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Resonant transparency of a layered superconductor: Hyperbolic material
in the terahertz range tuned by dc magnetic field
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We show that layered superconductors, due to their peculiar nonlinear response to a weak dc magnetic field,
behave as tunable hyperbolic media within a wide terahertz range. Thereby, various attractive phenomena
intrinsic in hyperbolic materials can be controlled by dc magnetic field. In particular, in this work a resonant
transparency of a layered superconductor induced by the excitation of localized waves with nonmonotonic
dispersion, is studied. We reveal the dc magnetic field is able to adjust the electromagnetic properties of a layered
superconductor in order to observe specific twin peaks in the transmittance-vs-angle dependence. In addition,
solving the problem by the transfer-matrix method, we succeed in deriving the matrix responsible for the effect of
dc magnetic field. It is notable that this specific matrix depends neither on the size of the layered superconductor,
nor on the parameters of surroundings.
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I. INTRODUCTION

Progress in nanofabrication technology has significantly
stimulated intensive research on hyperbolic materials. Such
materials are highly anisotropic and possess a permittivity
tensor with diagonal components of simultaneously differ-
ent signs, which leads to unique optical phenomena such as
negative refraction, aberration-free imaging, subwavelength
resolution, optical sensing, emission control, ultrafast optics,
etc. (see, e.g., Refs. [1,2]). In ordinary natural materials,
the permittivity components are positive, resulting in either
spherical or elliptical isofrequency surface in the wave-vector
space (if the tensor components are equal or different, re-
spectively). However, the isofrequency surface experiences
a topological transition to hyperboloid shape if permittivity
components gain different signs. Then the waves can have
abnormally large wave vectors in one direction, while hav-
ing no wave vectors available in the other one, which is
required in various applications such as nanoguiding, sensing,
and imaging. Graphene and dichalcogenides of the transi-
tion metals are examples of hyperbolic dispersion materials
naturally occurring in certain wavelength ranges [3,4]. To
maintain hyperbolic dispersion in a desired frequency range,
the artificial structures called hyperbolic metamaterials, are
created [5,6]. Typically they contain multilayered stacks of
thin films of subwavelength thickness [7,8] or arrays of
nanowires [9,10].

Layered superconductors are one of the exotic mem-
bers of the hyperbolic metamaterials’ family [11]. They
have a periodic structure with thin superconducting lay-
ers separated by thicker insulating ones, where adjacent
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superconducting layers are forming a set of intrinsic Joseph-
son junctions [12,13]. High-temperature superconductors
Bi2Sr2CaCu2O8+δ , La2−δSrδCuO4, or La2−δBaδCuO4 are ex-
amples of such materials [14,15]. As some researchers point
out, many high-temperature superconductors exhibit hyper-
bolic metamaterial properties in a certain range, so their
hyperbolicity may even be partially responsible for their high-
temperature behavior [11].

In layered superconductors, a supercurrent, the same as in
bulk superconductors, flows along the layers. Meanwhile, a
much weaker Josephson current runs across the layers. Due to
this strong current-carrying anisotropy, specific electromag-
netic excitations, so-called Josephson plasma waves (JPWs),
may exist in layered superconductors (see, e.g., Refs. [14,16]).
The frequencies of JPWs belong to the terahertz (THz) fre-
quency range [17], which implies a wide variety of promising
applications [18–20] in basic and applied sciences.

The linear JPWs can be described by an effective permit-
tivity tensor whose components along and across the layers
have different signs in a wide frequency range. Therefore,
the layered superconductors behave as hyperbolic materials,
providing the appearance of, e.g., negative refraction index
[21] or anomalous dispersion of localized electromagnetic
waves [22,23]. The nonlinearity of a layered superconductor
caused by Josephson current results in a family of phenomena,
such as self-focusing of electromagnetic waves, stimulated
transparency, stopping of light, etc., revealed in a series of
experimental [15,24,25] and theoretical [26–29] works. In ad-
dition, a number of theoretical articles predict that, due to the
nonlinear interaction with electromagnetic wave, an external
dc magnetic field can be used to control the electromagnetic
properties of layered superconductors, namely, transparency
[30], filtering of polarization [31], and dispersion of localized
waves [32].

In the nonlinear regime, layered superconductors regarded
as hyperbolic materials can be tuned by an external dc
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magnetic field providing high potential for applications. Cer-
tainly, there are other tunable and reconfigurable hyperbolic
materials and metamaterials developed. Their properties can
be controlled by means of phase transition [33,34], non-
linear response [35], applied voltage [36], electromagnetic
forces [37], external magnetic fields [38], temperature [39],
electrooptical effects [40,41], etc. However, the layered su-
perconductors are quite specific since the tuning by the dc
magnetic field is inherent in their physical nature, does not
relate to a process of fabrication, and, therefore, is quite suit-
able for implementation.

In the present work, we study the resonant transmission of
THz waves through a slab of layered superconductor sepa-
rated from two dielectric leads by spatial gaps in the presence
of an external dc magnetic field. This resonant phenomenon
is originated from the excitation of localized waves, which
possess the anomalous dispersion due to the hyperbolicity of
layered superconductors. In Ref. [23] a similar problem was
studied without a dc magnetic field. As was shown there,
the spectral curves of localized waves can be nonmonotonic.
Furthermore, due to the special form of dispersion law, the
unusual twin-peak dependence of transmittance on the angle
of incidence was predicted. However, the observation of such
a phenomenon is quite limited due to the necessity of a precise
frequency setting. In the present study, we demonstrate that
since layered superconductors are hyperbolic materials con-
trolled by a dc magnetic field, their electromagnetic response
can be tuned in order to achieve the resonant transmission.
Moreover, the tuning by the dc magnetic field can be per-
formed substantially more accurately than by the frequency
variation.

The paper is organized in following way. In the second
section, we present the theoretical model in chosen geometry
and obtain the dc magnetic and ac electromagnetic fields for
each constituent of the system under study. The third section
is devoted to the transfer-matrix approach. There we construct
matrices describing the wave propagation through the system.
In particular, we succeed in deriving an explicit analytical
form for the specific matrix describing the effect of the dc
magnetic field on the wave transfer through the near-surface
region of a superconducting slab saturated by this field. Also,
in the end of the section we apply the calculated matrices to
derive the dispersion relation for localized waves, briefly show
that their spectra can be nonmonotonic, and analyze the effect
of the dc magnetic field. In the fourth section, we present and
analyze the expressions for transmittance and display how the
resonant wave transmission can be tuned by a dc magnetic
field. The fifth section summarizes the conclusions.

II. MODEL

A. Formulation of the problem

We study the propagation of an electromagnetic wave
through the setup depicted schematically in Fig. 1. Specifi-
cally, slab c of layered superconductor is placed between two
semi-infinite dielectric leads aL and aR with permittivity εa

and separated from them by spatial gaps bL and bR of thick-
ness db and permittivity εb. The anisotropy axis of the layered
superconductor coincides with the z axis, which is parallel

FIG. 1. The sketch of the setup. Slab c of layered superconductor
is sandwiched between two semi-infinite dielectric leads aL and aR

with spatial gaps bL and bR. The wave vectors ki, kr , and kt display
the propagation directions of the incident, reflected, and transmitted
waves, respectively. The external dc magnetic field H0 is oriented
along the y axis.

to the slab-gap and gap-lead interfaces. The superconducting
layers of slab c are parallel to the xy plane, while the x axis is
chosen to be perpendicular to the interfaces.

