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quantum Hall systems
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The edge states in the fractional quantum Hall systems at filling factor ν = 1/3 are studied by the density
matrix renormalization group method. It is shown that the density oscillation induced by the local boundary
condition at the edge is characterized by the wave number of the minimum magnetoroton excitation, and this
structure is partially reconstructed with the change in the confinement potential shape. In particular, the ν = 1
counterpropagating edge channel appears with the change in the chemical potential, which is consistent with
recent experiments on heat transport. The stability of the bulk states against the change in the number of
electrons confirms that the bulk part of the fractional quantum Hall state is incompressible, while the edge
state is compressible.
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I. INTRODUCTION

Since the discovery of the fractional quantum Hall (FQH)
effect [1,2], many interesting properties of two-dimensional
(2D) electrons have been reported in quantum Hall systems
[3]. Extensive studies have shown that the bulk part of the
FQH state has an excitation gap, while gapless excitations
exist along the edge of the 2D system. These unique low-lying
excitations are theoretically described by the one-dimensional
(1D) model called the chiral Luttinger liquid [4], and the
transport properties of the FQH states are expected to be
determined by the excitations of the edge state [5]. Recent
theoretical and experimental works, however, have shown the
results are not simply explained by the above conventional
edge picture. The noise measurement of the edge current of
the ν = 1/3 FQH state has reported the presence of neutral
heat transport [6] which was originally predicted in hole
conjugate states [7,8], and the bulk heat transport was also
reported even in the FQH state [6,9]. In addition, the tunnel
current experiment has shown the sample-dependent expo-
nent of the I − V power law, which is not consistent with
the theoretical predictions [10–13]. Besides these reports,
exact diagonalization studies have indicated the edge recon-
structions by the competition between the repulsive Coulomb
interaction and confinement potential [14–18], suggesting the
formation of extra counterpropagating edge modes which
modify the transport property [19–21]. To understand these
results quantitatively, systematic study of the edge states is
needed.

The FQH effect is realized in a strong magnetic field
where the kinetic energy of electrons is quenched into highly
degenerate Landau levels. The resulting macroscopic degen-
eracy leads to the failure of analytical perturbation theory,
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and numerical analysis has been used to solve many-body
problems caused by the Coulomb interaction. To systemati-
cally analyze the edge state, however, we need to deal with a
large system beyond the limitation of exact diagonalizations
since the length scale of the density oscillation induced by
the confinement potential is much larger than the system size
available for exact diagonalizations and it is difficult to realize
the bulk part of the FQH state between the two counterflowing
edge channels.

In this paper we use the density matrix renormalization
group (DMRG) method [22,23] to calculate the ground state
wave function of large systems with more than 70 electrons
under various confinement potentials and clarify the stability
of the edge state and the conditions for the edge reconstruc-
tion. Although the DMRG method was originally designed
for 1D interacting systems, it has been successfully applied
to FQH states of two-dimensional systems under strong mag-
netic fields [24–27]. We calculate the ground state of the
two-dimensional electron gas in torus geometry at filling fac-
tor ν = 1/3 and show that the reconstruction of the edge state
occurs in good agreement with previous exact diagonalization
studies, and the bulk part of the FQH state is stable under a
shift of the chemical potential within a certain range, which is
consistent with the experimentally observed Hall conductivity
plateaus of the FQH state.

II. MODEL AND METHOD

The system used for our calculation is illustrated in Fig. 1.
The lengths of the unit cell along the x and y axes are given
by Lx and Ly, respectively. Enclosed magnetic flux quanta are
represented by M, which is related to the system size through
the relation LxLy = 2π l2M, with l being the magnetic length.
To investigate the fundamental FQH edge state, we consider
the lowest Landau level (LLL) and assume the electron spin
is fully polarized. After the projection onto the LLL, the
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FIG. 1. Two-dimensional electron system on torus geometry
used in the calculation. The central blue region indicates the unit
cell. Lx and Ly are the lengths of the unit cell along the x and y
axes, respectively. M represents the number of magnetic flux quanta
in each unit cell. Replacing δ′

i, j with the usual Kronecker delta δi, j

in Eq. (4) results in breaking the translational symmetry for the x
direction, and the edge states appears along the y axis.

