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Polarization angle dependence of the breathing mode in confined one-dimensional dipolar bosons
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Probing the radial collective oscillation of a trapped quantum system is an accurate experimental tool to
investigate interactions and dimensionality effects. We consider a fully polarized quasi-one-dimensional dipolar
quantum gas of bosonic dysprosium atoms in a parabolic trap at zero temperature. We model the dipolar gas with
an effective quasi-one-dimensional Hamiltonian in the single-mode approximation and derive the equation of
state using a variational approximation based on the Lieb-Liniger gas Bethe ansatz wave function or perturbation
theory. We calculate the breathing mode frequencies while varying polarization angles by a sum-rule approach
and find they are in good agreement with recent experimental findings.
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I. INTRODUCTION

Systems with long-range interactions present a host of
exotic quantum states of matter, including Wigner crys-
tals [1,2], Haldane insulators [3], and Fulde-Ferrell-Larkin-
Ovchinnikov phases [4], thanks to the interplay between
quantum fluctuations and the frustrating effects of interac-
tions. In particular, the advent of degenerate quantum gases
consisting of atoms in which strong dipolar forces provide
the interactions has even revealed the coexistence of both
crystalline order and superfluidity, the so-called supersolidity
[5–7].

Recently, the possibility of forming one-dimensional tubes
of bosonic Dy atoms with tunable strength of the contact
and dipolar interactions [8] opened the fascinating perspective
of investigating the interplay between quantum fluctuations,
enhanced in reduced dimensionality, and interaction-driven
fluctuations, leading to unconventional relaxation mecha-
nisms and the so-called scar states [9]. In fact, although in
one dimension repulsive dipolar interaction decaying as 1/r3

at long distance is classified as finite-range interaction, it is
expected to push bosonic systems to a regime of stronger
interactions [10–12].

Since the majority of existing ultracold-gas experiments
are carried out with spatially inhomogeneous systems, due
to the presence of an external confining potential, exciting
oscillations of the gas density distribution in such a confined
geometry have been demonstrated to be a reliable, basic tool
for investigating the spectrum of collective excitations and the
phase diagram [13–15].

*Corresponding author: rocitro@unisa.it

From this perspective, one-dimensional (1D) gases show
their own peculiarities [16,17]. A paradigmatic example is the
exactly solvable Lieb-Liniger gas [18], in which at infinite
contact interaction strength g1D → ∞ the many-body excita-
tion spectrum becomes identical to that of a free Fermi gas,
known as the Tonks-Girardeau gas [19]. The presence of an
external parabolic potential renders the low-lying part of the
excitation spectrum discrete, where the simplest mode to be
excited among the low-lying ones after small instantaneous
changes in the trapping frequency ωz is the so-called breathing
(or compressional) mode, i.e., the uniform radial expansion
and contraction of the system. The breathing mode frequency
ωb depends on the interaction strength g1D, the number of
particles N in the trap, and the gas temperature T . It was
previously shown that the frequency ratio ωb/ωz presents two
crossovers as a function of increasing interaction: from a
value of 2 down to

√
3 while going from the noninteracting

to weakly interacting regime and then back to 2 after cross-
ing towards the strongly interacting limit [20]. Theoretical
descriptions based on the local density approximation [16],
time-dependent Hartree method [21], and diffusion Quantum
Monte Carlo simulations [22] have been produced following
the system across the different regimes.

Here, we focus on the breathing mode of a one-dimensional
dipolar quantum gas and investigate the influence of both the
dipole orientation and the interplay between zero (contact)
and finite-range (dipolar) interaction allowing for independent
tuning of these two interactions. Our analysis is based on a
sum-rule approach [16] that allows us to extract the breathing
mode frequency from ground-state density profiles obtained
after solving the stationary generalized Gross-Pitaevskii equa-
tion. The latter is generalized by replacing the Hartree term
with the energy per unit length of the bulk quasi-one-
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dimensional dipolar system, obtained using either a Bethe
ansatz wave function in a variational calculation [23] or a
perturbative approach.

The results show that when dipolar interactions are at-
tractive, the system manifests an incipient instability at low
density, and a sharp minimum is found in the breathing mode
which is very peculiar of that finite-range interaction. In the
repulsive regime an extension of the stability regime is in-
stead observed. Good agreement with the experimental results
reported in Refs. [9,24] is also found.