We consider a TM-polarized electromagnetic wave of fre-
quency ω falling from lead aL to the interface (aL|bL ) at the
incidence angle θ . The wave vector of the incident wave is
chosen as

ki = {ka, 0, kz} = k0
√

εa{cos θ, 0, sin θ}, k0 = ω/c.

(1)

Then, the electric E(x, z, t ) and magnetic H(x, z, t ) fields of
the wave are presented as

E(x, z, t ) = {Ex(x), 0, Ez(x)} exp(ikzz − iωt ), (2a)

H(x, z, t ) = {0, Hy(x), 0} exp(ikzz − iωt ). (2b)

The described setup resembles a two-sided version of the
well-known Otto configuration. However, an incident wave
goes from the left lead aL only, while the right lead aR serves
as a receiver of a transmitted wave. As is realized below, the
transmitted wave, which is mainly exponentially weak, can be
resonantly enhanced by excitation of localized waves. Thus,
we focus our study on this resonant excitation. In the Otto con-
figuration, such an excitation is possible if the dielectric leads
a are optically denser than the spatial gaps b, i.e., 0 < εb < εa,
and, as a consequence, the incidence angle θ appears to be
greater than the characteristic angle θ0 of the total internal
reflection,

θ0 = arcsin
√

εb/εa < θ < π/2. (3)
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Under this condition, the wave propagating within the dielec-
tric leads a evanesces inside gaps b giving rise to the resonant
excitation of a localized wave. The latter results in perfect
transmission through the system.

On the other hand, the resonant excitation of a localized
wave is strongly influenced by the nonlinear effect of an
external dc magnetic field on the propagation of an electro-
magnetic THz wave through the layered superconductor. In
our consideration, the dc magnetic field H0 is directed along
the y axis collinearly to the ac magnetic field H(x, z, t ). It is
assumed to be relatively weak, i.e., its magnitude H0 should
be smaller,

H0 < Hcr, (4)

than the critical magnetic field Hcr provided by the magnetic
flux quantum �0,

Hcr = �0/πλcd, �0 = π h̄c/e. (5)

If this is the case, the dc magnetic Josephson vortices
do not penetrate inside the entire volume of the layered-
superconductor slab c. However, the dc magnetic field H0

induces the dc Josephson current, which, due to nonlinearity,
interferes with the ac current originated from the exciting
electromagnetic wave. The interplay between the dc Joseph-
son and ac electromagnetic currents significantly affects the
resonant transmission.

B. Electromagnetic field in a layered superconductor

The electromagnetic field inside a layered superconduc-
tor (−dc/2 < x < dc/2) is determined by the distribution of
the gauge-invariant interlayer phase difference ϕ(x, z, t ) that
obeys the set of coupled sine-Gordon equations. In the con-
tinuum limit, when the wave length across the layers is much
greater than the period d of the structure of a layered super-
conductor, kzd � 1, the noted set of equations is reduced to
the only differential equation [14],(

1 − λ2
ab

∂2

∂z2

)(
1

ω2
J

∂2ϕ

∂t2
+ sin ϕ

)
− λ2

c

∂2ϕ

∂x2
= 0. (6)

Here λab and λc = c/(ωJ
√

εc) are the London penetration
depth across and along the layers, respectively, ωJ stands
for the Josephson plasma frequency, and εc implies the per-
mittivity of insulating layers inside slab c. In Eq. (6), we
have omitted the terms responsible for dissipation as they are
negligibly small at sufficiently low temperature. The effect
produced by dissipation on the resonant transmission and
absorption was studied in Refs. [23,42].

Once we know the distribution of phase difference
ϕ(x, z, t ), we can determine the components of the electro-
magnetic field with the use of the following relations [14]:

Ec
z (x) exp(ikzz − iωt ) = Hcr

2ωJ
√

εc

∂ϕ

∂t
, (7a)

∂Hc
y (x)

∂x
exp(ikzz − iωt ) + ∂Hdc(x)

∂x

= Hcr

2λc

[
sin ϕ + 1

ω2
J

∂2ϕ

∂t2

]
, (7b)

where Hdc(x) stands for the dc magnetic field induced by
the external magnetic field H0 inside the slabs c of layered
superconductor.

Without the external dc magnetic field, H0 = 0, and at
small amplitude of exciting electromagnetic wave, the linear
regime, when sin ϕ ≈ ϕ, is realized. In this case, as can be
shown by corresponding treatment of Eqs. (6) and (7), the
electrodynamics of a layered superconductor is properly de-
scribed by introducing a diagonal effective permittivity tensor
[21],

εxx = εyy = εc

(
1 − γ 2 ω2

J

ω2

)
, εzz = εc

(
1 − ω2

J

ω2

)
, (8)

with the great anisotropy parameter γ = λc/λab � 1. Thus,
in the frequency range ωJ < ω < γωJ , the elements of the
permittivity tensor have different signs, εzz > 0 whereas εxx =
εyy < 0, and, therefore, the layered superconductor can be
regarded as a hyperbolic medium. In the present study the
wave frequency is relevantly assumed to be confined to the
region (ω/ωJ )2 � γ 2, where εxx and εyy are always negative
since the unity in the corresponding expression of Eqs. (8) is
negligibly small and can be omitted.

When external dc magnetic field H0 is turned on, the non-
linear regime arises. To describe it analytically, we should
perform a two-step approach. First, we need to derive the dc
distribution of phase difference ϕdc(x) from the static and ho-
mogeneous along the z axis version of Eq. (6) complemented
by the boundary conditions which result from Eqs. (7),

sin ϕdc = λ2
c

∂2ϕdc

∂x2
,

λc

2

∂ϕdc

∂x

∣∣∣∣
x=±dc/2

= H0

Hcr
. (9)

Second, adding the weak electromagnetic wave,

ϕ(x, z, t ) = ϕdc(x) + ϕwave(x, z, t ), (10)

we linearize Eq. (6) with respect to the small wave amplitude
conserving the nonlinear dc terms. Then, from the linearized
equation, we should obtain the required distribution of elec-
tromagnetic field inside the layered superconductor affected
by the dc magnetic field H0.

1. Distribution of dc magnetic field

Now we proceed to determine the dc field distribution. The
sufficiently small external dc magnetic field whose magnitude
does not exceed the critical value [see Eq. (4)], penetrates into
slab c of layered superconductor to the London penetration
depth λc along the layers. When slab c is relatively thick, so
that

exp(−dc/λc) � 1, (11)

the dc magnetic field nearly vanishes deeply inside the lay-
ered superconductor. Then the interaction between the tails of
magnetic vortices penetrating into slab c from the left (bL|c)
and right (c|bR) interfaces is negligible. In this case, the dc
distribution of the phase difference ϕdc(x) is governed by
Eqs. (9) and, consequently, can be obtained in analytical form
[32],

ϕdc(ξ ) = ϕ+(ξ ) + ϕ−(ξ ) (12)
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with ξ = x/λc being the normalized x coordinate, and

ϕ±(ξ ) = ∓4 arctan[exp(δ + ξ0 ± ξ )] (13)

represent the single soliton solutions which describe the
Josephson vortices partly penetrating into the layered super-
conductor from the left (upper sign) and the right (lower
sign) sides. Here δ = dc/2λc is the normalized half-thickness
of slab c. In addition, we have introduced parameter ξ0 that
defines the dimensionless distance between the slab interfaces
and the center of the imaginary Josephson vortex,

ξ0 = arccosh(1/h0) = arctanhh′. (14)

As one can see, the distance ξ0 is expressed via the normalized
magnitude h0 of the dc magnetic field or via the associated
with h0 quantity h′ defined by

h0 = H0/Hcr < 1, h′ =
√

1 − h2
0 < 1. (15)

In what follows, the use of h′ rather than h0 turns out to be
quite convenient to simplify the presentation of some analyti-
cal results.

