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We motivate a close look on the usefulness of the Gaffnian and Haffnian quasihole manifold (null spaces
of the respective model Hamiltonians) for well-known gapped fractional quantum Hall phases. The conformal
invariance of these subspaces is derived explicitly from microscopic many-body states. The resultant conformal
field theory (CFT) description leads to an intriguing emergent primary field with h = 2, c = 0, and we argue the
quasihole manifolds are quantum mechanically well defined and well behaved. Focusing on the incompressible
phases at ν = 1

3 and 2
5 , we show the low-lying excitations of the Laughlin phase are quantum fluids of Gaffnian

and Haffnian quasiholes, and give a microscopic argument showing that the Haffnian model Hamiltonian is
gapless against Laughlin quasielectrons. We discuss the thermal Hall conductance and shot-noise measurements
at ν = 2

5 , and argue that the experimental observations can be understood from the dynamics within the Gaffnian
quasihole manifold. A number of detailed predictions on these experimental measurements are proposed, and
we discuss their relationships to the conventional CFT arguments and the composite fermion descriptions.
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I. INTRODUCTION

The most important aspects of the fractional quantum
Hall effect (FQHE) are the universal topological proper-
ties that manifest in experimental measurements [1]. Unlike
symmetry-protected topological phases, topological proper-
ties such as the Hall conductivity in FQHE are robust against
any types of small perturbations. These properties arise from
strong interaction between electrons confined not only in a
two-dimensional manifold, but also in a single Landau level
due to the strong magnetic field. The truncation of the Hilbert
space (due to the smallness of the sample thickness and the
magnetic length) at low temperature plays the crucial role
here, leading to ground states with long-range topological
entanglement, fractionalization of quasiparticle charges (i.e.,
anyons), nontrivial degeneracy of the quasihole manifold (i.e.,
non-Abelions), and chiral edge theories at the boundary of the
FQH fluids [2–6].

Many exotic topological phases have been theoretically
proposed, and their experimental realizations can potentially
lead to robust storage and manipulations of quantum informa-
tion [7,8]. The greatest challenge, however, is the existence
of various different energy scales in realistic systems. Strictly
speaking, in an effective description of a topological system,
all energy scales are set to either infinity (e.g., the incom-
pressibility gap) or zero (e.g., the quasihole degeneracy), and
we can denote the associated “model Hamiltonian” as Ĥtopo.
All the topological aspects are thus coming from a (possibly
infinitely dimensional) sub-Hilbert space Htopo in which all
states have zero energy, while all states in the complementary
sub-Hilbert space H̄topo have infinite energy. For example,
in Affleck-Kennedy-Lieb-Tasaki (AKLT) models with open

boundary conditions, Htopo consists of the degenerate ground-
state manifold with different edge configurations [9]. In the
context of FQHE, Htopo consists of the ground state and all
quasihole excitations that can be interpreted as edge excita-
tions on a Hall manifold with a boundary. The existence of
Ĥtopo (not necessarily local) and a unique highest density state
in Htopo (with electron density ρmax) implies incompressibility
for the FQH system, which is the necessary condition for the
plateau of the Hall conductance in the presence of disorder.
Experimentally, the incompressible state can be realized by
local Hamiltonians adiabatically connected to Ĥtopo.

When we smoothly go from Ĥtopo to the realistic local
Hamiltonian Ĥreal, we assume Ĥreal is also incompressible at
ρmax, albeit with a finite gap. This implies a finite energy gap
for all eigenstates with ρ < ρmax, but there can be gapless
excitations with ρ > ρmax. In particular the state with ρmax

does not necessarily have the lowest energy. For example,
in FQH systems, quasiholes can have either lower or higher
energy depending on the disorder or the edge confinement
potential. We can model the smooth deformation as follows:

Ĥ = (1 − λ)Ĥtopo + λĤreal. (1)

A number of things can happen when λ goes from 0 to 1, but
in this work we will only focus on the following scenarios:

(1) The subspaces Htopo(λ) and H̄topo(λ) evolve adiabati-
cally and are completely gapped for the entire range of λ; there
is no level crossing between any two states from the different
subspaces.

(a) All states in Htopo remain degenerate in the thermo-
dynamic limit at λ = 1.
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(b) Degeneracy of states in Htopo gets lifted, developing
a finite bandwidth �topo at λ = 1.
(2) Level crossing occurs between some states from the

two subspaces, but the quantum sector of the highest-density
state |ψρmax〉 is adiabatically connected for λ between 0 and 1,
which remains incompressible.

(3) A finite-energy gap opens up within Htopo at λ = 1
in the thermodynamic limit, with a new gapped ground state
|ψρ0〉 at ρ0 < ρmax. This implies no level crossing between
Htopo and H̄topo in the quantum sector of |ψρ0〉 for λ between
0 and 1.

For simplicity, we only consider a single species of spinless
fermions here, and the quantum sectors are labeled by the total
number of electrons Ne, and the total angular momentum M on
the disk geometry. The topological properties of Ĥreal are thus
completely determined by the behaviors listed above. If level
crossing occurs in the quantum sector of the highest-density
state, then Ĥtopo and Ĥreal are not topologically related in every
sense. Statement 1 is definitely possible if Ĥreal is a small per-
turbation from Ĥtopo. If statement 1(a) is the case, then Ĥtopo

and Ĥreal are completely equivalent topologically. However,
we should not take this for granted, as it is not fundamentally
forbidden for statement 1(b) to be true. If that is the case,
then one would expect certain physical properties considered
universal at Ĥtopo will be lost with the realistic Hamiltonian.
These could include universal edge behaviors as predicted
by the chiral Luttinger liquid theory [10–12], as well as the
non-Abelian braiding of quasiholes [13] which fundamentally
depends on the degeneracy of the quasihole manifold.

In numerical calculations, the most common behavior ob-
served is actually statement 2, especially for FQH in higher
LLs and for the non-Abelian FQH states. While this could
well be the finite-size effect when realistic Hamiltonians are
used, we should also take the possibility seriously that some
level crossing could occur in the thermodynamic limit, while
the ground state remains incompressible. The robustness of
the Hall conductivity plateau only requires incompressibility
and thus the adiabatic continuity of |ψρmax〉, and this does
not automatically imply the robustness of any or all of the
other topological properties of the FQH state. If level crossing
occurs despite the highest-density state being adiabatically
connected, one could argue that Ĥtopo and Ĥreal no longer
belong to the same universality class. Indeed, we would expect
gapless boundary states to develop at the interface of the two
Hamiltonians (or at certain values of λ when level crossing oc-
curs). This could the be underlying difference between some
of the known distinct FQH phases [14], although in this case
all topological properties of the highest-density state (i.e., the
ground state) are equivalent for the two phases.

Statements 3 and 2 are not mutually exclusive, though
statement 3 implies a topological phase transition even for
the ground state. Let |ψα1

ρmax
〉 and |ψα2

ρ0
〉 be the two global

ground states at λ = 0 and 1, respectively, with ρ0 < ρmax,
and α1, α2 are indices of quantum numbers from symmetries
common to both Ĥtopo and Ĥreal (e.g., angular momentum
M). If |ρ0 − ρmax| is subextensive (with respect to Ne), we
still expect the two topological phases to occur at the same
filling factor or the Hall plateau in the thermodynamic limit,
and this could be the case for FQH phases that differ by the

topological shift (related to Hall viscosity [15,16]). It is also
interesting to consider the case that |α1 − α2| is extensive,
which implies both states can be (meta)stable for 0 < λ < 1
since disorder will not be able to mix the two states in the
thermodynamic limit. In analogy to the case of spontaneous
symmetry breaking, we will have a spontaneous “topology”
breaking, if the energies of |ψα1

ρmax
〉 and |ψα2

ρ0
〉 are close as

compared to disorder or temperature. A familiar example
is the competition between the Pfaffnian and anti-Pfaffnian
phase at half-filling, when the two-body interaction (which
is particle-hole symmetric) dominates [17–20]. On the disk,
the ground states of the two phases live in two angular mo-
mentum sectors that are infinitely apart in the thermodynamic
limit because the two phases have different topological shifts
(s = −2 for Pfaffnian and s = +2 for anti-Pfaffnian). Thus,
local disorders alone will not be able to lift the degeneracy of
the two states.

In this paper, we will discuss the physical properties of
two rather special FQH candidates, the Gaffnian state and the
Haffnian state, in the context of the three statements above.
These two states are special because both from the effective
theory description (e.g., the conformal field theory, or CFT)
and the microscopic model perspective (e.g., three-body local
model Hamiltonians), the Hilbert spaces Htopo and H̄topo can
be unambiguously defined. However, the corresponding CFT
models are nonunitary and/or irrational [12,21,22]. It is thus
conjectured that there can be no local Hamiltonians to give
H̄topo a finite-energy gap, while keeping all states in Htopo

strictly degenerate (at zero energy). Thus, the Gaffnian and
Haffnian states are considered to be related to some critical
gapless phases in FQH systems [23], and it is generally dis-
missed as physically irrelevant to gapped FQH phases. We
would like to examine these notions in more details in this
work.

The organization of the paper will be as follows: In Sec. II,
we give an overview of the well-known effective descrip-
tion of conformal invariance of the FQH systems, and give
a rather different derivation of conformal invariance for the
FQH quasihole subspace from the microscopic many-body
states; in Sec. III we apply the microscopic derivation of
conformal invariance to the Laughlin state and the model
states from three-body pseudopotential interactions (including
the Moore-Read, Gaffnian, and Haffnian states), leading to a
number of interesting observations about the nature of their
quasihole manifold; in Sec. IV we motivate the physical rel-
evance of the Gaffnian and Haffnian states to gapped FQH
phases, showing that they are model states for elementary
excitations in the Laughlin phases. Interestingly, this also
leads to a semirigorous microscopic argument on why the
Haffnian model Hamiltonian is gapless in the thermodynamic
limit, though the same arguments do not seem to apply to
the Gaffnian model Hamiltonian; in Sec. V we move onto
more realistic interactions, and argue that using the Gaffnian
and Haffnian quasihole subspaces, a number of experimental
results can be explained, and some more detailed predictions
can be made. These include the physics related to the ther-
mal Hall effect and the shot-noise and quasihole tunneling
experiments; in Sec. VI, we give a summary with further
discussions. In particular, we will summarize a number of
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detailed predictions from the analysis in this work, that can be
directly related to experiments. Following is a list of various
notations used in this paper:

Topological Hilbert space HI
topo

Full Hilbert space HI
topo ⊗ H̄I

topo

Bandwidth of HI
t �I

topo

Highest-density state in HI
t |ψ I

ρmax
〉

Electron number Ne

Total angular momentum M

A many-body quantum state in HI
t ψk,I

A many-body primary state in HI
t ψhα,I

The holomorphic part of ψk,I φk,I or |φk,I 〉
A descendant state at level N in HI

t |φ (N )
hα,I〉, |φ (N )

hI
〉

A second primary state with h = 2, c = 0 |τI〉

II. CFT DESCRIPTION OF FQHE

We will now specialize to the FQH systems, so that Htopo

is the Hilbert space of the FQH ground state and its quasi-
hole excitations (degenerate states that are less dense than
the ground state), while H̄topo is the Hilbert space of all
gapped excitations, including the neutral and quasielectron
excitations. On the disk or cylinder geometry where edges are
present, each quasihole state can be reinterpreted as an edge
excitation. This is because the insertion of magnetic fluxes (to
create quasiholes) pushes electrons to the boundary, even if
the insertion is deep in the bulk. For quasiholes created deep
in the bulk, however, they correspond to edge excitations with
very large momenta. Thus, those states are not necessarily
important for the low-energy, long-wavelength limit of the
edge theory.

