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We theoretically study the effects of spin-orbit interactions on the symmetry of a Cooper pair in a spin-singlet
d-wave superconductor and on the chiral property of the surface Andreev bound states at zero energy. The pairing
symmetry is analyzed by using the anomalous Green’s function, which is obtained by solving the Gor’kov
equation analytically. The chiral property of surface bound states is discussed by using an index that represents
a number of zero-energy states in the presence of potential disorder at a surface. A spin-orbit interaction induces
a spatially uniform spin-triplet p-wave pairing correlation in a superconductor and an odd-frequency spin-triplet
s-wave pairing correlation at a surface. The spin-orbit interaction splits the Fermi surface into two depending on
the spin configuration. As a result of splitting, the index can be a nontrivial nonzero value. On the basis of the
close relationship among the odd-frequency s-wave pairing correlation at a surface, the nonzero index of surface
bound states, and the anomalous proximity effect, we provide a design of a superconductor that causes the strong
anomalous proximity effect.
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I. INTRODUCTION

Proximity structures consisting of a dirty normal metal
and spin-triplet superconductors indicate unusual electric
transport properties such as the quantization of zero-bias
conductance in a normal-metal/superconductor (NS) junction
and the fractional current-phase relationship of the Josephson
current in a superconductor/normal-metal/superconductor
(SNS) junction [1,2]. Such unusual transport phenomena via
a dirty normal metal are called the anomalous proximity
effect. Topologically protected bound states at a surface of
a spin-triplet superconductor play a key role in the anoma-
lous proximity effect. Namely, they penetrate into a dirty
normal metal and form the resonant transmission channels
at the Fermi level, which causes the perfect electron trans-
mission through the dirty normal metal [3–5]. The formation
of the resonant states at the Fermi level can be detected
directly as a large zero-energy peak in the local density of
states (LDOS) [1,2] at a dirty normal metal. The anoma-
lous proximity effect has been considered as a part of
Majorana physics [6–10] because a spin-triplet superconduc-
tor hosts Majorana fermions at its surface. Unfortunately,
well-established spin-triplet superconductors have not been
discovered yet.

Tamura and Tanaka [11] have studied theoretically the
LDOS at a dirty normal metal attached to a dxy-wave super-
conducting film with the Rashba spin-orbit interaction, where
the NS interface is parallel to the y direction as illustrated
in Figs. 1(a)–1(c). Their numerical results indicate signs of
the anomalous proximity effect. The modest enhancement
of the LDOS at zero energy suggests the penetration of the
zero-energy states (ZESs) into a dirty metal. In addition, they
found an odd-frequency spin-triplet s-wave Cooper pair in the
normal metal. (See recent review papers on odd-frequency

pairing correlations [12,13].) Although the signal of the prox-
imity effect is very weak, the results are highly nontrivial due
to the following reasons: It has already been established in the
absence of spin-orbit interactions that a dxy-wave supercon-
ductor in Fig. 1(c) does not exhibit any proximity effect in a
dirty metal [14–16]. Spin-orbit interaction may induce a spin-
triplet Cooper pair in a spin-singlet superconductor [7,17–
24]. However, mechanisms of symmetry conversion to an
odd-frequency s-wave Cooper are still unclear.

In this paper, we theoretically study the effects of spin-
orbit interactions in a spin-singlet dxy-wave superconductor
on the symmetry of a Cooper pair and on the chiral prop-
erty of Andreev bound states at its surface. We analyze the
symmetry of a Cooper pair by using the anomalous Green’s
function obtained by solving the Gor’kov equation analyti-
cally. The results show that a specific spin-orbit interaction
generates a spin-triplet px-wave pairing correlation in bulk
and an odd-frequency spin-triplet s-wave pairing correlation
at a surface. The Bogoliubov–de Gennes (BdG) Hamiltonian
of such a dxy-wave superconductor preserves nontrivial chiral
symmetry, which enables us to define an index by using the
chiral eigenvalues of surface Andreev bound states at zero
energy. We find that the index, a measure of the strength of
the anomalous proximity effect, can be nonzero values only in
the presence of the spin-orbit interaction. On the basis of the
obtained results, we explain why the signs of the anomalous
proximity effect in Ref. [11] are weak, and we provide a
design for a superconductor that causes the strong anomalous
proximity effect.