2. Equation for the electromagnetic wave

The ac contribution ϕwave(x, z, t ) to the phase difference
(10) emerges as a response to the irradiating electromagnetic
wave. Therefore, it is natural to be sought in the form similar
to Eqs. (2), i.e., as the wave with amplitude depending on the
coordinate x,

ϕwave(x, z, t ) = f (ξ ) exp(ikzz − iωt ), ξ = x/λc. (16)

Then we substitute the total phase difference (10) into Eq. (6).
After the linearization over the small amplitude f (ξ ), we
arrive at the differential equation [32]

f ′′(ξ ) + (kcλc)2

[
1 − uH (ξ ) + uH (−ξ )

2 − 1

]
f (ξ ) = 0. (17)

Here, the prime denotes derivative with respect to ξ ,
 = ω/ωJ is normalized wave frequency, and kc implies the
x projection of wave vector inside slab c of layered super-
conductor at H0 = 0. The derived Eq. (17) has the form of
a one-dimensional stationary Schrödinger equation for the
particle with total energy

(kcλc)2 = (2 − 1)
(
1 + k2

z λ
2
ab

)
, (18)

moving in the potential which contains uH (ξ ) + uH (−ξ ),

uH (ξ ) = − 2

cosh2(δ + ξ0 + ξ )
, (19)

and originates from the tails of the dc magnetic solitons
penetrating into slab c. Evidently, in the absence of a dc
magnetic field, H0 = 0, the potential vanishes, uH (±ξ ) = 0,
and Eq. (17) degenerates into the ordinary harmonic oscillator
equation.

According to definition (16), Eqs. (7) for the tangential
electric Ec

z (x) and the ac magnetic Hc
y (x) fields inside slab

c of layered superconductor is rewritten in the terms of ac
phase-difference amplitude f (ξ ),

Ec
z (ξ ) = − iHcr

2
√

εc
f (ξ ), Hc

y (ξ ) = (2 − 1)Hcr

2(kcλc)2
f ′(ξ ). (20)

It is important to emphasize that Eqs. (16) and (17) together
with relations (20) provide the conventional equation for the
electric field of a TM-polarized wave,

d2Ec
z

dx2
+

[
k2

0ε
H
zz (ξ ) − k2

z

εH
zz (ξ )

εxx

]
Ec

z = 0; (21)

however, with the zz element of permittivity tensor of a lay-
ered superconductor depending on the x distribution of the dc
magnetic field,

εH
zz (ξ ) = εc

{
1 − ω2

J

ω2
[1 + uH (ξ ) + uH (−ξ )]

}
. (22)

In contrast, the xx element of permittivity tensor remains
the same as in Eqs. (8) valid for H0 = 0. Thus, the layered
superconductor appears to be the hyperbolic material also in
the presence of an external dc magnetic field. Moreover, the
corresponding frequency range of hyperbolicity is effectively
extended. Indeed, εH

zz can be positive at nonzero dc field, h0 >

0, even for ω < ωJ . The latter can be readily verified with the
spectrum of localized waves (see Sec. IV A for details) where
the anomalous dispersion curves  = (kz ) descend towards
the interval  < 1 with increasing dc magnetic field.

3. Distribution of ac field

The analytical solution of Eq. (17) can be found under
the assumption (11) of a sufficiently thick slab c of layered
superconductor where the interaction between the magnetic
Josephson vortices penetrating into slab c from its opposite
sides is negligibly weak. As a consequence, in Eq. (17) the
term uH (−ξ ) with exponential accuracy vanishes inside the
left half, −dc/2 < x < 0, of slab c, whereas the term uH (ξ )
turns out to be exponentially small inside the right half where
0 < x < dc/2. Correspondingly, in solving Eq. (17) inside the
interval −dc/2 < x < dc/2 occupied by slab c, one of the
terms can be omitted in the respective part of the interval. As
a result, the general solution of the electromagnetic problem
involving Eqs. (17) and (20) reads (see Appendix for details)

Ec
z (ξ ) = i(kcλc)2

(2 − 1)
√

εc
[C+ p−(−ξ ) + C− p+(−ξ )], (23a)

Hc
y (ξ ) = −[C+ p−(−ξ ) + C− p+(−ξ )]′ (23b)

to the left from the c-slab center where −δ � ξ � 0;

Ec
z (ξ ) = − i(kcλc)2

(2 − 1)
√

εc
[C+ p+(ξ ) + C− p−(ξ )], (23c)

Hc
y (ξ ) = [C+ p+(ξ ) + C− p−(ξ )]′ (23d)

to the right from the c-slab center where 0 � ξ � δ.
Here, the prime stands for derivative with respect to ξ , and C±
are two arbitrary constants of integration serving as complex
amplitudes of the ac field. Functions

p±(ξ ) = P∓μ
ν [tanh(δ + ξ0 − ξ )]

K∓[h′] exp(∓μδ)
(24a)

are proportional to the associated Legendre functions P∓μ
ν [z]

of parameters ν and μ,

2ν + 1 =
√

8(2 − 1)−1(kcλc)2 + 1, μ = ikcλc (24b)
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and

K±[h′] = exp(±μ arctanh h′)
�[∓μ]

(24c)

with �[z] being the gamma function. Note that the dc
magnetic field enters expressions (23) and (24) for the elec-
tromagnetic field by means of parameters ξ0 and h′ defined in
Eqs. (14) and (15).

Remarkably, deeply inside slab c, where the dc magnetic
field vanishes, the introduced by Eqs. (24) functions p+(ξ )
and p−(ξ ) manifest themselves as linear exponential waves
traveling in opposite directions along the x axes [see Eq. (A14)
in Appendix]. As a consequence, in the vicinity of slab center
ξ = 0, expressions (23) for the ac electromagnetic field are
reduced to the standard form,

Ec
z (x ≈ 0) = − kc

εzzk0
[C+eikcx − C−e−ikcx], (25a)

Hc
y (x ≈ 0) = C+eikcx + C−e−ikcx, (25b)

where the constants C+ and C− introduced in Eqs. (23) are
treated as the amplitudes of forward and backward traveling
plane waves. This fact is applied in Sec. III for the proper
construction of respective transfer matrices.

C. Electromagnetic field in dielectric

The general solution to the Maxwell equations for the
tangential components of the electromagnetic field inside the
left/right dielectric leads aL, aR and the left/right dielectric
gaps bL, bR, can be written in a unified form employing sym-
bol λ = aL, aR, bL, bR, which combines all the dielectric leads
and gaps, and notation �± = A±

L , A±
R , B±

L , B±
R for the respec-

tive amplitudes of forward “+” and backward “−” traveling
waves,

Eλ
z (x) = − kλ

ελk0
[�+eikλ(x−xλ ) − �−e−ikλ(x−xλ )], (26a)

Hλ
y (x) = �+eikλ(x−xλ ) + �−e−ikλ(x−xλ ). (26b)

Here xλ refers to the x coordinate of the internal interface of
lead/gap λ (see Fig. 1); ελ stands for its permittivity, εaL ≡
εaR ≡ εa and εbL ≡ εbR ≡ εb; and kλ denotes the x projection
of the wave vector. Specifically,

kaL ≡ kaR ≡ ka = k0
√

εa cos θ, (27a)

kbL ≡ kbR ≡ kb = iκb,

κb =
√

k2
z − k2

0εb = k0
√

εa

√
sin2 θ − sin2 θ0. (27b)

The wave number ka should be real, while the wave number
kb turns out to be imaginary in accordance with determinative
requirement (3).