one-particle wave function in the Landau gauge is written as

ϕ j (r) =
[

1

Ly
√

π l

]1/2

×
∑
n∈Z

exp

[
i
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where Xj , defined as Xj = 2π l2 j
Ly

, is the center coordinate of the
x direction for each one-particle wave function. The Hamil-
tonian of a two-dimensional electron gas in a high magnetic
field is described only by the Coulomb interaction as
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where the Coulomb interaction V (r) and the coefficient
Aj1, j2, j3, j4 are given as
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∑
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FIG. 2. Density oscillations of the ν = 1/3 FQH state induced
by the boundary. Ne = M/3 is the total electron number in the unit
cell, and Ly/Lx is its aspect ratio. The black dotted line represents
〈nj〉 = 1/3. The thick black line in the inset shows the fitting function
of Eq. (5) for the result of Ne = 40, Ly/Lx = 0.5.

respectively. q in Eq. (4) is the discrete wave vector, and δ′
i, j

is the extended Kronecker delta, which is 1 if and only if i =
j + nM (n ∈ Z) [28].

To introduce the edge on the torus system, we change
the term δ′

i, j to the usual Kronecker delta δi, j . This change
removes the nondiagonal matrix element over the unit cell and
breaks the translational symmetry of the x direction, which
results in the creation of edges on both sides of the system
along the y axis (see Fig. 1). Since changing from δ′

i, j to
δi, j is interpreted as introducing a cut along the y axis in the
bulk, the obtained density oscillations on both sides of system
are recognized as the edge states caused by the boundary
conditions. We then extend the unit cell and analyze the effect
of the confinement potential shape in the next section.

To deal with the large unit cell, we apply the DMRG
method. This method enables us to iteratively expand the
unit cell and obtain the ground state wave function within
a desired accuracy that is determined by the number of
remaining state m in the calculation. We keep up to at least
200 basis states whose corresponding truncation error is in
the range of O(10−3)–O(10−5). We also checked the accuracy
of our results by comparing ground state energy obtained by
the exact diagonalizations up to a system of M = 20. In the
following sections, we take e2/εl as units of energy.

III. RESULTS

A. Effect of the local boundary condition

We first introduce the edges along the y axis in two-
dimensional torus geometry by replacing δ′

i, j with the usual
Kronecker delta δi, j , which prohibits electron transfer to
different unit cells and introduces translational symmetry
breaking in the FQH states. To study the edge state in the
FQH system, we adjust the number of electrons to be ν = 1/3
in the bulk. Figure 2 shows the occupation number of the
one-particle state ϕ j (r) for various sizes of systems with a
total number of electrons Ne = M/3 and an aspect ratio Ly/Lx
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FIG. 3. Density oscillations of the ν = 2/5 FQH state induced
by the boundary. Ne = 56, and Ly/Lx = 0.5. The black dotted line
represents 〈nj〉 = 2/5. The blue line represents the result at ν =
1/3, Ne = 40, Ly/Lx = 0.5 for comparison. The thick black line in
the inset shows the fitting function of Eq. (5).

of the unit cell. The guiding center Xj corresponds to the x
coordinate of the center position of ϕ j (r). Note that we plot
the expectation value of the number operator 〈nj〉 = 〈c†

j c j〉
instead of the charge density itself. The latter is obtained
by using the wave function ϕ j (r), which smears the detailed
structure of the edge states. In Fig. 2, we confirm the uniform
electron density of the ν = 1/3 FQH state characterized by
the Laughlin state. In the region near the edges, however, we
find oscillations of electron density. These features are almost
independent of both the aspect ratio Ly/Lx and the size of the
unit cell, and the oscillations are well fitted by

fν (x) = Cνexp(−x/ξν )cos(kνx + θν ) + ν, (5)

