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A number of moiré graphene systems have nearly flat topological bands where electron motion is strongly
correlated. Though microscopically these systems are only quasiperiodic, they can typically be treated as
translation invariant to an excellent approximation. Here we reconsider this question for magic angle twisted
bilayer graphene that is nearly aligned with a hexagonal boron nitride (hBN) substrate. We carefully study the
effect of the periodic potential induced by hBN on the low energy physics. The combination of this potential and
the moiré lattice produced by the twisted graphene generates a quasiperiodic term that depends on the alignment
angle between hBN and the moiré graphene. We find that the alignment angle has a significant impact on both
the band gap near charge neutrality and the behavior of electrical transport. We also introduce and study toy
models to illustrate how a quasiperiodic potential can give rise to localization and change in transport properties
of topological bands.
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I. INTRODUCTION

Following the discovery of correlated insulators and su-
perconductivity in magic angle twisted bilayer graphene
(MATBG) in 2018 [1,2] a tremendous amount of attention
has been lavished on moiré materials. Other moiré systems
displaying correlated electron physics include ABC trilayer
graphene (TLG/hBN) nearly aligned with a hexagonal boron-
nitride (hBN) substrate [3], twisted double bilayer graphene
[4], twisted monolayer-bilayer graphene [5], and twisted tran-
sition metal dichalcogenides [6]. Our interest in this paper is
on MATBG that is further nearly aligned with a hBN substrate
(MATBG/hBN) [7,8] which alters the observed phenomena.

In MATBG/hBN Ref. [7] discovered ferromagnetism and
an associated large anomalous Hall effect at 3/4 filling of
the conduction band. Subsequently Ref. [8] studied devices
of MATBG/hBN which not only showed emergent ferromag-
netism at 3/4 conduction band filling but also observed a
quantized anomalous Hall effect with σxy = e2

h . Theoretically
the near alignment with the hBN breaks the C2 symmetry of
180 degree rotation within the graphene plane and opens up
a gap between the valence and conduction bands which—in
the absence of alignment—touch at Dirac points. The result-
ing bands within a single valley were found [9,10] to have
Chern number ±1 (with opposite valleys having opposite
Chern number). As discussed in Ref. [11] such nearly flat
± Chern bands are, in fact, common to a number of moiré
graphene materials. Upon including electron-electron interac-
tions, Ref. [11] also proposed these systems to be excellent
platforms to show a quantum anomalous Hall effect at total
(i.e., including spin and valley) odd integer filling. These
ideas were developed further in the specific context [9,10]
of MATBG/hBN and in ABC TLG/hBN which too displays
emergent ferromagnetism and a quantum anomalous Hall
effect [3].

In this paper we revisit the theory of single particle states
of MATBG/hBN. The presence of hBN layer has two effects
on the nearby graphene. One is that hBN induces a constant
sublattice potential difference, which is studied in detail in
Refs. [9,10]. The other is that it induces a second periodic
moiré potential which may or may not be commensurate with
the original moiré potential of the TBLG system, which is
considered in recent studies [12–14]. The previous theoret-
ical work [9,10] ignored the moiré potential introduced by
the near alignment with the hBN, mostly for simplicity but
also on the grounds that its estimated strength is smaller
than the TBLG moiré potential. In the present paper we go
beyond this approximation and carefully include both moiré
potentials. We first determine the conditions—which we dub
“perfect alignment”—under which the two moiré potentials
are commensurate. This concept of perfect alignment is dis-
tinct from the naive expectation that the perfect situation is
when the twist angle between one graphene layer and hBN
is zero. When the perfect alignment condition is satisfied,
translation invariance is preserved and we can define a crystal
momentum and a (reduced) Brillouin zone. Away from perfect
alignment, the two moiré potentials are incommensurate, and
translational symmetry is completely broken [15]. The low
energy physics can be modeled by introducing a quasiperiodic
potential to topological bands (in the case of TBLG/hBN,
Chern bands with opposite Chern numbers).

Electronic systems with a quasiperiodic potential (QP)
have been studied extensively in 1D. (See Ref. [16] for a
detailed review.) In the 1D Audry-André model, there is a
localization transition with the increase of quasiperiodic po-
tential strength [17]. In higher than 1D, an intermediate phase
with eigenstates delocalized in both real space and momentum
space can exist between an extended phase and a localized
phase [18]. The generic existence of such an intermediate
phase in a 2D system with quasiperiodic potential has not been
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settled yet, but it is not our focus in this paper. There also have
been studies of semimetals subjected to QP, where interesting
semimetal-to-metal phase transition and subdiffusive trans-
port are found [19–21]. Here we are particularly interested
in the effect of a quasiperiodic potential on topological bands
[22]. In momentum space, a nonvanishing Chern number can
impose nontrivial phase structure on the wave function, which
may change the localization properties when a quasiperiodic
potential is added to the system compared to trivial bands.

In the case of perfect alignment, there is a clean separa-
tion between valence and conduction bands. Then if—due
to interactions—the system is valley and spin polarized at
total odd integer filling νT , electrons will completely fill a
Chern band, and there will be a quantum anomalous Hall ef-
fect. Away from perfect alignment, the quasiperiodic potential
induces in-gap states—which are not real-space localized—
between the valence and conduction bands. Then we show
by explicit calculation that even with full valley and spin
polarization at odd integer νT , there is no quantization of the
anomalous Hall conductivity. Thus observation of a quantum
anomalous Hall effect at such fillings is aided by studying
devices that are tuned close to perfect alignment. We show,
however, that strain can be used to tune the alignment condi-
tion, thereby enabling engineering flat well-separated Chern
bands in TBLG/hBN devices.

Though we do not address many body effects in this paper,
we note that the presence of in-gap states is likely to hinder the
development of valley/spin polarization in the first place. This
is because they can roughly be thought of as increasing the
bandwidth of the active valence or conduction band, thereby
reducing the ability of interactions to induce ferromagnetism.
Thus it is desirable to stay close to perfect alignment. Indeed
the two devices studied in Refs. [7,8] are nearly perfectly
aligned. This condition may be a more stringent requirement
for the fractional quantum anomalous Hall states proposed
[23–25] for TBLG/hBN.

The periodic modulation induced by the hBN layer is rele-
vant only if the hBN layer is nearly aligned with TBLG since
the moiré lattice constants of the superlattices generated by
hBN and TBLG are of the same order as the moiré lattice
constant of TBLG. For hBN misaligned with TBLG, due to
the lattice mismatch, there is no longer any periodic moiré
potential induced by hBN so the QP physics are irrelevant in
those systems.

In recent years, Anderson localization and many-body lo-
calization in the presence of QP have been investigated in cold
atom experiments [26–29]. The interplay between quasiperi-
odicity and interaction near critical points in quantum Ising
and related spin models has been the subject of several studies:
see, e.g., Refs. [30–35] for some representative papers. It is
seen that the presence of QP can lead to new interacting criti-
cal phases which are different from that found with quenched
disorder [35]. The specific moiré graphene system we study
here provides an experimental context where strongly inter-
acting quantum phases/phase transitions in the presence of
quasiperiodicity may be explored.

The rest of the paper is organized as follows. In Sec. II,
we explain how the alignment to hBN induces another moiré
pattern on top of the original moiré pattern of TBLG system.

FIG. 1. (a) Case 1, θBN > 0 and θG > 0. (b) Case 2, θBN < 0 and
θG > 0. The angles are exaggerated for illustration purpose.

We further study two scenarios in Sec. III and in Sec. IV. One
is that the two moiré patterns overlap and the other is that they
are incommensurate. In Sec. V, we propose a toy model to
address the question of the effect of a quasiperiodic potential
on a topological band.

II. TWO MOIRÉ PATTERNS IN hBN/TBLG SYSTEM

Let us consider TBLG with the top graphene layer nearly
aligned with hBN. There are two moiré patterns, one formed
by the TBLG, the other formed by the top graphene layer
and hBN layer. The difference between the two moiré re-
ciprocal lattice vectors is in general not small compared to
the reciprocal vectors themselves. Thus, strictly speaking, it
is not a valid approximation to define a mini BZ. Let us
first write down the reciprocal vectors explicitly. The recip-
rocal lattice vectors of the top graphene sheet are �Gt,1 =

4π√
3aG

(0, 1) and �Gt,2 = R2π/3 �Gt,1, where aG is the lattice con-
stant of graphene and R2π/3 denotes counterclockwise rotation
by 2π/3. Assuming the bottom graphene layer rotates coun-
terclockwise by an angle θG � 1, that gives �Gb,1 = RθG

�Gt,1.
The TBLG moiré pattern is determined by the two reciprocal
lattice vectors, �G1 = �Gt,1 − �Gb,1 = 4π√

3aG
(sin θG, 1 − cos θG)

and �G2 = R2π/3 �G1. Now adding hBN on top, assuming the
hBN layer rotates by an angle θBN � 1 with respect to the
top layer of TBLG, there is a second moiré pattern, which
is generated by the lattice mismatch of the hBN layer and
the top graphene layer. For the reciprocal lattice vectors for
this second moiré pattern, we write �Q1 = �Gt,1 − �GBN,1 =
( 4π√

3aBN
sin θBN, 4π√

3aBN
cos θBN − 4π√

3aG
), �Q2 = R2π/3 �Q1, where

aBN is the lattice constant of hBN.
For the special combination of θBN and θG, the two moiré

patterns can be commensurate. For simplicity, we only con-
sider the case where these two patterns overlap, which we call
“perfect” alignment. This means that the lattice generated by
�G1,2 is the same as the lattice generated by �Q1,2, which can
be satisfied as long as | �G1| = | �Q1|, and the angle between �Q1

and �G1 is nπ/3, where n is an integer. These two conditions
can be satisfied when either θG and θBN have the same sign or
have the opposite sign. See Fig. 1 for illustration.