III. TRANSFER-MATRIX METHOD

Now, after the electromagnetic fields have been obtained,
we are in a position to construct the transfer matrices for the
whole setup as well as for all its constituents.

The total transfer matrix M̂ relates the amplitudes A+
L and

A−
L of the tangential electromagnetic field (Ez, Hy) in the left

FIG. 2. Scheme of the wave transfer through the system. The
main panel shows the wave amplitudes A±

L , B±
L , C±, B±

R , and A±
R and

the transfer matrices Q̂(ab), Q̂(bc), Q̂(cb), and Q̂(ba). The inset shows
the plot of dc magnetic field Hdc(x) distribution in the system and
the primary transfer matrices M̂ (ab), M̂ (ba), M̂ (bc), M̂ (cb), M̂ (b), M̂ (c),
M̂ (hL ), and M̂ (hR ). The action of the matrix is depicted by the arc
arrows between certain spatial positions marked by circles.

lead aL to the amplitudes A+
R and A−

R in the right lead aR.(
A+

R
A−

R

)
= M̂

(
A+

L
A−

L

)
=

(
M++ M+−
M−+ M−−

)(
A+

L
A−

L

)
. (28)

In order to clarify the analytical representation for the total
transfer matrix M̂, it should be reasonably factorized into the
partial transfer matrices for individual components of the sys-
tem. Specifically, the total transfer matrix M̂ can be introduced
as a following product

M̂ = Q̂(ba)Q̂(cb)Q̂(bc)Q̂(ab) (29)

of matrices Q̂(ab), Q̂(bc), Q̂(cb), and Q̂(ba), which consequen-
tially convert amplitudes A±

L to B±
L , B±

L to C±, C± to B±
R , and

B±
R to A±

R ,(
B+

L
B−

L

)
= Q̂(ab)

(
A+

L
A−

L

)
,

(
A+

R
A−

R

)
= Q̂(ba)

(
B+

R
B−

R

)
, (30a)

(
C+
C−

)
= Q̂(bc)

(
B+

L
B−

L

)
,

(
B+

R
B−

R

)
= Q̂(cb)

(
C+
C−

)
. (30b)

In other words, these matrices describe the wave transfers
from the left lead aL to the spatial gap bL, from the spatial
gap bL to the center of slab c, from the center of slab c to the
spatial gap bR, and from the spatial gap bR to the right lead
aR, respectively. These transfers are schematically displayed
at the top of Fig. 2.

It should be emphasized that in the presence of an applied
dc magnetic field, slab c of layered superconductor serves
as a significantly inhomogeneous medium and, therefore, the
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electromagnetic wave inside it cannot be presented in the
conventional form of an exponential plane wave [see Eqs. (23)
and (24)]. Nevertheless, as the dc magnetic field penetrates
into the layered superconductor to the small London depth
λc provided by assumption (11), within broad vicinity of the
center of slab c the wave obeys the plane-wave asymptotics
(25). This fact makes reasonable the use of two transfer matri-
ces Q̂(bc) and Q̂(cb), which transform the amplitudes of plane
waves. In addition, such an approach allows us to elucidate
how the dc magnetic field affects the wave transfer through a
layered superconductor.

The introduced Q matrices turn out to be also factorized.
The matrix Q̂(ab) [or Q̂(ba)] is properly presented as the product
of matrix M̂ (ab) [or M̂ (ba)] describing the wave transfer through
the interface (aL|bL ) [or (bR|aR)], and the matrix M̂ (b) respon-
sible for free wave flight within the spatial gap bL (or bR),

Q̂(ab) = M̂ (b)M̂ (ab), Q̂(ba) = M̂ (ba)M̂ (b). (31)

The explicit analytical expressions for matrices M̂ (ab), M̂ (ba),
and M̂ (b) can be found in Eqs. (35) and (36) of Sec. III A.

The matrix Q̂(bc) [or Q̂(cb)] is the product of three matrices,
specifically, M̂ (bc) [or M̂ (cb)] responsible for the wave transfer
via the interface (bL|c) [or (c|bR)], M̂ (c/2) describing the free
propagation inside the left (or right) half of slab c with no
dc magnetic field, and M̂ (hL ) [or M̂ (hR )] containing the dc
magnetic field effect,

Q̂(bc) = M̂ (c/2)M̂ (hL )M̂ (bc), (32a)

Q̂(cb) = M̂ (cb)M̂ (hR )M̂ (c/2). (32b)

The explicit analytical expressions for matrices M̂ (bc), M̂ (cb),
M̂ (c/2), M̂ (hL ), and M̂ (hR ) are found in Sec. III B, Eqs. (40) and
(44).

As one can recognize below, the matrices M̂ (bc), M̂ (cb), and
M̂ (c/2) do not depend on the dc magnetic field, whereas the
matrices M̂ (hL ) and M̂ (hR ) depend neither on the thickness dc

of slab c of layered superconductor nor on the optic properties
of the dielectric gap b being responsible for the wave transfer
through the dc vortex tails only.

Summarizing, the total transfer matrix can be written as the
product of nine M matrices (see inset of Fig. 2),

M̂ = M̂ (ba)M̂ (b)M̂ (cb)M̂ (hR )M̂ (c)M̂ (hL )M̂ (bc)M̂ (b)M̂ (ab), (33)

where M̂ (c) = [M̂ (c/2)]
2

describes the free wave flight through
the whole slab c neglecting the effect of the dc magnetic field.
In the following sections, we calculate all the transfer matrices
mentioned above.

A. Transfer matrices for dielectrics

With the use of Eqs. (26) for the electromagnetic field in
dielectrics a and b in combination with the boundary condi-
tions

HaL
y

(
xaL

) = HbL
y

(
xaL

)
, EaL

z

(
xaL

) = EbL
z

(
xaL

)
, (34a)

HaR
y

(
xaR

) = HbR
y

(
xaR

)
, EaR

z

(
xaR

) = EbR
z

(
xaR

)
, (34b)

matching the tangential components Hy and Ez at the inter-
faces (aL|bL ) and (bR|aR), one can easily obtain the transfer
matrices M̂ (ab), M̂ (ba), and M̂ (b).

The matrices M̂ (ab) and M̂ (ba) of transfer through the re-
spective dielectric interfaces (aL|bL ) and (bR|aR) appear to be
mutually inverse due to the problem symmetry,

M̂ (ab) = M̂ (ba)−1 = 1

2

(
1 + α 1 − α

1 − α 1 + α

)
. (35a)

Their determinants read

det M̂ (ab) = 1

det M̂ (ba)
= α ≡ kaεb

kbεa
. (35b)

The matrix M̂ (b) that describes the free wave propagation
through the spatial gap bL or bR is given by

M̂ (b) =
(

exp(iφb) 0
0 exp(−iφb)

)
, (36)

where φb is a wave phase shift, which is imaginary by the
determinative condition (3),

φb = kbdb = ik0db
√

εa

√
sin2 θ − sin2 θ0. (37)

Note, passing each of the identical spatial gaps, bL and bR,
the wave gains the same phase shift φb. Therefore, the cor-
responding matrices are the same and equal to M̂ (b) for both
gaps. Nevertheless, this fact does not break the symmetry of
the problem since det M̂ (b) = 1.