Using the disk geometry, an important way of analyzing
many FQH phases is to use the conformal field theory (CFT),
which is particularly useful for two-dimensional critical sys-
tems with conformal symmetry [24,25]. The FQH systems are
insulators that are gapped in the bulk. However, for a quantum
Hall droplet with a boundary (which is also a more realistic
scenario in the experiments), it is indeed a gapless system due
to the gapless edge excitations. For all energy scales smaller
than the bulk gap, we can thus treat the edge dynamics as a
one-dimensional chiral system [12]. One can show that this
one-dimensional system is conformally invariant in the 1 + 1
space-time, if it is maximally chiral: all excitations travel at a
common velocity v. Formally, for any local operator Ô at the
edge, we need to have

Ô(x, t ) = Ô(x − vt ), (2)

where x is the periodic spatial coordinate at the edge, and
t is time. The CFT description is thus an effective theory
for the Hilbert space of Htopo only. The states in Htopo are
only degenerate in the limit of v → 0. For any nonzero value
of v, however, Htopo satisfies conformal symmetry with the
assumption of Eq. (2).

Thus, if we project into the Hilbert space of Htopo, as-
suming the linear spectrum and Eq. (2) can be realized with
certain physical Hamiltonian, then all edge excitations can be

described by an effective model satisfying conformal symme-
try. Such models can also be analyzed and understood via the
elegant machinery of CFT. There is thus a natural bulk-edge
correspondence because each edge mode can also be under-
stood as a quasihole excitation (i.e., conformally mapped to
the spherical geometry as a bulk excitation in Htopo). It has
been discovered for some FQH phases that the microscopic
models’ wave functions on the disk geometry for all states in
Htopo are given by the correlators or conformal blocks of cer-
tain CFT models [4,13,26]. Such models thus have to encode
some information about the edge dynamics of the same FQH
phases [27,28].

We now work under the assumption that every state in
Htopo can be written as the correlator of a specific CFT model
MHtopo . This can be verified microscopically for a number of
FQH models. It is thus pertinent to ask about the relationship
between Htopo and the Hilbert space of MHtopo . The CFT
correlators that map to every microscopic state in Htopo only
consist of primary fields in MHtopo . Each quasihole corre-
sponds to one primary field in the correlator with coordinates
ηi = xi + iyi, where the subscript is the quasihole index, and
x, y are the real-space coordinates of the two-dimensional
disk. The degeneracy of the multiquasihole states after fixing
their locations, which is important to the non-Abelian prop-
erties of the FQH phase, is also determined by the distinct
correlators from the fusion rules of those primary fields. In
fact, for all known FQH phases with exact model Hamiltoni-
ans (so that the ground state and quasiholes are well-defined
zero-energy states), there is a one-to-one mapping of every
state in Htopo to every possible correlator involving only the
primary fields. These states are wave functions of the locations
of the electrons and the quasiholes. The number of primary
fields in the correlator corresponds to the number of electrons
and quasiholes in the many-body wave function. Thus, from
this perspective, the Hilbert space of MHtopo is much larger
than Htopo since no descendant fields are involved in the
construction of states in Htopo. Note that this perspective is
the CFT description of the FQH bulk properties, which is
also valid on geometries with no boundaries, such as sphere
or torus. For some hierarchical states with no known model
Hamiltonians (but may have approximate ones [29]), there are
attempts to write their many-body wave functions as CFT cor-
relators involving descendant fields [30–32]. Here, we restrict
ourselves to only ones with exact model Hamiltonians.

If we focus on the edge excitations as a dynamical system
with linear dispersion (with the same Hilbert space Htopo),
then the CFT model MHtopo is an effective theory so far with
no rigorous microscopic derivation. The coordinates of the
effective theory are no longer real-space coordinates, but holo-
morphic and antiholomorphic coordinates z = x + ivt, z̄ =
x − ivt . Here, x is the periodic coordinate along the edge of
the disk, and t is the time, which we can take along the radial
direction. The Hilbert space in MHtopo is thus generated by
conformal generators L̂n satisfying the Virasoro algebra:

[L̂n, L̂m] = (n − m)L̂m+n + c

12
n(n2 − 1)δm+n,0, (3)

where c is the central charge of the CFT model. The natu-
ral Hamiltonian is proportional to L̂0, which is the dilation
operator and thus the translation along the time (i.e., radial)
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FIG. 1. Relationship between the effective CFT models and the
microscopic many-body states, from the bulk and edge perspectives.

direction. We thus expect all states in Htopo to be mapped
to the primary and descendant fields in MHtopo , which are
eigenstates of L̂0 in the CFT description.

Thus, while it is microscopically equivalent for Htopo to be
treated as bulk quasihole excitations, or as edge excitations
at the boundary of the quantum Hall droplet, the correspond-
ing CFT descriptions are rather distinctive (see Fig. 1). As
quasiholes, Htopo is mapped to primary field correlators in
the two-dimensional manifold (no dynamical information);
as edge excitations, Htopo is mapped to all primary fields
and descendant fields in one dimension, with a well-defined
“conformal Hamiltonian.” This bulk-edge correspondence, or
the equivalence of the two descriptions, should in general not
be true for any arbitrarily defined subspace. It is fundamen-
tally due to the intrinsic topological or algebraic structures of
Htopo. The one-to-one mapping of the states in Htopo and the
primary and descendant fields of the edge CFT can also be
quite nontrivial, which is a particularly important issue when
MHtopo is nonunitary or irrational.

A. Nonunitary and irrational CFT models

The CFT description and the bulk-edge correspondence
seem to work quite well, if the CFT model MHtopo is ra-
tional and unitary. In these cases, MHtopo only contains a
finite number of primary fields, and the norm of all primary
and descendant fields in the model, as defined in CFT, are
non-negative. The description becomes subtle when MHtopo is
nonunitary and or irrational, which is relevant to the Gaffnian
state [33] (nonunitary) and the Haffnian state [21,23] (nonuni-
tary and irrational) we will focus on for the main part of this
work.

It is generally argued that the nonunitary and irrational
CFT models cannot be physical models in describing the
dynamics of the conformally invariant one-dimensional edge
systems [13,22]. This is because nonunitary CFT models con-
tain fields with negative norm and thus diverging correlation
functions at the edge. Irrational CFT models imply an in-
finite number of primary fields which seems unnatural. On
the torus geometry, this implies the ground-state degeneracy
(the number of highest-density states in Htopo) is infinity in
the thermodynamic limit, making it unlikely to describe a
gapped bulk phase. The proposed resolution is that Htopo alone
cannot describe the physical edge dynamics in these cases.

The low-lying gapless excitations have to include states from
H̄topo, thus, the bulk gap has to close in the thermodynamic
limit, so that the mapping to nonunitary and irrational CFT
models will no longer hold.

To get a fuller picture of the scenario, we first note that
Htopo is well defined with nonunitary and irrational CFT
model on the disk geometry or local Hamiltonians, since the
latter is gapless only in the thermodynamic limit, which is
an asymptotic behavior. The one-to-one mapping of the null
space to the primary field correlator, as well as to all of the pri-
mary and descendant fields, can be established. There is thus
no ambiguity in defining Htopo as the null space of a particular
Ĥtopo with an infinite gap to H̄topo, as long as we do not require
Ĥtopo to be local. Thus, the arguments about the inability to
define Htopo as the gapped null space can only be applied to
local Hamiltonians, which we will focus in the next section.
On the other hand, it is not clear if the mapping between
quantum states in Htopo and the primary and descendant fields
in MHtopo goes beyond state counting. In particular, all states
in Htopo have a well-defined, positive-definite quantum me-
chanical norm, even when their counterparts can have negative
norms defined in CFT. The quantum mechanical quasihole
correlation functions in Htopo also decay as a function of
the distance between them, while in the CFT description the
correlation diverges due to the negative conformal dimensions
[34,35].

This apparent inconsistency implies it is important to un-
derstand what physical aspects of Htopo can be captured by the
corresponding CFT model, in addition to the state counting
and the linear spectrum. The linear spectrum from maximal
chirality is also not intrinsic to Htopo, but rather from a puta-
tive effective Hamiltonian on states in the restricted Hilbert
space (the null space), that are expected to be only physi-
cally relevant in the long-wavelength limit of the edge system
from the confining potential. Given that the only constraint
or assumption here is the conformal invariance of Htopo, the
resolution could ultimately be about the derivation of effective
CFT theory from the microscopic details of the Hilbert space.

B. Microscopic derivation of conformal invariance of Htopo

We will show a rather crude attempt here that nevertheless
leads to a number of interesting results relevant to the main
focus of this work, but leave a detailed discussion for future
works. To start from the familiar grounds, let us focus on
the lowest Landau level (LLL) first, though the main results
derived here apply to any Landau level as they should be.
Every state in Htopo is a many-body wave function with holo-
morphic variables zi = xi + iy, where the subscript i is the
electron index. We thus denote Htopo = {ψk (z1, z2, z3, . . . )},
and the states can have any number of electrons. Without loss
of generality, we can fix the total number of electrons to be
Ne, assuming the electron number as a good quantum number.
In the LLL, the many-body wave functions are given by

ψk
(
z1, z2 . . . zNe

) = φk
(
z1, z2 . . . zNe

)
e− 1

4

∑
i ziz∗

i , (4)

where φk (z1, z2 . . . zNe ) is holomorphic in its variables, as a
linear combination of the monomial basis. We can thus write
φk = ∑

λ ckλmλ, where mλ = Asy(zn1λ

1 zn2λ

2 . . . znNeλ

Ne
). The anti-

symmetrization Asy is over the electron indices. In addition,
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we assume rotational invariance on the disk geometry, thus,
the total angular momentum Mλ is also a good quantum
number, with Mλ = ∑

i niλ. Each state physically represents a
quantum Hall droplet, the size of which is given by the highest
power of zi in the monomial basis of φk (z1, z2 . . . zNe ). The
Gaussian factor in Eq. (4) is not important, so we will denote
states in Htopo with φk .

