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Field-induced valence fluctuations in YbB12
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We performed high-magnetic-field ultrasonic experiments on YbB12 up to 59 T to investigate the valence
fluctuations in Yb ions. In zero field, the longitudinal elastic constant C11, the transverse elastic constants C44 and
(C11 − C12)/2, and the bulk modulus CB show a hardening with a change of curvature at around 35 K indicating
a small contribution of valence fluctuations to the elastic constants. When high magnetic fields are applied
at low temperatures, CB exhibits a softening above a field-induced insulator-metal transition signaling field-
induced valence fluctuations. Furthermore, at elevated temperatures, the field-induced softening of CB takes place
at even lower fields and CB decreases continuously with field. Our analysis using the multipole susceptibility
based on a two-band model reveals that the softening of CB originates from the enhancement of multipole-strain
interaction in addition to the decrease of the insulator energy gap. This analysis indicates that field-induced
valence fluctuations of Yb cause the instability of the bulk modulus CB.
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I. INTRODUCTION

Since the electronic and magnetic properties of materials
are mainly determined by valence electrons, a precise knowl-
edge about the valence state is important in material science.
Especially for 4 f -electron systems, the valence determines
the total angular momentum J , the localized (or delocalized)
4 f -electron character, and corresponding wave functions. A
noninteger valence state appears in some rare-earth com-
pounds with Ce, Sm, Eu, and Yb ions. In such materials,
valence fluctuations due to hybridization between conduction
electrons and 4 f electrons play a key role in their physical
properties. YbB12 is one of the valence fluctuating materials
with such a c- f hybridization, a high-Kondo temperature, and
insulating character [1,2].

YbB12 has the UB12-type crystal structure belonging to the
Fm3m (O5

h) space group [1]. The �8 ground state of the 4 f
electrons based on Yb3+ configuration in the crystal electric
field (CEF) has been proposed [3,4]. The almost degenerated
�7 and the �6 states at 270 K (23 meV) were considered
as excited states [3,4]. These CEF states based on the J =
7/2 can be consistent with the hyperfine coupling constant
for free Yb3+ ions determined by NMR measurements [5].
In contrast, a nonmagnetic ground state has been suggested
from the temperature-independent magnetic susceptibility at
low temperatures [6,7]. Indication for a strongly hybridized
electronic state was found using bulk-sensitive x-ray pho-
toelectron spectroscopy showing a slight deviation from the
valence Yb3+ [8]. The hybridization between 5d conduction
electrons and 4 f localized electrons has been proposed as

a candidate mechanism for an observed band-gap opening
[9,10]. The contribution of the B-2p electrons to the c- f
hybridization is also discussed as a result of ddσ hopping
through B12 clusters.

In addition to the CEF scheme, several characteristic en-
ergies related to the insulating character have been studied
in YbB12. Both in a polycrystal and single crystal, resistivity
measurements show evidence for two activation energies of
∼30 and 65 K [6,7]. A density of states with two-double peaks
was proposed as a mechanism of two activation energies [11].
NMR and specific-heat data have been described by a simple
two-band model, each band having a bandwidth of 55 K, and
with an energy gap of 140 K at the Fermi energy [6,12].
High-resolution photoemission spectroscopy suggested a hy-
bridization gap of 170 K (15 meV) below 150 K and strongly
hybridized character below 60 K [13].

In YbB12, various high-magnetic-field studies were per-
formed to elucidate the mechanism of the formation of the
energy gap. High-field magnetoresistance measurements indi-
cated that the energy gap of 30 K closes around 45 T while
the other gap remains up to higher fields [11]. Magnetization
measurements revealed metamagnetic behavior at insulator-
metal (IM) transitions at BIM = 47 T for B‖[001] and 54 T for
B‖[110] and B‖[111] [14]. Another magnetization anomaly
indicating the saturation of magnetization appears at 102 T
[15]. The energy shift of the 4 f band due to the Zeeman
effect was proposed to explain the closing of the band gap
of 170 K. Synchrotron x-ray absorption spectra showed the
field independence of the L3 edge indicating no considerable
change of the Yb valence in the field-induced metal phase
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FIG. 1. Schematic view of the volume strain and the hexade-
capole in YbB12. (a) Crystal lattice around the Yb ion [4] and volume
strain εB with the irrep �1 of Oh. Orange arrows indicate the isotropic
deformation of the lattice. (b) Hexadecapole H0 with �1 symmetry
obtained as a result of an isotropic change of the Yb ionic radius.

[16]. Specific-heat measurements revealed a discontinuous
enhanced of Sommerfeld coefficient γ ∼ 60 mJ/mol K2, and
a corresponding Kondo temperature of 220–250 K above the
IM transition, suggesting that the high-field phase is a valence-
fluctuating Kondo metal [17]. These high-field experiments
indicate a contribution of the c- f hybridization to the opening
of the energy gap in YbB12. Magnetic quantum oscillations in
the insulating phase have also been focused to understand the
insulating character of YbB12 [18].

To further investigate the valence fluctuations caused by
the c- f hybridization in YbB12, we focused on ultrasonic mea-
surement. Since a valence change causes an isotropic change
of the ionic radii, an isotropic volume change of the crystal
lattice is induced and the CEF Hamiltonian HCEF of Eq. (B1)
(see Appendix B) is changed to HCEF + (∂HCEF/∂εB)εB. Here
εB is the volume strain with the irreducible representation
(irrep) �1 of the Oh symmetry. This additional term to the CEF
is described as a coupling between εB and a hexadecapole H0

with �1 in YbB12. The schematic view of εB and H0 in YbB12

are shown in Figs. 1(a) and 1(b), respectively. Based on simple
Landau theory for elasticity, the total free energy consists of a
lattice and an electronic part is given by [19]

F = 1

2
C0

Bε2
B + 1

2
αH2

0 − gBH0εB. (1)

Here gB is the coupling constant between the strain and H0, C0
B

is the bulk modulus without multipole contribution, and α is a
coefficient. The first and second terms on the right-hand side
of Eq. (1) correspond to the energy loss due to the deformation
of the lattice and the increase of the hexadecapole moment,

respectively. The third term corresponds to the energy gain
of the electronic state due to the hexadecapole-volume strain
interaction. The response of the hexadecapole appears as a
result of the decrease in the bulk modulus as C0

B − g2
B/α.

As shown in previous reports [20–22], ultrasonic measure-
ments are a powerful tool to detect valence fluctuations. In
particular, in the Kondo insulator SmB6, the decrease in the
bulk modulus CB with decreasing temperatures, namely the
elastic softening of CB, has been revealed as a result of valence
fluctuations between Sm2+ and Sm3+ [23]. The relation be-
tween the energy gap of c- f hybridized bands and the elastic
softening is also discussed in terms of the interaction between
4 f electrons and the bulk strain εB with full symmetry �1.
Several theoretical studies have proposed such a contribution
of the c- f hybridization to the elasticity [24–27]. Therefore,
we measured relevant elastic constants in zero and high fields
searching for an elastic softening related to the valence fluc-
tuations in YbB12.

This paper is organized as follows. In Sec. II experimental
details of sample preparation and ultrasonic measurements in
pulsed magnetic fields are explained. In Sec. III we present the
results of our ultrasonic experiments of YbB12. In zero field an
increase in the elastic constants with decreasing temperatures,
namely elastic hardening, accompanying curvature changes
reveals some contribution of valence fluctuations to the elas-
ticity. In contrast to zero field, a field-induced softening of
the bulk modulus CB appears, which indicates field-induced
valence fluctuations due to c- f hybridization. In Sec. IV we
analyzed the measured elastic constants using a multipole-
susceptibility model. The field-induced valence fluctuations
can be described in terms of the hexadecapole-volume strain
coupling. Our analysis also confirms the decrease of the en-
ergy gap in high fields. We summarize our results in Sec. V.