For case 1, θBN > 0 and θG > 0. The angle between �G1 and
�Q1 is π/3. For case 2, θBN < 0 and θG > 0. The angle between
�G1 and �Q1 is 2π/3. We only consider aBN > aG. Using the law
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FIG. 2. (a) Dependence of |θBN| and |θG| on the change of the
ratio aG/aBN for satisfying perfect alignment conditions. �(aG/aBN)
denotes the change of aG/aBN from aG/aBN = 2.46/2.504. (b) The
points on blue and orange lines are |θBN| and |θG| taken from (a). The
blue and orange dots are data from two experimental samples from
the Stanford group [7] and the UCSB group [8].

of sines one can get

cot |θBN| =
(

2 sin

(
θG

2

)
sin

(
∓ θG

2
+ π

6

))−1

− cot

(
∓ θG

2
+ π

6

)

aG

aBN
= 2 sin

(
θG
2

)
sin

(∓ θG
2 + π

6

)
sin |θBN| , (1)

where we take “−” for case 1 and “+” for case 2.
From the perfect alignment conditions Eq. (1), there are

two free parameters in aG, aBN, θG, and θBN. If one fixes aBN

to be 2.504 Å and aG to be 2.46 Å, the corresponding θG,BN

are θG ≈ 1.16◦, θBN ≈ 0.58◦ for case 1 and θG ≈ 1.17◦, θBN ≈
−0.61◦ for case 2. If the graphene sheets are under strain, aG

can be slightly changed. From Fig. 2, we find that θBN and
θG are highly sensitive to the lattice constants and θG can be
tuned to magic angle with 0.2% changed to aG/aBN. We also
plot the experimental value of θG and θBN [7,8] in Fig. 2(b)
and compare them to the perfect alignment case. Note that the
sample studied in Ref. [8] is closer to the perfect alignment.
This provides an explanation to the better quantization of Hall
conductivity in Ref. [8] than in Ref. [7]. Next, we continue

to discuss the two kinds of perfect alignments in details in
Sec. III.

III. PERFECT ALIGNMENT

As an idealized limit, in this section, we consider perfect
alignment between hBN and TBLG. We can still define a mini
Brillouin zone, and momentum is a good quantum number
in this limit. In the previous experiments [7,8], the TBLG
is sandwiched between two hBN layers and only one hBN
layer is closely aligned with the TBLG, assuming it is the
top layer of the two hBN layers for simplicity. Thus, to make
contact with the setups in these experiments, we ignore the
hopping between the hBN layer and the bottom layer of the
TBLG system in the rest of our discussion. Hopping between
the hBN and top layer of TBLG induces two kinds of terms
in momentum space of the graphene. One is hopping terms
between �k and �k + �Qi’s, where �Qi’s are the reciprocal vectors
of the moiré pattern generated by the hBN and top graphene
layer. The other one is a constant AB sublattice potential
due to the lattice relaxation in hBN and in graphene and
electron-electron interaction (if the lattice is rigid, the sub-
lattice potential vanishes due to the lattice mismatch between
hBN and graphene) [36]. In momentum space, the Hamilto-
nian of the hBN and TBLG system for one valley and one
spin can be written as

H = HTBLG + HV, (2)

where HV contains two terms,

HV =
∑

�k
f †
�k mzσz f�k +

∑
�k,i

( f †
�k V ( �Qi ) f�k+ �Qi

+ H.c.), (3)

where f�k = ( f�k,A, f�k,B)T denotes the electron annihilation op-
erators for sublattice A and B. σz acts on sublattice degrees
of freedom. Index i = 1, . . . , 6 labels different reciprocal vec-
tors. �Q1 is defined in Sec. II and all the other �Qi’s are generated
by performing C6 rotation of �Q1 consecutively.

V ( �Qi )’s can be parametrized in the following way [37],

V ( �Qi ) =
(

H0( �Qi ) + Hz( �Qi ) HAB( �Qi )

HBA( �Qi ) H0( �Qi ) − Hz( �Qi )

)
, (4)

where H0,z( �Q1) = H0,z( �Q3) = H0,z( �Q5) =C0,zeiφ0,z , H0,z( �Q2) =
H0,z( �Q4) = H0,z( �Q6) =C0,ze−iφ0,z and HAB( �Q1) = H∗

AB( �Q4) =
CABei( 2π

3 −φAB ), HAB( �Q3) = H∗
AB( �Q2) = CABe−iφAB , HAB( �Q5) =

H∗
AB( �Q6) = CABei(− 2π

3 −φAB ). HBA( �Q) = H∗
AB(− �Q) from

Hermiticity.
From ab initio study [37], at θBN = 0◦, taking the lattice re-

laxation into account, the parameters for the periodic terms are
C0 = −9.07, φ0 = 97.99◦, Cz = −5.64, φz = −3.66◦, CAB =
7.34, φAB = 24.53◦. All C’s are in units of meV. We take mz =
15 meV in the numerics. In our cases, θBN is not always zero,
but we adopt the above set of parameters, assuming that the
slight change will not alter the low energy physics. Compared
to the pure TBLG system, the alignment of hBN layer can in
principle open up a gap at KM points in the mini BZ due to the
breaking of C2T symmetry induced by hBN [38–40].

We plot the dispersion relation of the valence and con-
duction bands near charge neutrality at θG = 1.2◦ in Fig. 3
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FIG. 3. Dispersion for (a) Case 1 and (b) Case 2. θG = 1.2◦.

along a path in the mini BZ for both case 1 and case 2. The
contribution to the gap of the momentum dependent terms
V ( �Qi )’s depends strongly on how hBN is aligned with TBLG.

Further calculation shows that in case 1, the two bands near
charge neutrality have Chern number ±1, while in case 2, the
Chern numbers get reversed. The distribution of Berry curva-
ture of valence band for various cases is plotted in Fig. 4. For
θG = 1.15◦, we get the same Chern numbers for case 1 and
case 2. The distribution of Berry curvature is also similar to
θG = 1.2◦ (see Appendix A). From the numerical calculation,
we demonstrate that the alignment with hBN has a significant
effect on the low energy physics of the TBLG system. In
particular, the periodic potential induced by hBN cannot be
ignored.

IV. INCOMMENSURATE ALIGNMENT

In general, the alignment between hBN and TBLG is not
commensurate. The periodic potential term V ( �Qi ) induces
a quasiperiodic potential relative to the TBLG superlattice.
The spectrum of the TBLG will get broadened, but since the
coupling strength between hBN and graphene is much smaller
than the band gaps from the flat bands to the other bands in
the TBLG system, we can ignore the other bands and only
consider an effective description for the flat bands.

The extra hBN layer breaks the C2T symmetry of the
TBLG system such that there is no obstruction of constructing
localized Wannier orbitals using the two bands near charge
neutrality in one valley. The low energy effective tight-binding
model is obtained in two steps. First, take the mz term in HV

together with HTBLG and construct localized Wannier orbitals
for the two bands in one valley. Second, project the V ( �Qi )
terms to the active bands and transform to Wannier basis.

We use the projection method to obtain Wannier functions
[41]. The relationship between Bloch function and Wannier
function can be written as

φ
†
n,�x0

= 1√
N

∑
�k,m

e−i�k·�x0ψ
†
m,�k (U�k )mn, (5)

where φ
†
n,�x0

is the creation operator for the Wannier orbital

labeled by n at position �x0, ψ
†
m,�k is the creation operator for

the Bloch state, and m ∈ {c, v} labels the conduction band and
valence band in one valley. U�k is a unitary matrix, defined

FIG. 4. Berry curvature distribution of valence band for (a) mz only, (b) Case 1, and (c) Case 2. θG = 1.2◦. The black line is the boundary
of the first BZ and the black dot is the 	 point.
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TABLE I. Hopping between the same type of lattice sites.