It is also useful to have the second quantized representation
of φk , so we can denote each monomial as follows:

mλ = Asy
(
zn1λ

1 zn2λ

2 . . . znNeλ

Ne

) ∼ c†
n1λ

c†
n2λ

. . . c†
nNeλ

|vac〉, (5)

where c†
i is the electron creation operator in the single-

particle orbital indexed by i (i.e., zi), satisfying the an-
ticommutation relations {ci, c†

j } = δi j, {ci, c j} = {c†
i , c†

j } =
0. We can thus represent mλ with a binary string. Each
digit from left to right corresponds to a single-particle
orbital from the center to the edge of the disk (i.e., in-
dexed by the power of z). As an example with two
electrons, we have (z1 − z2)3 = (z3

1 − z3
2 ) − 3(z2

1z2 − z1z2
2 ) =

|1001000 . . . 〉 − 3|0110000 . . . 〉. One should note the second
quantized representation is applicable to FQH in any LLs. All
the results in this section can be derived from the second quan-
tized representation, and they do not require the holomorphic
wave functions that are specific to the LLL.

Given the conformal invariance of Htopo, we should be
able to identify one or more states φhα

∈ Htopo as the primary
states, indexed by α (as we will properly define later). These
are states that are analogous to the “primary fields” in CFT. All
other states in Htopo can be generated from the primary states
by operators satisfying the familiar Virasoro algebra. To that
end, we need to properly define the Virasoro generators acting
on φk . Given that the classical version l̂−n = ∑

i zn+1
i ∂zi satis-

fies Eq. (3) with c = 0, we can define the following second
quantized operators analog with n � 0:

L̂−n =
∞∑

k=0

fk+n,k · kĉ†
k+nĉk, (6)

L̂n =
∞∑

k=0

fk,k+n · (k + n)ĉ†
k ĉk+n. (7)

The function fk1,k2 comes from the single-particle state nor-
malization that depends on the geometry. For example on
the disk geometry, fk1,k2 = √

k1!/k2!. It is easy to check that
the Virasoro algebra is satisfied between L̂m, L̂n if nm � 0.
The commutation relation between the positive and negative
modes is a bit more subtle:

[L̂m, L̂−n] = (n − m)L̂m+n + Ĉm,n, (8)

Ĉm,n =
{∑m−1

k=0 fk,k+� · (k − m)(k + �)ĉ†
k ĉk+�, n � m∑n−1

k=0 fk+�,k · k(k − n)c†
k+�

ĉk, n � m
(9)

with m, n � 0, � = |m − n|. Thus, the Virasoro algebra is
not explicitly obeyed by the additional term Ĉm,n.

On the other hand, we expect the conformal symmetry to
be satisfied only in the thermodynamic limit, and the Virasoro
algebra to be obeyed only within Htopo. One or more states
φhα

∈ Htopo can be identified as the “primary states” in the
following sense in the thermodynamic limit:

(a) L̂nφhα
∈ H̄topo for n > 0,

(b) L̂−nφhα
∈ Htopo for n � 0,

(c) Ĉm,nφk ∈ H̄topo for m 
= n.
In general, L̂nφhα


= 0 for n > 0, which violates the require-
ment for the primary fields in CFT. However, the assumption
(a) implies φhα

are the highest weight states in Htopo, thus
qualifying them as the primary states in analogy to the primary
fields. All descendant states that correspond to the descendant
fields in CFT are within Htopo from (b). For the Virasoro
algebra to hold, we need (c), so the Virasoro algebra is sat-
isfied within Htopo. Thus, the conformal invariance of Htopo is
explicitly established.

We now look at the inner products and the norms of the
states given by φk . Let us use |φk〉 to denote φk , or the full
wave function ψk with the Gaussian factor. We define L̂n|φk〉
as L̂n acting on the holomorphic part of ψk . For the primary
states we can define the inner product using the usual quantum
mechanical overlap as follows:

〈
φhα

∣∣φhβ

〉 =
∫

dz1dz∗
1 . . . dzNe dz∗

Ne
ψ∗

hα
ψhβ

. (10)

A descendant state at level N is thus given by |φ(N )
hα

〉 =
L̂−k1 L̂−k2 . . . L̂−kn |φhα

〉, with N = ∑n
i=1 ki. If the total angular

momentum of |φhα
〉 is Mα , then the total angular momentum

of |φ(N )
hα

〉 is Mα + N . We can now define the following norm:

〈
φ

(N )
hα

∣∣φ(N )
hα

〉 = 〈
φhα

∣∣L̂kn L̂kn−1 . . . L̂n1 L̂−k1 L̂−k2 . . . L̂−kn

∣∣φhα

〉
. (11)

This is not equivalent to the quantum mechanical norm of
|φ(N )

hα
〉 since from Eqs. (6) and (7) we can see that (L̂n)

† 
= L̂−n.
However, Eq. (11) can be evaluated in a well-defined way by
commuting all of the L̂n with n � 0 to the right using Eq. (8),
so that L̂kn L̂kn−1 . . . L̂n1 L̂−k1 L̂−k2 . . . L̂−kn |φhα

〉 is proportional to
|φhα

〉. This is followed by the usual quantum mechanical over-
lap using Eq. (10).

We thus have two types of norm or overlap between two
states in Htopo. The first type is the usual quantum mechanical
overlap from the integration over zi, z∗

i , in the form of Eq. (10)
for any two states. The other type is the so-called “conformal
norm” and “conformal overlap,” which is computed from the
Virasoro algebra, the highest weight condition of the primary
state, and the orthonormality of the primary states (equivalent
to the quantum mechanical overlap, for the primary states
only). This distinction is important since the linear depen-
dence of a set of states depends entirely on the definition of
the overlaps. At each level or total angular momentum sector,
a set of states can be linearly dependent with the quantum
mechanical overlap, but linearly independent with the confor-
mal overlap, or vice versa. This is mainly because the Gram
matrix of the conformal overlap is not positive definite. On
the other hand, all physical quantities in principle should be
derived from the quantum mechanical overlap.
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The emergence of the central charge can be seen from the
microscopic wave functions as follows:

〈φk|[L̂n, L̂−n]|φk〉 = 〈φk|Ĉn,n|φk〉

=
n−1∑
k′=0

k′(k′ − n)〈φk|c†
k′ ĉk′ |φk〉, (12)

where 〈φk|c†
k′ ĉk′ |φk〉 gives the average occupation of electrons

in the k′th orbital. Since |φk〉 is a state with edge excitations,
physically there is only density modulation near the edge. In
the thermodynamic limit and for any finite value of k′, we
have 〈φk|c†

k′ ĉk′ |φk〉 = ν, the filling factor of the FQH phase.
We thus have

lim
Ne→∞

〈φk|[L̂n, L̂−n]|φk〉 = 2ν

12
(n3 − n) (13)

and we can identify the central charge c = 2ν. The importance
of this result will be discussed in the later sections.

From the definitions of Eqs. (6) and (7), it is obvious all
states |φk〉 are eigenstates of L̂0, with eigenvalues given by the
total angular momentum, which is also the conformal dimen-
sion. Thus, there is at least one primary state with conformal
dimension that scales with N2

e , and becomes infinity in the
thermodynamic limit. The norm of the descendant states from
this primary state thus is always positive, using the definition
from Eq. (11). We will also discuss this potentially interesting
point in the specific examples later.

III. CASE OF λ = 0

We will now first focus on the idealized case of Ĥtopo,
for which we assume the null space Htopo is well defined. It
turns out in many cases for the FQH systems, we can find
model local Hamiltonians with well-defined null space, which
allows us to scale the energies of states in H̄topo to infinity for
any finite systems. Thus, Htopo can be realized by physically
relevant Hamiltonians. For all the analysis in the previous
section to apply in the thermodynamic limit, we also need the
Hamiltonian to have a finite-energy gap in the thermodynamic
limit. This is necessary because otherwise we cannot send
the energies of the states in H̄topo to infinity by rescaling the
Hamiltonian.

A. Laughlin and Moore-Read phases

Let us look at two familiar examples of the Laughlin phase
and the Moore-Read phase. The model Hamiltonian of the for-
mer is the V̂ 2bdy

1 Haldane pseudopotential, while for the latter
is the three-body interaction Hamiltonian which we denote as
V̂ 3bdy

3 . In both cases, the CFT description of the null space
(denoted by HL

topo for the Laughlin phase, and HM
topo for the

Moore-Read phase) is well known, with unitary CFT models.
For the Laughlin phase, the HL

topo can be mapped to the Hilbert
space of the U(1) chiral bosons, while for the Moore-Read
phase the HM

topo can be mapped to the Hilbert space of the
U(1) chiral bosons with the additional Ising fermions [4,36].

We will now look into the explicit conformal invariance
of HL

topo. We can identify the Laughlin wave function φhL =∏
i< j (zi − z j )q at filling factor ν = 1/q as the primary state,

with L̂1|φhL 〉 = 0. While L̂n|φhL 〉 does not vanish for n > 1, it

clearly lives entirely in H̄L
topo since |φhL 〉 is the highest-density

state in HL
topo with the minimal total angular momentum ML =

q(N2
e − Ne)/2. The entire space of HL

topo, which is spanned by
Jack polynomials with α = −2/(q − 1) and admissible root
configurations (i.e., no more than one electron for every q
consecutive orbital) [37], can be generated by repeated appli-
cations of L̂−n, n > 0 on |φhL 〉, with the well-known Virasoro
level counting of 1, 1, 2, 3, 5, 7, . . . corresponding to the level
N = 0, 1, 2, 3, 4, 5, . . . . We have also numerically verified
assumption (c) for |φk〉 ∈ HL

topo with finite-size scaling.
In this particular description, the conformal dimension of

|φhL 〉, or the eigenvalue of L̂0, is hL = q
2 Ne(Ne − 1). The cen-

tral charge is given by c = 2/q. For q � 3 we have c < 1, and
this corresponds to a nonunitary CFT for any finite Ne. How-
ever, states with negative conformal norm [as computed from
Eq. (11)] can only occur at very large angular momenta, at
which the finite-size effect comes in and the Virasoro counting
is no longer obeyed. Thus, from the quantum mechanical point
of view, those states with negative conformal norm are just
linear combinations of other states in the same angular mo-
mentum sector. In the thermodynamic limit when hL → ∞,
the Virasoro counting is obeyed at any arbitrarily large angular
momentum sector, and all states will have positive conformal
norm. It is thus in every sense a valid CFT description of
HL

topo with hL = ∞, c = 2/q, even though it is apparently
quite different from the usual CFT description with chiral free
bosons (h = q, c = 1).