II. EXPERIMENT

Single crystals of YbB12 were grown using the floating-
zone method [7]. Laue x-ray backscattering was used to align,
cut, and polish samples with (110), (11̄0), (1̄10), (1̄1̄0), (001),
and (001̄) faces and the size of 1.033 × 1.030 × 3.763 mm3.
An ultrasound pulse-echo method with a numerical vector-
type phase-detection technique was used to measure the
ultrasound velocity v [28]. The elastic constant C = ρv2

was determined from v and the calculated mass density ρ =
4.828 g/cm3 using the lattice constant a = 7.469 Å [1]. Piezo-
electric transducers using LiNbO3 plates with a 36◦ Y-cut and
41◦ X-cut (Yamaju Ceramics Co.) were employed to generate

TABLE I. Symmetry strains, electric multipoles, and elastic constants corresponding to the irreducible representations (irreps) of the space
group Oh.

Irrep Symmetry strain Electric multipole Elastic constant

�1 εB = εxx + εyy + εzz O0
4 + 5O4

4(= H0) CB = (C11 + 2C12)/3
�3 εu = (2εzz − εxx − εyy )/

√
3 Ou(=3z2−r2 ) CT = (C11 − C12)/2

εv = εxx − εyy Ov(=x2−y2 )

�5 εyz Oyz C44

εzx Ozx

εxy Oxy
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FIG. 2. Temperature dependence of (a) the longitudinal elastic
constant C11, the transverse elastic constants (b) C44 and (c) CT =
(C11 − C12)/2, and (d) the bulk modulus CB calculated from C11

and CT. The dotted lines indicate the fit of C44, CT, and CB in the
framework of the phenomenological two-band model discussed in
Sec. IV. The solid lines indicate the temperature dependence of the
elastic constants without multipole contribution. The strains εi j for
C11, C44, CT, and CB are schematically shown in the inset in each
panel. The vertical arrows in each panel indicate the characteristic
temperature T 	 discussed in Sec. IV.

longitudinal ultrasonic waves with the fundamental frequency
of approximately f = 30 MHz and transverse waves with
18 MHz, respectively. As indicated in Fig. 2, higher-harmonic
frequencies were used to obtain high-resolution data. A room
temperature vulcanizing rubber (Shin-Etsu Silicone KE-42T)
was used to glue the LiNbO3 onto the sample. The direction
of ultrasonic propagation q and the direction of polarization ξ

for the elastic constant Ci j are indicated in Fig. 2. Two nonde-
structive pulsed magnets were used: one with a pulse duration

of 36 ms installed at the Institute for Solid State Physics, the
University of Tokyo using a 4He cryostat, and another magnet
with a pulse duration of 150 ms at the HLD-EMFL in Dresden
using a 3He cryostat.

III. RESULTS

A. Temperature dependence of elastic constants

To gain more information on the Yb valence in YbB12,
we investigated the three elastic constants C11, C44, and CT =
(C11 − C12)/2. Their relations to the symmetry strain and
electric multipole are summarized in Table I [19,29]. Figure 2
shows the temperature dependence of the elastic constants in
zero field. We observed the elastic hardening of C11, C44, and
CT with lowering temperatures. We also observed the elastic
hardening of C11 from 300 K (see Appendix A). All elastic
constants exhibit an additional hardening and a characteristic
curvature change in the vicinity of T 	 = 35 K. As shown by
the solid curves in Fig. 2, the elastic constants would exhibit
a monotonic increase with decreasing temperature [30] if we
do not consider multipole contributions, described in the fol-
lowing Sec. IV [19]. Therefore, the additional features in the
elastic constants of YbB12 indicate the multipole contribution
to elasticity.

To describe the origin of the anomaly in each elastic
constant of YbB12, we focus on the multipole effect of the
CEF wave functions of localized 4 f electrons taken into
account the presence of �8, �7, and �6 states [3,4]. Since
the direct product of the �8 quartet is reduced as �8 ⊗ �8 =
�1 ⊕ �2 ⊕ �3 ⊕ 2�4 ⊕ 2�5 [29,31], we deduce that the �8

ground-state wave functions carry the electric quadrupoles Ou

and Ov with irrep �3 and Oyz, Ozx, and Oxy with irrep �5

as summarized in Table I. In addition, the �8 quartet also
provides the electric hexadecapole H0 = O0

4 + 5O4
4 with irrep

�1. Because the magnetic multipole degrees of freedom do
not couple with the strain, we ignore magnetic dipoles with
irrep �4 and magnetic octupoles with irreps �2, �4, and �5.
This group-theoretical consideration indicates that the elastic
softening of (C11 − C12)/2 with irrep �3 and C44 with irrep �5

is due to a multipole-strain interaction described as

HMS = −g�γ
O�γ

ε�γ
. (2)

Here g�γ
is a coupling constant and �γ denotes the irrep. We

show how to calculate the multipole susceptibility based on
the CEF wave functions in Appendix B. Because the calcu-
lated multipole susceptibility for �3- and �5-type quadrupoles
shows a divergent increase for decreasing temperatures, a
divergent elastic softening is theoretically expected in C44 and
CT. However, our experimental results show no softening in
all measured elastic constants. Therefore, the CEF approach
based on a localized 4 f character does not apply to the elas-
ticity of YbB12 in zero field.

The other possible scenario describing the additional con-
tribution around T 	 is a result of the charge freezing of Yb
without long-range ordering as previously discussed in the
samarium compounds Sm3Se4 and Sm3Te4 [20,21]. Since
the charge freezing would be characterized by a frequency-
dependent ultrasound response, we measured the elastic
constants and ultrasonic attenuation coefficients for several
frequencies. However, we did not observe any frequency
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FIG. 3. Magnetic-field dependence of the relative variation of the elastic constants 
Ci j/Ci j = [Ci j (B) − Ci j (B = 0)]/Ci j (B = 0) at several
temperatures for B‖[001]. Field dependence of (a) the longitudinal elastic constant C11, the transverse elastic constants (b) C44 and (c) CT, and
(d) the bulk modulus CB. The data sets are shifted consecutively along the 
C/C axes for clarity. The vertical arrows indicate the insulator-metal
transition field BIM. The horizontal arrows show the field-sweep directions.

dependence neither in the elastic constants nor in the ultra-
sonic attenuation coefficients between 30 and 160 MHz.

Therefore, we focus on the contribution of valence fluc-
tuations to the elasticity caused by the c- f hybridization.
Figure 2(d) shows the temperature dependence of the bulk
modulus CB = (C11 + 2C12)/3 = C11 − 4CT/3 with the irrep
�1 calculated from the experimental results of C11 and CT. CB

exhibits as well a hardening with an additional contribution
in the vicinity of 35 K. This result for YbB12 is in contrast to
the significant softening of CB due to Sm valence fluctuations
observed in SmB6. In Sec. IV we will discuss the origin of the
additional contribution in terms of the multipole susceptibility
based on a two-band model to confirm the contribution of
valence fluctuations to the elastic constants in zero field.

B. Magnetic-field dependence of elastic constants

To investigate the valence properties of YbB12 in magnetic
fields, we measured the elastic constants C11, C44, and CT up
to 59 T for B‖[001]. Figure 3 shows the magnetic-field depen-
dence of the relative variation of the elastic constants 
Ci j/Ci j

at several temperatures. We observed a field-induced IM tran-
sition and elastic softening for each elastic constant in the
Kondo-metal phase. Below 10 K, this softening appears rather
abruptly above the insulator-metal transition field BIM. BIM are
comparable with results of a previous magnetocaloric-effect
study [17]. Since CB contains C11 and CT, our experimental
results show as well the softening of CB in the Kondo-metal
phase.

Above 10 K, no sharp anomaly corresponding to the
Kondo-metal phase transition is visible any more. However,
C11 still shows a significant softening in magnetic field con-
trary to the other elastic constants (Fig. 3). In particular, at
40 K, C11 exhibits a large softening of 0.30% at 59 T while
CT shows a softening of only 0.027%. The softening of C11 at
100 K is also in contrast to the hardening observed for CT.