This paper is organized as follows. We introduce the model
Hamiltonian and the generalized Gross-Pitaevskii equation
in Sec. II. Then in Sec. III we discuss the equation of state
by separating the short-range terms from the soft dipolar
long-range interaction in the single-mode approximation. In
Sec. IV we present the results for the breathing mode by
discussing the case of the repulsive and attractive interac-
tions, following the evolution of this quantity after varying the
dipole orientation θ in the whole range from 0 to π/2. Finally,
in Sec. V we give conclusions and discuss perspectives.

II. THE MODEL AND THE GENERALIZED
GROSS-PITAEVSKII EQUATION

In highly elongated traps the atomic motion in the plane
transverse to the longitudinal direction is described by the
Hamiltonian

H⊥ = p2
x + p2

y

2m
+ mω2

⊥
2

(x2 + y2), (1)

where m is the mass particle and ω⊥ is the confining harmonic
oscillator frequency. When the frequency ω⊥ � ωho is suffi-
ciently larger than the longitudinal trapping frequency ωho, the
many-body wave function of the atoms can be projected on the
ground-state manifold of the Hamiltonian (1) [25]. This is
the so-called single-mode approximation.

The effective Hamiltonian in the projected subspace de-
pends only on the coordinates along the z axis. Its expression
is [26,27]

H1D = − h̄2

2m

∑
i

∂2

∂z2
j

+ g1D

∑
i< j

δ(zi − z j )

+
∑

i

Vext (zi) +
∑
i< j

VQ1D(zi − z j ), (2)

where Vext (z) = 1
2 mω2

hoz2 is the potential energy of the
parabolic trap along the longitudinal z direction, g1D is the
contact interaction coming from van der Waals or other short-
range interactions, and the effective one-dimensional (1D)
dipole-dipole interaction VQ1D(z) in the single-mode approxi-
mation reads [26]

VQ1D(z/l⊥) = V (θ )

[
V 1D

DDI

( z

l⊥

)
− 8

3
δ
( z

l⊥

)]
, (3)

where

V (θ ) = μ0μ
2
D

4π

1 − 3 cos2 θ

4l3
⊥

(4)

encodes the sign and the effective strength of the interaction
driven by the vacuum magnetic permeability μ0, the magnetic

dipolar moment μD of the given atomic species, the angle θ

between the dipole orientation and the longitudinal z axis, and
the transverse oscillator length l⊥ = √

h̄/(mω⊥). The adimen-
sional form of the effective 1D dipolar potential V 1D

DDI is

V 1D
DDI

( z

l⊥

)
= −2

∣∣∣ z

l⊥

∣∣∣ +
√

2π
[
1 +

( z

l⊥

)2]

× e( z
l⊥ )2

/2erfc

[∣∣∣∣ z√
2l⊥

∣∣∣∣
]
. (5)

In the 162Dy case relevant to current experiments [9], μD =
9.93 μB [8].

At zero temperature, the Gross-Pitaevskii theory [28–30]
provides a good description of weakly interacting three-
dimensional atomic Bose-Einstein condensates, yet it requires
modifications either with strong interactions or reduced di-
mensionality. In the original form, without dipolar interaction,
the energy functional in the Gross-Pitaevskii approximation is
[28,29]

FGP =
∫

dz

[
h̄2

2m
∇φ∇φ∗+[Vext (z)−μ]|φ|2+ g1D

2
|φ|4

]
, (6)

where φ(z, t ) is the Bose-Einstein condensate order param-
eter, n(z, t ) = |φ(z, t )|2 is the boson density, and μ is the
chemical potential. In one dimension and in the case of hard-
core bosons [19], Kolomeisky et al. proposed a modification
of the Gross-Pitaevskii equation to describe the Tonks-
Girardeau regime [31], where the Hartree term g1D|φ|4/2 is
replaced by the energy density of the hard-core boson (or free
spinless fermion [19,32]) gas, i.e., h̄2π2|φ|6/(6m). Such an
approach can be viewed as taking the classical limit in the
bosonized Hamiltonian of spinless fermions with quadratic
dispersion [33]. Afterwards, different proposals [25,34,35]
were offered to cover both the weakly and strongly interacting
regimes; one of them amounts to replacing the Hartree term
with an energy-density functional [25,34] for the Lieb-Liniger
gas that interpolates between the Hartree and Tonks-Girardeau
limits (see Appendix A). Indeed, in one dimension, the
Lieb-Liniger gas is integrable by the Bethe ansatz technique
[18,36], and an exact expression of the ground-state energy as
a function of the boson density is available.