B. Transfer matrices for a layered superconductor

As was mentioned above [see Eqs. (30b)], the wave trans-
fer through slab c of layered superconductor is characterized
by the product Q̂(cb)Q̂(bc) of two transfer matrices Q̂(bc) and
Q̂(cb). With substituting the electromagnetic field (23) for the
layered superconductor c and (26) for the spatial gaps b in the
boundary conditions

Hc
y

(
xbL

) = HbL
y

(
xbL

)
, Ec

z

(
xbL

) = EbL
z

(
xbL

)
, (38a)

Hc
y

(
xbR

) = HbR
y

(
xbR

)
, Ec

z

(
xbR

) = EbR
z

(
xbR

)
(38b)

at the interfaces (bL|c) and (c|bR), we express the matrices
Q̂(bc) and Q̂(cb) via the functions p±(ξ ) introduced by Eqs. (24)
and their derivatives p′

±(ξ ) taken at ξ = δ,

Q̂(bc) = 1

2

(
βp′

+ + μp+ − βp′
+ + μp+

−βp′
− − μp− βp′

− − μp−

)∣∣∣∣
ξ=δ

, (39a)

Q̂(cb) = 1

2β

(
βp′

+ + μp+ βp′
− + μp−

βp′
+ − μp+ βp′

− − μp−

)∣∣∣∣
ξ=δ

. (39b)

Here parameter μ is defined in Eq. (24b). To derive Eqs. (39)
we have applied equality (A15). Although these matrices are
not mutually inverse, the product of their determinants equals
to unity,

det Q̂(cb) = 1

det Q̂(bc)
= β ≡ kbεzz

kcεb
. (39c)

Therefore, they do not break the problem symmetry.

1. Zero-field approximation

The problem of THz wave transfer through the system un-
der consideration at H0 = 0, was resolved in Ref. [23] within
the approximation of effective permittivity tensor (8). Let us
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briefly, without any derivations, present only such selected
results for the transfer matrices which are necessary for the
further analysis of how the external dc magnetic field H0

impacts on the wave transfer.
In Ref. [23], the wave transfer through slab c of layered

superconductor is described by the matrices M̂ (bc), M̂ (cb), and
M̂ (c). These matrices have physical meanings similar to those
of matrices M̂ (ab), M̂ (ba), and M̂ (b), and, therefore, for zero ex-
ternal magnetic field they get similar structures. Specifically,
to write down their explicit expressions, one should realize in
Eqs. (35) and (36) the following replacements: kaεb → kbεzz,
kbεa → kcεb, and φb = kbdb → φc = kcdc. This yields

M̂ (bc) = M̂ (cb)−1 = 1

2

(
1 + β 1 − β

1 − β 1 + β

)
, (40a)

M̂ (c) =
(

exp(iφc) 0

0 exp(−iφc)

)
, (40b)

with determinants

det M̂ (bc) = 1

det M̂ (cb)
= β, det M̂ (c) = 1; (40c)

and φc = kcdc being the wave phase shift in slab c. Matrix
M̂ (c/2) entering Eq. (32) has the same structure as M̂ (c), how-
ever, with halved phase shift,

M̂ (c/2) =
(

exp(iφc/2) 0
0 exp(−iφc/2)

)
. (40d)

Thus, in the absence of dc magnetic field, H0 = 0, matrices
Q̂(cb) and Q̂(bc) introduced in the transfer relations (30b) can
be factorized as

Q̂(cb)|h0=0 = M̂ (cb)M̂ (c/2), (41a)

Q̂(bc)|h0=0 = M̂ (c/2)M̂ (bc). (41b)

To make sure of this fact, in Eqs. (39) instead of functions
p±(δ) and their derivatives p′

±(δ) one has to substitute asymp-
totics

p±(δ)|h0→0 = ± 1

μ
exp(±iφc/2), (42a)

p′
±(δ)|h0→0 = exp(±iφc/2) (42b)

that directly follow from Eqs. (A14). Afterwards, it is easy to
see that when H0 → 0, Eqs. (39) transform into Eqs. (41) in
complete agreement with the results of Ref. [23].

2. Transfer matrices through vortex tail

Since the external dc magnetic field H0 penetrates into the
layered superconductor nonuniformly (see inset of Fig. 2), its
effect on the wave propagation turns out to be most signif-
icant in the narrow vicinities of interfaces (bL|c) and (c|bR)
between the left and right gaps b and slab c. Thereby, it seems
reasonable to rewrite matrices Q̂(bc) and Q̂(cb) in the form of
Eqs. (32) where only matrices M̂ (hL ) and M̂ (hR ) exhibit the
influence of the external dc field. They can be found explicitly
by straightforward matrix multiplication,

M̂ (hL ) = M̂ (c/2)−1
Q̂(bc)M̂ (bc)−1

, (43a)

M̂ (hR ) = M̂ (cb)−1
Q̂(cb)M̂ (c/2)−1

, (43b)

resulting in the following matrix elements:

M (hL )
±± = M (hR )

±± = h2
0

2K2∓[h′]
∂

∂h′
(
P∓μ

ν [h′]K∓[h′]
)
, (44a)

M (hL )
±∓ = −M (hR )

∓± = −h2
0

2

∂

∂h′

(
P∓μ

ν [h′]
K∓[h′]

)
. (44b)

It should be noted that matrices M̂ (hL ) and M̂ (hR ) are unimodu-
lar, det M̂ (hL ) = det M̂ (hR ) = 1.

If the external magnetic field vanishes (h0 → 0 or, the
same, h′ → 1), then

P∓μ
ν [h′]

K∓[h′]

∣∣∣∣
h′→1

= ± 1

μ
,

h2
0

K∓[h′]
∂K∓[h′]

∂h′

∣∣∣∣
h′→1

= ±μ, (45)

and the matrices M̂ (hL ) and M̂ (hR ) expectedly degenerate into
the identity matrix,

M̂ (hL )|h0→0 = M̂ (hR )|h0→0 =
(

1 0
0 1

)
. (46)

The matrices M̂ (hL ) and M̂ (hR ) depend neither on the thick-
ness dc of slab c nor on permittivity εb of the spatial gaps b. On
the contrary, they are determined by the external dc magnetic
field H0, its penetration depths λab and λc, the wave frequency
ω, and the wave numbers kc and kz. At the same time, the
matrices M̂ (bc), M̂ (cb), and M (c) do not depend on H0. Thus,
one can conclude that solely matrices M̂ (hL ) and M̂ (hR ) describe
all the peculiarities of the wave transfer through the magnetic
vortex tails.

IV. EFFECT OF DC MAGNETIC FIELD ON THE
RESONANT TRANSPARENCY OF A LAYERED

SUPERCONDUCTOR

In this section, we study how the external dc magnetic
field affects the resonant transmission of electromagnetic
waves through the layered superconductor. The phenomenon
is caused by excitation of localized waves. Since the layered
superconductor represents hyperbolic material, the spectral
curves of localized waves appear to be nonmonotonic. The lat-
ter gives rise to specific dependence of resonant transmission
on the incidence angle of an exciting wave. In particular, the
dependence can manifest two close peaks or a single broad-
ened peak (see Sec. IV B). The dc magnetic field serves as a
quite effective control parameter whose variation allows one
to realize different types of the transmission avoiding precise
tuning of the wave frequency.