where Cν, ξν, kν , and θν are fitting parameters corresponding
to the filling factor ν. The inset in Fig. 2 shows the fitting
result for Ne = 40, Ly/Lx = 0.5, and the optimized values of
k1/3 and ξ1/3 are 1.46l−1 and 2.79l , respectively. The wave
number k1/3 is in good agreement with the wave number
of the bulk magnetoroton minimum [29], which means the
density oscillation is characterized by low-energy collective
excitations induced by the boundary conditions at the edge.
The presence of edge roton excitation was reported by sev-
eral previous works [30–32]. To find the general feature of
the edge states, we additionally investigate the ν = 2/5 FQH
state. The obtained result for Ne = 56, Ly/Lx = 0.5, and M =
140 is shown in Fig. 3, which indicates a similar fitting by
Eq. (5) reproduces the density oscillation induced by the
boundary condition. The fitting parameters are obtained as
k2/5 = 1.68l−1 and ξ2/5 = 3.90l , reflecting a higher electron
density and a smaller bulk excitation gap of the FQH state.
The obtained ratio ξ−1

2/5/ξ
−1
1/3 = 0.71 is close to the previously

estimated gap ratio of roton excitation of ∼0.67 [33], which
also confirms that the edge structure is related to the bulk
collective charge excitations.

Besides our numerical analysis, the edge density profile of
the FQH states is studied in connection with the Hall viscosity

FIG. 4. (a) The extended unit cell used in the calculation. Lx is
the extended periodicity in the x direction. The depletion region is
illustrated in gray where electrons are absent. When Lx is sufficiently
large, the Coulomb interaction from the other unit cells across the
edge is safely omitted. (b) The model of the confinement potential
originated from the uniform positive background charges. Following
Wan et al. [15], we suppose a layer of uniform positive background
charge at vertical distance d .

[34,35]. It is interesting that the microscopic edge structure is
also related to the topological properties.

B. Edge reconstructions by confinement potential

The system used in the above calculations does not in-
clude the effect of Coulomb potential from the positive ions
near the conduction electrons. Instead, the Coulomb potential
from the electrons in neighboring unit cells is used as an
effective confinement potential, which is self-consistently op-
timized to reduce the Coulomb energy and expected to realize
the fundamental edge structure caused by the breaking of
the translational symmetry. In realistic systems, however, the
confinement potential originates mainly from the positively
charged background ions near the conduction electrons and
the metal gates placed on the sample. To investigate the edge
states of the FQH systems in a more realistic situation, we
extend the system as follows: First, we expand the length Lx of
the unit cell to Lx and the attached depletion region where the
electrons are absent, as shown in Fig. 4(a). When the depletion
region is sufficiently large, the effect from the electrons in
different unit cells across the edges is safely neglected. We
estimated the Hartree-Fock potential from other unit cells and
confirmed that Lx/Lx � 21 is sufficient to omit its position
dependence. Second, following Wan et al. [15], we introduce
the uniform positively charged layer at the vertical distance d
from the electron layer, as shown in Fig. 4(b). The Coulomb
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FIG. 5. Density oscillations induced by the confinement poten-
tial given by Eq. (6). (a) Roton-minimum-type edge structure for
small d in the charge neutral condition νp = 1/3. (b) Bulk excita-
tions caused by νp > 1/3 for small d . (c) Modified edge structure
for large d . (d) Reconstructed edge structure composed of ν = 1
and ν = 1/3 edge states for a slightly increased number of elec-
trons from Ne = M/3. The black dotted line shows the result for
Ne = 40, Ly/Lx = 0.5 in Fig. 2. The black solid line indicates the
differential of the confinement potential −
Uj (d, νp)/
 j, and the
black dashed line in the insets indicates the confinement potential
Uj (d, νp).

potential for the 2D electrons is then given as

Uj (d, νp) =
∫ Lx

0
dxe

∫ Ly

0
dye

∫ Lx

0
dxp

∫ Ly

0
dyp

× U (re, rp, d, νp)ϕ∗
j (re)ϕ j (re), (6)

where

U (re, rp, d, νp)

=
∑

nx, ny,

mx, my ∈ Z

−e2

ε

σ (rp + mxLxex + myLyey, νp)

|(re − rp) + nxLxex + nyLyey + dez| ,

(7)