The ground-state energy density of the Lieb-Liniger gas
reads

eLL(n) = h̄2

2m
n3εLL(n), (7)

where εLL(n) is an adimensional function that can be obtained
from the Bethe ansatz solution [37–39]. Using the ground-
state energy (7) in the generalized Gross-Pitaevskii equation
(GPE) has been shown to reproduce [34] the results of the hy-
drodynamic approach [16,17] for the lowest breathing mode
(see Appendix A for details).

Along these lines, in this work we replace the Hartree term
in the Gross-Pitaevskii equation (6) with the energy per unit
length of the bulk quasi-one-dimensional dipolar system

e(n) = h̄2

2m
n3ε(n), (8)
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where ε(n) is obtained using either a Bethe Ansatz wave
function in a variational calculation [23] or a perturbative
approach that we detail in the next section.

The approximation to the energy functional now reads

FGP =
∫

dz

[
h̄2

2m
∇φ∇φ∗+[Vext (z)−μ]|φ|2+ e(|φ|2)

]
, (9)

yielding the equation of motion [34,35] for φ(z, τ ), ih̄∂τφ =
δFGP/δφ∗, i.e.,

ih̄∂τφ =
[
− h̄2∇2

2m
+ [Vext (z) − μ] + 1

φ

δe(|φ|2)

δφ∗

]
φ, (10)

with the wave function normalized to the number N of atoms
in the trap, N = ∫

dz|φ(z)|2.

III. EQUATION OF STATE

We start our analysis by recalling the method used in
Ref. [8] to reduce the system with dipolar interaction (3) to
an integrable Lieb-Liniger model. First, in the Hamiltonian
(2) all the short-range contact interactions are isolated. Then,
besides the van der Waals g1D and the contact interaction in
Eq. (2), a contact term AV (θ ) that effectively accounts for
the short-range part of the interaction V 1D

DDI (r) is added. The
effective Lieb-Liniger Hamiltonian reads

HLL
Q1D = − h̄2

2m

∑
i

∂2

∂x2
i

+
[

g1D + V (θ )(A − 8

3
)l⊥

] ∑
i< j

δ(xi − x j ), (11)

where the normalized strength of the short-range
part of the interaction can be approximately taken

as A = ∫ +√
2π

−√
2π

duV 1D
DDI (u) 	 3.6 in the single-mode

approximation and independently of the density of atoms
[8]. The nonzero A takes care of the shortest-range part
(|z| <

√
2π l⊥) of the dipolar potential (5), leaving the

longer-range ∼1/z3 integrability-breaking tail as a possible
perturbation.

Taking A = 0 would amount to neglecting the short-range
part of the dipolar interaction (5) and thus approximate re-
pulsive or attractive dipolar interactions with an attractive
or repulsive contact interaction, respectively [26]. Obviously,
such an approximation is unphysical. The effect of making
A > 0 is to counterbalance the attractive contact term coming
from the single-mode approximation. When A > 8/3, stabil-
ity is enlarged in the repulsive case, while in the attractive case
instability can be obtained for g1D not sufficiently repulsive.

A reliable estimate of A can be determined via a variational
Bethe ansatz (VBA) wave function approach [23], in which,
for each density, this effective contact interaction is deter-
mined by the minimization of the energy per particle using
the Bethe ansatz wave function of the Lieb-Liniger model as
a trial wave function.

The dimensionless coupling γ for the Lieb-Liniger Hamil-
tonian defined in (11) is

γ = 1

n

m

h̄2 gQ1D(θ ) = 2

naQ1D

= 2

n

[
− 1

a1D
+ ad

l2
⊥

1 − 3 cos θ2

4

(
A − 8

3

)]
, (12)

where g1D = −2h̄2/(ma1D) and ad = μ0μ
2
Dm/(8π h̄2) is the

dipolar length. In this work we will focus on the region where
a1D < 0, so that the contact interaction strength g1D is posi-
tive.

In previous modelizations [8], the basic assumptions were
that (i) A was independent of the density and the scattering
length a1D and (ii) the tail of the dipolar interaction was
negligible. To start with, let us include the tail of V 1D

DDI (z/l⊥)
by means of a perturbative approach.