To extend this description to the Moore-Read phase with
HM

topo, we can also identify the Pfaffian ground state |φhM 〉 as
the primary state with hM = Ne(Ne − 3

2 ), c = 1. However, its
conformal family does not span the entire HM

topo, which is the
space of Jack polynomials with α = −3 and admissible root
configurations satisfying no more than two electrons in every
four consecutive orbitals. In particular, at level N = 2, there
are three linearly independent states in HM

topo, while only two
descendant states from |φhM 〉, namely, L̂−2|φhM 〉, L̂−1L̂−1|φhM 〉.
We can thus construct the state at N = 2 that is orthogonal to
L̂−2|φhM 〉, L̂−1L̂−1|φhM 〉 (using the quantum mechanical over-
lap), and denote it as |φh′

M
〉. There is very strong numerical

evidence that |φh′
M
〉 is annihilated by L̂1, L̂2 (and thus L̂n with

n > 0 following the Virasoro algebra), so this state can be
identified as a second primary state in HM

t (see Fig. 2).
We will thus have the following decomposition of |φh′

M
〉:∣∣φh′

M

〉 = ∣∣φhM

〉 ⊗ |τM〉. (14)

Since |φh′
M
〉 has conformal dimension hM + 2, and that

limNe→∞〈φhM |[L̂n, L̂−n]|φhM 〉 = limNe→∞〈φh′
M
|[L̂n, L̂−n]|φh′

M
〉

(the electron density at the center of the disk is not affected
by excitations, or density modulations at the disk boundary),
we then have a second primary state |τM〉 with conformal
dimension h = 2 and central charge c = 0. The fact that it
has zero central charge is quite interesting. We will show it is
a reasonable result that warrants further investigations.

The level counting of the primary state with h = 2, c = 0
can be computed explicitly, and listed in the third column of
Table I. If we convolute the level counting from |τM〉 with that
of |φhM 〉, the total number of states at N > 5 overcounts those
in HM

topo, indicating that not all states from the direct product of
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FIG. 2. The overlap with Htopo after applying L1 (black plot) and
L2 (red plot) to the primary state |φh′

M
〉. The y axis is the log of the

overlap, and the x axis is the inverse of the system size.

the two conformal families are linearly independent with the
quantum mechanical overlap (see the fifth column of Table I).
This again comes from the fact that the quantum mechanical
overlap and the conformal overlap are not equivalent. Thus,
in principle, this mismatch does not contradict the conformal
invariance of HM

topo.
On the other hand, the important discovery here is that

if we only count the number of unitary states at each level
using the conformal overlap (states with positive conformal
norms), its convolution with the Virasoro counting of |φhM 〉
agrees exactly with the counting of the Pfaffian quasiholes,
or the Hilbert space of HM

topo, for all the system sizes we
can check numerically (see the sixth and seventh columns of
Table I). This is also reasonable because we should be able to
map the CFT description here to the well-known CFT models
with U(1) bosons and Ising fermions [the M(4, 3) minimal
model], which is unitary. We conjecture this observation can
be generalized to the entire Read-Rezayi series, which we will
discuss in more details elsewhere.

B. Gaffnian and Haffnian phases

The Gaffnian and Haffnian states are closely related to the
Pfaffian states, as they are all the highest-density zero-energy
states of the leading three-body pseudopotential interactions.

Let us denote the null space that contains the Gaffnian and
Haffnian quasiholes as HG

topo and HH
topo, respectively. While

the model Hamiltonian for the Pfaffian is Ĥmr = V̂ 3bdy
3 , that of

the Gaffnian is Ĥgf = V̂ 3bdy
3 + V̂ 3bdy

5 , and that of the Haffnian
is Ĥhf = V̂ 3bdy

3 + V̂ 3bdy
5 + V̂ 3bdy

6 . There have been no rigorous
claims on if Ĥgf and Ĥhf are gapped in the thermodynamic
limit (and no rigorous statement can be made for Ĥmr for
that matter), but even if they are gapless (as supported by a
number of arguments), their null spaces are still well defined
for any system sizes. HG

topo is spanned by Jack polynomials
with α = − 3

2 and admissible root configurations satisfying
no more than two electrons for any five consecutive orbitals.
The Haffnian states (and their quasiholes) are no longer Jack
polynomials, but they can be uniquely determined using the
local exclusion condition (LEC) formalism. There is thus still
a one-to-one correspondence from HH

topo and root configu-
rations satisfying no more than two electrons for any six
consecutive orbitals.

In both cases, the highest-density Gaffnian state and
Haffnian state can be identified as the primary state, which
we denote as |φhG〉 and |φhH 〉, respectively. There is also
an additional primary state with h = 2, c = 0, just like the
Moore-Read case, so we will also denote with |τG〉 and |τH 〉.
There is, however, an important difference here. While HM

topo
only consists of descendant states of |τM〉 with positive con-
formal norms, this is no longer the case for HG

topo and HH
topo.

The latter contain descendant states from |τG〉 or |τH 〉 with
both positive and negative conformal norms. In fact, based on
extensive numerical evidence, we conjecture this is the case
for the null space of all three-body interaction Hamiltonians
of the following form (note there is no three-body pseudopo-
tential V̂ 3bdy

4 ):

Ĥ3bdy =
k0∑

k=3

V̂ 3bdy
k , (15)

which has been extensively analyzed in Simon et al. [22].
In all these cases, the highest-density zero-energy state is
the primary state with infinite conformal dimension in the
thermodynamic limit and central charge 2ν, which we can
collectively denote as |φhI 〉. Its conformal family thus gives

TABLE I. Level counting of the CFT model |ψhI 〉 with h = ∞, c = 2ν, and |τ 〉 with h = 2, c = 0. {τ̄ 〉} denotes the collection of the
primary and descendant states in the conformal family with positive conformal norms. The fifth column gives the upper bound of the counting.
The sixth and seventh columns have the identical counting.

N {|φhI 〉} {|τI〉} {|τ̄I〉} {|φhI 〉 ⊗ |vac〉, |φhI 〉 ⊗ |τI 〉} {|φhI 〉 ⊗ |vac〉, |φhI 〉 ⊗ |τ̄I〉} HM
topo HG

topo HH
topo

0 1 0 0 1 1 1 1 1
1 1 0 0 1 1 1 1 1
2 2 1 1 3 3 3 3 3
3 3 1 1 5 5 5 5 5
4 5 2 2 10 10 10 10 10
5 7 2 2 16 16 16 16 16
6 11 4 3 29 28 28 29 29
7 15 4 3 45 43 43 45 45
8 22 7 5 75 70 70 74 75
9 30 8 5 115 105 105 113 115
10 42 12 7 181 161 161 176 180
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the full Virasoro counting that is linearly independent quan-
tum mechanically with positive conformal norm. There is
also one additional primary state with h = 2, c = 0, which we
collectively denote as |τI〉. All states at level N are given as
follows:

∣∣φ(N )
hα,I

〉 = L̂−k1 L̂−k2 . . . L̂−kn

∣∣φhI

〉 ⊗ |vac〉, (16)∣∣φ(N )
hβ ,I

〉 = L̂−k′
1
L̂−k′

2
. . . L̂−k′

n′

∣∣φhI

〉 ⊗ L̂−k′′
1
L̂−k′′

2
. . . L̂−k′′

n′′ |τI〉,
(17)

where N = ∑n
i=1 ki = ∑n′

i=1 k′
i + ∑n′′

i=1 k′′
i + 2, α, β are in-

dices of states at level N , and both |φ(N )
hα,I〉, |φ(N )

hβ ,I〉 are
microscopic wave functions that can be explicitly obtained (in
the LLL they are of holomorphic variables z1, z2, . . . , zNe ).

The conformal family of |τI〉 has singular descendant
states (descendant states with zero conformal norm). By
removing those singular states, |φ(N )

hα,I〉, |φ(N )
hβ ,I〉 are linearly in-

dependent with respect to the conformal overlaps. However,
|φ(N )

hα,I〉, |φ(N )
hβ ,I〉 are overcomplete and linearly dependent with

respect to the quantum mechanical overlap for finite k0, so
the counting of the linearly independent microscopic wave
functions in the null spaces of Eq. (15) is bounded from above
by the counting given by Eqs. (27) and (29) (after the singular
fields are removed). We have checked explicitly for k0 � 8.

The conformal family of |τI〉 also contains fields with
negative conformal norms because the associated CFT model
(h = 2, c = 0) is nonunitary and irrational. However, if we
denote {|τ̄I〉} as a subset of the conformal family that contains
only states with positive conformal norm, then the remaining
counting from Eqs. (27) and (29) (after removing the singular
and negative norm states) agrees with the counting of HM

topo,
which is the null space of Eq. (15) with k0 = 3. As we increase
k0 to 5,6, etc. (corresponding to HG

topo,HH
topo, and so on), more

and more states from Eq. (29) with negative conformal norm
are needed to match the counting of the null space. We thus
conjecture the full conformal counting (all negative conformal
norm states) is needed to account for the counting of the null
space in the limit of k0 → ∞.