θG 1.2◦

t0AA 4.575
t0BB −1.270
t1AA 1.547ei(−0.197)π

t1BB −1.613ei(−0.188)π

t2AA 0.482ei(−0.349)π

t2BB −0.452ei(0.316)π

t3AA 0.506ei(−0.134)π

t3BB −0.521ei(−0.13)π

as U�k = A�k (A†
�kA�k )−1/2, where (A�k )mn = 〈μm(�k)|gn(�k)〉 is the

overlap matrix between the Bloch wave function |μm(�k)〉 and
k-space representation of a localized wave function ansatz
|gn(�k)〉. In the numerical calculation below, we take |gn(�k)〉 =
e−�k2/32e−i�k·�x0 |ϕn〉 so after inverse Fourier transform, |gn(�x)〉 is
localized near �x0. |ϕn〉 is a constant vector in �k space and it is
chosen to maximize the singular values of A�k [42].

The projected hopping terms and quasiperiodic potential
terms can be written as

tmn(�xi j ) = 1

N

∑
�k

ei�k·�xi j (U †
�k ε�kU�k )mn

Vmn(�xi, �x j ) = 1

N

3∑
q=1

e−i �Qq ·�x j
∑

�k
ei�k·�xi j (U †

�k f q(�k)U�k+ �̃Qq
)mn, (6)

where �xi j = �xi − �x j is the displacement of the two lattice
points, ε�k = diag{εc(�k), εv (�k)}, εc,v (�k) being the dispersion of

the conduction/valence bands. �̃Qq is defined in the first BZ of
the TBLG system and is related to �Qq by addition of integer
multiples of �G1 and �G2. f q(�k) is the form factor, whose matrix
element is

f q
n1,n2

(�k) =
∑
mn

ψ∗
n1t,�k+m �G1+n �G2

(Vq)n1,n2ψn2t,�k+ �Qq+m �G1+n �G2
,

(7)
where ψn1t,�k denotes the wave function in �k space of the n1

sublattice of the top layer graphene and Vq is the coupling
matrix of the quasiperiodic potential term, in the form of
Eq. (4). The effective Hamiltonian can therefore be written as

Htb =
∑

i j

(tmn(�xi j )c
†
imc jn + H.c.)

+
∑

i j

(Vmn(�xi, �x j )c
†
imc jn + H.c.), (8)

where ci lives on the moiré lattice formed by the TBLG and
we can write �ri = ni �aM 1 + mi �aM 2, where �aM 1 = aM ( 1

2 ,
√

3
2 )

and �aM 2 = aM (0, 1), aM = 2a
sin(θG/2) being the moiré lattice

constant.
After U�k is obtained, we get tmn’s and Vmn’s from Eq. (6).

Let us consider tmn’s first. We find that in order to reproduce
the band gap and band structure well, we need to keep the
hopping terms up to the third nearest unit cell. (See Table I and
Table II.) t0AA and t0BB are onsite potentials for sites A and B.

TABLE II. Hopping between AB lattice sites.

θG 1.2◦

t1AB 2.249ei(0.082)π

t2AB −1.54ei(0.333)π

t3AB1 −0.398ei(0.123)π

t3AB2 0.668ei(−0.304)π

t4AB1 −0.412ei(0.131)π

t4AB2 −0.590ei(0.133)π

t5AB −0.270ei(0.314)π

t6AB1 −0.320ei(−0.142)π

t6AB2 −0.165ei(0.289)π

The meaning of the other labels is explained in Fig. 5. Without
the quasiperiodic terms, the dispersion of Htb is plotted in
Fig. 6. The valence and conduction bands have Chern number
±1, respectively.

Let us consider the Vmn terms. There are two effects
of the twist angle between hBN and graphene θBN on the
tight-binding Hamiltonian: One is the change of the �Q’s
and the other is the change of projected amplitude of the
quasiperiodic potential terms. We study two different θBN’s
numerically: θBN = 0◦ and 0.8◦. We project the quasiperiodic
terms to the Wannier orbitals and calculate Vmn(�xi, �x j ). We
find that although the amplitude of the quasiperiodic terms
decays with |�xi − �x j |, within the fourth nearest neighbor
it is of the order of ∼1 meV, which is comparable to the
hopping terms. We keep up to the fourth nearest neighbor
quasiperiodic terms in the following calculations due to the
comparable magnitude of them.

We plot the density of states for θBN = 0◦ and θBN = 0.8◦
in Fig. 7. At both angles, there are some small peaks, but
those peaks do not form isolated subbands due to the in-
commensurate nature of the quasiperiodic term. There are
eight main peaks for θBN = 0◦ which can be explained by the

FIG. 5. Labels of the hopping terms from site A (orange circle)
to other nearby sites. For example, hopping from A to an orange site
labeled ‘2’ corresponds to t2AA and from A to a green site labeled 31

corresponds to t3AB1.
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FIG. 6. Dispersion of the effective tight-binding model.

FIG. 7. Density of states at (a) θBN = 0◦ and (b) θBN = 0.8◦ for
a 71×71 grid in �k space. The dotted line indicates the energy of the
middle state in the spectrum.

commensurate approximation. We can always find a sequence
of rational numbers to approximate an irrational number by
means of continued fraction expansion. Let us write �Q1n =
sn
rn

�G1 + tn
rn

�G2, where sn, tn, rn are integers and limn→∞Q1n =
�Q1. For each finite n, the BZ is folded into a mini BZ with
reciprocal lattice vectors ( �G1n, �G2n) = ( �G1/rn, �G2/rn) with
2r2

n orbitals at each �k point. For θBN = 0◦, we get �Q1(θBN =
0◦) ≈ 0.49 �G1 + 0.47 �G2 so the first order approximation is
(s1, t1, r1) = (1, 1, 2). Thus, there are roughly eight “bands.”
The main difference between the two θBN’s is that for θBN =
0◦, the spectrum is gapless near charge neutrality while it is
gapped for θBN = 0.8◦ and the gap size is reduced to ∼1 meV
compared to ∼7 meV without quasiperiodic potential. We
then study the localization properties of the states. We in-

troduce PR (participation ratio) in �k space, PR = (
∑

�k |ψ�k |2 )2∑
�k |ψ�k |4

[19]. States that are localized in real space are extended in
momentum space and so we expect |ψ�k| ∼ 1/N , where N × N

is the system size in �k space. Thus PR ∼N2 for localized
states and PR ∼ constant for extended states. From Fig. 8, we
find that the PR share similar features as the density of states,
which means that near the dips of density of states (DOS),
there are more extended states while near the peaks of DOS,
there are more localized states. Localized states in �k space are
extended in real space. Thus, we indeed get metallic behavior
near charge neutrality for θBN = 0◦ and mobility edges exist.

The density of states indicates that the alignment of hBN
has a strong effect on the low energy physics especially near
charge neutrality. We then calculate the Hall conductivity σxy

using Kubo formula for one valley and one spin species to
further address the difference in electrical transport. In the
full many body system, this is the Hall conductivity obtained
(within Hartree Fock) if the system is spontaneously fully
spin and valley polarized at the filling considered. Thus at
3/4 filling of the conduction band (as appropriate for the
experiments of Refs. [7,8], within a Hartree-Fock treatment,
full spin-valley polarization leads to full hole filling of one
of the Chern bands. This corresponds to placing the effective
chemical potential of the Hartree-Fock bands at charge neu-
trality. We plot σxy as a function of the effective chemical
potential in Fig. 9. For θBN = 0.8◦, σxy is quantized to ∼1
if the chemical potential is slightly below charge neutrality
while for θBN = 0◦ it is not quantized.

V. CHERN BANDS WITH QUASIPERIODIC POTENTIAL:
A TOY MODEL

The natural occurrence of topological bands and a
quasiperiodic potential in TBLG/hBN discussed in previous
sections leads to a number of interesting theoretical questions.
For ordinary nontopological bands, the question of how dif-
ferent the effects of a quasiperiodic potential are as compared
to a random potential on the electronic wave functions has
begun to be addressed in recent years [18,43,44]. Here we
are interested instead in similar questions when, in addition,
the bands are topological. Within a free fermion theory, what
is the behavior of the conductivity as a function of chemical
potential? As part of addressing this question, it is important
to understand in the first place how to couple in an external
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FIG. 8. PR at (a) θBN = 0◦ and (b) θBN = 0.8◦ for different states throughout the entire energy spectrum. The dotted line indicates the
energy of the middle state in the spectrum. Different color indicates different system size. From bottom to top: N = 30, 50, 70 and the system
size is N×N in �k space.

vector potential to the electrons in the topological band which
is itself a subtle question, as we shall see.

