν = 1 state for the “hourglass” geometry in Fig. 14. We
find that γ �= 4a(π/2), but that the contribution from the two
touching corners (the other two are simply the bulk corners
studied above), which we denote by a×(π/2), is

a×(π/2) = γ − 2a(π/2) = 0.379 024 > 2a(π/2), (16)

where 2a(π/2) = 0.170 997. In fact, a×(π/2) is close (but
not equal) to four times the π/2 contribution 4a(π/2). This
clearly shows the failure of the additivity for touching cor-
ners. We have also obtained the result for the second Rényi
entropy α = 2: a×,2(π/2) = γ2 − 2a2(π/2) = 0.232 144 >

2a2(π/2).
For this geometry, it is of interest to compute the mutual

information I (A1, A2) = S(A1) + S(A2) − S(A1 ∪ A2), where
A1,2 are two subregions. Here, we take A1 to be the top part
of the hourglass, and A2 the bottom part. We can make a
simplification by ignoring what happens far from the point
where the two corners meet. This could be achieved by work-
ing with an infinite hourglass embedded in the plane, or by
making the vertical extent of the hourglass smaller than Ly

and smoothing out the bulk corners so that the hourglass is
the only singularity. In that case, we get the following mutual
information:

I (A1, A2) = a×(π/2) − 2a(π/2) = 0.208 027. (17)

FIG. 14. “Hourglass” subregion A and its complement on an
infinite cylinder of circumference Ly. Note that A contains four π/2
corners, two of which touch at their vertex.

115115-9



BENOIT SIROIS et al. PHYSICAL REVIEW B 103, 115115 (2021)

The boundary-law part canceled out, and we are left with
an expression independent of all scales. Further, by the sub-
additivity of the EE, we have that the mutual information
is non-negative so that a×(π/2) � 2a(π/2). Our numerical
result is clearly consistent with this constraint.

VI. CONCLUSION

We have studied the properties of the reduced density ma-
trix for various regions with sharp corners in three IQH states:
two ground states at fillings ν = 1, 2 and one excited state
with the first LL entirely full (and the zeroth and other LLs
empty). We have studied the nontrivial angle dependence of
the EE (and its Rényi generalizations), which is encapsulated
by the corner function a(θ ). This function is independent of
all scales, including the magnetic length �B. Most strikingly,
we found that the Hall corner function, when properly normal-
ized, has a surprisingly close angle dependence to the corner
function found in two-dimensional CFTs, as shown in Fig. 1.
This superuniversality of the EE hints at common structures
in very different quantum many-body states. In particular, as
we discussed in Sec. III C, the Hall corner terms obey bounds
that hold for CFTs. It would be desirable to understand the
reason for these common properties. In this regard, quantum
information-theoretic concepts could reveal general properties
about the entanglement structure of a large class of quantum
many-body states.

We also examined the role of mass anisotropy on the EE,
and showed that it strongly affects the shape dependence of
the EE. We studied a different type of corner where two tips
touch at a point (hourglass), and we were able to extract a
universal quantity via the mutual information.

Going beyond the EE, we studied the entanglement spec-
trum, as well as the eigenfunctions of the reduced density
matrix. In particular, we described how the eigenfunctions
associated with low pseudoenergy eigenstates localize near
sharp corners. The behavior of the entanglement spectrum
also shows clear differences between the ground and excited
states.

Outlook

In this work, we have shown that IQH states provide a rich
playground to study the entanglement structure of quantum
states. The states we have studied are particularly simple,
but nevertheless share common properties with much more
complicated states such as the ground states of interacting
two-dimensional CFTs. It would be of interest to study the
same quantities in more intricate topological states, such as
the Laughlin FQH states. For instance, it would be desirable
to obtain the corner function a(θ ) for such FQH states, and
compare its angle dependence with that of IQH states, and
two-dimensional CFTs. This is a challenging task owing to the
non-Gaussian nature of FQH states, but one could make use of
the recent advances in representing trial wave functions using
matrix product states (MPS) [37,38]. In particular, the MPS
representation works for the infinite cylinder geometry used
in this work. Apart from the numerical analysis, analytical
results could be obtained, in particular in the nearly smooth

limit θ ≈ π , where analytical results already exist for general
CFTs [13,14].

In the context of two-dimensional CFTs, it was recently
realized that the EE of a region that intersects a physical
edge of the system has a relation to the EE of a bulk region
obtained by taking the union of the initial region and its mirror
image about the edge [39]. This relation was shown to hold
approximately for the IQH ground state at ν = 1 for a large
range of intersection angles, and exactly for a specific angle
[31]. It would be desirable to study this relation in the other
IQH states studied in this work, as well as in FQH states.
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APPENDIX A: NUMERICAL VALUES

We give the numerically calculated corner function aα (θ )
in Table II, where α is the Rényi index. According to our
analysis, described in detail in Appendix B, all the quoted
digits are numerically stable.