One of the most important aspects of the FQH edge dy-
namics is the thermal Hall conductance [34,38,39], normally
related to the central charge of the conformal edge theory and
should be completely determined by the null space Htopo. It
seems in the description described here, the central charge of
2ν and 0 comes from the bulk properties at the center of the
quantum Hall droplet, thus unrelated to what happens at the
edge. However, the thermal Hall conductance is completely
determined by the “density of states” or the counting of quasi-
hole states in each angular momentum sector [34]. For the
Laughlin and Moore-Read states, the counting can be com-
pletely determined by the h = ∞, c = 2ν and h = 2, c = 0
CFT models in the new description here. For “nonunitary”
states like the Gaffnian and Haffnian states, we are not sure
at this stage how the nonunitary counting of the h = 2, c = 0
model is gradually incorporated, as k0 in Eq. (15) increases.
Yet, this is also the case for the conventional CFT description
with the nonunitary and/or irrational CFT models, as the
central charge is different from the “effective central charge”
[12] obtained from the counting of HG

topo and HH
topo. The latter

can only be obtained microscopically (i.e., from the properties
related to the Jack polynomials).

In this sense, there is no obvious disadvantage with the
new CFT description presented here. While we do not have
a rigorous proof available, we believe the description here can
be mapped to the usual CFT descriptions with minimal or
irrational models. The results also show the strong relevance
of the h = 2, c = 0 CFT model for the three-body projec-
tion Hamiltonians, including the Moore-Read, Gaffnian, and
Haffnian states. It illustrates that the conformal invariance of
the topological null space can be described from different per-
spectives with effective CFT models. Many physical features
of the null space, which are related to the edge dynamics,
however, depend on the quantum mechanical properties of
the many-body wave functions that could be fundamentally
different from the CFT descriptions with their own defini-
tions of Hermitian conjugates, norms, and overlap, as well
as quasihole correlations. After all, the Gaussian factors in
the many-body wave functions play an important role for the
quantum mechanical norm, overlaps, and thus linear depen-
dence of those wave functions. Such Gaussian factors are not
accounted for in the CFT descriptions, and they explicitly
break conformal invariance with the presence of the magnetic
length. We thus need to be more careful in characterizing the
physical properties of the Gaffnian and Haffnian phases solely
from the effective CFT descriptions.

IV. GAFFNIAN AND HAFFNIAN STATES
AS ELEMENTARY EXCITATIONS

To further motivate the physical relevance of the Gaffnian
and Haffnian phases to the gapped FQH systems, we look
at the familiar Laughlin phase at ν = 1

3 , and focus on its
gapped elementary excitations (namely, the neutral and quasi-
electron excitations). Such excitations are well studied in the
composite fermion picture and the Jack polynomial formal-
ism [40–45]. The elementary low-lying neutral excitation is
the magnetoroton mode. In the long-wavelength limit, it is
a quadrupole excitation from the geometric deformation of
the ground state. At large momenta, it is a dipole excitation
consisting of a pair of separated Laughlin quasielectron and
quasihole. The energy gap of the magnetoroton mode defines
the incompressibility, and thus the robustness of the Hall
plateau, of the Laughlin phase.

From the microscopic point of view, the best way to under-
stand the physical properties of such gapped excitations is to
construct good model wave functions. Unlike the null space of
model Hamiltonians (the zero-energy ground states and quasi-
holes), in general, microscopic wave functions for the gapped
excitations are nonuniversal, and different approaches lead
to (slightly) different model wave functions. The magnetoro-
ton mode is special in the sense that the composite fermion
approach and the Jack polynomial formalism give exactly
identical model wave functions. This is true for excitations
consisting of only one Laughlin quasielectron (thus including
single quasielectron states that are also gapped). For states
containing more than one quasielectron, the two approaches
yield different model wave functions, though their overlaps
are generally quite high.
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Given the uniqueness of the magnetoroton model wave
functions, we show here that the quadrupole excitations are
exact zero-energy states of the Haffnian model Hamiltonians,
thus are states within HH

topo. In contrast, the dipole excitations,
as well as the single Laughlin quasielectron states, are exact
zero-energy states of the Gaffnian model Hamiltonian, thus
living within HG

topo [46,47]. To see that, let us write the root
configuration of the magnetoroton modes as follows [40]:

1.1.0˚
0

˚
00100100100100 · · · �M = −2 ∈ HH

topo, (18)

1.1.0˚
0010

˚
00100100100 · · · �M = −3 ∈ HG

topo, (19)

1.1.0˚
0010010

˚
00100100 · · · �M = −4 ∈ HG

topo, (20)

1.1.0˚
0010010010

˚
00100 · · · �M = −5 ∈ HG

topo,

... (21)

Here, the solid and open circles beneath the digits indicate the
locations of quasiparticles (of charge e/3, when three consec-
utive orbitals contain more than one electron) and quasiholes
(of charge −e/3, when three consecutive orbitals contain
fewer than one electron). Each root configuration represents
a many-body wave function, where only bases “squeezed”
from the root configuration have no-zero coefficients. These
nonzero coefficients can also be uniquely determined using
the method in [40], from which the model wave functions are
obtained.

The easiest way to see that the �M = −2 state is a
zero-energy state of the Haffnian model Hamiltonian is that
it satisfies the local exclusion condition (LEC) [48,49] of
{4, 2, 4} at the center of the disk (corresponding to the north
pole of the sphere). Similarly, we know the �M < −2 states
are the zero-energy states of the Gaffnian model Hamiltonian
because they satisfy the LEC of {2, 1, 2} ∨ {5, 2, 5}. Note that
near the filling factor of ν = 1

3 , there are an extensive number
of Haffnian or Gaffnian quasiholes.

Let us denote the subspace of Laughlin ground state and
quasiholes (the null space of V̂ 2bdy

1 pseudopotential) to be
HL

topo, then we clearly have the relationship that HL
topo ∈

HH
topo ∈ HG

topo. We can thus reinterpret the elementary neutral
excitations of the Laughlin phase as the quantum fluids of
interacting Haffnian or Gaffnian quasiholes [47]. Similarly,
if we look at the model wave functions of a single Laughlin
quasielectron, it has the following root configuration:

1.1.0˚
00100100100100 · · · �M = −Ne/2 ∈ HG

topo. (22)

It is also a zero-energy state of the Gaffnian model Hamilto-
nian. For multiple quasielectrons that are far away from each
other, they can all be considered as some locally bound states
of Gaffnian quasiholes.

A. Gaplessness of the model Haffnian Hamiltonian

The model Hamiltonian of the Haffnian state is the special
case of Eq. (15) with k0 = 6. It in fact is given by a family of
the following Hamiltonian:

Ĥhf = V̂ 3bdy
3 + λ1V̂

3bdy
5 + λ2V̂

3bdy
6 (23)

with λ1, λ2 > 0. The null space of Eq. (23) is HH
t . One should

note that if we define the the Laughlin ground states and
quasiholes space (i.e., the null space of V̂ 2bdy

1 ) as HL
topo, we

then have HL
topo ∈ HH

topo.
What we are able to show here is that the incompressibility

of V̂ 2bdy
1 at ν = 1

3 (more specifically at No = 3Ne − 2, where
No is the number of orbitals on the sphere or disk geometry)
implies that Eq. (23) is gapless at No = 3Ne − 4 (where the
Haffnian state is the highest-density zero-energy state), for
any positive values of λ1, λ2. This is because Laughlin quasi-
electrons, which are orthogonal to the Haffnian ground state
in the thermodynamic limit, do not have a finite-energy gap
with Eq. (23).

The incompressibility of V̂ 2bdy
1 implies both the quadrupole

and dipole excitations cost a finite amount of energy in the
thermodynamic limit. We now look at a two-dimensional
subspace spanned by two states of the following root configu-
ration:

110000110000110000 · · · 11000011, (24)

11000100100100 · · · 100100100011. (25)

The first state of Eq. (24) is the Haffnian model state, which
is the unique zero-energy state in L = 0 with No = 3Ne − 4
from Eq. (23). The second state of Eq. (25) is the Laughlin
state with two quasielectrons in the same quantum sector. It
can be constructed using the method in [47]. The model state
has very high overlap with the exact ground state of V̂ 2bdy

1
in L = 0 with No = 3Ne − 4 [the arguments here also apply
if we use this exact ground state in place of Eq. (25)]. Since
the Haffnian state contains an extensive number of quadrupole
excitations, its variational energy with respect to V̂ 2bdy

1 is also
extensive. On the other hand, the variational energy of the
two-quasielectron state of Eq. (25) is finite in the thermo-
dynamic limit [see Fig. 3(b)], which is double the Laughlin
charge gap at ν = 1

3 .
We now look at the spectrum of Eq. (23) within this two-

dimensional subspace and argue that the two energies have
to be degenerate in the thermodynamic limit. The overlap of
the two states (24) and (25) quickly decays with the system
size [see Fig. 3(c)], so for all purposes we can treat them as
the eigenstates in this subspace, with the Haffnian state as the
zero-energy ground state. If Eq. (25) has a finite-energy gap
in the thermodynamic limit, then we can consider perturbing
Eq. (23) with an infinitesimal amount of V̂ 2bdy

1 as follows:

Ĥ = Ĥhf + λV̂ 2bdy
1 . (26)

There will be a level crossing no matter how small λ is since
the Haffnian state will have infinite energy in the thermody-
namic limit, while Eq. (25) will have finite energy. This is not
possible unless Eqs. (24) and (25) are degenerate at λ = 0,
implying that Eq. (23) is gapless in the thermodynamic limit.
In another word, if Ĥhf is gapped in the thermodynamic limit,
then an infinitesimally small perturbation can close the gap
and lead to level crossing.

The argument can be generalized as follows. Let Ĥ1, Ĥ2

be two local Hamiltonians with the null spaces H1,H2, re-
spectively. Let |ψ1〉 ∈ H1, |ψ2〉 ∈ H2 be the highest-density
states (with densities ρ1 � ρ2) in their respective null spaces.
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FIG. 3. The x axis is the inverse of system size (number of
electrons), and the y axis represents (a) variational energy of the
two-quasielectron Laughlin state with respect to Ĥhf; (b) variational
energy of the two-quasielectron Laughlin state with respect to V̂ 2bdy

1 ;
(c) overlap of the two-quasielectron Laughlin state and the Haffnian
model state; (d) variational energy of the V̂LLL ground state at ν = 2

5
with respect to Ĥgf; (e) variational energy of the V̂LLL ground state
at ν = 2

5 with respect to V̂ 2bdy
1 ; (f) overlap between the V̂LLL ground

state at ν = 2
5 and the Gaffnian state.