Here we address these questions within a simple context.
Let us consider a system with a Chern band and add a
quasiperiodic potential to it. If the strength of the quasiperi-
odic potential is much smaller than the band gaps between
the topological band considered and all the other bands, the
minimal approach is to project the Hamiltonian to the low
energy Chern band. Since there is Wannier obstruction, a
tight-binding model in real space is not possible. Thus, we
write the effective Hamiltonian in momentum space. For sim-
plicity, assume that we have a flat band to begin with. In
momentum space, the Hamiltonian can be written as

H =
∑

�k

∑
�Qi

c†
�kV ( �Qi )c�k+ �Qi

λ(�k, �k + �Qi ) + H.c., (9)

where λ(�k, �k + �Qi ) is the form factor and �Qi’s are the recip-
rocal vectors for the quasiperiodic potential. For each �k, the
Hamiltonian can be viewed as a tight-binding model in mo-
mentum space with a lattice generated by �Qi’s. For �Qi’s that
are incommensurate with the original reciprocal lattice vectors
�G1,2 that generate the Brillouin zone, we expect �k + n1 �Q1 +
n2 �Q2 mod (m1 �G1 + m2 �G2) (n1,2 and m1,2 are integers) to be
dense in the first Brillouin zone. In this case, we only need
to consider one lattice that is generated by �k + n1 �Q1 + n2 �Q2

with a fixed �k. To keep contact with moiré graphene, we will
let �Q1,2 generate a triangular lattice, but similar discussion can
be carried out on any lattice.

For trivial bands, one can take λ(�k, �k + �Qi ) = 1. In this
case, the eigenvectors are plane waves in �k space and therefore
they are localized in real space. Thus at large quasiperiodic

FIG. 9. σxy vs chemical potential at (a) θBN = 0◦ and (b) θBN = 0.8◦ for a 50×50 grid in �k space. The dotted line indicates the energy of
the middle state in the spectrum.
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potential strength for trivial bands, there is always localiza-
tion.

For a Chern band, on the other hand, the form factor is
nontrivial. For small | �Q|, it can be written as λ(�k, �k + �Qi ) =
F (�k, �k + �Qi )e

−i
∫ �k+ �Qi

�k
�A(�q)·d �q, where F (�k, �k + �Qi ) is real and

positive and the path of the integral is taken to be a straight
line from �k to �k + �Qi. To simplify the problem, we assume ho-
mogeneous Berry curvature and further let F (�k, �k + �Qi ) = 1
for now. Then the Hamiltonian is equivalent to a tight-binding
model in a uniform perpendicular magnetic field. We choose
Landau gauge such that �A(�k) = (−Bky, 0, 0). B is propor-
tional to Chern number and the magnetic flux is in general not
rational. For this choice of gauge, λ(�k, �k′) = ei B

2 (k′
x−kx )(k′

y+ky ).
The Hamiltonian can be written as

H =
∑

�k
(V1c†

kx,ky
ckx+1,ky e

iBky

+V2c†
kx,ky

ckx−1/2,ky+
√

3/2e−i B
2 (ky+

√
3

4 )

+V3c†
kx,ky

ckx−1/2,ky−
√

3/2e−i B
2 (ky−

√
3

4 ) + H.c.), (10)

where the lattice spacing is set to be 1 and V1,2,3 are taken to
be real. The Hamiltonian in Eq. (10) is a special case of that
considered in Ref. [45]. Following the arguments in Ref. [45],
we can perform a Fourier transform along the kx direction.
The 2D model is then equivalent to a 1D lattice model with
quasiperiodic (QP) potential. One can write ky = k0

y + n
√

3
2 ,

where n is an integer. Note that we assume �k lattice is dense
in the original BZ. We can take k0

y to be 0. The flux quanta is


 =
√

3B
4π

. Thus the 1D lattice model with QP potential is

Eφn = 2V1 cos(2πn
 + ν)φn + An,n+1φn+1 + An,n−1φn−1,

(11)

where An,n+1 = V2e−i[π
(n+ 1
2 )]−i ν

2 + V3ei[π
(n+ 1
2 )]+i ν

2 and
An,n−1 = A∗

n−1,n. ψ (kx, ky) is the eigenfunction for the
Hamiltonian (10) at energy E , ψ (kx, ky) = eikxνφ(ky), and

φn ≡ φ(k0
y + n

√
3

2 ).
Depending on the relative strength of V1,2,3, φ(ky) can be

either localized or extended in ky space. If there is C3 rota-
tional symmetry, which corresponds to V1 = V2 = V3, the 1D
system is at the critical point of the localization transition and
thus the eigenstates are not localized in real space, which is
different from the trivial band case.

If the C3 symmetry is broken, we get the Lyapunov ex-
ponent (inverse of the localization length) by considering
three different gauge choices, i.e., along the three axes of
the triangular lattice [45,46] and the Lyapunov exponent
λ(E ;V1,V2,V3) for φn in Eq. (11) is

λ(E ;V1,V2,V3) = ln

( |V1|
|V3|

)
, (12)

if |V1| � |V3| � |V2|, and

λ(E ;V1,V2,V3) = ln

( |V1|
|V2|

)
, (13)

if |V1| � |V2| � |V3|. λ(E ;V1,V2,V3) = 0 otherwise.

FIG. 10. Schematic of the line integrals in Eq. (14).

Even though we get localized or extended ψ (kx, ky), de-
pending on the choices of V1,2,3, we still need to address the
question of what effect it will have on the physical observ-
ables. Thus, we study the DC transport of the system in the
following.

In the trivial case, all the states are localized so we expect
the conductance to vanish. In the topological case, we need
to couple the tight-binding Hamiltonian in k space to exter-
nal electric field. First we need to obtain current operators
in the presence of external electric field. The strategy is to

apply a probe vector potential �A′ and Jμ = − ∂H [ �E , �A′]
∂A′

μ
|A′

μ→0.

The vector potential �A′ will “shift” the momenta �k. We have
to be careful about what we mean by “shift.” In comparison
to the trivial band, there is a gauge structure in k space. If
we change c�k to c�keiθ (�k) and �A(�k) to �A(�k) + ∂�kθ (�k), where
θ (�k) is a differentiable function in �k, c†

�kc�k+ �Qλ(�k, �k + �Q) is
invariant. In order to keep the gauge invariance of the theory,
we cannot simply replace λ(�k, �k′) by λ(�k + �A′, �k′ + �A′). The
only gauge-invariant deformation of the form factor λ(�k, �k′) is
to attach a small plaquette with Berry curvature as flux. This
generalizes the idea of Peierls substitution. Again, let us only
consider the phase factor in the form factor for now. The gauge
invariant change in the form factor λ(�k, �k + �Qi ) by shifting the
momentum by �A′ is

λ̃ �A′ (�k, �k + �Qi ) − λ(�k, �k + �Qi ) = λ(�k, �k + �Qi )e
iB( �Qi× �A′ )·êz , (14)

where λ̃ �A′ (�k, �k + �Qi ) denotes the shifted form factor and it is
defined as the Wilson loop of the Berry connection along the
green curve in Fig. 10. êz is the directional vector along the z
axis.

The way that we construct the coupling to the external
vector potential in Eq. (14) seems to rely on the specific form
of the form factor λ(�k, �k + �Q). For a generic form factor,
we also construct the gauge coupling (see Appendix B for
details), which agrees with Eq. (14).

The tight-binding Hamiltonian coupled to the probe vector
potential and external electric field can be written as

H[ �E , �A′] =
∑

�k

(
V1c†

kx,ky
ckx+1,ky e

iBky eiBA′
y

+ V2c†
kx,ky

ckx−1/2,ky+
√

3/2e−i B
2 (ky+

√
3

4 +A′
y )e−iB

√
3

2 A′
x

+ V3c†
kx,ky

ckx−1/2,ky−
√

3/2e−i B
2 (ky−

√
3

4 +A′
y )eiB

√
3

2 A′
x + H.c.

)
+ V ( �E , �A′). (15)
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V ( �E , �A′) = ∫
d2x �E · �xρ(�x; �A′) is the electric potential, where

ρ(�x; �A′) is the density operator. In k space, we define the
Fourier transformation of ρ(�x; �A′) as ρ(�q; �A′) and

ρ(�q; �A′) =
∑

�k
c†

�kc�k+�qλ(�k, �k + �q)eiB(�q× �A′ )·êz

= ρ(�q; �A′ = 0)eiB(�q× �A′ )·êz . (16)

Thus the electric potential can be written as

V ( �E , �A′) =
∫∫

d2qd2x �E · �xρ(�q; �A′ = 0)e−i �q·(�x−B �A′×êz )

= V ( �E , �A′ = 0) + B �E · ( �A′ × êz )ρ(�q = 0; �A′ = 0)
(17)

to linear order in B, and the probe vector field �A′ only couples
to the second term above.