A. Localized waves

The localized waves are electromagnetic eigenmodes of
a dielectric or conducting slab embedded in optically softer
infinite medium (see, e.g., Ref. [43]). It is important to note
that the waves localized on the slab can be either surface
or waveguide modes, depending on their behavior inside the
slab. The surface modes are evanescent deeply in the slab so
that the electromagnetic field is concentrated near both sur-
faces of the slab. The waveguide modes oscillate inside the
slab so that the electromagnetic field is distributed over whole
volume of the slab. Both surface and waveguide modes are
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evanescent in surrounding medium outside the slab, which
means that they are localized on the slab.

The dispersion relations of the waves localized on the slab
of layered superconductor in the presence of an external dc
magnetic field were obtained and studied in detail in Ref. [32].
Here, with the use of the transfer-matrix approach we rederive
these dispersion relations and give the outline of correspond-
ing frequency spectra.

The model of slab c of layered superconductor surrounded
by an environment filled with dielectric b is evidently realized
by boundlessly increasing thickness, db → ∞, of spatial gaps
b in our setup depicted in Fig. 1. The wave transfer between
left and right spatial gaps b is given by the relevant matrix
relations (30b). Specifically,(

B+
R

B−
R

)
= Q̂(cb)Q̂(bc)

(
B+

L
B−

L

)
. (47)

The localized waves of imaginary wave number kb = iκb,
Eqs. (26) and (27b), must be evanescent inside left and right
dielectrics b. Consequently, the amplitudes B+

L and B−
R of

divergent wave components must vanish, i.e., B+
L = B−

R = 0
in Eq. (47). From this requirement one can readily reveal
the following indispensable condition for the existence of a
nontrivial solution of the matrix equation:

[Q̂(cb)Q̂(bc)]−− = Q(cb)
−+ Q(bc)

+− + Q(cb)
−− Q(bc)

−−

= 1

4β
(βp′

s − μps)(βp′
a − μpa)|ξ=δ = 0.

(48)

Here we have introduced functions ps(ξ ) and pa(ξ ) which
correspond to symmetric and antisymmetric distributions of
the magnetic ac field in localized wave,

ps(ξ ) = p−(ξ ) + p+(ξ ), (49a)

pa(ξ ) = p−(ξ ) − p+(ξ ). (49b)

Equation (48) can be naturally split up into two independent
relations,

βp′
s(δ) = μps(δ), (50a)

βp′
a(δ) = μpa(δ). (50b)

Functions ps(δ) and pa(δ), as well as factors β and μ, contain
the wave frequency ω and the wave number kz as external
parameters of the problem. Thus, expressions (50) represent
two dispersion relations which define spectra ω = ω(kz ) of
symmetric and antisymmetric localized waves, respectively.

In Fig. 3 the spectral curves  = (kzλc) defined by the
dispersion relations (50) are plotted for zero, h0 = 0, and
nonzero, h0 = 0.9, values of the external dc magnetic field.
The increase of h0 is indicated by the downward arrows. One
can see that the curves are nonmonotonic consisting of both
increasing and decreasing parts that correspond to normal and
anomalous dispersions. For relatively small wave number kz,
near the straight line ω = ckz/

√
εb, the wave group veloc-

ity is positive (∂ω/∂kz > 0) and the dispersion is normal.
Then, with an increase of kz, the curves achieve their max-
ima and start to decrease manifesting anomalous dispersion
(∂ω/∂kz < 0).

FIG. 3. The spectrum of waves localized on the slab of layered
superconductor. The solid and dashed blue curves are for antisym-
metric waves at h0 = H0/Hcr = 0 and h0 = 0.9, respectively. The
dotted and dash-dotted red curves are for symmetric waves at h0 = 0
and h0 = 0.9, correspondingly. The downward arrows indicate an
increase of the dc magnetic field h0. Parameters: the slab thick-
ness dc = 10λc, the dielectric constants εb = 1 and εc = 15, and the
anisotropy parameter γ = λc/λab = 15.

At low frequencies,  < 1, the spectra of symmetric and
antisymmetric waves almost degenerate into a single curve.
Indeed, within this frequency range the wave number kc ap-
pears to be imaginary in accordance with its definition (18).
Therefore, the wave evanesces inside the layered supercon-
ductor. As a consequence, the coupling between the left and
right interfaces of slab c is exponentially weak and, thereby,
the symmetric and antisymmetric waves are managed by al-
most the same dispersion law.

The increasing external dc magnetic field h0 changes the
curvature of the spectral curves  = (kzλc) and shifts them
down. In other words, the dc magnetic field effectively lowers
the frequency of localized wave. In addition, at dimensionless
wave frequency  > 1 and within the wide range of wave
number kz, the curvature change turns out to be weak, so that
the curve shift looks nearly parallel. This notable phenomenon
can be properly used in tuning the resonant transmission.

B. Resonant transmission

The transfer of an incident electromagnetic wave through
the setup drawn in Fig. 1 is described by relation (28) in which
three amplitudes A+

L = 1, A−
L = r, and A+

R = t are respectively
regarded as the amplitudes of incident, reflected, and trans-
mitted waves with simultaneous nullifying fourth amplitude,
A−

R = 0, (
t
0

)
=

(
M++ M+−
M−+ M−−

)(
1
r

)
. (51)

From this matrix equation, taking into account the unimodu-
larity of transfer M̂ matrix, det M̂ = 1, one can readily arrive
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at the conventional definition for transmittance T ,

T = |t |2 = |M−−|−2. (52)

In the absence of dissipation, the total transfer matrix M̂ is
invariant with respect to the time reversion, i.e., its elements
are related as follows:

M−− = M∗
++, M+− = M∗

−+, (53)

where the asterisk stands for complex conjugation. The time-
reversal symmetry together with the unimodularity of the
transfer M̂ matrix provides the flux-conservation law to be
met. In addition, they permit one to rewrite Eq. (52) in another
form appropriate for further analysis:

T = (1 + |M+−|2)−1. (54)

Multiplying the partial transfer matrices in Eq. (33) yields
an explicit expression for the matrix element M+−,

M+− = α − α−1

16β

[
exp(ψ )(βp′

s − μps)(βp′
a − μpa)

+ 2
α + α−1

α − α−1
(β2 p′

s p′
a − μ2 ps pa)

+ exp(−ψ )(βp′
s + μps)(βp′

a + μpa)

]
ξ=δ

, (55)

where the real and positive parameter ψ ,

ψ = −2iφb = 2k0db
√

εa

√
sin2 θ − sin2 θ0 > 0, (56)

is directly associated with the imaginary phase shift (37) of
the wave passing the spatial gaps b.

The phenomenon of resonant transmission is clearly pro-
nounced in the case of sufficiently thick spatial gaps b, i.e.,
when the parameter ψ is large,

exp(−ψ ) � 1. (57)

Due to this condition and far from the resonance the first sum-
mand in square brackets of Eq. (55) prevails over the others
and, therefore, the transmission happens to be exponentially
small because of strong wave attenuation inside the spatial
gaps b,

T = (16β )2 exp(−2ψ )

[(α − α−1)(βp′
s − μps)(βp′

a − μpa)]2 � 1. (58)

However, when the values of problem parameters ω, kz, and
H0 are found close to meet the dispersion relations (50),

exp(ψ )(βp′
s − μps)(βp′

a − μpa) � 1, (59)

the transmission is significantly enhanced, even up to a perfect
one with T = 1, due to resonant excitation of the localized
modes on slab c of layered superconductor.