Between 10 and 30 K a clear hysteresis appears in the
pulsed-field data of C11 and CT (Fig. 3). This is approximately
the temperature range where the additional contribution to the
elastic constants is detected (Fig 2). As shown in a previous
magnetocaloric-effect study in adiabatic condition below 7 K
[17], the temperature of the sample is reduced by the ap-
plication of a magnetic field. Because of the quasiadiabatic
experimental conditions, the final temperature after the field
pulse might be higher than assumed which may cause the
hysteresis. Therefore, the hysteresis of elastic constants C11

and CT can also be attributed to the magnetocaloric effect.
We also looked for the quantum oscillation in YbB12

[18]. In principle, such quantum oscillations may appear
as well in bulk sensitive ultrasound properties. However,
we were not able to resolve any acoustic de Haas–van
Alphen effect at least 0.6 K. This result may imply a
weak electron-phonon interaction for the studied acoustic
modes.

We calculated CB = C11 − 4CT/3 from the measured
magnetic-field dependence of C11 and CT (Fig. 3). Indeed,
CB shows a very similar behavior as the individual elas-
tic constants with a clear anomaly at BIM below 10 K and
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FIG. 4. Temperature-field phase diagram of YbB12 for B‖[001].
The filled red circles indicate the insulator-metal transition field BIM.
The filled red diamond indicates the characteristic temperature T 	

(see text for details). The color code shows the value of the bulk
modulus CB (field up-sweep).

hysteresis between 10 and 30 K. BIM determined by our ul-
trasonic measurements are shown in Fig. 4.

CB exhibits a small softening below 50 T at 20 K and 45 T
at 30 K. By contrast, above 40 K, CB shows monotonic soften-
ing with increasing fields. In particular, the largest softening
of 0.52% is observed in CB at 40 K. The field-induced elastic
softening of CB is summarized in the contour plot in Fig. 4.

For further understanding of the field-induced elastic soft-
ening in YbB12, we plotted the temperature dependence of CB

for various magnetic fields (Fig. 5). As shown in the inset of

FIG. 5. Temperature dependence of the bulk modulus CB of
YbB12 at various magnetic fields for B‖[001] extracted from the
up-sweep data shown in Fig. 3, except for the zero-field data. The
dotted line indicates the fit describing CB in the framework of the
phenomenological two-band model. The inset shows CB below 10 K.

Fig. 5, CB exhibits a softening of about 0.05% below 7 K down
to ∼2 K in magnetic fields above 40 T. In addition, CB shows
significant softening from 100 K down to 40 K in high fields,
which is in contrast to the hardening of CB in zero field. The
softening of CB is similar to that found for SmB6 caused by
c- f hybridization-driven valence fluctuations corresponding
to hexadecapole-strain interaction [23].

The experimental results of the temperature dependence
and the magnetic field dependence of CB of YbB12 cannot
be described by the localized 4 f -electron model (see Ap-
pendix C). In the following Sec. IV, therefore, we discuss our
observations in terms of multipole-strain interaction and the
multipole susceptibility for a two-band model.

IV. DISCUSSION

We discuss the origin of the elastic anomalies of YbB12

in terms of a two-band model assuming a constant density of
states (DOS) with respect to energy. This model has success-
fully reproduced the elastic softening observed in the Kondo
compounds SmB6 and CeNiSn [23,32]. In YbB12, this phe-
nomenological model also gives qualitative explanation for
the temperature dependence of C44, CT, and CB in zero field
and for CB in high fields. Field-induced valence fluctuations
are included by the hexadecapole-strain interaction. By that,
the essential parameters for the explanation of our experimen-
tal results are identified (Table II).

We introduce a two-band model, which is schematically
shown in Fig. 6. In this model we deal with the two c- f
hybridized bands: an upper band above the Fermi energy EF

with an energy Eu
0,k and a lower band below EF with E l

0,k.
The DOS with energy dispersion of each band is simplified to
the rectangular form. The bandwidth W , the DOS D, and the
band gap 2
 are set as shown in Fig. 6. We assume that the
multipole-strain interaction for the electrons in the two bands
can be written as [33]

HMS = −
∑

k

(
c†

k,u

c†
k,l

)T (
du

k,�γ
hk,�γ

h∗
k,�γ

d l
k,�γ

)(
ck,u

ck,l

)
ε�γ

. (3)

For the multipole-strain interaction HMS of Eq. (2), the di-
agonal term d l(u)

k,�γ
for the electrons in band u(l) indicates

a renormalized multipole-strain coupling constant described
as g�γ

〈u(l)|O�γ
|u(l)〉. The off-diagonal term hk,�γ

is writ-
ten as g�γ

〈u(l)|O�γ
|l(u)〉. ck,u(l) and c†

k,u(l) are annihilation
and creation operators of an electron in the band u(l)
with wave vector k, respectively. Considering the Anderson
Hamiltonian describing c- f hybridization, we deduce that
the multipole-strain interaction of Eq. (3) originates from
electron-phonon interaction consisting of c- f and f - f terms
[27]. The multipole-strain interaction of Eq. (3) for the two-
band model provides a second-order perturbation for the
upper band, the lower one, and the band gap. The perturbation
energies of each band and the perturbation energy gap are
described as [23,32]

Eu
k (ε�γ

) = Eu
0,k − du

k,�γ
ε�γ

+ |hk,�γ
|2

2
k
ε2
�γ

, (4)

E l
k(ε�γ

) = E l
0,k − d l

k,�γ
ε�γ

− |hk,�γ
|2

2
k
ε2
�γ

, (5)
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TABLE II. Fit parameters determined by the analysis of the elastic constants C44, CT, and CB in zero field using the multipole susceptibility
given in Eq. (9). Parameters describing CB at 58 T are also listed. D = 2.25 × 1027 K−1 m−3 in zero field is calculated from |du

B − d l
B|/kB.

|du
B − d l

B|/kB of CB at 58 T is derived from the rigid-band approximation. The parameters for SmB6 are reproduced from Ref. [23].

C�γ

(K) W (K) D(du

�γ
− d l

�γ
)2(109 J/m3) A(1010 J/m3) B(J/m3) C(K) |du

�γ
− d l

�γ
|/kB(K)

C44 70 55 0.352 17.744 1.25 × 108 32 106
CT 70 55 8.58 11.865 1.41 × 109 85 526

CB (0 T) 70 55 3.30 20.146 9.7 × 106 6 326
CB (58 T) 37 55 10.3 20.146 9.7 × 106 6 (576)
CB (SmB6) 160 150 25.6 1280


k(ε�γ
) = 
k − 1

2

(
du

k,�γ
− d l

k,�γ

)
ε�γ

+ |hk,�γ
|2

2
k
ε2
�γ

. (6)

Here 2
k = Eu
0,k − E l

0,k is the energy gap between the up-
per band and the lower one. The total free energy F is
written as [34]

F = 1

2
C0

�γ
ε2
�γ

+ nEF(ε�γ
)

− kBT
∑

s(=u,l),k

ln

{
1 + exp

[
−Es

k (ε�γ
) − EF(ε�γ

)

kBT

]}
. (7)

Here C0
�γ

is the elastic constant due to the phonon part with
the irrep �γ , n is the total number of conduction electrons,
EF(ε�γ

) is the Fermi energy in the deformed system, and kB

is the Boltzmann constant. The first term on the right-hand
side of Eq. (7) corresponds to the lattice part. The second and
third terms correspond to the free energy of the conduction
electrons. The second derivative of the total free energy with
respect to the strain ε� provides the elastic constant C�γ

(T )
described as

C�γ
(T ) = C0

�γ
+

∑
s,k

∂2Es
k

∂ε2
�γ

f s
k

− 1

kBT

∑
s,k

(
∂Es

k

∂ε�γ

)2

f s
k

(
1 − f s

k

)

+ 1

kBT

∑
s,k

[ ∂Es
k

∂ε�γ
f s
k

(
1 − f s

k

)]2

∑
s,k f s

k

(
1 − f s

k

) . (8)

Here f s
k = {1 + exp[(Es

0,k − EF)/kBT ]}−1 is the
Fermi distribution function. ∂Es

k (ε�γ
)/∂ε�γ

|ε�γ →0 and
∂2Es

k (ε�γ
)/∂ε2

�γ
|ε�γ →0 are written as ∂Es

k/∂ε�γ
and

∂2Es
k/∂ε2

�γ
, respectively. The conservation law for

the total electron number with respect to the strain
∂n/∂ε�γ

= ∑
k ∂ fk/∂ε�γ

= 0 is employed to calculate
Eq. (8). The second term on the right-hand side of Eq. (8)
corresponds to van Vleck term, which originates from the
off-diagonal element hk,�γ

in the multipole-strain interaction
of Eq. (3). The third and fourth terms are the Curie terms
(∼1/T ) related to the diagonal elements d l

k,�γ
and du

k,�γ
.