We write the original Hamiltonian (2) as the sum of the
integrable Lieb-Liniger Hamiltonian (11) and a correction
term δV ,

H = HLL
Q1D(γ ) +

∑
i< j

δV (zi − z j ), (13)

δV (z) = V (θ )
[
V 1D

DDI (z/l⊥) − Al⊥δ(z)
]
. (14)

In order to estimate the effect of the interaction δV (z), we re-
sort to perturbation theory (PT). In particular, we will consider
two benchmark values for A, A = 3.6 as in Ref. [8] and A = 0,
which amounts to treating the whole V (θ )[V 1D

DDI (z/l⊥)] at the
perturbative level. At first order, the energy per N particles is

Ept

N
= εpt (n) 	 ELL(γ )

N
+ n

2

∫
dzδV (z)gLL(z), (15)

with ELL being the Lieb-Liniger ground-state energy for the
Hamiltonian (11) evaluated at γ , while gLL(z) is the pair
correlation function [40,41] of the Lieb-Liniger gas. Using
(15), we obtain an equation of state ePT(n) that depends on
the chosen A, in addition to ad/l⊥, |a1D|/l⊥, and θ . We remark
that in our perturbation theory, the perturbative term in (15)
is chosen so that its weight is only 10% of the total weight
of the dipolar interaction [8]. This ensures the validity of the
approximation.

In the rest of the paper, we compare the results obtained
with the following three approximations for the equation of
state: εLL(n), perturbation theory based on (15) with A = 3.6,
and the variational Bethe ansatz as in Ref. [23], which gives a
variational estimate of the ground-state energy independent of
the approximation [8] chosen for A. For comparison, we will
also show the results for the most unfavorable case obtained
when the whole dipolar part is treated in perturbation theory,
that is, A = 0.

In Fig. 1 we show the energies ε(n) within three different
approximations: εLL(n) using Eq. (11) and A = 3.6, εPT(n)
with A = 3.6, and, finally, the variational Bethe ansatz. Re-
sults are shown for three selected scattering lengths, a1D =
−100a0,−1000a0, and −5000a0, and for θ = π/2, i.e., for
repulsive interaction. We choose ad = 195a0, l⊥ = 57.3 nm,
and aho = 24 000a0 to make contact with recent experimental
works [8,9]. For small scattering lengths, the equations of
state from the perturbative approach using A = 3.6 and from
the variational Bethe ansatz are in good agreement with each
other. Equations of state within these two approximations
visibly depart from εLL based on Eq. (11) at small and in-
termediate densities and on increasing the scattering length,
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FIG. 1. Energy per unit length ε(n) in units of h̄2n3/(2m) within
three different approximations: εLL (n) with A = 3.6 (dashed lines),
perturbation theory using A = 3.6 (solid lines), and the variational
Bethe ansatz (solid dots). The results are shown for three se-
lected scattering lengths, a1D = −100a0, −1000a0, and −5000a0,
the black, red, and blue data, respectively, and for θ = π/2.

as expected since the dipolar interactions become more dom-
inant.

The typical situation for the attractive interaction, i.e., for
θ = 0, is displayed in Fig. 2, where we show the data for
a1D = −1000a0 and −5000a0 and compare the energy results
coming from variational Bethe ansatz and perturbation theory
using A = 3.6 for all densities and A = 0.0, that is, treating
the whole dipolar interaction as a perturbation. At low and
intermediate densities, energies obtained within PT with A =
0 largely deviate from VBA results and within themselves.
Only at very large densities do these differences decrease,
and results from PT with A = 0 are closer to the variational
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FIG. 2. Energy per unit length ε(n) in units of h̄2n3/(2m) within
three different approximations: using perturbation theory with A =
3.6 (solid lines) and using A = 0.0 (dashed lines) compared with
those within the variational Bethe ansatz (solid dots). Data are shown
for two selected scattering lengths, a1D = −1000a0 and −5000a0,
represented by the red and blue data points, respectively. Results are
for θ = 0.
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FIG. 3. Squared breathing mode frequency over trapping fre-
quency squared ω2

b/ω
2
ho as a function of � = N (a1D/aho)2, using

different approximations. All results are for N = 20, and lines are
only a guide to the eyes. Red, dark-green, and blue solid curves are
estimates using the Lieb-Liniger model and the perturbation theory
with A = 0 and with A = 3.6, respectively. The dashed red curve
represents ω2

b/ω
2
ho calculated using Eq. (11) with A = 3.6. the black

solid squares are estimates based on the variational Bethe ansatz
equation of state.

results. It should be kept in mind that those differences are
strongly reduced by the n3 factor in the energy per volume
E/V = n3ε(n).