This paper is organized as follows. In Sec. II, we explain
the anomalous proximity effect in more detail and three nec-
essary conditions of the BdG Hamiltonian for the anomalous
proximity effect. We also illustrate the goals of this paper. In
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FIG. 1. Schematic pictures of superconducting proximity struc-
tures. A spin-singlet dxy-wave superconductor is infinitely long in
the x direction in (a). The width of the superconductor is W in the
y direction. The Green’s function at a surface is calculated for a
semi-infinite superconductor as shown in (b). We attach a normal
metal to a superconductor at x = 0 in (c), where “cross” symbols
represent impurities. A Cooper pair penetrates into the normal metal
and causes the proximity effect.

Sec. III, we analyze the chiral property of the surface bound
states at zero energy. In Sec. IV, the symmetry of a Cooper
pair appearing at a surface of a dxy-wave superconductor
with spin-orbit interactions is analyzed by using the anoma-
lous Green’s function. In Sec. V, we discuss the anomalous
proximity effect when the two types of spin-orbit interaction
coexist. The conclusion is given in Sec. VI. In the text of this
paper, we use the system of units h̄ = kB = c = 1, where kB

is the Boltzmann constant and c is the speed of light.

II. ANOMALOUS PROXIMITY EFFECT

In this section, we explain the conductance quantization in
an NS junction due to the anomalous proximity effect, we pro-
vide the necessary conditions for a superconductor exhibiting
the anomalous proximity effect, and we illustrate the goals of
this paper.

A. Chiral property of ZESs

The most drastic phenomenon of the anomalous proximity
effect may be the quantization of the differential conductance
in a NS junction shown in Fig. 1(c). The conductance at zero
bias can be described by

GNS = 2e2

h
|NZES| (1)

in the limit of strong potential disorder in a normal metal,
where |NZES| represents the number of zero-energy states
(ZESs) remaining at a dirty surface of a superconductor [1,5].
We first explain the properties of the index NZES in the case
of a spin-triplet px-wave superconductor, which is an exam-

ple of a superconductor exhibiting the anomalous proximity
effect. At a clean surface of a px-wave superconductor, topo-
logically protected bound states appear at zero energy as a
result of a nontrivial winding number W (ky) = ±1 in the one-
dimensional Brillouin zone [25]. In Fig. 5(a) in Appendix A,
we plot the eigenvalues of the BdG Hamiltonian for a px-wave
superconductor on a two-dimensional tight-binding lattice.
The superconducting gap has two nodes at ky = ±kF , with
kF = π/2 being the Fermi wave number. The degree of de-
generacy at zero energy is equal to the number of propagating
channels on the Fermi surface Nc because each propagating
channel −kF < ky < kF accommodates a ZES at a surface.
We also show the results for a dxy-wave superconductor in
Fig. 5(b). The winding number W (ky) can be defined only
in the presence of the translational symmetry in the y direc-
tion. Therefore, the large degree of degeneracy at zero energy
in both Figs. 5(a) and 5(b) is a direct consequence of the
translational symmetry of the Hamiltonian in the y direction.
The zero-bias conductance in such a ballistic NS junction is
described by

GNS = 2e2

h
Nc. (2)

The results are valid for both a px-wave junction and a dxy-
wave junction.