In this two-band model, the matrix elements of a multipole
and the band gap are independent of the wave vector k. The
temperature dependence of the elastic constant is obtained

by replacing the sum over the wave vector
∑

k by the energy
integral using the DOS of the two-band model shown in Fig. 6
as [35]

C�γ
(T ) = C0

�γ
− 1

4
D

(
du

�γ
− d l

�γ

)2

×
[

tanh

(

 + W

2kBT

)
− tanh

(



2kBT

)]

+ D|h�γ
|2 2kBT



ln

∣∣∣∣∣
cosh

(



2kBT

)
cosh

(

+W
2kBT

)
∣∣∣∣∣. (9)

Here we adopt the background elastic constant C0
�γ

= A −
B/(eC/T − 1) [30]. C0

�γ
, D(du

�γ
− d l

�γ
)2, and D|h�γ

|2 in Eq. (9)
are treated as fit parameters. The second and third terms in
Eq. (9) correspond to Curie and van Vleck term, respectively.

The analysis by the multipole susceptibility of Eq. (9)
reveals the contribution of valence fluctuations to the elastic
constant in zero field. Fits to the temperature dependence of
the elastic constants C44, CT, and CB in zero field are shown in
Fig. 2. The fit parameters are summarized in Table II. Here
we adopt 
 = 70 K and W = 55 K at 0 T as determined
by the analysis of specific-heat data of YbB12 based on the
rectangular two-band model [7]. The temperature dependence
of the elastic constants C44, CT, and CB can be well described
by our model. The energy gap 
, the bandwidth W , and the
coefficient of the Curie term D(du

�γ
− d l

�γ
)2, are necessary to

reproduce the additional contribution in the vicinity of T 	 =
35 K. In contrast, the van Vleck contribution is not needed
to explain the experimental results. Our results indicate the
importance of the multipole-strain interaction [Eq. (3)] to
the elastic constants. In particular, the broad increase of CB

below ∼40 K seems to be the result of the isotropic change
of the ionic radii caused by valence fluctuations due to the
c- f hybridization. We also tried to fit CB to adopt 
 = 30
K as determined by the high-field magnetoresistance [11].
However, we are not able to reproduce the curvature change
in CB around 35 K (see Appendix D).

The multipole susceptibility also provides the renormal-
ized multipole-strain coupling constant and the interaction
anisotropy. For the volume strain εB, the first-order coeffi-
cient of the energy gap is described as d
(εB)/dεB|εB→0 =
(du

B − d l
B)/2 from Eq. (6). We can change the variable of

this relation from εB to the hydrostatic pressure P, because
P = CBεB. In addition, we assume that 
k in Eq. (6) corre-
sponds to the activation energy E determined by resistivity
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measurements. Thus, based on the hydrostatic pressure de-
pendence of the resistivity of YbB12 [36], we can estimate
the renormalized hexadecapole-strain coupling constant |du

B −
d l

B|/kB to be 326 K by dE/dP = −0.809 K/GPa = −8.09 ×
10−10 K/(J/m3) for CB = 20.146 × 1010 J/m3 (Table II).
This assumption also provides the DOS in zero field to be D =
2.25 × 1027 K−1 m−3 from D(du

B − d l
B)2 = 3.30 × 109 J/m3

in Table II. Accordingly, the coupling constant for each elastic
mode was calculated (Table II). The coupling constant for
C44 is approximately 5 and 3 times smaller than the coupling
constant for CT and CB, respectively. Therefore, the dom-
inant interaction is caused by the bulk strain with �1 and
the symmetry-breaking strain with �3. This result is useful
to elucidate the quantum states, which carry the multipole
degrees of freedom.

While valence fluctuations are caused by hexadecapole-
strain interactions in YbB12, the contribution of the fluctua-
tions to the elasticity is unexpectedly small in zero field. As
shown in Fig. 2, CB does not exhibit a softening in YbB12.
This result is quite different from the 3.8% softening in CB

observed for SmB6. Furthermore, the coupling constant |du
B −

d l
B|/kB = 326 K of YbB12 is approximately 4 times smaller

than 1280 K reported for CB of SmB6 [23].
In contrast to zero field, strong valence fluctuations are

revealed in applied magnetic fields. A fit to the temperature-
dependent data of CB at 58 T is shown in Fig. 5 (dashed
line). The fit parameters at 58 T are also summarized in
Table II. In this analysis we did not change C0

B from that in
zero field. We fixed the bandwidth W = 55 K as the previ-
ously proposed rigid-band model [15]. The softening with the
minimum at 40 K is reproduced qualitatively. Notably, the
coefficient of the Curie term D(du

B − d l
B)2 is enhanced from

3.30 × 109 J/m3 at 0 T to 10.3 × 109 J/m3 at 58 T. Thus, the
quantum state contributing to the Curie term of YbB12 might
approach that of SmB6 in magnetic fields. We stress that the
hexadecapole-strain interaction originates from the coupling
between the isotropic volume change of the crystal lattice
and the change of ionic radii due to valence fluctuations.
Therefore, the larger D(du

B − d l
B)2 in magnetic fields indicates

the enhancement of valence fluctuations of Yb.
A reduced energy gap is a plausible result of the IM tran-

sition. Our analysis reveals that the energy gap 2
 = 140 K
at 0 T is reduced to 74 K at 58 T. This may be attributed to
the Zeeman effect that changes the energy of the 4 f states
(see Appendix C). However, this two-band model cannot
describe the gap closing in high fields. Since the DOS is
approximated as constant, we cannot describe the IM tran-
sition due to the overlap of the edge of DOS at the Fermi
energy as schematically illustrated in Fig. 6. An analysis
using more realistic DOS as proposed in a previous study
[10,15] is needed to describe the field-induced metal state in
high fields.

Since the DOS in zero field is estimated by using the
pressure dependence of the activation energy of YbB12, we
cannot apply D to estimate the coupling constant |du

B − d l
B|/kB

in high fields. Nevertheless, if we estimate the coupling con-
stant assuming a field-independent rigid-band model with
energy gap, the field-enhanced value of 576 K can be ob-
tained. The increase in the elastic softening due to the increase
in the coupling constant is also consistent with a previous

D(E)

E

= 70 K

W = 55 K

W

EF

D : independent of E

D

D(E)

E

= 37 K

W = 55 K

W

D

D

B = 0 T B = 58 T(a) (b)

upper
band

lower
band

E u

E l

FIG. 6. Schematic view of the two-band model assuming a con-
stant DOS over each band (red rectangular). (a) DOS at zero field
with an energy gap 2
 = 140 K and bandwidth W = 55 K. (b) DOS
at 58 T. The energy gap 2
 = 74 K and the bandwidth W = 55
K is determined using Eq. (9). The blue dotted curves indicate the
schematic view of a more realistic DOS of YbB12.

theoretical study of the electron-phonon coupling mediated
by conduction electrons and f electrons [27]. Although the
model needs to be improved, this interpretation seems to
be plausible.