σ (r, νp) =
{

νp

2π l2
nLx

2 − Lx
2 � x � nLx

2 + Lx
2 , n ∈ Z,

0 otherwise,
(8)

and re and rp are coordinates of electrons and positive ions
within the unit cell, respectively. νp is the effective filling
factor of positive ions relative to the number of magnetic
fluxes. Although the densities of dopant and conduction
electrons are balanced in the usual situation (i.e., ν = νp),
we use νp as a variable parameter to study the effects of
gate voltage. Hereafter, we set M = 210, Ly/Lx = 0.5, and
Lx/Lx = 21.

To confirm the consistency with the results obtained in
the previous section, we first set d = l and νp = ν = 1/3.
Since an almost uniform potential is obtained in the region of
small d under the charge neutral condition ν = νp, a structure
similar to the previous results shown in Fig. 2 is expected.
As presented in Fig. 5(a), the obtained result (green line)
is in good agreement with the previous one (black dotted
line).

FIG. 6. The black solid line shows the accumulated deviation
from the uniform density of ν = 1/3 defined by

∑ j
i=0(〈ni〉 − 1/3).

The clear jumps of 
n = 1/3 indicate the bulk excitations found in
Fig. 5(b) are fractional quasiparticles of the ν = 1/3 Laughlin state.
The blue line shows the original density of electrons 〈ni〉 in Fig. 5(b).

When we increase the density of positive ions νp, the
confinement potential is enhanced, and the electron density
is modified to reduce the total potential energy. As seen in
Fig. 5(b), the differential of the confinement potential (black
solid line) for νp = 0.4 is enhanced near the edge, and part
of the electrons move to the bulk region, yielding charge
excitations in the bulk. To check the elementary charge of this
excitation, we additionally calculate the accumulated devia-
tion Dj , which is defined as

Dj =
j∑

i=0

(〈ni〉 − 1/3). (9)

Since the total electron filling is set as ν = 1/3, the jump in
Dj is interpreted as local charge accumulation. As shown in
Fig. 6, Dj shows a clear jump by passing the bulk excita-
tions, and the amount of 
n = 1/3 means the excitations are
fractional quasiparticles. This result implies that depending
on the strength of the potential, bulk quasiparticle excitations
are created. This nature may be related to recent experimental
bulk transport at the ν = 1/3 FQH state [6,9].

To see the potential form dependence of the edge state,
we next modify the vertical distance d of positive ions. Fig-
ure 5(c) shows the result at νp = 1/3 and d = 10l , which is
a typical value of realistic samples. Since the large distance d
weakens the confinement force near the edge (see the solid
black line), the Coulomb repulsion between the electrons
dominates at the edge, and the electrons split into two do-
mains. This result is consistent with the previous work by Wan
et al. [15] and is called edge reconstruction. Comparing the
edge roton-type density oscillation plotted as a dotted line, we
find the difference appears only in the outermost edge region,
which implies the edge reconstruction occurs independently
of the bulk FQH states. More clear domain splitting is ob-
served at Ne = 72, where the electrons are slightly increased
from ν = 1/3, as shown in Fig. 5(d). We find a clear domain
of ν = 1 at the outermost region. Hence, additional ν = 1
counterpropagating edge modes are expected to appear, and
roton-minimum-type density oscillation is reproduced as the
inner structure. This result is understood as follows: Since
the Coulomb interaction dominates at the edge under smooth
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FIG. 7. Phase diagram of the edge states for various d and νp

at (a) Ne = 70, (b) Ne = 72, and (c) Ne = 68. The colors of the
regions correspond to those of structures shown in Fig. 5. The black
dots show the parameters used in the determination of the electron
densities. The system size M = 210 is fixed.

confinement potential, the electrons added to the system are
repelled by the electrons in the central bulk region and ac-
cumulate at the boundary of the sample. Once the domain
of ν = 1 is formed, the electrons in the outermost domain
behave as static charges and work as an effective confine-
ment potential which stabilizes the inner edge structure. As
is shown later, the inner edge structure is stable even if the
size of the outermost ν = 1 domain changes, which suggests
this pair of ν = 1 and ν = 1/3 edge structures reduces both
the potential energy from the positive ions and the Coulomb
energy between the electrons.