Figure 4 displays the dependence of transmittance T on
incidence angle θ and frequency  (color gradient) being ac-
companied by spectral curves  = (θ ) for localized waves
(solid lines). Since the resonant transparency emerges due to
the excitation of localized waves, the dark areas correspond-
ing to enhanced transmission (T ≈ 1) resemble the relevant
spectral curves. It can be seen that the greater the incidence
angles θ , the narrower the frequency range where the system is

FIG. 4. Transmittance T vs incidence angle θ and normalized
frequency  = ω/ωJ plotted in color gradient. The red and yellow
solid lines represent the spectral curves for symmetric and antisym-
metric localized modes, respectively. Inset shows the same as the
main panel, however, for the different frequency range. Parameters:
the normalized dc magnetic field h0 = H0/Hcr = 0.5, the spatial gaps
thickness db = 0.5λc, and the permittivity of leads εa = 20. The
other parameters are the same as in Fig. 3.

transparent. This is because the imaginary part ψ of the wave
phase shift in spatial gaps b increases with the incidence angle
θ [see Eq. (56)]. In addition, within the low-frequency range,
 < 1, the localized wave is evanescent inside the layered
superconductor resulting in suppressed transmission.

In Sec. IV A, we have outlined the effect of the external
dc magnetic field on the spectrum of localized modes. It was
revealed that the dc magnetic field shifts the spectral curves
 = (kzλc) towards the lower frequencies. Figure 5 exhibits
this behavior to be persisted in the transmission as a function
of θ and . Specifically, the corresponding dark areas for
 > 1 turn out to be shifted almost in parallel. However,
within lower frequency range,  < 1, this feature is not so
prominent due to suppression of localized waves inside the
layered superconductor.

C. Tuning of resonant transmission

In order to study how an external dc magnetic field can be
employed to tune the resonant transmission, we have to start
from a brief discussion of its distinctive features intrinsically
attributed to the hyperbolic nature of the layered superconduc-
tor even in the absence of a dc magnetic field. As was realized
in Ref. [23], due to the excitation of localized modes with
nonmonotonic dispersion, the dependence of transmission on
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a b

c d

FIG. 5. Transmittance T vs incidence angle θ and normalized
frequency  = ω/ωJ for two values of dc magnetic field, h0 = 0
[panels (a) and (c)] and h0 = H0/Hcr = 0.9 [panels (b) and (d)],
plotted in color gradient. Solid and dashed lines represent the spectra
of localized waves at h0 = 0 and h0 = 0.9, respectively. The other
parameters are the same as in Fig. 4.

the incidence angle may have a single normal peak, two close
peaks, or a single broadened peak. The left panels (a) and
(c) of Fig. 6 demonstrate this feature being plotted at h0 = 0.
Panel (a) shows the transmittance T as a function of θ and 

in color gradient, where gray horizontal straight lines over the
plot determine the values of  used for panel (c). Panel (c)
displays the dependence T (θ ) in a series of curves at several
values of , clearly manifesting resonant peaks of different
kinds. There can be

(1) a single normal peak that corresponds to the excitation
of the localized mode with normal dispersion only;

(2) two peaks provided by the excitation of the localized
wave with normal (left peak) and anomalous (right peak)
dispersions; and

(3) a single broadened peak that appears at frequencies
close to the maximum in the spectral curve.

The mentioned line shapes of resonant transmission can
be transformed into each other with variation of the wave
frequency. However, as seen from the left panels (a) and (c)
of Fig. 6, the line shape changes quite rapidly, so that the
frequency should be tuned accurately enough in order to attain
a desired line shape. The use of an external dc magnetic field
can be suggested as a noticeably more practical tool allowing
of a fine-tuning. The right panels of Fig. 6 are plotted for fixed
 = 2.918 exhibiting the dependence of transmittance T on θ

and h0 in panel (b) and T (θ ) at several values of h0 in panel

ba

dc

FIG. 6. (a) The transmittance T vs incidence angle θ and dimen-
sionless wave frequency  = ω/ωc (color gradient). (b) The same
vs θ and external dc magnetic field h0 = H0/Hcr (color gradient).
(c) The same vs θ at several values of . (d) The same vs θ at several
values of h0. The left panels, (a) and (c), are plotted at h0 = 0, while
the right panels, (b) and (d), are depicted at  = 2.918. The gray
horizontal lines at the upper panels, (a) and (b), indicate the values
of  and h0 used in the lower panels, (c) and (d), respectively. The
values of transmittance on the vertical axis of each subpanel of panels
(c) and (d) are ranged from 0 to 1. The other parameters are the same
as in Fig. 4.

(d). It is worthwhile to note that the values of h0 in panel (d)
are especially chosen to obtain the same line shapes as plotted
in panel (c).

It should be emphasized that the variation of the dc mag-
netic field h0 by small values results in the same effect on
the resonant transmission as the variation of wave frequency
 by the corresponding small values. Indeed, assuming a
small frequency deviation �, we can calculate the required
deviation �h0 of the dc magnetic field,

�h0 ≈ ρ�, ρ(θ,, h0) = ∂T/∂

∂T/∂h0
= ∂M+−/∂

∂M+−/∂h0
.

(60)

Strictly speaking, the ratio ρ between �h0 and � may
depend on the incidence angle θ , making impossible a single-
valued choice for �h0 which produces the same dependence
T (θ ) as � does. However, actually, the range of incidence
angle θ where the transmittance is not small is sufficiently
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FIG. 7. Dependence of transmittance T on incidence angle θ for
three pairs of values of the normalized frequency  = ω/ωJ and
normalized dc magnetic field h0 = H0/Hcr (specified in the legend).
Value of ρres ≈ −26; the other parameters are the same as in Fig. 4.

narrow. In addition, as was mentioned in Sec. IV A, the devia-
tion in curvature for the localized waves is quite small for high
frequencies,  > 1, so that the curve shift is almost parallel
with the increase of the dc magnetic field. Therefore, with
adequate accuracy we can accept �h0 = ρres� where ρres

is taken at θ = θres corresponding to the resonant excitation of
the localized mode. Then we get

T (θ, + �, h0) ≈ T (θ,, h0 + �h0) (61)

for almost all possible incidence angles θ . In order to demon-
strate the property described above, we choose several values
of  and h0 that provide almost the same double-peak depen-
dence T (θ ) depicting the corresponding curves in Fig. 7.

V. CONCLUSIONS

We have studied the effect of a relatively weak external dc
magnetic field on the resonant transmission of a THz wave
through a slab of layered superconductor. We have considered
the setup resembling a two-sided version of the well-known
Otto configuration: The slab is sandwiched between two di-
electric media and separated from them by thin spatial gaps
filled with the optically soft dielectric, e.g., vacuum. However,
the left and the right dielectric media are not equivalent since
the incident wave transmits from the left dielectric to the
right one. In this configuration, it is possible to excite the
electromagnetic eigenmodes localized on the slab. As shown,
due to the inherent nonlinearity of Josephson plasma, the dc
magnetic field interferes with the propagating localized waves
and, therefore, can affect the resonant phenomena in layered
superconductors.

The layered superconductors behave as hyperbolic material
since the components of the effective permittivity tensor get
different signs in a wide THz frequency range. One of the
corollaries is a specific dispersion law of the localized waves
giving rise to their nonmonotonic spectrum. We have recog-
nized how the dc magnetic field enters into the permittivity
tensor, changes the spectral properties, and affects the reso-
nant transmission.