For further discussion of the field-enhanced valence fluc-
tuations in YbB12, we estimated the valence change of Yb
in high fields. Previous studies on SmB6 have revealed a
valence change from 2.59 ± 0.01 at 300 K to 2.53 ± 0.01 at
60 K [37] and a softening of CB by 3.1% from 300 to 60 K
[23]. We assume that the valence change is proportional to
the amount of elastic softening as a result of hexadecapole-
strain interaction. Thus, the valence change is estimated to be
−0.019 per 1% of elastic softening. Since the softening of CB

in SmB6 and YbB12 are described by the hexadecapole sus-
ceptibility based on the two-band model, we assume that the
valence change per elastic softening applies to YbB12 as well.
Since the contribution of the hexadecapole-strain interaction
to the elastic softening in YbB12, namely the coefficient of the
Curie term D(du

B − d l
B)2, is 2.5 times smaller than in SmB6

(Table II), the contribution of valence fluctuations to the elas-
tic softening in YbB12 is reduced by a factor of 2.5. At 1.4 K,
in the high-field Kondo-metal phase, the 0.09% softening
from BIM to 58 T (Fig. 3) indicates a small valence change
of only approximately −0.00069. Furthermore, at 40 K, a
valence change of approximately −0.0040 is estimated from
the 0.52% softening of CB. Such a valence change at 40 K may
be detectable by high-field synchrotron x-ray measurements
[38].

Our results seem to be in conflict with the localized
tendency of 4 f states in the magnetic fields [39–41]. For
a comprehensive understanding of the results, we discuss
the Zeeman mixing and hybridization between Yb and B
electrons in addition to the c- f hybridization due to the 5d
and 4 f electrons of the Yb atoms. In YbB12, the contribution
of the �6 and �7 states to the ground state is enhanced by the
Zeeman effect (see Appendix C, Fig. 9). Thus, we expect that
magnetic fields reduce the anisotropy of the electronic states
due to the contributions of the �8, �6, and �7 wave functions
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in YbB12. In addition, as shown in Fig. 1(a), the Yb ion of
YbB12 is surrounded by a highly isotropic cage made up of
24 borons. This indicates an isotropic hybridization between
the Yb 4 f electrons and the B 2p electrons in addition to
the 5d-4 f hybridization. Thus, we suggest that the valence
fluctuations are induced by the interatomic p- f hybridization
due to the isotropic wave function in high fields. Furthermore,
a field-induced p- f hybridization is consistent with the
enhancement of the hexadecapole-strain interaction in high
fields. In general, the matrix element of the hexadecapole H0
for the wave function ψ is given by

∫
drψ∗H0ψ . Therefore,

a spatially expanded wave function, which is expected due
to the interatomic type p- f hybridization, might enhance
the renormalized multipole-strain coupling du(l)

B in Eq. (3).
Our assumption is consistent with the isotropic resistivity in
the low-temperature Kondo-metal phase [14]. Although the
crystal structure and magnetic character are different from
those of YbB12, the similar mechanisms of field-induced
p- f hybridization and delocalization of 4 f electrons have
been proposed in the heavy-fermion compound CeRhIn5 to
describe the emergence of an anisotropic electronic state in
high fields [42–45].

V. CONCLUSION

In the present work we investigated valence fluctuations
of YbB12 in zero and high fields by use of ultrasonic mea-
surements. In zero field, the additional elastic hardening of
C11, C44, CT = (C11 − C12)/2, and the bulk modulus CB =
(C11 + 2C12)/3 indicates only a small contribution of valence
fluctuations to the elastic constants. In the Kondo-metal state,
the valence fluctuations due to the c- f hybridization are sug-
gested to be enhanced by the field-induced elastic softening
of CB. We found signatures of strong field-induced valence
fluctuations in the vicinity of 40 K. Our phenomenological
analysis of the temperature dependence of CB based on the
two-band model reveals that both the additional contribu-
tion in zero field and the field-induced elastic softening are
reasonably described by the hexadecapole susceptibility. In
particular, the field-induced elastic softening is attributed to
the enhancement of the hexadecapole-strain coupling. This
result indicates that the magnetic field enhances an isotropic
volume change of the crystal lattice and the change of ionic
radii due to valence fluctuations. Therefore, we propose field-
induced valence fluctuations due to c- f hybridization in
YbB12. In particular, we propose that the p- f hybridization
between Yb-4 f and B-2p electrons plays a key role in high
fields. The observed decrease of the energy gap in magnetic
fields is explained by the energy shift of the 4 f electrons due
to the Zeeman effect.

Our study shows that ultrasonic measurements are useful
to detect valence fluctuations. As suggested by a theoret-
ical work [46], such measurements may play a key role
in the study of valence quantum criticality. We expect that
field-induced valence fluctuations appear in other valence-
fluctuating compounds.
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APPENDIX A: TEMPERATURE DEPENDENCE
OF ELASTIC CONSTANT C11

Figure 7 shows the temperature dependence of the elastic
constant C11 in a wide temperature range of up to 300 K. C11
exhibits an increase with decreasing temperatures from 300 K.
This result indicates the elastic hardening of the bulk modulus
CB from 300 K down to low temperatures.

APPENDIX B: MULTIPOLE SUSCEPTIBILITY FOR CEF
WAVE FUNCTIONS IN ZERO FIELD

Here we present the CEF wave functions, the multipole
matrices, and multipole susceptibility of YbB12 assuming the
localized 4 f electrons. We show that the multipole suscepti-
bility cannot describe our experimental results in Fig. 2.

To calculate the multipole susceptibility of YbB12, we use
CEF wave functions of the 4 f electrons for Yb3+ with the to-
tal angular momentum J = 7/2. The CEF Hamiltonian HCEF

under Oh symmetry is written as

HCEF = B4
(
O0

4 + 5O4
4

) + B6
(
O0

6 − 21O4
6

)
. (B1)

Here B4 and B6 are the CEF parameters. The matrix elements
of O0

4, O4
4, O0

6, and O4
6 for |Jz〉 are listed in Ref. [47]. The wave

functions diagonalizing HCEF are given by [4]

∣∣�1±
8

〉 = −
√

7

12

∣∣∣∣±7

2

〉
+

√
5

12

∣∣∣∣∓1

2

〉
, (B2)

∣∣�2±
8

〉 = 1

2

∣∣∣∣±5

2

〉
+

√
3

2

∣∣∣∣∓3

2

〉
, (B3)

FIG. 7. Temperature dependence of the longitudinal elastic con-
stant C11.

115103-8



FIELD-INDUCED VALENCE FLUCTUATIONS IN … PHYSICAL REVIEW B 103, 115103 (2021)

∣∣�1±
6

〉 =
√

5
12

∣∣± 7
2

〉 + √
7

12

∣∣∓ 1
2

〉
, (B4)

|�±
7 〉 = −

√
3

2

∣∣∣∣±5

2

〉
+ 1

2

∣∣∣∣∓3

2

〉
, (B5)

where |�1±
8 〉 and |�2±

8 〉 are the ground-state wave func-
tions and |�±

7 〉 and |�±
6 〉 are the degenerate excited

states. The matrix elements of HCEF for the wave func-

tions given in Eqs. (B2)–(B5) provide the eigenenergy of
each CEF state described as E�8 = 120(B4 + 168B6), E�6 =
120(7B4 − 210B6), and E�7 = −120(9B4 + 126B6). The en-
ergy gap 
CEF = 23 meV = 270 K between the ground state
and the excited states �6 and �7 [4] provides the CEF param-
eters B4 = −33.7 meV and B6 = −6.24 meV.