These results emphasize that using a single effective con-
tact interaction A, independent of both density and scattering
length, can yield an inaccurate equation of state, especially
with attractive dipolar interactions. The VBA approach, by
optimizing the parameter A to minimize the ground-state
energy, takes care of these uncertainties. The relevance of
such differences for the calculation of the breathing mode
frequency in a trapped system will be considered in the next
section.

IV. THE BREATHING MODE

We evaluate the frequency of the lowest radial compres-
sional oscillation by a sum-rule approach [16] that allows us
to compute the breathing mode frequency from ground-state
density profiles obtained by solving the stationary generalized
Gross-Pitaevskii equation using standard imaginary-time evo-
lution algorithms [42]. The breathing mode ωb is obtained as
the response of the gas to a change in the trap frequency ωho:

ω2
b = −2

〈
N∑

i=1

z2
i

〉[
∂
〈∑N

i=1 z2
i

〉
∂ω2

ho

]−1

. (16)

It is convenient (see Appendix B) to study the evolution of
the breathing mode as a function of � = Na2

1D/a2
ho, with

N being the number of particles in the trap. By solving
the time-dependent generalized Gross-Pitaevskii equation, we
have verified that, after initially exciting the mode by exter-
nal radial compression of the trap, in the limit |a1D| → 0,
(ωb/ωho)2 = 4.

We estimate the breathing mode using the different approx-
imations described above, starting from the case θ = π/2 (see
Fig. 3).
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FIG. 4. Density profile for a system of N dipoles in a trap using
two different equations of states at � = 434, namely, the Lieb-
Liniger (LL) (red lines) and VBA (black lines). Dashed and solid
lines refer to the cases with N = 25 and N = 20 particles in the
trap, respectively. Results are for θ = π/2. In the inset, we show the
density at the center of the trap as a function of � for N = 25; the
red and black solid dots represent estimates using the LL and VBA
equations of state, respectively. Lines joining dots are only a guide to
the eye.

In the region of small scattering lengths |a1D|, the breathing
modes are dominated by the van der Waals repulsive contact
interaction, and dipolar interactions are marginally relevant:
all the approximations, even completely neglecting the dipolar
interaction, predict similar results. On increasing |a1D|, apart
from using PT with A = 0 that fails when gQ1D(π/2) becomes
negative, all the other approximations shown in Fig. 3 are very
close to each other. The important effect of dipolar interaction
becomes visible for very large |a1D| values, where it enlarges
the region of stability, and for |a1D| → ∞, the breathing mode
frequency reaches a plateau. This behavior can already be
obtained within the approximation of [8] since with A = 3.6,
according to Eq. (11), gQ1D(π/2) saturates in that limit.

We note that when � < 103, the estimates of the breathing
mode frequency from both the PT using A = 3.6 and the VBA
are compatible with the one obtained by dropping the dipolar
interaction entirely. This last modelization, however, would
predict that the breathing mode reaches the noninteracting
limit at large � > 104, i.e., (ωb/ωho)2 → 4, at variance with
the other two approximations that predict a plateau at a lower
(ωb/ωho)2 	 3.2, hinting at the persistence of interactions.

At large |a1D|, even when the predictions for the breathing
mode are all compatible, we can trace a difference in the
density profile, as illustrated in Fig. 4 at � = 434, where we
show it using the VBA and Lieb-Liniger (LL) model.

Using either εVBA(n) or εPT(A = 3.6, n) yields a density
at the center of the trap that ranges from 	2.6 to 3.1 μm−1

(see the black curves in the main panel of Fig. 4), while the
density value at the center of the trap is almost doubled for
the Lieb-Liniger gas without dipolar interaction described by
εLL(n). The first estimates are in agreement with the averaged
density at the center of trap as measured in Ref. [8]. In the
inset we show the variation of the density at the center of
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FIG. 5. Squared breathing mode frequency over trapping fre-
quency squared ω2

b/ω
2
ho as a function of � = N (a1D/aho)2, using

different approximations. The red solid and dashed lines represent
the breathing mode estimates after using the Lieb-Liniger (LL)
model without dipolar interaction and using A = 3.6 in Eq. (11),
respectively. Blue solid curves refer to estimates based on the per-
turbation theory with A = 3.6, while black solid squares are based
on the variational Bethe ansatz (VBA). All results are for N = 20,
and lines are only guides to the eye. In the inset, the density at the
center of the trap is shown as a function of �, with the same legend
as in the main panel.

the trap as a function of � for the Lieb-Liniger equation of
state and the VBA. The values become notably different for
� � 10, whereas (see Fig. 3) the behavior of the breathing
mode becomes qualitatively different for the two approxima-
tions only for � � 500. The behavior of the density profiles
shows that the physics of the system at large scattering lengths
is different in the presence of repulsive dipolar interactions
and could be used as a sensitive indicator together with the
frequency of the breathing mode.