We can do a sanity check of the above expression. Sup-
pose there’s no quasiperiodic potential; we can get Jx,0 =
−1/S

∑
�k c†

�kc�kBEy and Jy,0 = 1/S
∑

�k c†
�kc�kBEx, where S is the

total area of the system. For a fully-filled Chern band with
Chern number C, B = 2πC

ABZ
= CAcell

2π
, where ABZ(Acell) is the

area of the Brillouin zone (unit cell). Thus the Hall conduc-
tivity σxy = B

Acell
= C

2π
is quantized.

Now that we have some confidence in the Peierls substitu-
tion, let us take the quasiperiodic potential into account. The
current density operators can be expressed as

Jx = 1

S

∑
�k

(
i

√
3

2
V2Bc†

kx,ky
ckx−1/2,ky+

√
3/2e−i B

2 (ky+
√

3
4 )

− i

√
3

2
V3Bc†

kx,ky
ckx−1/2,ky−

√
3/2e−i B

2 (ky−
√

3
4 ) + H.c.

)

− 1

S

∑
�k

c†
�kc�kBEy

Jy = −1

S

∑
�k

(
iBV1c†

kx,ky
ckx+1,ky e

iBky

− i
B

2
V2c†

kx,ky
ckx−1/2,ky+

√
3/2e−i B

2 (ky+
√

3
4 )

− i
B

2
V3c†

kx,ky
ckx−1/2,ky−

√
3/2e−i B

2 (ky−
√

3
4 ) + H.c.

)

+ 1

S

∑
�k

c†
�kc�kBEx. (18)

Let us consider Ex = E and Ey = 0. The transport properties
are the same as a tight-binding model in real space if we
view kx as the y coordinate, and ky as the x coordinate. By
making this mapping, we transform the problem of nontrivial
Berry curvature in �k space to the problem of a real-space
tight-binding model under perpendicular magnetic field. In the
original model, �E is along the x direction while �E is along
the y direction in the real-space model. This is the same as
what happens in lowest Landau level (LLL). Indeed, if we
view the wave functions for the LLL as wave functions for
the flat Chern band at C = 1 and calculate the form factors,

by comparing with Ref. [47], we get the drift current exactly
in the form of Eq. (18).

For commensurate flux 
 = 2p/q, translational symmetry
is restored and the energy spectrum is divided into q magnetic
subbands. For simplicity, we only consider zero temperature.
σxx = 0 if the chemical potential is within band gaps. σxy can
be obtained through the TKNN formula [48],

σxy =
∑

m

∫
d2ν

(2π )2
fm(�ν)

[
Fm(�ν) + C

2π

]
, (19)

where m ∈ {1, . . . , q} is the index of magnetic bands,
and fm(�ν) is the Fermi-Dirac distribution. �ν takes value
with the magnetic Brillouin zone νx ∈ (−π, π ] and νy ∈
(−π/q, π/q]. Fm(�ν) + C

2π
is the total Berry curvature of the

states at �ν of the mth band, where the first term takes care
of the contribution of the QP potential and the second term
comes from the background Berry curvature.

Note that σxy is quantized although it is not obvious from
the expression in Eq. (19). Following Refs. [48,49], Eq. (19)
is reduced to σxy = mC

2π
, where m is an integer that satisfies

the diophantine equation −p�n + qm = 1, where �n is an
integer.

For incommensurate flux, by mapping to the real-space
model, σxx = 0 if the filled states are localized along the ky

direction, which is the case for |V1| > max(|V2|, |V3|). Other-
wise, if |V1| < max(|V2|, |V3|), all states are extended.

Let us consider σxy next. If the chemical potential is within
the gap and the gap is not closed, if we continuously tune the
value of 
 from an irrational number to a nearby rational num-
ber 
0 = 2p/q, the value of σxy is then completely determined
by the Berry curvature of the filled bands at 
0. The exact
value of 
0 is determined by the details of the energetics.

So far, we have only considered flat bands. We can further
include the kinetic terms ε�kc†

�kc�k . ε�k is the dispersion, which

is a periodic function in �k and ε�k = ε�k+m �G1+n �G2
, where �G1,2

are the reciprocal lattice vectors and m, n are integers. Note
that �G1,2 are in general not commensurate with the reciprocal
vectors of the quasiperiodic potential �Q1,2 so the kinetic terms
act as onsite “quasiperiodic” terms of the tight-binding Hamil-
tonian in �k space. Roughly speaking, whether an eigenstate
is localized or extended is given by the competition between
hopping terms and onsite quasiperiodic (QP) potential terms,
i.e., the competition between the energy scales of the band-
width and of the onsite QP potential. We have shown that
Berry curvature plays a role of magnetic field in �k space and
for a tight-binding model under magnetic field, the energy
spectrum can in general develop several subbands even if 


is irrational, as in Hofstadter’s butterfly [50]. The relevant
energy scale for the kinetic energy in �k space is thus the band-
width of the magnetic subbands, which is reduced from the
bandwidth of the same tight-binding model but with no Berry
curvature. In this sense, it is “easier” to get localized states in
�k space, that is, extended states in real space in a topological
band rather than in a trivial band under onsite QP potential.

With dispersion and (or) nonuniformity of the Berry cur-
vature taken into account, the Hamiltonian written in �k space
cannot be reduced to an equivalent 1D Hamiltonian and one
cannot use the Thouless formula to obtain the localization
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length. Nonetheless, we expect that there is at least one state
in the spectrum that is extended or critical in real space due
to the nontrivial topology of the original Chern band. We

also calculate the inverse participate ratio (IPR =
∑

�k |ψ�k |4
(
∑

�k |ψ�k |2 )2 )
numerically for different system sizes and find that there are
more nonlocalized states (extended or critical) for the nontriv-
ial Berry curvature case than for the vanishing Berry curvature
case (see Appendix D for details).

We can take one step further towards the TBLG aligned
with the hBN system by considering two flat topological
bands with Chern number ±1. For illustration purpose, we
only consider a square lattice; the quasiperiodic potential only
contains the lowest harmonics and the system has C4 rota-
tional symmetry. The quasiperiodic potential also only acts
within the same band and there is an interband mixing term.
The Hamiltonian thus can be written as

H± = �

2

∑
�k

(c†
�k;+c�k;+ − c†

�k;−c�k;−)

+ V0

∑
�k, �Q

c†
�k;±c�k+ �Q;±λ±±(�k, �k + �Q)

+ V1

∑
�k

c†
�k;+c�k;−λ0

+−(�k) + H.c., (20)

where the subscripts ± label the different bands. The V0 terms
are projected quasiperiodic potential terms, and the V1 terms
are interband hopping between the two ± Chern bands. The
form factor λ±±(�k, �k + �Q) = 〈ψ�k;±|e−i �Q·�x|ψ�k+ �Q;±〉, where

|ψ�k;±〉 are Bloch states and similarly, λ0
+−(�k) = 〈ψ�k;+|ψ�k;−〉.

� is set to be positive. For the purpose of illustra-
tion, we take |ψ�k;a〉 to be the same as in the LLL and

choose a Landau gauge �A± = (∓By, 0) such that 〈�x|ψ�k;±〉 =∑
m ei(∓mky+kxx+mBx∓kxky/B)�0(y ± kx+mB

B ) (see Appendix C for

details), where �0(y) = ( B
π

)
1
4 e− By2

2 . We further let �Q1 =
Q(2π, 0) and �Q2 = Q(0, 2π ), where Q is an irrational number
[note that in LLL, we can always define the magnetic Brillouin
zone so �Q1,2 are aligned with the mBZ reciprocal lattice vec-
tors �G1,2, which are set to be (2π, 0) and (0, 2π ) here]. As
elaborated in Appendix C, the form factors are

λ±±(�k, �k + �Q) = e∓i
2kyQx+Qx Qy

2B − 4π2Q2

4B

λ0
+−(�k) =

∞∑
m=−∞

e
2iky

B (kx+mB)− (kx+mB)2

B . (21)

Plugging in the definition of �Q1 and �Q2, we have, λ±±(�k, �k +
�Q1) = e− πQ2

2 ∓iQky and λ±±(�k, �k + �Q2) = e− πQ2

2 .
One can check that the c�k;± bands are topological bands

with Chern number ±1 in two ways. First, by taking deriva-
tives of �Q in Eq. (21) around �Q = 0, one gets uniform Berry
curvature of ± 1

B for c�k;± bands, respectively. Second, since the
phases of the Bloch wave functions |ψ�k;±〉 are well defined in
the whole BZ, the integration of Berry curvature over the BZ
is reduced to a contour integral of the Berry connection along
the boundary of the BZ. We have |ψ(kx+2π,ky );±〉 = |ψ(kx,ky );±〉
and |ψ(kx,ky+2π );±〉 = e±ikx |ψ(kx,ky );±〉 such that �A(π,ky );± =

�A(−π,ky );± and �A(kx,π );± = �A(kx,−π );± ∓ êx, where �A(kx,ky );± is
the Berry connection and êx is the unit vector along kx. Thus
the contour integrals of �A�k;± along the boundary of the BZ
yield Chern number ±1.