The problem has been resolved analytically under the
transfer-matrix formalism. In particular, we have succeeded

in deriving explicit expression for the matrices that describe
the wave transfer through the Josephson vortex tail. These
transfer matrices depend only on the magnitude of the applied
dc magnetic field but neither on the sample size nor on the
type of dielectric environment. In general, the use of these
matrices can greatly simplify the analysis of wave transfer
through a system containing one or more slabs of different
layered superconductors and dielectrics in the presence of a
dc magnetic field.

Employing the developed transfer-matrix relations, we
have managed to study the resonant enhancement of trans-
mission induced by the excitation of localized waves. Since,
under certain conditions, the spectral curves of such waves can
be nonmonotonic, the dependence of the transmittance on the
incidence angle can get a specific resonant line shape. Namely,
the resonant curve can have a single normal peak, two close
peaks, or a single broadened peak, depending on the values
of wave frequency and dc magnetic field. The experimental
observation of line-shape dynamics with variation of wave
frequency requires its fine-tuning and, therefore, turns out to
be quite difficult in realization. In contrast, the external dc
magnetic field can serve as an appropriate tool for precise
control of the resonant line shape. Indeed, a variation in the
value of dc magnetic field by 1% has approximately the same
effect as a deviation in the wave frequency by a value of the
order of 0.01%.
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APPENDIX: ASSOCIATED LEGENDRE FUNCTIONS

Here, we reveal more details in deriving some expressions
and relations employing the associated Legendre functions. A
detailed mathematical overview of these functions (and other
special functions) can be found in, e.g., Ref. [44].

1. Definitions and some relations

Associated Legendre functions of degree ν and order ±μ,
usually denoted as Pμ

ν [τ ] and P−μ
ν [τ ], are two linearly inde-

pendent solutions to the Legendre equation

(1 − τ 2) f ′′(τ ) − 2τ f ′(τ )

+
[
ν(ν + 1) − μ2

1 − τ 2

]
f (τ ) = 0, (A1)

where a prime stands for derivative with respect to the in-
dependent variable τ . The associated Legendre function is
related to the hypergeometric function F [a, b; c; z] as

Pμ
ν [τ ] = 1

�[1 − μ]

(
1 + τ

1 − τ

)μ/2

× F [−ν, ν + 1; 1 − μ; (1 − τ )/2]. (A2)
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Here F [a, b; c; z] is the solution (regular at z = 0) to the Euler
hypergeometric differential equation,

z(1 − z)F ′′(z) + [c − (a + b + 1)z]F ′(z) − ab F (z) = 0,

(A3)
and �[z] is the Euler gamma function,

�[z] =
∫ ∞

0
xz−1e−x dx. (A4)

The associated Legendre functions have a number of recur-
rence properties. Here we write down only a couple of them,

∂

∂τ
Pμ

ν (τ ) = (ν + μ)Pμ
ν−1(τ ) − ντPμ

ν (τ )

1 − τ 2

= (ν + 1)τPμ
ν (τ ) − (ν − μ + 1)Pμ

ν+1(τ )

1 − τ 2
. (A5)

Using the latter relations, one can easily prove that

∂

∂τ

{
(1 − τ 2)

(
Pμ

ν [τ ]
∂

∂τ
P−μ

ν [τ ] − P−μ
ν [τ ]

∂

∂τ
Pμ

ν [τ ]

)}
= 0.

(A6)
Hence, the expression in the curly brackets should be constant
with respect to τ . In order to determine the constant, we use
the asymptotic expansion of Pμ

ν [τ ] at 0 < 1 − τ � 1,

Pμ
ν [τ ] ≈ 2μ/2

�[1 − μ]
(1 − τ )−μ/2. (A7)

Then, we can get

P−μ
ν [τ ]

∂

∂τ
Pμ

ν [τ ] − Pμ
ν [τ ]

∂

∂τ
P−μ

ν [τ ] = 2 sin(πμ)

π (1 − τ 2)
. (A8)

2. Solution of Eq. (17)

First, we consider this equation for −δ � ξ � 0, and
neglect the summand uH (−ξ ) in the square brackets in ac-
cordance with condition (11). Second, we change variable ξ

to new variable τ obeying relation

τ = tanh(δ + ξ0 + ξ ). (A9)

As a result, Eq. (17) transforms into Eq. (A1) with parameters
ν and μ defined by Eqs. (24b) giving rise to the general
solution to Eq. (17) in the form of a linear combination of
the linearly independent functions P±μ

ν [τ ],

f (−δ � ξ � 0) = D1Pμ
ν [tanh(δ + ξ0 + ξ )]

+ D2P−μ
ν [tanh(δ + ξ0 + ξ )]. (A10a)

With a treatment of Eq. (17) in a similar way inside the
opposite region 0 � ξ � δ, we find the desired solution to be

written as

f (0 � ξ � δ) = D3P−μ
ν [tanh(δ + ξ0 − ξ )]

+ D4Pμ
ν [tanh(δ + ξ0 − ξ )]. (A10b)

To regard Eqs. (A10) as relevant, f (ξ ) and f ′(ξ ) must
fulfill the continuity conditions at the c-slab center ξ = 0. To
meet this evident fact, the following consideration has to be
properly applied. The constitutive condition (11) provides for
inequality

0 < 1 − tanh(δ + ξ0) � 1 (A11)

that validates approximation (A7). The latter allows us to
replace the associated Legendre functions with their asymp-
totics

P±μ
ν [tanh(δ + ξ0 + ξ )] ≈ exp[±μ(δ + ξ0 + ξ )]

�[1 ∓ μ]
, (A12a)

P±μ
ν [tanh(δ + ξ0 − ξ )] ≈ exp[±μ(δ + ξ0 − ξ )]

�[1 ∓ μ]
(A12b)

in the vicinity of the point ξ = 0. Then, their substitution
to the continuity conditions gives rise to representation (23)
for the electromagnetic field (20) via functions p±(ξ ) defined
by Eqs. (24) with introducing just two independent arbitrary
constants C+ and C− instead of four coefficients D1, D2, D3,
and D4. The relations associating the constants, read

−D1K+[h′] exp(μδ) = D3K−[h′] exp(−μδ)

≡ 2(kcλc)2

(2 − 1)Hcr
C+, (A13a)

−D2K−[h′] exp(−μδ) = D4K+[h′] exp(μδ)

≡ 2(kcλc)2

(2 − 1)Hcr
C−. (A13b)

The functions p±(ξ ) defined by Eqs. (24) as the normalized
associated Legendre functions become exponential in two
limiting cases: (i) small dc magnetic fields, i.e., when h0 � 1
or, the same, ξ0 � 1; and (ii) large distances from the c-slab
interfaces, |ξ | � δ. Specifically, according to Eqs. (A12), in
both cases the functions p±(ξ ), p±(−ξ ), and their derivatives
over the variable ξ are given by

p±(ξ ) ≈ ±exp(±μξ )

μ
, p±(−ξ ) = ±exp(∓μξ )

μ
, (A14a)

p′
±(ξ ) ≈ exp(±μξ ), p′

±(−ξ ) ≈ − exp(∓μξ ). (A14b)

In addition, the functions p±(ξ ) obey the following relation
resulting from Eq. (A8):

p+(ξ )p′
−(ξ ) − p′

+(ξ )p−(ξ ) = 2/μ. (A15)

This relation is used to simplify the transfer-matrix elements
in Sec. III B.
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