Turning to the attractive case, i.e., θ = 0, on increasing
|a1D| the gQ1D(θ ) in Eq. (12) rapidly becomes small and
negative, and the key issue is to what extent the system of the
dipolar gas is still stable against possible collapse [43], the
formation of a solitonic/droplet phase [35], or a gas/droplet
coexistence [44]. The predictions for the breathing modes
are qualitatively different from the repulsive case since both
the VBA and the estimates with A = 3.6, with or without
correction to first order, predict that for � > 2 the breathing
mode rapidly decreases to reach a minimum with ω2

b/ω
2
0 < 3,

after which it rapidly increases until the overall effective inter-
action becomes negative. Due to negative gQ1D, the LL model
using A = 3.6 [Eq. (11)] also predicts an instability but at a
higher value of � than the two other approximations with
3 < ω2

b/ω
2
ho < 4.

The important discrepancy for � > 1 between the A = 3.6
approximation and its first-order correction suggests a break-
down of this approximation. If we contrast the latter with the
VBA, we observe that VBA predicts a deeper minimum of the
breathing mode frequency than the A = 3.6 approximation,
even with first-order corrections. Comparing the densities at
the center of the trap (see the inset of Fig. 5), we note that
differences in density are becoming noticeable already for
� ∼ 0.1, suggesting again that the density profile is more sen-
sitive to the presence of dipolar interaction than the breathing
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FIG. 6. Squared breathing mode frequency over trapping fre-
quency squared ω2

b/ω
2
ho as a function of the polarization an-

gle θ for selected values of the scattering length, a1D/a0 =
−100, −2000, −5000, −7000, represented by red, dark-green, blue,
and black solid dots, respectively. The solid lines joining the data
are only guides to the eye. The vertical blue dashed line splits the
regions with negative V (θ ) < 0 (left) and positive V (θ ) > 0 (right).
Data refer to estimates based on the variational Bethe ansatz equation
of state.

mode. In any case, all the approximations confirm that we are
approaching an instability at intermediate values of � ∼ 1. Of
course, only a direct comparison with experimental data could
permit us to identify which approximation is the most suitable
for other predictions, as we will see later on.

Comparing the repulsive and attractive cases, we see that
attractive dipolar interactions produce stronger qualitative ef-
fects on the behavior of the breathing mode or on the density
profile at a given a1D. In addition, differences between the
VBA and the perturbation theory with A = 3.6 are also more
significant in the presence of repulsive interactions. Such an
observation is in agreement with the behavior of the energy
density represented in Figs. 1 and 2, where the differences
between the approximations manifest themselves for lower
|a1D| in the attractive case.

Having analyzed the physics of the breathing mode in
the two extreme cases of maximally repulsive and attractive
dipolar interactions, we are now in a position to discuss the
dependence on the polarization angle. We show in Fig. 6 the
effect of changing the polarization angle θ while keeping
the scattering length |a1D| fixed. For a large range of scattering
lengths the effect of varying the angle is very small and visible
only just before the system becomes unstable. For the largest
scattering length and attractive interaction, the breathing mode
rapidly grows, signaling the instability, as previously found.

We conclude our discussion by contrasting the proposed
approximation with the experimental data from Ref. [9,24], as
shown in Fig. 7. We note that for the repulsive case (θ = π/2)
all the experimental points are in very good agreement with
the VBA prediction with both N = 25 and N = 40, which
are the minimum and maximum numbers of particles in the
trap characterizing the experiment. Our findings suggest that
for � � 1 the dipolar interaction is efficient in enhancing the

FIG. 7. Squared breathing mode frequency over trapping fre-
quency squared ω2

b/ω
2
ho as a function of � = N (a1D/aho)2, using

different approximations, for the attractive case (top panel) and the
repulsive one (bottom panel). Dark-red triangles represent the exper-
imental data taken from Refs. [9,24]. All results are shown for two
values of N , N = 50, 80 (top panel) and N = 25, 40 (bottom panel),
and lines are only a guide to the eyes. The dashed black and red
lines represent estimates using the Lieb-Liniger model. Black and
red solid squares are estimates based on the variational Bethe ansatz
(VBA) equation of state.