The matrices of the hexadecapole H0 = O0
4 + 5O4

4 with
irrep �1, the quadrupoles Ou and Ov with �3, and Oyz,
Ozx, and Oxy with �5 for the wave functions (B2)–(B5) are
calculated as

H0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∣∣�1+
8

〉 ∣∣�1−
8

〉 ∣∣�2+
8

〉 ∣∣�2−
8

〉 |�+
6 〉 |�−

6 〉 |�+
7 〉 |�−

7 〉
120 0 0 0 0 0 0 0

0 120 0 0 0 0 0 0

0 0 120 0 0 0 0 0

0 0 0 120 0 0 0 0

0 0 0 0 840 0 0 0

0 0 0 0 0 840 0 0

0 0 0 0 0 0 1080 0

0 0 0 0 0 0 0 1080

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B6)

Ou =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6 0 0 0 −3
√

35 0 0 0
0 6 0 0 0 −3

√
35 0 0

0 0 −6 0 0 0 −3
√

3 0
0 0 0 −6 0 0 0 −3

√
3

−3
√

35 0 0 0 0 0 0 0
0 −3

√
35 0 0 0 0 0 0

0 0 −3
√

3 0 0 0 0 0
0 0 0 −3

√
3 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B7)

Ov =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
√

105 0 0 0 0
0 0 2

√
3 0 0 0 −3 0

0 2
√

3 0 0 0
√

105 0 0√
105 0 0 0 2

√
3 0 0 0

0 0 0 2
√

3 0 0 0 −3
0 0

√
105 0 0 0 0 0

0 −3 0 0 0 0 0 0
0 0 0 0 −3 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B8)

Oyz =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
√

35i 0
0 0 0 3

√
3i 0 0 0 −4i

0 0 0 0 −3
√

3i 0 0 −2
√

3i
0 −3

√
3i 0 0 0 0 −2

√
3i 0

0 0 3
√

3i 0 0 0 −4i 0
0 0 0 0 0 0 0

√
35i

−√
35i 0 0 2

√
3i 4i 0 0 0

0 4i 2
√

3i 0 0 −√
35i 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B9)

Ozx =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 −√
35 0

0 0 0 3
√

3 0 0 0 −4
0 0 0 0 −3

√
3 0 0 4

√
3

0 3
√

3 0 0 0 0 −4
√

3 0
0 0 −3

√
3 0 0 0 4 0

0 0 0 0 0 0 0
√

35
−√

35 0 0 −4
√

3 4 0 0 0
0 −4 4

√
3 0 0

√
35 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B10)
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Oxy =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 −√
35i

0 0 3
√

3i 0 0 0 8i 0

0 −3
√

3i 0 0 0 0 0 0

0 0 0 0 3
√

3i 0 0 0

0 0 0 −3
√

3i 0 0 0 −8i

0 0 0 0 0 0
√

35i 0

0 −8i 0 0 0 −√
35i 0 0√

35i 0 0 0 8i 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B11)

Here Stevens equivalent operators Ou = 3J2
z − J (J + 1),

Ov = J2
x − J2

y , Oyz = JyJz + JzJy, Ozx = JzJx + JxJx, and
Oxy = JxJy + JyJx, given by the components of the total
angular momentum Jx, Jy, and Jz, are used to calculate the
matrix elements. Considering the second-order perturbation
processes for the ith CEF state with energy E0

i due to the
multipole-strain interaction of Eq. (2), which is described as

Ei(ε�γ
) = E0

i − g�γ
〈i|O�γ

|i〉ε�γ

− g2
�γ

∑
j 
=i

|〈i|O�γ
| j〉|2

E0
j − E0

i

ε2
�γ

, (B12)

FIG. 8. Temperature dependence of the electric multipole sus-
ceptibility of YbB12. (a) Hexadecapole susceptibility χB of H0 =
O0

4 + 5O4
4 with �1. This susceptibility provides the temperature de-

pendence of the bulk modulus CB. (b) Quadrupole susceptibility
χ�3 of Ou and Ov with �3 related to (C11 − C12)/2. (c) Quadrupole
susceptibility χ�5 of Oyz, Ozx , and Oxy with �5 related to C44. As
indicated in Eq. (B14), −χ�γ

contributes to these elastic constants.
(The curves for Ou and Ov as well as for Oyz, Ozx , and Oxy virtually
lie on top of each other.)

the total free energy F , which consists of the CEF state and
the strain, is written as

F (T, ε�γ
) = 1

2C0
�γ

ε2
�γ

− NkBT ln Z (ε�γ
). (B13)

Here N is the number of Yb ions per unit volume
and Z (ε�γ

) is the partition function written as Z (ε�γ
) =∑

i exp [−Ei(ε�γ
)/kBT ]. Thus, the elastic constant and the

multipole susceptibility are calculated as

C�γ
= ∂2F

∂ε2
�γ

= C0
�γ

− Ng2
�γ

χ�γ
, (B14)

−g2
�γ

χ�γ
=

〈
∂2E

∂ε2
�γ

〉

− 1

kBT

{〈(
∂E

∂ε�γ

)2〉
−

〈
∂E

∂ε�γ

〉2}
. (B15)

Here C0
�γ

is a background elastic constant, 〈A〉 is
the thermal average using Boltzmann statistics written
as 〈A〉 = ∑

i Ai exp[−Ei/kBT ]/Z , and ∂E (ε�γ
)/∂ε�γ

|ε�γ →0

FIG. 9. Magnetic-field dependence of the eigenenergy in Htotal of
Eq. (C3) for B‖[001]. The color code shows the Zeeman mixing ratio
β2

i in the wave functions of Eqs. (C16)–(C23).
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and ∂2E (ε�γ
)/∂ε2

�γ
|ε�γ →0 are written as ∂E/∂ε�γ

and

∂2E/∂ε2
�γ

, respectively. The first term on the right-hand
side of Eq. (B15) corresponds to van Vleck term be-
ing constant at low temperatures and the second one to
Curie term showing the reciprocal temperature dependence.
The calculated multipole susceptibility χ�γ

is shown in
Fig. 8.

The hexadecapole susceptibility χB would indicate a
monotonic hardening of CB below 100 K down to low tem-
peratures because the temperature dependence of the elastic
constant C�γ

is given by −χB, i.e., the second term in
Eq. (B14). The divergent behavior of χ�3 and χ�5 would
predict an elastic softening of (C11 − C12)/2 and C44 at low
temperatures, respectively. However, our experimental results
of YbB12 in zero field cannot be described by the suscepti-
bility based on CEF wave functions using this picture, i.e.,
localized 4 f electrons.

APPENDIX C: HEXADECAPOLE SUSCEPTIBILITY
FOR CEF WAVE FUNCTIONS IN MAGNETIC FIELDS

In this Appendix the CEF wave functions, the hex-
adecapole matrix, and the hexadecapole susceptibility in
magnetic fields of YbB12 are presented assuming localized
4 f electrons. We show that the elastic softening of CB in high
fields cannot be described by the hexadecapole susceptibility
χB.

To calculate the hexadecapole susceptibility in magnetic
fields, we consider the Zeeman Hamiltonian for B‖[001] given
by

HZeeman = −gJμBB0Jz. (C1)

Here gJ is the Landé g factor, μB is the Bohr magneton, B0

is the magnetic field, and Jz is the magnetic dipole. Using the
CEF wave functions of Eqs. (B2)–(B5), the matrix of HZeeman

of Eq. (C1) is written as

HZeeman =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 11
6 B 0 0 0

√
35
3 B 0 0 0

0 11
6 B 0 0 0 −

√
35
3 B 0 0

0 0 1
2 B 0 0 0

√
3B 0

0 0 0 − 1
2 B 0 0 0 −√

3B√
35
3 B 0 0 0 − 7

6 B 0 0 0

0 −
√

35
3 B 0 0 0 7

6 B 0 0

0 0
√

3B 0 0 0 − 3
2 B 0

0 0 0 −√
3B 0 0 0 3

2 B

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C2)

Here, for the convenience, B in the matrix elements of Eq. (C2) is set as B = gJμBB0. The total Hamiltonian Htotal = HCEF +
HZeeman is diagonalized as

Htotal =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|1+〉 |1−〉 |2+〉 |2−〉 |3+〉 |3−〉 |4+〉 |4−〉
E+

1 0 0 0 0 0 0 0

0 E−
1 0 0 0 0 0 0

0 0 E+
2 0 0 0 0 0

0 0 0 E−
2 0 0 0 0

0 0 0 0 E+
3 0 0 0

0 0 0 0 0 E−
3 0 0

0 0 0 0 0 0 E+
4 0

0 0 0 0 0 0 0 E−
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C3)

Here the eigenenergies in the matrix of Eq. (C3) are written as

E±
1 = 
CEF − 3B

2
± δE1, (C4)

E±
2 = 
CEF + 3B

2
± δE2, (C5)

E±
3 = 
CEF − B

2
± δE3, (C6)

E±
4 = 
CEF + B

2
± δE4. (C7)

For convenience, δEi in Eqs. (C4)–(C7) is set as

δE1 =
√


E2
1 + 35

9
B2, (C8)

δE2 =
√


E2
2 + 35

9
B2, (C9)

δE3 =
√


E2
3 + 3B2, (C10)

δE4 =
√


E2
4 + 3B2. (C11)
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FIG. 10. Electric hexadecapole susceptibility χB of YbB12 for
B‖[001]. (a) Magnetic-field dependence of χB at several tempera-
tures. (b) Temperature dependence of χB below 100 K in several
magnetic fields. In the inset in (b), χB is shown up to 300 K.