Random impurities near the surface may lift the degener-
acy at zero energy because they break translational symmetry.
The index |NZES| in Eq. (1) represents the number of the ZESs
that remain even in the presence of potential disorder. As
discussed in detail later, the index NZES can be defined when
the Bogoliubov–de Gennes Hamiltonian preserves chiral sym-
metry. Therefore, we discuss the fundamental symmetries of
the BdG Hamiltonian in this paragraph. The BdG Hamiltonian
in momentum space is represented as

ȞBdG(k) =
[

ĤN(k) �̂(k)
−�̂∗(−k) −Ĥ∗

N(−k)

]
, (3)

where ĤN(k) and �̂(k) are the normal-state Hamiltonian and
the pair potential, respectively. Throughput this paper, the
symbols ˇ· · · and ˆ· · · represent 4 × 4 and 2 × 2 matrices, re-
spectively. The Hamiltonian for a px-wave superconductor in
Eq. (A2) preserves time-reversal symmetry,

T− ȞBdG T −1
− = ȞBdG, T− = iσ̂2 K, (4)

where K denotes taking the complex conjugation for a Hamil-
tonian in real space, and taking the complex conjugation plus
applying k → −k for a Hamiltonian in momentum space.
Pauli’s matrix in spin space is denoted by σ̂ j for j = 1–3. A
BdG Hamiltonian always preserves particle-hole symmetry,

C ȞBdG C−1 = −ȞBdG, C = τ̂1 K, (5)

where τ̂ j for j = 1–3 is Pauli’s matrix in particle-hole
space. By combining the two symmetries, any Hamiltonian
belonging to class DIII preserves chiral symmetry,

{�̌DIII, ȞBdG} = 0, �̌DIII = τ̂1 σ̂2. (6)

Since �̌2
DIII = 1, the eigenvalue of the chiral operator is either

1 or −1. A ZES is always an eigenstate of the chiral opera-
tor [25]. Indeed, it is easy to confirm that the Hamiltonian in
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Eq. (A2) anticommutes to �̌DIII and that the wave function of
surface bound states at zero energy φpx,± in Eq. (A5) is the
eigenfunction of �̌DIII belonging to the chiral eigenvalue of
±1. The index in Eq. (1) can be defined by

NZES ≡ N+ − N−, (7)

where N± is the number of ZESs belonging to the chiral
eigenvalue of ±1. The index is an invariant as long as the
Hamiltonian preserves chiral symmetry in Eq. (6). Thus NZES

calculated in a clean superconductor remains unchanged even
in the presence of potential disorder because the random im-
purity potential Vimp(r) τ̂3 preservers the chiral symmetry in
Eq. (6). The anomalous proximity effect happens when the
index takes a nontrivial value NZES �= 0. However, ZESs of
HBdG in class DIII always satisfy NZES = 0 in terms of their
chiral eigenvalues of �̌DIII [26]. Therefore, the BdG Hamilto-
nian of a superconductor exhibiting the anomalous proximity
effect must satisfy the following necessary conditions:

(i) HBdG anticommutes to an extra chiral operator other
than �̌DIII.

(ii) Zero-energy states at the surface of a superconductor
have a chiral property such as NZES �= 0 in terms of the extra
chiral operator.

We show a simple way to find an extra chiral operator
as follows. The Hamiltonian in Eq. (A2) remains unchanged
under the rotation around the first axis in spin space,

Ř1 Ȟpx Ř−1
1 = Ȟ , Ř1 = σ̂1 τ̂3. (8)

Using such a spin rotation symmetry, it is possible to define a
time-reversal-like symmetry of a Hamiltonian,

T+ Ȟpx T −1
+ = Ȟpx , T+ = Ř1T− = −σ̂3 τ̂3 K. (9)

As a result of the spin-rotation symmetry of the Hamiltonian,
we find

{�̌BDI, Ȟpx } = 0, �̌BDI = iT+ C = σ̂3 τ̂2. (10)

Since T 2
+ = 1, Ȟpx belongs also to class BDI. The wave func-

tion of ZESs at the surface of a px-wave superconductor can
be represented alternatively as φpx,σ in Eq. (A6). We find
that φpx,σ belongs to the positive chiral eigenvalues of �̌BDI

irrespective of σ . Therefore, we find N+ = Nc and N− = 0,
which results in NZES = Nc. A px-wave superconductor satis-
fies the conditions (i) and (ii) in terms of the chiral operator
�̌BDI. Two of the authors showed that some superconductors
under a strong Zeeman field in the presence of spin-orbit
interactions preserve such an extra chiral symmetry and host
flatband ZESs at their dirty surfaces [26]. The anomalous
proximity effect has been considered to be a part of Majorana
physics because such artificial superconductors host Majorana
fermions at their surface [27,28]. At present, however, we
think that a superconductor hosting Majorana fermions is a
sufficient condition for the anomalous proximity effect. The
necessary conditions (i) and (ii) are more relaxed than those
generating Majorana fermions.