APPENDIX B: PRECISION

The EE results from the diagonalization of the infinite-
dimensional matrix F (A). To perform numerical computa-
tions, we had to truncate this matrix by ignoring terms related
to electrons located further from the entanglement cut. These
electrons contribute less to the EE, and are associated with
high absolute value of the momentum k. In addition to the
size of the matrix, it was necessary to consider, for every
computation, a sufficiently large value for the circumference
of the cylinder Ly. Indeed, we needed to consider a cylinder
that is big enough for the area law to hold. The method
implemented to ensure the convergence of the corner function
of the von Neumann EE S(A) for any of the three states is the
following. Concretely, for a desired precision ∼δ on a value
of the corner function a(θ ) (for a given angle θ ), we first need
to fix Ly and compute the EE from a matrix whose dimension
N increases until it is stable at a precision of ∼2δ [2 for the
number of corners in our region, this way the precision on
the (possibly erroneous) corner function extracted from this
EE is ∼δ]. Then, we redo this step for a significantly larger
Ly. From these two EEs, the value of the corner function
is calculated and compared to determine whether we have
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TABLE II. Numerical values of aα (θ ).

α = 1 α = 2

θ (deg) ν = 1 Filled first LL ν = 2 ν = 1 Filled first LL ν = 2

5 3.15235 8.29181 6.19120 2.19050 7.17506 4.41980
10 1.56134 4.09623 3.06824 1.08834 3.57006 2.19540
15 1.02634 2.68343 2.01796 0.717969 2.36081 1.44788
25 0.591423 1.53394 1.16366 0.416631 1.38026 0.839960
35 0.399602 1.02778 0.786566 0.283233 0.947825 0.570982
45 0.289663 0.739082 0.570368 0.206366 0.698379 0.415970
55 0.217535 0.550975 0.428509 0.155638 0.532717 0.313651
65 0.166224 0.418217 0.327573 0.119344 0.412985 0.240445
75 0.127776 0.319567 0.251913 0.0920046 0.321673 0.185314
85 0.0979695 0.243721 0.193228 0.0707108 0.249586 0.142389
90 0.0854987 0.212181 0.168664 0.0617735 0.219010 0.124377
95 0.0743545 0.184105 0.146707 0.0537720 0.191448 0.108255
105 0.0554144 0.136645 0.109373 0.0401398 0.144027 0.0807942
115 0.0401632 0.0986867 0.0792945 0.0291311 0.105244 0.0586257
125 0.0279366 0.0684378 0.0551689 0.0202846 0.0737173 0.0408167
135 0.0182760 0.0446606 0.0360985 0.0132814 0.0485057 0.0267218
145 0.0108613 0.0264893 0.0214566 0.00789824 0.0289604 0.0158896
155 0.00547020 0.0133214 0.0108077 0.00397976 0.0146362 0.00800594
165 0.00195267 0.00475064 0.00385825 0.00142108 0.00523667 0.00285860
170 0.000865582 0.00210523 0.00171033 0.000629997 0.00232299 0.00126727
175 0.000216057 0.000525388 0.000426921 0.000157262 0.000580090 0.000316338

reached a sufficient Ly for the area-law (1) to hold. These
two steps are then repeated until the precision on the corner
function reaches ∼δ. We note that the minimum dimension N
for the EE convergence seems directly proportional to Ly and
Fig. 15 shows the transition to the boundary-law regime for
the von Neumann EE S(A) as a function of Ly, for multiple
arrow-shaped subregions A of angles θ .

Figure 16 shows an example of the minimal dimension N
of F (A) with a fixed Ly (big enough for the area-law regime)
when θ is far from the limits θ → 0 and θ → π , for the ν = 1

FIG. 15. Von Neumann EE as a function of cylinder circumfer-
ence Ly for the ν = 1 ground state. We note the transition to the
boundary-law regime for every arrow-shaped region of angles θ . At
large Ly, we recover the boundary law S(A) = c LA

�B
− 2a(θ ) + · · · =

c csc ( θ

2 ) Ly

�B
− 2a(θ ) + · · · .

state. As we can see, the minimal dimension of the matrix
seems to be directly proportional to �x.

For reference, in calculating the corner function for the von
Neumann EE at a precision of 10−10, Ly

�B
� 30 was more than

enough for all angles for the ν = 1 state. For the ν = 2 state,
the required length was also Ly

�B
� 30 and for the first filled LL,

Ly

�B
� 35. Also, generally, smaller angles do not require as a

big a minimal length: for the ν = 1 state, Ly

�B
� 15 was enough

for θ = 30◦, whereas θ = 90◦ and 175◦ required Ly

�B
� 25.

FIG. 16. Minimal dimension N of F (A) [so that we consider k of
quantum number m ∈ [−N/2 + 1, N/2] in F (A)] as a function of �x ,
for a stable a(θ ) for the LLL state with a precision 10−8 and where
Ly = 30.
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By and large, the results obtained for smaller angles have
many more significant digits of precision, but require more
computing power, as a bigger matrix is necessary to com-
pletely “define” the cut which is spatially larger than in the
smooth limit. This is why we were not able to compute the
corner function for very small angles (θ � 0.035). The results
close to a smooth cut are much less precise. Indeed, the corner
functions are small in that limit, quite close to machine preci-

sion. All computations in the large-angle limit were, however,
much less demanding.

The precision of the constants for the asymptotic behavior
near π was limited by the fitting of the ratio of two very small
functions [a (θ → π ) and (θ − π )2], whereas the precision
of constants for the asymptotic behavior at small angle was
limited by the fact that we were not able to get data for the
corner functions at very small angles.
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