We also set 
Ei in Eqs. (C8)–(C11) as follows:


E1 = 
CEF

2
+ 1

3
B, (C12)


E2 = 
CEF

2
− 1

3
B, (C13)


E3 = 
CEF

2
− B, (C14)


E4 = 
CEF

2
+ B. (C15)

The wave functions diagonalizing the matrix Eq. (C3) are
written as

|1+〉 = α1|�+
6 〉 + β1

∣∣�1+
8

〉
, (C16)

|1−〉 = β1|�+
6 〉 − α1

∣∣�1+
8

〉
, (C17)

|2+〉 = α2|�−
6 〉 − β2

∣∣�1−
8

〉
, (C18)

|2−〉 = −β2|�−
6 〉 − α2

∣∣�1−
8

〉
, (C19)

|3+〉 = α3|�+
7 〉 + β3

∣∣�2+
8

〉
, (C20)

|3−〉 = β3|�+
7 〉 − α3

∣∣�2+
8

〉
, (C21)

|4+〉 = α4|�−
7 〉 − β4

∣∣�2−
8

〉
, (C22)

|4−〉 = −β4|�−
7 〉 − α4

∣∣�2−
8

〉
. (C23)

Here the coefficients αi and βi for i = 1, 2, 3, 4 in each wave
function in Eqs. (C16)–(C23) are set as

α1 = 
E1 + δE1√
(
E1 + δE1)2 + 35

9 B2
, (C24)

α2 = 
E2 + δE2√
(
E2 + δE2)2 + 35

9 B2
, (C25)

α3 = 
E3 + δE3√
(
E3 + δE3)2 + 3B2

, (C26)

α4 = 
E4 + δE4√
(
E4 + δE4)2 + 3B2

, (C27)

βi =
√

1 − α2
i . (C28)

The magnetic-field dependence of the eigenenergies E±
i of

Eqs. (C4)–(C7) are shown in Fig. 9. This result is consistent
with the previous calculation for YbB12 [15]. The multipole
susceptibility of Eq. (B15) in magnetic field is calculated
using the wave functions of Eqs. (C16)–(C23), the energy of
Eqs. (C4)–(C7), the multipole matrices of Eqs. (B6)–(B11),
the second-order perturbation of Eq. (B12), and the free en-
ergy of Eq. (B13).

In particular, we show the field-dependent hexadecapole
susceptibility of H0 in Fig. 10. Here the matrix of the hex-
adecapole H0 is written as

H0 =
( |1+〉 |1−〉

120
(
6α2

1 + 1
)

720α1β1

720α1β1 −120
(
6α2

1 − 7
) )

⊕
( |2+〉 |2−〉

120
(
6α2

2 + 1
) −720α2β2

−720α2β2 −120
(
6α2

2 − 7
) )

⊕
( |3+〉 |3−〉

−120
(
10α2

3 − 1
) −1200α3β3

−1200α3β3 120
(
10α2

3 − 9
) )

⊕
( |4+〉 |4−〉

−120
(
10α2

4 − 1
) −1200α4β4

−1200α4β4 120
(
10α2

4 − 9
) )

. (C29)
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FIG. 11. Fit of the bulk modulus CB of YbB12 by the hexade-
capole susceptibility with energy gaps 
 = 70 and 30 K.

The experimental results of the magnetic-field dependence of
CB at 20, 40, and 50 K (Fig. 3) can be qualitatively reproduced

by the hexadecapole susceptibility χB shown in Fig. 10(a).
However, the experimental results of the elastic softening of
CB in high fields (Fig. 5) cannot be described by χB shown
in Fig. 10(b) since χB indicates a hardening of CB towards
lower temperatures. Therefore, our experimental results of
YbB12 in high magnetic fields cannot be described by the
susceptibility based on CEF wave functions of localized 4 f
electrons.

APPENDIX D: HEXADECAPOLE SUSCEPTIBILITY
FOR SMALLER ENERGY GAP

Figure 11 shows the fit of bulk modulus CB in YbB12 by
the hexadecapole susceptibility with energy gaps 
 = 70 and
30 K. We cannot describe the curvature change for 
 = 30 K,
which corresponds to the activation energy determined by the
high-field magnetoresistance [11]. This result indicates that
the contribution of the larger gap to the elasticity is dominant
in zero field in YbB12.

[1] M. Kasaya, F. Iga, K. Negishi, S. Nakai, and T. Kasuya,
J. Magn. Magn. Mater. 31–34, 437 (1983).

[2] T. Susaki, A. Sekiyama, K. Kobayashi, T. Mizokawa, A.
Fujimori, M. Tsunekawa, T. Muro, T. Matsushita, S. Suga, H.
Ishii, T. Hanyu, A. Kimura, H. Namatame, M. Taniguchi, T.
Miyahara, F. Iga, M. Kasaya, and H. Harima, Phys. Rev. Lett.
77, 4269 (1996).

[3] K. S. Nemkovski, J.-M. Mignot, P. A. Alekseev, A. S. Ivanov,
E. V. Nefeodova, A. V. Rybina, L.-P. Regnault, F. Iga, and T.
Takabatake, Phys. Rev. Lett. 99, 137204 (2007).

[4] Y. Kanai, T. Mori, S. Naimen, K. Yamagami, H. Fujiwara,
A. Higashiya, T. Kadono, S. Imada, T. Kiss, A. Tanaka, K.
Tamasaku, M. Yabashi, T. Ishikawa, F. Iga, and A. Sekiyama,
J. Phys. Soc. Jpn. 84, 073705 (2015).

[5] K. Ikushima, Y. Kato, M. Takigawa, F. Iga, S. Hiura, and T.
Takabatake, Physica B 281–282, 274 (2000).

[6] M. Kasaya, F. Iga, M. Takigawa, and T. Kasuya, J. Magn. Magn.
Mater. 47–48, 429 (1985).

[7] F. Iga, N. Shimizu, and T. Takabatake, J. Magn. Magn. Mater.
177–181, 337 (1998).

[8] J. Yamaguchi, A. Sekiyama, S. Imada, H. Fujiwara, M. Yano,
T. Miyamachi, G. Funabashi, M. Obara, A. Higashiya, K.
Tamasaku, M. Yabashi, T. Ishikawa, F. Iga, T. Takabatake, and
S. Suga, Phys. Rev. B 79, 125121 (2009).

[9] T. Saso and H. Harima, J. Phys. Soc. Jpn. 72, 1131 (2003).
[10] T. Ohashi, A. Koga, S. I. Suga, and N. Kawakami, Phys. Rev. B

70, 245104 (2004).
[11] K. Sugiyama, F. Iga, M. Kasaya, T. Kasuya, and M. Date,

J. Phys. Soc. Jpn. 57, 3946 (1988).
[12] F. Iga, M. Kasaya, and T. Kasuya, J. Magn. Magn. Mater.

76–77, 156 (1988).
[13] Y. Takeda, M. Arita, M. Higashiguchi, K. Shimada, H.

Namatame, M. Taniguchi, F. Iga, and T. Takabatake, Phys. Rev.
B 73, 033202 (2006).

[14] F. Iga, K. Suga, K. Takeda, S. Michimura, K. Murakami, T.
Takabatake, and K. Kindo, J. Phys.: Conf. Ser. 200, 012064
(2010).

[15] T. T. Terashima, A. Ikeda, Y. H. Matsuda, A. Kondo, K. Kindo,
and F. Iga, J. Phys. Soc. Jpn. 86, 054710 (2017).