region of stability of the interacting regime and in inhibiting
the increase of the breathing mode frequency towards the non-
interacting limit. The agreement with the VBA predictions is
also confirmed for the attractive case (θ = 0) where the curve
with N = 80 and N = 50 agrees well with the experimental
points. The comparison with the LL theory, using A = 3.6 and
neglecting the tail interaction [Eq. (11)], clearly shows that
despite its correct qualitative behavior the VBA description
is needed to make contact with experimental findings. The
comparison with the experiments clearly indicates that the
system crosses over an instability point for � of the order
1. Whether this instability is due to the formation of simple
bound states [43] or droplet formation [35] needs further in-
vestigations, in particular from the experimental point of view.
Here, additional data in the interval � between 10−1 and 1 for
θ = 0 would, indeed, help to provide a quantitative test for the
existence of the predicted minimum and to assess its nature.
For � > 10, experiments did not succeed at evidencing a
stable condensate [24].

V. CONCLUSIONS

In conclusion, we have considered the energy density of
a gas of dipolar bosons in a tight transverse trapping us-
ing either the approximation of Ref. [8], supplemented by
first-order perturbation theory, or a variational approximation
[23]. We have found that in the case of repulsive dipolar
interactions, the three approaches are in good agreement with
each other. We have used energy densities under different
approximations to predict the breathing mode frequencies of
the trapped dipolar gas. When dipolar interactions become
attractive, the results of the two approximations become quite
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different, especially at low density. This gives rise to notable
differences in the frequency of the breathing mode, with the
variational method giving a stronger dip before the instability.
In all cases, observing the effect of the dipolar interaction
requires us to weaken the contact interaction that is compet-
ing with it enough. In comparison to experimental results,
we have shown that the variational predictions are especially
compatible with the present measurements [9,24]. However,
except in the attractive case, the experimental results are also
compatible with a pure contact interaction.

As already noticed in our previous work [10], this can be
considered further proof that, for all relevant purposes, the
nature of 1/r3 power-law interactions in one dimension, in
the ground-state repulsive branch, can be viewed as short-
range interactions [45]. It would be worthwhile for future
experiments to attempt to explore the region with � > 400
in the repulsive regime, where deviations for the pure con-
tact interaction are expected, and the range 0.1 < � < 1 in
the attractive case, where deviations from the pure contact
interaction are maximal, and the difference between the two
approximations considered here is the most visible.

ACKNOWLEDGMENTS

We thank B. Lev and his group for enlightening discussions
and for private communication of data and C. Menotti for
useful discussions.

APPENDIX A: GENERALIZED GROSS-PITAEVSKII
EQUATION FOR THE LIEB-LINIGER TRAPPED SYSTEM

We replace the Hartree term in Eq. (6) with the ground-
state density energy of the Lieb-Liniger gas equation (7), so
that the energy functional and the equation of motion read

FGP =
∫

dz

[
h̄2

2m
|∇φ|2 + Vext (z)|φ|2 + e(|φ|2)

]
, (A1)

ih̄∂τφ =
[
− h̄2∇2

2m
+ Vext (z) + 1

φ

δe(|φ|2)

δφ∗

]
φ, (A2)

where

1

φ

δe(n)

δφ∗ = h̄2

2m

[
3n2εLL(γ [n])− 2n

a1D

dεLL(γ [n])

dγ

]
, (A3)

with εLL(γ [n]) being the adimensional ground-state density
energy functional for the Lieb-Liniger gas, for example, from
Refs. [37–39]. We use a normalized wave function as well
as harmonic-oscillator units, which means that lengths and
energies are, respectively, expressed in units of aho and h̄ωho,
so that

n = N

aho
|ψ |2, (A4)

γ = 2aho

N |φ|2a1D
= 2

N2λ|ψ |2 , (A5)

λ = a1D

Naho
, (A6)
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FIG. 8. Ratio of breathing mode frequency to trap frequency
squared ω2

B/ω2
ho as a function of the Hartree parameter λ for different

numbers of particles in the trap, namely, N = 4, 10, 15, 20, 25, and
30, using the generalized Gross-Pitaevskii equation (A2). The red
solid line represents the Hartree approximation, independent of the
number of particles.

where λ is the Hartree parameter. In these units, Eq. (A3)
becomes

1

φ

δe(n)

δφ∗ = 3

2
N2|ψ |4ε(γ [n]) − 1

λ
|ψ |2ε′(γ [n]), (A7)

and it covers the strong- and weak-interaction cases. Indeed,
in the weak-interaction limit

lim
γ→0

1

φ

δe(n)