If there exists a state |ψ ′
1〉 with density ρ ′

1 and finite values
�1 � 0,�2 � 0 such that following conditions are satisfied,

ρ ′
1 � ρ1, (27)

lim
Ne→∞

〈ψ ′
1|Ĥ1|ψ ′

1〉 = �1, (28)

lim
Ne→∞

〈ψ1|Ĥ2|ψ1〉 → ∞, (29)

lim
Ne→∞

〈ψ ′
1|Ĥ2|ψ ′

1〉 = �2, (30)

then we have

lim
Ne→∞

〈ψ1|Ĥ1|ψ1〉 = lim
Ne→∞

〈ψ ′
1|Ĥ1|ψ ′

1〉 (31)

implying Ĥ1 is gapless with neutral excitations (if ρ1 = ρ ′
1)

or charged excitations (if ρ1 < ρ ′
1). Note that |ψ1〉 and |ψ ′

1〉
are two eigenstates of Ĥ1. If their energies are gapped in
the thermodynamic limit, an infinitesimally small amount of
perturbation of Ĥ2 to Ĥ1 will close the gap if Eqs. (27)–(30)
are satisfied. A simple schematic illustration of the argument
can be found in Fig. 4.

We do not require Ĥ2 to be gapped in the above argu-
ments. However, in the case of Ĥ1 = Ĥhf, Ĥ2 = V̂ 2bdy

1 , we
have ρ1 > ρ2 but limNe→∞ (ρ2 − ρ1) = 0. Thus, we can find
the states |ψ ′

1〉 with ρ ′
1 � ρ1 such that they are the Laughlin

ground state plus a finite number of Laughlin quasielectrons,
which are exponentially localized excitations. These states
satisfy Eqs. (27), (28), and (30) (note the Laughlin ground
state is also in the null space of Ĥhf). From the fact that
V̂ 2bdy

1 is gapped, we know its quadrupole excitation is gapped
in the thermodynamic limit. Given |ψ1〉, or the Haffnian
state, contains an extensive number of quadrupole excitations,
Eq. (29) is also satisfied. Thus, Ĥhf has both gapless neutral
and charged excitations and is compressible. All states that
physically represent the Laughlin ground state with a finite
number of quasielectrons are degenerate with the Haffnian

FIG. 4. We can set the energy of |ψ1〉 with respect to Ĥ1 to be
zero, so that of |ψ ′

1〉 is �1. The variational energy of |ψ ′
1〉 with respect

to Ĥ2 is �2, while that of |ψ1〉 is �, which goes to infinity in the
thermodynamic limit. An infinitesimally small perturbation of Ĥ2 to
Ĥ1 will lead to a level crossing between the two states indicated by
the yellow arrow.

ground state in the thermodynamic limit if the interaction
Hamiltonian is Ĥhf.

B. Gaffnian state at ν = 2
5

The argument above does not apply to the Gaffnian state
because there are no known local Hamiltonians with well-
defined null spaces nearby Ĥgf, playing the role of V̂ 2bdy

1
to Ĥhf. From the three-body interactions, we know that
H̄M

topo contains states with clusters of three particles having
total relative angular momentum 3. The Hilbert space of
HM

topo\HG
topo contains states with clusters of three particles

having total relative angular momentum 5. The Hilbert space
of HG

topo\HH
topo contains states with clusters of three particles

having total relative angular momentum 6. These subspaces
will thus be affected by individual three-body pseudopoten-
tials differently as shown in Fig. 5. In Fig. 5, it is generally
believed that limNe→∞ �M is finite, and we have argued that
limNe→∞ �H = 0, with the gap closing from excitations in the
subspace of HG

topo\HH
topo (although there could be other gap-

FIG. 5. (a) The relationship between different Hilbert spaces de-
fined in the main text. (b) The variational energies of different Hilbert
spaces with three-body pseudopotentials. (c) The variational energies
of different Hilbert spaces with two-body interactions. The varia-
tional energies are computed numerically from finite-size systems.
While the relative strength of different Hilbert spaces is consistent
for different system sizes, they should be just indicative of what could
happen in the thermodynamic limit.
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less modes). Thus, for Ĥgf to be gapless, with positive V̂ 3bdy
3

the gapless mode can only be in the subspace of HM
topo\HG

topo,

which in particular are the zero-energy states of V̂ 3bdy
3 . One

competing state for the Gaffnian state is the Abelian Jain
state at the same filling factor and topological shift, with the
following root configuration:

11001001010010100100 . . . 10010011 (32)

which is unsqueezed from the root configuration of the
Gaffnian state. The Jain state cannot be uniquely determined
by any known local operators, and there are several highest-
weight states [50] supported by the basis squeezed by Eq. (32)
(in contrast, there is a unique highest-weight state supported
by the basis squeezed from the Gaffnian root configuration).
For finite systems, the Jain state has very high overlap with
the Gaffnian state, suggesting the basis unsqueezed from the
Gaffnian root configuration but squeezed from Eq. (32) plays
a minor role. The Jain root configuration also shows that the
Jain state contains two Gaffnian neutral excitations (one at the
north pole, the other at the south pole).

Let us denote the Jain state as |ψJ,2/5〉. From the root con-
figuration, the basis of the Jain state clearly satisfies the LEC
condition of {3, 2, 3}, it is thus a zero-energy state of V̂ 3bdy

3 ,
i.e., |ψJ,2/5〉 ∈ HM

topo. It is generally believed at the critical
point [33,51,52] of Ĥgf, |ψJ,2/5〉 and |ψG

ρmax
〉 are degenerate

in the thermodynamic limit (the latter is the Gaffnian state),
based on the CFT conjecture. It is thus natural to consider
the possibility of letting |ψJ,2/5〉 play the role of |ψ ′

1〉, with
|ψG

ρmax
〉 = |ψ1〉 in Eqs. (27) to (30). Even though there is no

known model Hamiltonian for the Jain state, we note that the
arguments above do not require Ĥ2 to be a local Hamiltonian.
We can thus assume the existence of Ĥ2 such that Eq. (30) is
satisfied.

However, it is not clear if such Ĥ2 can satisfy Eq. (29),
given that |ψJ,2/5〉 and |ψG

ρmax
〉 have very high overlap for finite

systems (comparable to the overlap between the Laughlin
model state and the LLL Coulomb interaction ground state).
A more serious issue is the strong numerical evidence against
Eq. (28). From Fig. 3(d) we see that the variational energy
of the ground state with the lowest Landau level Coulomb
interaction with the Gaffnian model Hamiltonian seems to
be extensive. This is qualitatively the same if the exact Jain
2
5 state is used [53], i.e., 〈ψJ,2/5|Ĥgf|ψJ,2/5〉 ∼ O(Ne). While
we can only access relatively small system sizes here, the nu-
merics does suggest that as far as the ground-state properties
are concerned, the Gaffnian state and the Jain state seem to
be indistinguishable topologically. We will discuss about the
universal properties of their respective quasihole states in the
next section.

V. CASE OF λ > 0

We now move on to more realistic interactions with λ > 0
in Eq. (1). Several possible scenarios can happen as we out-
lined in Sec. I, and we look at these possibilities with the
particular focuses at filling factor ν = 2

5 (where the Gaffnian
state is located) and ν = 1

3 (where the Haffnian state is
located). When we move away from the model Hamilto-
nian, the conformal invariance of the null spaces is broken,

so in principle the connection to the CFT models is no
longer valid. The two well-known FQH phases at these two
filling factors are the Abelian Jain state and the Laughlin
state. We would like to show, however, the physical rele-
vance of the null spaces (i.e., quasihole subspaces) at these
two filling factors. In particular, the goal is to see if the
observed experimental data can be explained using their re-
spective quasihole subspaces, and what new experimental
results we can predict from the perspective of quasihole
subspaces.

A. Gaffnian and Jain phases

One important question to ask is if the Gaffnian state and
the Jain ground state at ν = 2

5 are topologically equivalent:
that any topological indices computed from these two micro-
scopic wave functions are identical [14]. If ĤG is gapped in the
thermodynamic limit in the L = 0 sector, then the statement
has to be true even if the gap closes in some other L sector.
This is because the two states are adiabatically connected, and
without gap closing in L = 0 sector any physical properties
computed from the two states have to go smoothly from
one value to another, implying the invariance of topological
indices.

We now assume ĤG is gapless in the thermodynamic limit
in the L = 0 sector. Since we know V̂ 3bdy

3 gaps out H̄M
topo,

the gap can only close within HM
topo, which is where the Jain

trial wave function from the composite fermion construction is
located. Let us define HM

topo′ = HM
topo\HG

topo, then the Gaffnian
ground state |ψ0,G〉 is orthogonal to HM

topo′ . The main question
here is which subspace describes the low-energy physics as λ

increases from zero. Let {|ψM〉} ∈ HM
topo be the set of states de-

generate with |ψ0,G〉 in the thermodynamic limit. If we perturb
ĤG with an infinitesimal amount of V̂ 2bdy

1 , we can apply the
degenerate perturbation theory to the first order, and diagonal-
ize V̂ 2bdy

1 in the subspace of {|ψM〉} ∪ |ψ0,G〉. Since {|ψM〉} is
orthogonal to |ψ0,G〉, we expect the diagonal matrix elements
to be extensive (thus going to infinity), while matrix elements
between {|ψM〉} and |ψ0,G〉 to vanish, in the limit of large
system sizes. From Fig. 5 we expect 〈ψ0,G|V̂ 2bdy

1 |ψ0,G〉 < EM ,
where EM is the ground state of V̂ 2bdy

1 within HM
topo′ . We expect

this to be true in the thermodynamic limit. Thus, with the
following Hamiltonian

Ĥ = (1 − λ)ĤG + λV̂ 2bdy
1 (33)

there is no level crossing between |ψ0,G〉 and HM
topo′ when we

increase λ from 0. Note that at λ = 0, even if the Hamiltonian
is gapless, the variational energies of ĤG in HM

topo′ can only
approach zero asymptotically. Since it is generally believed
that the ground state of Eq. (33) with λ > 0 is adiabatically
connected to the Abelian Jain state [51], we argue that the
Gaffnian ground state is indeed adiabatically connected, and
thus topologically equivalent, to the Jain ground state from the
composite fermion construction.

1. Thermal Hall effect and the quasihole bandwidth

The arguments above suggest that as far as the ground
states are concerned, the Gaffnian phase and the Jain phase
are topologically equivalent. The two phases, however, are not
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topologically equivalent with regard to the universal proper-
ties of the low-lying excitations, which in particular dictates
the (non-)Abelian-ness of the FQH phase. For a dilute gas of
Gaffnian quasiholes, we also expect no level crossing between
HG

topo and HM
topo′ as λ increases. We thus conjecture state-

ment 1(b) (from the Introduction) should capture the adiabatic
tuning from the Gaffnian model Hamiltonian to the realistic
short-range interaction that attributes to the Hall plateau ob-
served at ν = 2

5 . We do not expect to see non-Abelian braiding
of the quasiholes because with realistic interaction a large
bandwidth of the quasihole manifold will develop, lifting the
required degeneracy [54].