If V0 = 0, the Hamiltonian in Eq. (20) is block diagonal in �k
space. By solving the 2×2 block, we have the two eigenvalues
±ε�k = ±

√
�2

4 + V 2
1 |λ0

+−(�k)|2 so the system is always gapped
if � �= 0 and has a gap that is ��. The eigenvectors are

d �p;+ =
√

ε �p + �/2

2ε �p
c �p;+ + eiθ ( �p)

√
ε �p − �/2

2ε �p
c �p;−

d �p;− = −e−iθ ( �p)

√
ε �p − �/2

2ε �p
c �p;+ +

√
ε �p + �/2

2ε �p
c �p;−, (22)

where d± are the annihilation operators for eigenstates in ±
energy bands and θ ( �p) = Arg[λ0

+−( �p)]. We choose the phase
factors such that in the limit of V1 → 0, d �p;± → c �p;±. Since
the V1 term does not close the gap, we expect the d�k;± bands
to have the same Chern number as the c�k;± bands. Note that

λ0
+−(�k) = 0 at (kx, ky) = (±π,±π

2 ) and θ (�k) is not well de-
fined at these singular points. However, the factors associated
with θ (�k) in Eq. (22) vanish at (kx, ky) = (±π,±π

2 ) so the
d�k;± fields can be continuously defined in the whole BZ.

If V1 = 0, c�k,+ and c�k,− bands are decoupled and each one
of the bands is a flat band with QP. As we discussed before,
the spectrum of each band has fractal structure and the width
of the spectrum is of the order of V0. Moreover, from Eq. (20),
after a partial Fourier transformation along kx, we find that
the V0 terms are the same for c�k;+’s and c�k;−’s. Thus the
energy spectra of ± bands are identical and the “+” bands
are shifted with an energy � from the “−” bands, with the
same corresponding energy eigenstates. If V0 � �, there is
a band gap between the two “fractal” bands that consist of
c�k,± degrees of freedom, respectively, and we get a Chern
insulator at half filling. If V0 ∼ �, the gap at half filling will
close. If V0 � �, the fractal bands contributing positive Hall
conductivity and negative Hall conductivity almost overlap,
resulting in nearly zero Hall conductivity.

Now we take both V0 and V1 into account. If we fix V1

and � and increase V0, the band gap decreases and eventually
vanishes. We further calculate the IPR (see Appendix D for
details). We find that there are extended states (in real space)
near band edges when the band gap is not closed. Upon
increasing V0, after the band gap closes, there are localized
states near zero energy. Similar “leviation” and “pair anni-
hilation” behavior of the extended states is also observed in
disordered topological insulators [51,52]. If the strength of
QP potential further increases, the states near zero energy get
delocalized since in the V0 � V1 limit, the model reduces to
two decoupled AA models at critical points.

VI. CONCLUSION

In this paper we showed that when magic-angle twisted bi-
layer graphene is nearly aligned with hBN, the single particle
physics is sensitive to the quasiperiodic potential produced by
the interference between two moiré potentials: one produced
by the relative twist of the two graphene layers and the other
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FIG. 11. Dispersion for (a) only mz, (b) Case 1, and (c) Case 2. θG = 1.15◦.

produced by the hBN substrate. The periodic modulation in-
duced by hBN cannot be treated as a small perturbation due
to the narrow bandwidth of the valence and conduction bands.
By exact diagonalization, we find that for TBLG twist angle
1.2◦, for alignment angle θBN = 0◦ and θBN = 0.8◦, localized
states and extend states are both present and there is no clear
mobility edge. For θBN = 0◦, the charge gap near neutrality
is closed. In the presence of valley polarization (due to in-
teractions), the Hall conductivity σxy is not quantized when
θBN = 0◦ while for θBN = 0.8◦, the charge gap is reduced and
σxy is quantized.

In order to study the electron properties of topological
bands in the presence of quasiperiodic potential, it is more
straightforward to begin with a model in momentum space
since the nontriviality is manifest in the form factor. In the
limit of flat band and uniform Berry curvature, we find that
quasiperiodic potential induces hopping between different
momentum, which can be mapped to a tight-binding model
coupled to magnetic field. We discussed localization proper-
ties and transport in such toy models. The next step will be to
introduce dispersion and electron-electron interaction, which
we leave for future studies.
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APPENDIX A: NUMERICAL RESULTS FOR θG = 1.15◦

1. Perfect alignment

We plot the dispersion in Fig. 11 and berry curvature dis-
tribution of the valence band in Fig. 12.

2. Incommensurate alignment

We study the density of states and PR for θG = 1.15◦ and
θBN = −0.6◦, which is close to perfect alignment. Indeed we
find a clear gap near charge neutrality and there is no indica-
tion of localization from PR (see Fig. 13).

APPENDIX B: MINIMAL COUPLING
IN A TOPOLOGICAL BAND

The gauge transformation operator can be written as

U = ei
∫

�q θ (�q,τ )ρ(�q)
, (B1)

FIG. 12. Berry curvature distribution of the valence band for (a) only mz, (b) Case 1, and (c) Case 2. θG = 1.15◦.
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FIG. 13. Density of states, PR, and σxy for θG = 1.15◦ and θBN = −0.6◦.

where ρ(�q) is the projected density operator in momentum
space,

ρ(�q) =
∫

d2k

(2π )2
c†

�k−�qc�kλ(�k, �q). (B2)

λ(�k, �q) = 〈u�k|u�k−�q〉 is the form factor (note that the definition
is different from the main text), and θ (�q, τ ) is the Fourier
transform of a real function θ (�x, τ ), so θ (�q, τ )∗ = θ (−�q, τ ).

For an infinitesimal gauge transformation, U ≈ 1 +
i
∫

�q θ (�q, τ )ρ(�q) and an operator Ô → U †ÔU under gauge

transformation. Thus we have

U †c�kU ≈ c�k + i
∫

�q
θ (�q, τ )λ(�k + �q, �q)c�k+�q

U †c†
�kU ≈ c†

�k − i
∫

�q
θ (�q, τ )λ(�k, �q)c†

�k−�q. (B3)

Consider an action in Euclidean signature that contains three
terms, S0 = ∫

d2k
∫

dτc†
�k∂τ c�k − ε�kc†

�kc�k − ∑
�Q V �Qρ �Q, where

�Q does not need to be commensurate with the reciprocal lat-
tice vector. Performing a gauge transformation to these terms,
we have

δ

(∫
�k

c†
�k∂τ c�k

)
≈ −i

∫
�k,�q

θ (�q, τ )λ(�k, �q)c†
�k−�q∂τ c�k + i

∫
�k,�q

c†
�k∂τ [θ (�q, τ )λ(�k + �q, �q)c�k+�q]

= i
∫

�k,�q
[∂τ θ (�q, τ )]λ(�k, �q)c†

�k−�qc�k

δ

(∫
�k
ε�kc†

�kc�k

)
≈ −i

∫
�k,�q

θ (�q, τ )λ(�k, �q)c†
�k−�qε�kc�k + i

∫
�k,�q

c†
�kε�kθ (�q, τ )λ(�k + �q, �q)c�k+�q

= i
∫

�k,�q
θ (�q, τ )λ(�k, �q)c†

�k−�qc�k (ε�k−�q − ε�k )

δ(V �Qρ �Q) ≈ −iV �Q

∫
�k,�q

λ(�k, �Q)θ (�q, τ )λ(�k − �Q, �q)c†
�k−�q− �Qc�k + iV �Q

∫
�k,�q

λ(�k, �Q)c†
�k− �Qθ (�q, τ )λ(�k + �q, �q)c�k+�q

= iV �Q

∫
�k,�q

θ (�q, τ )c†
�k−�q− �Qc�k[λ(�k − �q, �Q)λ(�k, �q) − λ(�k, �Q)λ(�k − �Q, �q)]. (B4)

If we further consider long wavelength gauge transformation, we only need to take small �q in θ (�q, τ ) into account. Note that
∂�kε�k = �v�k and

λ(�k − �q, �Q)λ(�k, �q) − λ(�k, �Q)λ(�k − �Q, �q) = −�q · [�∂�kλ(�k, �Q) + iλ(�k, �Q)( �A�k − �A�k− �Q)] + o(q2), (B5)

where �A�k = −i〈u�k|∂�ku�k〉 is the Berry connection in momentum space. Thus, the change in action S0 can be written as