δφ∗ → 3

λ
|ψ |2 − 1

λ
|ψ |2 = 2

λ
|ψ |2,

we recover the usual Gross-Pitaevskii equation

ih̄∂tψ =
[

1

2
(−∇2 + x2) + 2

λ
|ψ |2

]
ψ, (A8)

while in the strong-interaction limit

lim
γ→∞

1

φ

δe(n)

δφ∗ → 3

2
N2|ψ |4ε(γ [n]) = π2

2
N2|ψ |4,

we get back to the proposal from Kolomeisky et al. [31] to
describe the Tonks-Girardeau gas,

ih̄∂tψ =
[

1

2
(−∇2 + x2)+ π2

2
N2|ψ |2|ψ |2

]
ψ. (A9)

Results for the breathing modes using this approach for dif-
ferent numbers of particles in the trap are shown in Fig. 8 and
compared with the usual Gross-Pitaevskii equation.

APPENDIX B: BREATHING MODE OF AN
INHOMOGENEOUS TOMONAGA-LUTTINGER LIQUID

Here, we briefly recall the relevant parameters to study
the evolution of the breathing mode in a trapped Tomonaga-
Luttinger liquid [11,16,17]. The Hamiltonian of the inhomo-
geneous Tomonaga-Luttinger liquid reads

H =
∫ R

−R

dx

2π
h̄

[
u(x)K (x)(π�)2 + u(x)

K (x)
(∂xφ)2

]
, (B1)
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where [11]

u(x)K (x) = h̄πρ(x)

m
, (B2)

u(x)

K (x)
= 1

π h̄

(
∂μ

∂ρ

)
ρ=ρ(x)

, (B3)

with ρ(x) being the density of atoms at position x, μ being the
chemical potential, m being the mass of a single atom, and 2R
being the dimension of the trapped atomic cloud. Using the
equations of motion method, one obtains [11,16,17]

∂2
t φ = u(x)K (x)∂x

(
u(x)

K (x)
∂xφ

)
(B4)

= ρ(x)

m
∂x

(
∂μ

∂ρ
∂xφ

)
. (B5)

The breathing modes are obtained by looking for solutions of
(B4) of the form φ(x, t ) = φn(x)eiωnt subject to the boundary
conditions φn(±R) = 0. The local chemical potential in a
harmonic trap is fixed by the equation

μ(ρ(x)) = 1
2 mω2

0(R2 − x2). (B6)

In the case of the Lieb-Liniger gas, the energy per unit length
is given by (8),

e(ρ) = h̄2ρ3

m
ε̄(ρa1D); (B7)

therefore, it is convenient to use a reduced density ν(x) =
a1Dρ(x) and write μ(ρ) = ∂ρe(ρ) in the form

μ = h̄2

ma2
1D

ψ (ν), (B8)

so that after inverting (B6) we find

ν = ψ−1

(
a2

1D(R2 − x2)

a4
ho

)
, (B9)

where we have introduced the trapping length aho =√
h̄/(mω0). If we consider the total number of particles N ,

we have

N =
∫ R

−R
ρ(x)dx, (B10)

and injecting (B9), we find that

Na1D

R
=

∫ 1

−1
duψ−1

(
a2

1DR2(1 − u2)

a4
ho

)
. (B11)

Solving that equation yields

R = a2
ho

a1D
G(�), (B12)

with � = Na2
1D/a2

ho. Introducing the dimensionless variable
ξ = a1Dx/a2

ho, we can rewrite the density and the chemical
potential in the form

ρ(x) = a−1
1DF1[G(�)2 − ξ 2], (B13)

∂ρμ(ρ(x)) = h̄2

ma1D
F2[G(�)2 − ξ 2] (B14)

and obtain the dimensionless eigenvalue equation

F1[G(�)2 − ξ 2]∂ξ {F2[G(�)2 − ξ 2]∂ξφn} = −(ωn/ω0)2φn,

(B15)

with boundary conditions φn[ξ = πG(�)] = 0. So in the case
of the Lieb-Liniger gas the eigenvalues (ωn/ω0)2 depend only
on the parameter �. Obviously, this is not going to be the
case in the dipolar gas where the ground-state energy per unit
length also depends on the dimensionless ratios a1D/ad and
a1D/l⊥ and the angle θ . However, in a limit where the dipolar
interaction can be replaced by an effective contact interaction,
the same kind of scaling will hold.
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