This effect should also be reflected in thermal quantum
Hall measurement [38,39], which is given by the heat capacity
of the chiral edge at the boundary of the quantum Hall fluid
[34]. Let the partition function of the 1D edge system be given
as follows:

Z =
∞∑

N=0

g(N, β )e−βεN , (34)

where β = 1/kBT , and g(N, 0) is the number of the quasihole
states at level N , i.e., the density of state as a function of the
angular momentum. The “kinetic energy” εN accounts for the
energy of the states at the same level, which can be contributed
from the confining potential of the quantum Hall droplet near
the edge. Let N have the unit of angular momentum, for
general cases we can expand it as follows:

εN = c1N + c2N2 + · · · , (35)

where c1 = vF
2πL , with vF the Fermi velocity and L the circum-

ference of the droplet. At finite temperature we have

g(N, β ) =
∑

α

e−βεN,α , (36)

where α is the index of the states in a single level, and εN,α

are the additional energy costs from the creation energies of
quasiholes as well as interaction between quasiholes. We can
also absorb the nonlinearity of the kinetic energy into the
density of the states part, and rewrite the partition function
as follows:

Z =
∞∑

N=0

g̃(N, β, c2)e−βεN , (37)

g̃(N, β, c2) =
∑

α

e−β(εN,α+c2N2+··· ). (38)

Conformal invariance implies ε̃N,α = εN,α + c2N2 + · · · = 0
identically. With this assumption, the thermal Hall conduc-

tance is given by κ = cπ2k2
BT

3h , where c is the central charge of
chiral Luttinger liquid. In the composite fermion picture, the
Jain state consists of two occupied CF levels analogous to the
IQHE with ν = 2, so the central charge is c = 2. One should
note that even with the assumption of conformal invariance,
the value of c = 2 is not yet supported by the microscopic CF
theory. This is because the quasihole excitations from each
CF level with the CF construction are not orthonormal with
each other, and there are missing states after the projection
into the LLL [14,42]. These missing states will effectively
reduce the density of states at each momentum sector. The

effective field theories from the CF construction, on the other
hand, are generally formulated from the CF theory before LLL
projection, ignoring the missing states. Thus, strictly speaking
the effective field theories from the CF construction predict
an upper bound of c = 2 for the thermal Hall conductance. If
we do not consider the nonuniversal factors in actual experi-
ments that break the chiral Luttinger liquid description of the
quantum Hall edge, the actual central charge from the thermal
Hall conductance measurement should also be bounded above
by c = 2.

For the Gaffnian model Hamiltonian, the null space has
an effective central charge c = 1 + 3/5 from its Virasoro
counting, which can be computed from Eq. (37) by taking
g̃(N, β, c2) = g̃(N, 0, 0). It is important to note this effective
central charge is different from the negative central charge
predicted from the M(5, 3) minimal model conventionally
associated with the Gaffnian phase [12,34]. The negative cen-
tral charge (thus the thermal Hall conductance) comes from
the unphysical negative conformal norms. Such contributions
have to be corrected since all physical quasihole states have
positive quantum mechanical norm and will contribute posi-
tively to the thermal Hall conductance.

With the realistic interaction and confining potential, con-
formal invariance is explicitly broken. This is reflected by
ε̃N,α 
= 0, which effectively modifies the density of state
g̃(N, β, c2). From this perspective, the thermal Hall conduc-
tance is only universal in the presence of conformal symmetry,
when it is independent of the Fermi velocity vF . We thus
believe while the composite fermion description is a good
effective theory at ν = 2

5 , the thermal Hall conductance will
not in general be quantized with c = 2. It can be computed
by assuming all edge excitations are Gaffnian quasiholes. The
actual value, however, will depend strongly on the realistic
interaction, which is known to split the quasihole bands due
to the nonzero creation energies of quasiholes [54].

Experimentally, the ν = 2
5 plateau is observed in the lowest

Landau level, where the Coulomb interaction is more long
ranged as compared to V̂ 2bdy

1 . Thus, apart from the confining
potential, insertion of the fluxes and the creation of quasiholes
will cost negative amount of energy, i.e., εN,α < 0. In the
long-wavelength limit if we ignore the nonlinearity of the
confining potential (i.e., c2 = 0), then we have ε̃N,α < 0 and
g̃(N, β, c2) > g̃(N, 0, 0). A higher density of state leads to
an increase of the edge heat capacity, and we thus expect

κ > 8
5

π2k2
BT

3h . In contrast, stronger confining potential [e.g.,
sharper edge of the two-dimensional electron gas (2DEG)
in the experiments] generally leads to larger c2 and reduced
effective density of states, leading to the suppression of the
thermal Hall conductivity. These are some qualitative behav-
iors we can predict about the experiments based on the simple
analysis here, and more detailed calculations will be presented
elsewhere.

2. Quasihole tunneling and shot noise

In addition to the thermal Hall conductance, we can also
explore the topological nature of the quantum Hall fluid at
ν = 2

5 by looking at charge tunneling between counterprop-
agating edges at the quantum point contact (QPC). In the
composite fermion picture, quantum fluid consists of two CF
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levels in analogy to the two LLs of the IQHE, contributing
to the two tunneling channels at the QPC. Like the IQHE, the
outer channel has full transmission since it is further apart, and
backscattering mainly comes from the inner channel, with the
charge carriers each carrying the charge of q = e/5. This can
be extracted from the relationship of S = 2qIB, where S is the
spectral function of the shot noise, and IB is the backscattering
current [55,56].

While the tunneling of e/5 charge carriers has been con-
firmed in a number of experiments, it has also been discovered
at very low temperature: the tunneling charge is 2e/5 instead
of e/5 [56]. This rather interesting phenomenon illustrates the
richness of edge dynamics at ν = 2

5 , that cannot be readily
explained using the composite fermion theory. Here, we show
this phenomenon can be naturally explained by looking into
the dynamics of the Gaffnian quasiholes, which are nonin-
teracting with Ĥgf, but are no longer the case with realistic
interactions.

If we insert one magnetic flux to the Gaffnian ground
state and create two Gaffnian quasiholes, the states from the
following two root configurations are degenerate with Ĥgf:

◦◦01100011000 . . . 1100011, (39)

◦1010010100 . . . 10100101◦ , (40)

where in Eq. (39) we have two Gaffnian quasiholes forming
a bound state with charge 2e/5, piled at the north pole, in
the Lz = Ne/2 sector. In contrast, Eq. (40) is the state with
two unbounded Gaffnian quasiholes, one at the north pole
and the other at the south pole, in the Lz = 0 (for Ne even)
or Lz = 1 (for Ne odd) sector. Here, we have a Gaffnian
quasihole when for five consecutive orbitals, we have one
(instead of two) electron, as determined by the admission
rule for the Gaffnian ground state. For quasiholes at the north
or south pole, the number and the location of the quasiholes
can be determined by the position of the inserted flux and
the symmetry of the root configuration. We can also apply
the admission rule by embedding the root configuration in
the ground-state fluid [e.g., for Eq. (40), the quasiholes can
be located with the admission rule for the configuration of
. . . 11000110001010010100 . . . 101001010001100011 · · · ].
With a realistic interaction, we can evaluate their
corresponding variational energy to determine if it is more
energetically favorable for the two quasiholes to be bounded
or unbounded.

From Fig. 6 we can see from finite-size analysis that V̂ 2bdy
1

prefers bound quasihole states, while V̂ 2bdy
3 prefers unbound

quasihole states. Realistic interactions such as LLL Coulomb
interaction (i.e., V̂LLL) is known to be quite close to V̂ 2bdy

1 ,
we thus expect it to prefer bound quasihole states as well,
as supported by numerical evidence. This also implies the
two Gaffnian quasiholes can pull away from each other at
finite temperature. Given that the energy difference between
the bound and unbound quasihole states seems quite small
with V̂LLL, in realistic samples their separation can be quite
large, leading to tunneling of single quasihole from one edge
to another if the QPC is narrow.

Thus, the tunneling at the QPC can be illustrated in Fig. 7.
At the same temperature, there will always be a higher den-

FIG. 6. The energy cost of creating a pair of bounded (black
plot) and unbounded (red plot) Gaffnian quasiholes, after inserting
one magnetic flux to the ground state. The x axis is the inverse
of the system size. (a) V̂ 2bdy

1 interaction; (b) V̂ 2bdy
3 interaction.

The inset shows the same plots with V̂LLL Coulomb interaction,
with greater finite-size effects. For both V̂ 2bdy

1 and V̂LLL inter-
actions, the unbounded pair of quasiholes has higher variational
energy.

sity of bound quasiholes with charge 2e/5, as compared to
(loosely) unbounded ones carrying the charge of e/5. Let the
density of the 2e/5 quasiholes available for tunneling be n2e/5,
and the density of the e/5 quasiholes available for tunneling
be ne/5. We thus have

ne/5

n2e/5
∼ e−βδE , (41)

where δE is the characteristic energy difference between
bounded and unbounded Gaffnian quasiholes. On the other
hand, as shown in Fig. 7, the e/5 excitations, being at higher
energy, have shorter tunneling distance. In general, the tun-
neling amplitude, given by the overlap of the (localized) edge
excitations, is suppressed exponentially by the state separa-
tion. Thus, at low temperature, there are predominantly 2e/5
excitations at the edge, leading to the shot-noise experiment
detecting the quantized charge of 2e/5. As temperature in-
creases, a substantial amount of e/5 excitations are present,
which dominates the tunneling process since their tunneling
amplitude is much larger as compared to the 2e/5 exci-
tations, when the quantum point contact is narrow. Thus,
there will be a crossover as temperature increases, and the
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FIG. 7. Schematic distribution of the e/5 and 2e/5 density at the
edge of ν = 2

5 FQH fluid, based on the numerical analysis with short-
range interactions. (a) Without confining potential; (b) with confining
potential.

shot-noise measurement will detect mostly quantized charge
of e/5. This qualitative argument agrees with the experi-
mental observation quite well, and a detailed quantitative
analysis with experimental parameters will be performed
elsewhere.