B. An odd-frequency s-wave pair

The anomalous proximity effect has two aspects: the pen-
etration of a quasiparticle at zero energy into a dirty metal as

discussed in Sec. II A, and the penetration of an odd-frequency
Cooper pair into a dirty metal. The existence of NZES-fold
degenerate ZESs can be observed as a large zero-energy peak
in the local density of states (LDOS) at a dirty metal. In the
mean-field theory of superconductivity, the density of states
can be calculated from the normal Green’s function Ĝ, and the
pairing correlations are described by the anomalous Green’s
function F̂ . As the two Green’s functions are related to each
other through the Gor’kov equation, the enhancement of Ĝ
at zero energy causes an anomaly of F̂ at zero energy. The
anomalous Green’s function in a Matsubara representation
F̂ (k, iωn) enables us to analyze symmetry of pairing corre-
lations, where ωn = (2n + 1)πT is a fermionic Matsubara
frequency and T is a temperature. The anomalous Green’s
function obeys the antisymmetric relation under the permu-
tation of two electrons consisting of a Cooper pair,

F̂ T(−k,−iωn) = − F̂ (k, iωn), (11)

where T means the transpose of a matrix. In the standard rep-
resentation, the anomalous Green’s function is decomposed
into four spin components as

F̂ (k, iωn) = i[ f0(k, iωn) + f (k, iωn) · σ̂]σ̂2, (12)

where f0 is a spin-singlet component and f represents three
spin-triplet components. In a dirty normal, the diffusive mo-
tion of a quasiparticle causes the Green’s function to be
isotropic in momentum space as

F̂ (iωn) = i[ f0(iωn) + f (iωn) · σ̂]σ̂2. (13)

The relation in Eq. (11) implies that the spin-singlet compo-
nent is an even function of ωn as f0(−iωn) = f0(iωn). The
spin-triplet components, on the other hand, are odd functions
of ωn as f (−iωn) = − f (iωn). To compensate for the anomaly
of Ĝ at ωn → 0, the anomalous Green’s function must have
a component of F̂ (iωn) ∝ 1/ωn [29]. Such an odd-frequency
pair must be a spin-triplet. Thus the last necessary condition
for the anomalous proximity effect is as follows:

(iii) An odd-frequency spin-triplet s-wave pairing corre-
lation f ∝ 1/ωn exists at the surface as a result of the large
zero-energy peak in the local density of states.

In a spin-singlet dxy-wave superconductor, however, no
spin-triplet pairing correlation exists in the absence of spin-
dependent potentials.

C. Goals of this paper

To clarify one of the motivations of this study, we show
that a spin-singlet dxy-wave superconductor without spin-orbit
interaction does not cause the anomalous proximity effect. A
spin-singlet dxy-wave pair potential is defined by

�̂(k) = �k iσ̂2, �k = � k̄x k̄y, (14)

where kx(ky) is the wave number in the x(y) direction. The
wave numbers in the pair potential are normalized to the Fermi
wave number kF as k̄x = kx/kF and k̄y = ky/kF . It is easy to
confirm that the Hamiltonian for a dxy-wave superconductor
in Eq. (A7) anticommutes to �̌BDI, and that the wave function
of the ZESs at the surface of a dxy-wave superconductor is
given in Eq. (A9). Their chiral eigenvalues depend on sgn(ky)
reflecting the sign change of the pair potential at ky = 0. As
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displayed in Fig. 5(b), the number of ZESs at ky > 0 is equal
to that at ky < 0. Although Eq. (A7) satisfies condition (i),
the index NZES is always zero in the absence of spin-orbit in-
teractions. Therefore, we concluded that the random impurity
potential completely lifts the high degeneracy at zero energy
in Fig. 5(b) and that a dxy-wave superconductor does not
show the proximity effect in the absence of spin-dependent
potentials.