δS0 =
∫

dτ

∫
�k,�q

(i∂τ θ (�q, τ ) + i �q · �v�kθ (�q, τ ))λ(�k, �q)c†
�k−�qc�k +

∑
�Q

iV �Q

∫
�k,�q

θ (�q, τ )c†
�k−�q− �Qc�k �q

· [�∂�kλ(�k, �Q + �q) + iλ(�k, �Q + �q)( �A�k − �A�k− �Q−�q )] + o(q2). (B6)
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Now let us consider the electromagnetic potential
A(�q, τ ) = (A0, �A). Note that the projection to the topologi-
cal band should only affect the gauge transformation of the
projected degrees of freedom and the gauge transformation
of the electromagnetic potential should remain the same as
before the projection. Thus under a gauge transformation,
we have

A0(�q, τ ) → A0(�q, τ ) − ∂τ θ (�q, τ )

�A(�q, τ ) → �A(�q, τ ) + i �q θ (�q, τ ). (B7)

The goal is to construct terms involving the electromagnetic
potential A(�q, τ ) such that δS0 can be canceled by the gauge
transformation of the A(�q, τ ) field. As a first attempt, we

consider the following action

S1 =
∫

dτ

∫
�k,�q

(iA0(�q, τ ) − �A(�q, τ ) · �v�k )λ(�k, �q)c†
�k−�qc�k

−
∫

dτ

∫
�k,�q

�A(�q, τ ) ·
∑

�Q
V �Qc†

�k−�q− �Qc�k[�∂�kλ(�k, �Q + �q)

+ iλ(�k, �Q + �q)( �A�k − �A�k− �Q−�q)]. (B8)

Note that δS0 is canceled by terms in δS1 but there are other
terms in δS1, so we have

δS1 = −δS0 + δS ′
1 (B9)

and

−iδS ′
1 =

∫
dτ

∫
�k,�q,�q′

(iA0(�q, τ ) − �A(�q, τ ) · �v�k )λ(�k, �q)[−c†
�k−�q−�q′c�kθ (�q′, τ )λ(�k − �q, �q′) + c†

�k−�qc�k+�q′θ (�q′, τ )λ(�k + �q′, �q′)]

−
∫

dτ

∫
�k,�q,�q′

�A(�q, τ ) ·
∑

�Q
V �Q[�∂�kλ(�k, �Q + �q) + iλ(�k, �Q + �q)( �A�k − �A�k− �Q−�q )]

× [−c†
�k−�q− �Q−�q′c�kθ (�q′, τ )λ(�k − �q − �Q, �q′) + c†

�k−�q− �Qc�k+�q′θ (�q′, τ )λ(�k + �q′, �q′)]

=
∫

dτ

∫
�k,�q,�q′

iA0(�q, τ )c†
�k−�q−�q′c�kθ (�q′, τ )[λ(�k, �q′)λ(�k − �q′, �q) − λ(�k − �q, �q′)λ(�k, �q)]

−
∫

dτ

∫
�k,�q,�q′

Aμ(�q, τ )c†
�k−�q−�q′c�kθ (�q′, τ )[vμ

�k−�q′λ(�k, �q′)λ(�k − �q′, �q) − v
μ

�k λ(�k − �q, �q′)λ(�k, �q)]

−
∫

dτ

∫
�k,�q,�q′

�A(�q, τ ) ·
∑

�Q
V �Qc†

�k−�q− �Q−�q′c�kθ (�q′, τ ){[�∂�k−�q′λ(�k − �q′, �Q + �q) + iλ(�k − �q′, �Q + �q)( �A�k−�q′ − �A�k−�q′− �Q−�q )]

× λ(�k, �q′) − [�∂�kλ(�k, �Q + �q) + iλ(�k, �Q + �q)( �A�k − �A�k− �Q−�q )]λ(�k − �q − �Q, �q′)}

≈ −
∫

dτ

∫
�k,�q,�q′

(iA0(�q, τ ) − �A(�q, τ ) · �v�k )c†
�k−�q−�q′c�kθ (�q′, τ )�q′ · [�∂�kλ(�k, �q) + iλ(�k, �q)( �A�k − �A�k−�q )]

+
∫

dτ

∫
�k,�q,�q′

Aμ(�q, τ )c†
�k−�q−�q′c�kθ (�q′, τ )λ(�k, �q + �q′)�q′ · �∂�kv

μ

�k

−
∫

dτ

∫
�k,�q,�q′

�A(�q, τ ) ·
∑

�Q
V �Qc†

�k−�q− �Q−�q′c�kθ (�q′, τ ){−(�q′ · �∂�k )�∂�kλ(�k, �Q + �q) − i �q′ · �∂�k[λ(�k, �Q + �q)( �A�k − �A�k− �Q−�q )]

+ [�∂�kλ(�k, �Q + �q) + iλ(�k, �Q + �q)( �A�k − �A�k− �Q−�q )]i �q′ · ( �A�k−�q− �Q − �A�k )} + o((q′)2)

≈ i
∫

dτ

∫
�k,�q,�q′

(iA0(�q, τ ) − �A(�q, τ ) · �v�k )c†
�k−�q−�q′c�kλ(�k, �q + �q′)θ (�q′, τ )�q′ × �q · ẑB�k

+
∫

dτ

∫
�k,�q,�q′

Aμ(�q, τ )c†
�k−�q−�q′c�kθ (�q′, τ )λ(�k, �q + �q′)�q′ · �∂�kv

μ

�k

−
∫

dτ

∫
�k,�q,�q′

∑
�Q

V �Qc†
�k− �Q−�q−�q′c�kθ (�q′, τ )[�q′ · (−i�∂�k + �A�k − �A�k− �Q−�q−�q′ )]

× [ �A(�q, τ ) · (−i�∂�k + �A�k − �A�k− �Q−�q−�q′ )]λ(�k, �Q + �q + �q′) + o((q′)2) + o(q2), (B10)

where B�k = ∂kxA�k,y − ∂kyA�k,x is the Berry curvature.
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Now, let us further consider the possible terms that cancel δS ′
1. Suppose there is S2, and

−iS2 = −
∫

dτ

∫
�k,�q,�q′

iA0(�q, τ )( �A(�q′, τ ) × �q) · ẑc†
�k−�q−�q′c�kλ(�k, �q + �q′)B�k

+
∫

dτ

∫
�k,�q,�q′

(1/2(∂τ �A(�q, τ ) × �A(�q′, τ ))) · ẑc†
�k−�q−�q′c�kλ(�k, �q + �q′)B�k

+
∫

dτ

∫
�k,�q,�q′

Aμ(�q, τ )c†
�k−�q−�q′c�kλ(�k, �q + �q′)iAν (�q′, τ )∂kν

v
μ

�k /2 + ( �A(�q, τ ) · �v�k )( �A(�q′, τ ) × �q) · ẑc†
�k−�q−�q′c�kλ(�k, �q + �q′)B�k

+ −i

2

∫
dτ

∫
�k,�q,�q′

∑
�Q

V �Qc†
�k− �Q−�q−�q′c�k{ �A(�q′, τ ) · [−i�∂�k + �A�k − �A�k− �Q−�q−�q′ ]}

× { �A(�q, τ ) · [−i�∂�k + �A�k − �A�k− �Q−�q−�q′ ]}λ(�k, �Q + �q + �q′). (B11)

One can verify that δS2 cancels δS ′
1 for small �q and �q′.

The first two terms in Eq. (B11) can be combined to
a Chern-Simons(CS) term. To see this, define φB(�q) =∫

�k c†
�k−�qc�kλ(�k, �q)B�k and in real space, the first two terms in

Eq. (B11) reduce to

1

2

∫
dτ

∫
d2xφB(−�x)A(�x, τ )dA(�x, τ ), (B12)

where φB(�x) is the Fourier transformation of φB(�q).
As a sanity check, consider a Chern insulator. The ground

state expectation value of φB(�x) is 〈φB(�x)〉G.S. = C
2π

, where C
is the Chern number. This gives the correct quantized coeffi-
cient for the CS term.

Thus, at long wavelength, the action for a topological band
that is minimally coupled to gauge field is

S[A] = S0 + S1[A] + S2[A]. (B13)

The current density operator is �J = δL
δ �A . Let us consider apply-

ing an external static electric field and choose a gauge such
that �E = −�∇A0(�x, t ) and �A(�x, t ) = 0. The current density
operator around �q = 0 is thus

Jμ(−�q) ≈ −
∫

�k
v

μ

�k c†
�k−�qc�kλ(�k, �q) − φB(�q = 0)εμνE ν

− i
∑

�Q
V �Q

∫
�k

c†
�k− �Q−�qc�k

[−i∂μ

�k + (
Aμ

�k − Aμ

�k− �Q−�q
)]

× λ(�k, �Q + �q). (B14)

For a flat topological band, �v�k = 0 so the total current �J is

J μ = Jμ(�q = 0)

= −εμν
∑

�k
c†

�kc�kB�kEν − i
∑

�Q
V �Q

∑
�k

c†
�k− �Qc�k

[−i∂μ

�k

+ (
Aμ

�k − Aμ

�k− �Q
)]

λ(�k, �Q). (B15)

In the main text, we take λ(�k, �Q) = ei
∫ �k− �Q

�k
�A so we have[−i∂μ

�k + (
Aμ

�k − Aμ

�k− �Q
)]

λ(�k, �Q)

= λ(�k, �Q)
∫ �k− �Q

�k
B(�k′)εμνdk′

ν . (B16)

If the Berry curvature is uniform, the above expression will
reduce to −εμνQνλ(�k, �Q)B so we find that Eq. (B15) agrees
with Eq. (18) in the main text. To conclude, in the derivation
of Eq. (B15) we do not assume any specific form of λ(�k, �Q)
so the expression of the current operator can be used in any
topological band with nontrivial Berry curvature.