B. Haffnian physics at ν = 1
3

We have already shown that Ĥhf is gapless in the ther-
modynamic limit with microscopic arguments that are not
readily applicable to the Gaffnian model Hamiltonian. One
can then wonder if it is possible to perturb Ĥhf so that we can
have a gapped ground state inheriting some of the topological
properties of the Haffnian model state, like what we have
shown for the Gaffnian phase. From Fig. 5, however, we can
see that any small perturbation by short-range interactions
likely leads to level crossing between HH

topo′ and H̄H
topo′ in the

thermodynamic limit. For interactions dominated by V̂ 2bdy
1 ,

the ground-state and low-lying excitations at No = 3Ne − 4
are Laughlin quasielectrons. Increasing V̂ 2bdy

3 pushes up the
Laughlin quasielectrons, but the low-lying excitations are
dominated by H̄M

topo, which is contained in H̄H
topo′ . Thus, in

simple realistic systems, we do not expect gapped ground
states that are topologically equivalent to the Haffnian state,
in contrast to the Gaffnian case.

This, however, does not rule out the possibility of such a
gapped phase. If we assume that Ĥhf gaps out H̄M

topo, which is
reasonable, we then need a local Hamiltonian to gap out both
HM

topo′ and HG
topo′ for No � 3Ne − 4, for us to have a gapped

phase topologically equivalent to the Haffnian model state,
and thus distinct from the Laughlin phase. The topological
phase transition from this Haffnian-type phase to the Laughlin
phase is also accompanied by the fractionalization of the
Laughlin quasiholes into “Haffnian” quasiholes [47] carry-

ing charge of e/6. Given that HL
topo ∈ HG

topo, each Laughlin
quasihole can be understood as a bound state of two Gaffnian
quasiholes. In the Laughlin phase, the bound state is ener-
getically favorable. Pulling the two Gaffnian quasiholes apart
costs an energy that is proportional to the distance between
them. In the Haffnian-type phase, the unbounded Gaffnian
quasiholes are energetically favorable and they emerge as
“Haffnian” quasiholes (note that each Gaffnian quasihole car-
ries the charge of e/6 at ν = 1

3 , and HH
topo ∈ HG

topo).
If no Haffnian-type gapped phase is possible for any lo-

cal Hamiltonian, then the only known topological phase at
ν = 1

3 for a single-fermion species is the Laughlin phase.
Even in this case, HH

topo can still play a relevant physical
role. It is the Hilbert space of the quadrupole excitations of
the Laughlin phase, and there are both numerical and ex-
perimental evidence that the quadrupole excitations can go
soft in the Laughlin phase [46,47,57–60]. As long as the
charge gap is maintained, the quantum phase still has a robust
Hall conductance plateau, though finite-temperature transport
can be modified by the quadrupole excitations, leading to
the so-called nematic FQHE phase. If the quadrupole exci-
tations become gapless, this could imply that the Laughlin
state is compressible and degenerate with the Haffnian state,
which is a uniform gas of quadrupole excitations. Thus, the
likely scenario in the experiment is a small energy gap of the
quadrupole excitation as compared to the finite temperature.
The Laughlin state is still incompressible due to the presence
of the charge gap, and that the Haffnian state has an extensive
energy gap.

Another possible scenario is for the quadrupole excitation
gap to scale as ∼1/Ne, so it becomes gapless in the ther-
modynamic limit. There is now a finite variational energy
gap of the Haffnian model state, which contains ∼Ne number
of quadrupole excitations. More interesting, there will be a
mode with linear dispersion, with the energy scaling linearly
with the number of quadrupole excitations. Given that the
gaplessness of the quadrupole gap leads to the nematic FQH
phase, this linear mode has been described in the effective
field theory as the gapless nematic Goldstone mode [47,59].
One should note that in the thermodynamic limit, a single
quadrupole excitation does not have any density modulation,
which is unlike the dipole excitations at large momenta. Thus
indeed, this linear dispersion in the long-wavelength limit
does not come from the density fluctuation, but from the spa-
tial modulation of the nematic director. It would be interesting
to see if this Goldstone mode can be measured experimen-
tally, as it is not clear if it can be realized with realistic
interactions.

VI. SUMMARY AND DISCUSSIONS

Using the null space of model Hamiltonians as the pre-
ferred degrees of freedom, in this work we argue that the
Gaffnian and Haffnian states (as well as their quasihole states)
have rich physical properties that can play interesting roles in
familiar and exotic gapped FQH systems. The model Hamilto-
nians of the Gaffnian and the Haffnian state may be gapless in
the thermodynamic limit, and we have provided in this work
a microscopic argument that the Haffnian model Hamiltonian
is indeed gapless against Laughlin quasielectron excitations.
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On the other hand, the quasihole subspaces are still spanned
by well-defined microscopic many-body wave functions. In
particular, we show at ν = 2

5 the Gaffnian quasihole sub-
space can explain many, if not all, of the topological and
nonuniversal behaviors observed in the experiments with the
introduction of the realistic Hamiltonian. This reinforces the
previous notion that the Gaffnian formalism and the compos-
ite fermion picture are describing the two sides of the same
coin [14,54] at ν = 2

5 . With realistic interaction there is no
bulk-edge correspondence. The Gaffnian ground state and the
Jain ground state are argued to be topologically equivalent,
while the Gaffnian quasihole manifold is split into bands with
Coulomb interactions. The dynamics of Gaffnian quasiholes
can explain the shot-noise and tunneling experiments, and
its prediction of the dependence of the thermal Hall conduc-
tance with different tuning parameters can also be checked in
experiments.

Both the Gaffnian and Haffnian quasiholes play impor-
tant roles in the low-lying excitations of the Laughlin phase.
The quadrupole excitations, which are neutral, are made of
Haffnian quasiholes. In contrast, the dipole and quasielectron
excitations are made of Gaffnian quasiholes. The energetic
competitions between the Haffnian and Gaffnian quasiholes
thus give a unifying description of the dynamics of the Laugh-
lin phase at the finite temperature. These include the nematic
FQH phase [46,47,57–60], which is a topological phase with
nontrivial geometric properties, as well as potential fraction-
alization of the Laughlin quasiholes at finite temperature [47].
We also show that with realistic two-body interactions, there
is generally no Haffnian-type ground state similar to the case
of the Gaffnian state. This is because the Haffnian quasi-
holes have very high variational energy as compared to other
sub-Hilbert spaces with known realistic interactions. It is still
interesting to explore if there exist local Hamiltonians that gap
out all other sub-Hilbert spaces from the Haffnian quasiholes,
so as to realize an incompressible Haffnian-type phase with a
distinct topological shift as compared to the Laughlin phase at
ν = 1

3 .
It is also important to understand how the results in

this work reconcile with the arguments from the effective
CFT description, regarding the relevance of the Gaffnian and
Haffnian states to gapped FQH phases. We would first like to
note that, strictly speaking, the results proposed in this work
do not contradict the CFT arguments. In those arguments, the
gaplessness of the model Hamiltonians for the Gaffnian and
Haffnian states requires the fundamental assumption of the
conformal invariance of their respective null spaces. Realistic
interactions that break the conformal symmetry can still retain
topological properties of some (may not be all) of those from
the model Hamiltonians. Moreover, the CFT arguments do
not prevent the Gaffnian and Haffnian quasiholes to be the
useful degrees of freedom for low-lying excitations of other
incompressible FQH phases.

Moreover, we have shown an alternative derivation of the
conformal invariance of model Hamiltonian null spaces from
the microscopic wave functions. In contrast to the effective
theories, this derivation shows explicitly how conformal in-
variance is obeyed by the Hilbert space in the thermodynamic

limit, and how the conformal dimension and central charge
emerge from the many-body wave functions themselves. The
delicate structure of the conformal invariance, which we
reveal by focusing on the null spaces of three-body pseudopo-
tential interactions, shows that there could be a “simple” way
of manifest conformal symmetry from the microscopic per-
spective. The negative conformal norm that can be computed
microscopically does not lead to unphysical quantum mechan-
ical behaviors of the many-body wave functions. It would be
interesting to see how different CFT descriptions of the FQH
edges are related to each other, which can potentially give us
a deeper understanding of how CFT reveals the dynamical
properties of both the bulk and edge of the FQH systems.

We end this section with a number of detailed predictions
based on the analysis in this work, related to the thermal
Hall conductance and the shot-noise and quasihole tunneling
experiments. At filling factor ν = 2

5 in the LLL, we predict the
coefficient of the thermal Hall conductance κ to be nonuni-
versal and bounded between 8

5 (with exact Gaffnian quasihole
degeneracy) and 2 (as predicted by the composite fermion the-
ory). With more short-ranged interaction (e.g., greater sample
thickness or with screening), smaller quasihole creation en-
ergy will generally lead to smaller κ . Nonlinear confinement
potentials at the edge will also reduce the effective density of
state and thus reduce κ , and we expect that to be the case with
a sharper edge.

The tunneling experiments at ν = 2
5 will involve quasparti-

cles of both e/5 and 2e/5 charge (the latter can be considered
as a bound state of two Gaffnian quasiholes). At very low
temperature, only 2e/5 quasiholes will be present for the
tunneling. At higher temperature, the edge excitations will
consist of a mixture of e/5 and 2e/5 quasiholes, and the
former has shorter tunneling distance. Thus, for narrow quan-
tum point contact (QPC), at higher temperature the tunneling
can predominantly involve e/5 quasiholes. For wider QPC,
however, the tunneling amplitude for e/5 quasiholes will be
less dominant, and there will be no clean experimental signals
of a particular quasihole charge, and we expect some averaged
quantities between e/5 and 2e/5 from experiments involving
tunneling between counterpropagating edge currents.

At ν = 1
3 , the role of Haffnian quasiholes and the ex-

perimental raminifcations are mostly predicted in Ref. [47].
We do not expect a gapped FQH phase with a topological
shift S = −4 with the LLL or SLL interaction, though this
phase is not ruled out in principle. In contrast, there can be
a finite-temperature phase transition of the quasihole mani-
fold, especially near the nematic FQH phase and at the edge
of the Hall plateau (when there is a relatively large quasi-
hole density). This is the remnant of the “Haffnian phase”
with non-Abelian e/6 quasiholes that cannot be fully realized
due to the gaplessness of the Haffnian model Hamiltonian.
Such a phase transition, and the fractionalization of the e/3
Laughlin quasiholes into e/6 quasiholes, can in principle
be detected by single-electron tunneling experiments, or the
shot-noise and inteferometry experiments. Above the criti-
cal temperature for the phase transition, we also expect the
thermal Hall conductance coefficient no longer quantized
at κ = 1.
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