[16] Y. H. Matsuda, Y. Murata, T. Inami, K. Ohwada, H. Nojiri,
K. Ohoyama, N. Katoh, Y. Murakami, F. Iga, T. Takabatake,
A, Mitsuda, and H. Wada, J. Phys.: Conf. Ser. 51, 111
(2006).

[17] T. T. Terashima, Y. H. Matsuda, Y. Kohama, A. Ikeda, A.
Kondo, K. Kindo, and F. Iga, Phys. Rev. Lett. 120, 257206
(2018).

[18] Z. Xiang, Y. Kasahara, T. Asaba, B. Lawson, C. Tinsman, L.
Chen, K. Sugimoto, S. Kawaguchi, Y. Sato, G. Li, S. Yao, Y. L.
Chen, F. Iga, J. Singleton, Y. Matsuda, and L. Li, Science 362,
65 (2018).

[19] B. Lüthi, Physical Acoustics in the Solid State (Springer, Berlin,
2005).

[20] A. Tamaki, T. Goto, S. Kunii, T. Suzuki, T. Fujimura,
and T. Kasuya, J. Phys. C: Solid State Phys. 18, 5849
(1985).

[21] Y. Nemoto, T. Goto, A. Ochiai, and T. Suzuki, Phy. Rev. B 61,
12050 (2000).

[22] T. Goto, Y. Nemoto, A. Ochiai, and T. Suzuki, Phys. Rev. B 59,
269 (1999).

[23] S. Nakamura, T. Goto, M. Kasaya, and S. Kunii, J. Phys. Soc.
Jpn. 60, 4311 (1991).

[24] B. Lüthi and M. Yoshizawa, J. Magn. Magn. Mater. 63–64, 274
(1987).

[25] P. Thalmeier, J. Phys. C: Solid State Phys. 20, 4449 (1987).
[26] J. Keller, R. Bulla, Th. Höhn, and K. W. Becker, Phys. Rev. B

41, 1878 (1990).
[27] G. C. Rout, M. S. Ojha, and S. N. Behera, Physica B 367, 101

(2005).
[28] T. K. Fujita, M. Yoshizawa, R. Kamiya, H. Mitamura, T.

Sakakibara, K. Kindo, F. Iga, I. Ishii, and T. Suzuki, J. Phys.
Soc. Jpn. 80, SA084 (2011).

[29] T. Inui, Y. Tanabe, and Y. Onodera, Group Theory and Its
Applications in Physics (Springer, Berlin, 1990).

[30] Y. P. Varshni, Phys. Rev. B 2, 3952 (1970).

115103-13

https://doi.org/10.1016/0304-8853(83)90312-8
https://doi.org/10.1103/PhysRevLett.77.4269
https://doi.org/10.1103/PhysRevLett.99.137204
https://doi.org/10.7566/JPSJ.84.073705
https://doi.org/10.1016/S0921-4526(99)00815-7
https://doi.org/10.1016/0304-8853(85)90458-5
https://doi.org/10.1016/S0304-8853(97)00493-9
https://doi.org/10.1103/PhysRevB.79.125121
https://doi.org/10.1143/JPSJ.72.1131
https://doi.org/10.1103/PhysRevB.70.245104
https://doi.org/10.1143/JPSJ.57.3946
https://doi.org/10.1016/0304-8853(88)90349-6
https://doi.org/10.1103/PhysRevB.73.033202
https://doi.org/10.1088/1742-6596/200/1/012064
https://doi.org/10.7566/JPSJ.86.054710
https://doi.org/10.1088/1742-6596/51/1/024
https://doi.org/10.1103/PhysRevLett.120.257206
https://doi.org/10.1126/science.aap9607
https://doi.org/10.1088/0022-3719/18/31/017
https://doi.org/10.1103/PhysRevB.61.12050
https://doi.org/10.1103/PhysRevB.59.269
https://doi.org/10.1143/JPSJ.60.4311
https://doi.org/10.1016/0304-8853(87)90586-5
https://doi.org/10.1088/0022-3719/20/28/010
https://doi.org/10.1103/PhysRevB.41.1878
https://doi.org/10.1016/j.physb.2005.06.003
https://doi.org/10.1143/JPSJS.80SA.SA084
https://doi.org/10.1103/PhysRevB.2.3952


R. KURIHARA et al. PHYSICAL REVIEW B 103, 115103 (2021)

[31] Y. Kuramoto, H. Kusunose, and A. Kiss, J. Phys. Soc. Jpn. 78,
072001 (2009).

[32] S. Nakamura, T. Goto, Y. Ishikawa, S. Sakatsume, and M.
Kasaya, J. Phys. Soc. Jpn. 60, 2305 (1991).

[33] R. Kurihara, K. Mitsumoto, M. Akatsu, Y. Nemoto, T. Goto, Y.
Kobayashi, and S. Sato, J. Phys. Soc. Jpn. 86, 064706 (2017).

[34] B. Lüthi, J. Magn. Magn. Mater. 52, 70 (1985).
[35] S. Nakamura, T. Goto, T. Fujimura, M. Kasaya, and T. Kasuya,

J. Magn. Magn. Mater. 76–77, 312 (1988).
[36] F. Iga, M. Kasaya, H. Suzuki, Y. Okayama, H. Takabatake, and

N. Mori, Physica B 186, 419 (1993).
[37] M. Mizumaki, S. Tsutsui, and F. Iga, J. Phys.: Conf. Ser. 176,

012034 (2009).
[38] Y. H. Matsuda, T. Nakamura, K. Kuga, and S. Nakatsuji,

J. Korean Phys. Soc. 62, 1778 (2013).
[39] H. Aoki, S. Uji, A. K. Albessard, and Y. Ōnuki, Phys. Rev. Lett.

71, 2110 (1993).

[40] Y. H. Matsuda, T. Nakamura, J. L. Her, S. Michimura, T. Inami,
K. Kindo, and T. Ebihara, Phys. Rev. B 86, 041109(R) (2012).

[41] Y. H. Matsuda, J.-L. Her, S. Michimura, T. Inami, T. Ebihara,
and H. Amitsuka, JPS Conf. Proc. 3, 011044 (2014).

[42] P. J. W. Moll, B. Zeng, L. Balicas, S. Geleski, F F. Balakirev,
E. D. Bauer, and F. Ronning, Nat. Commun. 6, 6663 (2015).

[43] F. Ronning, T. Helm, K. R. Shirer, M. D. Bachmann, L. Balicas,
M. K. Chan, B. J. Ramshaw, R. D. McDonald, F. F. Balakirev,
M. Jaime, E. D. Bauer, and P. J. W. Moll, Nature (London) 548,
313 (2017).

[44] P. F. S. Rosa, S. M. Thomas, F. F. Balakirev, E. D. Bauer, R. M.
Fernandes, J. D. Thompson, F. Ronning, and M. Jaime, Phys.
Rev. Lett. 122, 016402 (2019).

[45] R. Kurihara, A. Miyake, M. Tokunaga, Y. Hirose, and R. Settai,
Phys. Rev. B 101, 155125 (2020).

[46] S. Watanabe, J. Phys. Soc. Jpn. 89, 073702 (2020).
[47] M. T. Hutchings, Solid State Phys. 16, 227 (1964).

115103-14

https://doi.org/10.1143/JPSJ.78.072001
https://doi.org/10.1143/JPSJ.60.2305
https://doi.org/10.7566/JPSJ.86.064706
https://doi.org/10.1016/0304-8853(85)90228-8
https://doi.org/10.1016/0304-8853(88)90407-6
https://doi.org/10.1016/0921-4526(93)90591-S
https://doi.org/10.1088/1742-6596/176/1/012034
https://doi.org/10.3938/jkps.62.1778
https://doi.org/10.1103/PhysRevLett.71.2110
https://doi.org/10.1103/PhysRevB.86.041109
https://doi.org/10.7566/JPSCP.3.011044
https://doi.org/10.1038/ncomms7663
https://doi.org/10.1038/nature23315
https://doi.org/10.1103/PhysRevLett.122.016402
https://doi.org/10.1103/PhysRevB.101.155125
https://doi.org/10.7566/JPSJ.89.073702
https://doi.org/10.1016/S0081-1947(08)60517-2