APPENDIX C: BLOCH WAVE FUNCTION
IN LLL AND FORM FACTORS

In a Landau gauge �A = (−By, 0), the magnetic translation
operators are

Tx = eiPx

Ty = ei(Py+Bx). (C1)

One can verify that [Tx, Ty] = 0 and Tx, Ty commute with the
kinetic momenta �P − �A, since the magnetic flux 
 = B = 2π ,
where we set the lattice constant to 1.

The eigenfunction ψ (�x) of Tx,y can be labeled by the mo-
menta (kx, ky ) such that the eigenvalues are eikx,y . In order to
construct such eigenfunctions, we first examine how Tx,y act
on a wave function in LLL, that is φkx (�x) = eikxx�0(y + kx

B ),

where �0(y) = ( B
π

)
1
4 e− By2

2 . It is readily seen that φkx (�x) is an
eigenfunction of Tx and Tyφkx (�x) = φkx+B(�x). Thus the eigen-
function of Tx,y can be written as

ψ�k (�x) =
∞∑

m=−∞
e−imky−ikxky/Bφkx+mB(�x)

=
∞∑

m=−∞
ei(kxx+mBx−mky−kxky/B)�0

(
y + kx

B
+ m

)
, (C2)
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FIG. 14. IPR for single band model with dispersion. (a), (b) trivial case. (c), (d) nontrivial case. In (a), (b), Log(IPR) is plotted; the x axis
labels different eigenstates in ascending order of their energies and the y axis labels different QP potential V from 0 to 4. The system size is
60×60. In (b), (d), green dots with different brightness connected by the same line label different QP potential V , from 0 to 4 (top to bottom),
with 0.2 interval. The black line is the linear fitting for V = 4. The linear system sizes are from 20 to 60.

where m is an integer. Note that we choose a gauge in �k space
such that ψ(kx,ky+2π )(�x) = e−ikx ψ(kx,ky )(�x) and ψ(kx+2π,ky )(�x) =
ψ(kx,ky )(�x).

For an opposite magnetic field, we can choose a Landau

gauge such that �̃A = (By, 0). Then the wave function in the
LLL can be written as φ̃kx (�x) = eikxx�0(y − kx

B ). The magnetic
translation operators are T̃x = Tx, T̃y = ei(Py−Bx) so the corre-
sponding eigenfunction can be written as

ψ̃�k (�x) =
∞∑

m=−∞
eimky+ikxky/Bφ̃kx+mB(�x)

=
∞∑

m=−∞
ei(kxx+mBx+mky+kxky/B)�0

(
y − kx

B
− m

)
. (C3)

Now let us consider various form factors,

λ±±(�k, �k + �Q) =
∑
m,m′

∫
dx

∫
dye∓i(kxQy+Qxky+QxQy )/B−i(mB−m′B)x∓im′(ky+Qy )±imky−iQyy

× �0

(
y ± kx + mB

B

)
�0

(
y ± kx + m′B + Qx

B

)

=
∑

m

∫
dye∓i(kxQy+Qxky+QxQy )/B∓imQy−iQyy�0

(
y ± kx + mB

B

)
�0

(
y ± kx + mB + Qx

B

)

=
∑

m

∫
dye∓i(kxQy+Qxky+QxQy )/B∓imQy

[
�0

(
y ± (kx + mB)

B
+ ±Qx + iQy

2B

)]2

e−B( Qx
2B )2+B(

±Qx+iQy
2B )2

e± (kx+mB)iQy
B

= e∓i
kyQx

B ∓ iQx Qy
2B − Q2

x +Q2
y

4B . (C4)
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FIG. 15. IPR for single band model with nonuniform Berry curvature. (a) trivial (B0 = 0) and (b) nontrivial (B0 ≈ 7.26). Green dots with
different brightness connected by the same line label different B1, from 0 to 4 (top to bottom), with 0.2 interval. The black line in (a) is the
linear fitting of the average IPR. The black line in (b) is the linear fitting of the average IPR for B1 � 2 and the blue line in (b) is the linear
fitting for B1 = 0.2.

Now let us consider λ0
+−(�k) = 〈ψ�k;+|ψ�k;−〉.

λ0
+−(�k) =

∑
m

∫
dyeim2ky+i2kxky/B�0

(
y + kx + mB

B

)

× �0

(
y − kx + mB

B

)

=
∑

m

∫
dyeim2ky+i2kxky/B[�0(y)]2e−B( kx+mB

B )2

=
∑

m

e2i
ky
B (kx+mB)− (kx+mB)2

B . (C5)

APPENDIX D: INVERSE PARTICIPATION RATIO
OF VARIOUS SYSTEMS

1. IPR of single band models

We consider the Hamiltonian in Eq. (10) with V1 =
V2 = V3 = V and further include a dispersion term Hdis =∑

�k c†
�kc�kε�k , where we take ε�k = t

∑3
j=1 cos (�k · �b j ). �b j’s are

the lattice vectors, taken to be �b1 = 4πQ√
3

(0,−1) and �b2,3 =
4πQ√

3
(±

√
3

2 , 1
2 ). We take the QP lattice to be parallel to the

original lattice and Q is an irrational number. We calculate
the IPR for various QP potential strength V and system
sizes (Fig. 14) given t = 1 and Q = √

5 − 1. We compare
the system with vanishing Berry curvature (trivial) and uni-
form Berry curvature given by a C = 1 band (nontrivial).

FIG. 16. IPR for the two band model. (a) Color plot of Log(IPR). The x axis labels different eigenvalues. (b) Dependence of Log(IPR)
with linear system size. The green lines from bright to dark label different V0 from 0 to 1. The black line is the linear fitting to the Log(IPR) at
V0 = 1.

115110-16



QUASIPERIODICITY, BAND TOPOLOGY, AND MOIRÉ … PHYSICAL REVIEW B 103, 115110 (2021)

FIG. 17. IPR of the states that is in the middle of the spectrum. The x axis is Log(L) and the y axis is Log(IPR) for (a) small V0,
(b) intermediate V0, and (c) large V0.

We find that in both cases, IPR has a stronger system size
dependence with increasing QP potential, which indicates
that there are more extended states in �k space. Moreover,
we fit the dependence of Log(IPR) to the logarithm of lin-
ear system size L and find a linear dependence, Log(IPR) =
zLog(L) + b. The trivial model has a slope z ≈ −1.88, while
for the nontrivial model z ≈ −1.37. The slope of the trivial
model is closer to the ideal scaling z = 2, which indicates
that there are more localized states in real space in the
trivial model than in the nontrivial model with large QP
potential.

We further consider a nonuniform Berry curvature in �k
space with B(�k) = B0 + B1

∑3
j=1 cos (�k · �b j ), where B0 is the

uniform part as considered before. The B1 term acts as a
QP hopping term. We calculate the IPR with trivial and
nontrivial B0 and increasing B1 (Fig. 14). For the trivial
case, we find z ≈ −1.92. For the nontrivial case, at small
value of B1, z ≈ −1.77 and z decreases with increasing
B1. z ≈ 1.12 within 2 � B1 � 4. The above results indicate
that in the presence of nonuniform Berry curvature, there

are more nonlocalized states (extended or critical) in real
space in the nontrivial model compared to the trivial model
(Fig. 15).

2. IPR of the two band model

We consider the Hamiltonian in Eq. (20). We let V1 =
� = 1 and change V0. The IPR’s for various V0 are shown
in Fig. 16. We find that the slope of the Log(IPR)-Log(L)
curve goes from z = 0 to z ≈ −1.58 when V0 is increased
from 0 to 1. At small V0, there is a band gap in the middle of
the spectrum. When V0/� � 0.2, the gap closes and the IPR
values in the middle of the spectrum get larger after the gap
closes, which indicates that there are extended states in the
middle of the spectrum and they get localized with increasing
V0. We study the IPR of the states that are in the middle of
the spectrum (Fig. 17) and find that there is an intermediate
regime of V0 where the IPRs of the states can be fit to a
power law dependence to the linear system size with a power
z ≈ −1.97. Thus, the states in the middle of the spectrum are
indeed localized in real space.
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