We next describe the phase diagram of the edge structure
by categorizing the above response to the confinement po-
tential shape. For this purpose, we move νp from 0 to 0.6
in 0.1 increments at d/l = 1, 5, 10 and determine the phase
boundaries for three different total numbers of electrons,
Ne = 68, 70, and 72 at M = 210. The results are presented
in Fig. 7. We find the roton-minimum-type edge structure in
the range of νp = 0.25–0.45 and d < 5l for Ne = 68 and 70.
This behavior is in good agreement with the previous work re-
porting the edge reconstructions for d exceeding 1.5l at νp =
1/3 [15,16]. Our result indicates that the edge structures are
roughly classified into two groups: the roton-minimum-type
edge structure with or without bulk excitations (blue and green
regions) and the reconstructed edge structures (red and orange
regions). We note that the conventional roton-minimum-type
edge structure is unstable in the absence of positive charge
ions, νp = 0, while it is stabilized by the presence of the ν = 1
outermost domain.

Finally, we investigate the response to the shift of the
chemical potential. We choose the parameters to be d =
10l, νp = 1/3 [the same as in Fig. 5(c)] and d = l, νp = 1/3
[the same as in Fig. 5(a)] to see how the previous results are
modified with the change in the total number of electrons Ne.
Figure 8(a) shows the results when we increase Ne from 70
at d = 10l . We find a clear outermost ν = 1 domain, which

FIG. 8. Chemical potential dependence of the edge structure at
νp = 1/3. d = 10l for (a) and (b), and d = l for (c) and (d). The
total number of electrons varies in the range of Ne = 76–64 under
the fixed system size of M = 210. The black solid line indicates the
differential of the confinement potential −
Uj (d, νp)/
 j, and the
black dashed line in the insets indicates the confinement potential
Uj (d, νp).

works as an absorber and retains the inner roton-minimum-
type edge structure. On the contrary, as shown in Fig. 8(b),
the decrease in Ne modifies the edge structure complicatedly.
Since a weak confinement potential of d = 10l effectively
enhances the repulsive interaction between the electrons, the
edge structure deforms to reduce the electron density, and
various electron configurations appear at the edge. When we
again increase Ne from 70 at d = l , the additional electrons
are absorbed in the outermost peak, and the inner structure
deforms slightly. This structure is a transient structure to
that shown in Fig. 8(a). When we decrease Ne, the roton-
minimum-type edge structure remains to some extent, as
shown Fig. 8(d). Although the decrease of Ne causes deforma-
tion of the edge structure similar to that in the case of d = 10l ,
the edge structure at Ne = 68 is exactly the same as that of
Ne = 70, which indicates that under such a potential form, the
roton-minimum-type edge structure is robust against chemi-
cal potential variation. Figure 8 also shows that the electron
density in the bulk region is not affected by the change in
the number of electrons, which is clear evidence of the edge
compressibility and bulk incompressibility.

IV. SUMMARY

In this paper, we have studied the FQH edge structure at
filling factor ν = 1/3 using the DMRG method. The obtained
density oscillation near the edge is explained by locally ex-
cited magnetorotons, indicating the edge state is characterized
by the bulk properties of the FQH state. We have also investi-
gated the potential form and chemical potential dependencies
by introducing a realistic confinement potential taking into
account positive background charges. The increase in the pos-
itive charges from the charge neutral condition enhances the
confinement potential and causes fractional charge excitations
in the bulk region, while the increase in vertical distance
to the positive background charge weakens the confinement
and induces edge reconstruction. The chemical potential de-
pendence indicates the appearance of a ν = 1 domain that
stabilizes the inner ν = 1/3 edge structure, which suggests
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the edge reconstruction occurs in the process of reducing both
the potential energy and the Coulomb energy of electrons.
The condition-independent bulk state that is stable against the
change in the number of the electrons also shows that the edge
state is compressible, while the bulk part is incompressible.
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