In the presence of Rashba spin-orbit interaction in a dxy-
wave superconductor, the numerical results of the LDOS and
those of the pairing correlation in a dirty metal indicate that
condition (iii) may be satisfied [11]. The BdG Hamiltonian in
momentum space reads

Ȟ0 = (ξk − λkxσ̂2) τ̂3 + λkyσ̂1 − �kτ̂2 σ̂2, (15)

where ξk = k2/2m − εF is the kinetic energy of a quasipar-
ticle measured from the Fermi energy εF = k2

F /(2m), and λ

represents the strength of the spin-orbit interaction. When the
two spin-orbit interaction terms −λkxσ̂2 τ̂3 and λkyσ̂1 coexist,
�̌DIII is the only chiral operator that anticommutes to Ȟ0.
Since NZES = 0 in terms of the chiral eigenvalues of �̌DIII, the
degeneracy of the ZESs is fragile in the presence of potential
disorder [26]. Thus we infer that the anomalous proximity
effect in such a junction would be very weak. Namely, the
zero-bias conductance in an NS junction would not be quan-
tized, and the zero-energy peak in the LDOS would disappear
in the limit of strong potential disorder.

In such a situation, the goal of this paper is to clarify
the roles of the spin-orbit interaction terms in the anomalous
proximity effect. To achieve that objective, we analyze the
chiral property of the surface bound states of two different
superconductors: the Hamiltonian of one superconductor con-
tains only a spin-orbit interaction λkyσ̂1, and that of the other
contains only −λkxσ̂2 τ̂3. After showing whether NZES is 0
or not for the two superconductors, we make clear how an
odd-frequency spin-triplet s-wave pair appears at the surface.
On the basis of the obtained results, we provide a theoretical
design of a superconductor that exhibits the strong anomalous
proximity effect.

III. TWO TYPES OF SUPERCONDUCTOR

We divide the Rashba spin-orbit interaction into two parts
λkyσ̂1 and −λkxσ̂2 τ̂3 to study how they modify independently
the chiral properties of zero-energy states and the symmetry
of a Cooper pair at the surface. Figure 1 shows the schematic
pictures of the superconductor under consideration. A super-
conductor in Fig. 1(a) is infinitely long in the x direction, and
the width of the superconductor is W in the y direction. We
apply the periodic boundary condition in the y direction. In
what follows, we analyze the two BdG Hamiltonians given by

Ȟ1 = ξkτ̂3 + λkyσ̂1 − �kτ̂2 σ̂2 (16)

and

Ȟ2 = ξkτ̂3 − λkxσ̂2τ̂3 − �kτ̂2 σ̂2. (17)

We assume the relation

� � λkF � εF , (18)

B−B−
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ky
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B
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FIG. 2. The two Fermi surfaces for H1 and those for H2 are
illustrated in (a) and (b), respectively. In (a), the lower (upper) circle
indicated by “+” (“−”) represents a Fermi surface calculated from
ξ1,+(k) = 0 [ξ1,−(k) = 0]. In (b), the left (right) circle represents a
Fermi surface calculated from ξ2,+(k) = 0 [ξ2,−(k) = 0].

and we discuss the effects of the spin-orbit interaction on the
superconducting states within the first order of

α ≡ λkF

2εF
� 1. (19)

The main purpose of the next two subsections is to examine
whether the two Hamiltonians preserve extra chiral symmetry,
and to calculate the index NZES. In addition, we also define the
wave number on the Fermi surface and the number of propa-
gating channels Nc, which are necessary items to represent the
anomalous Green’s function in Sec. IV.

A. Surface bound states of Ȟ1

We first focus on the Ȟ1 in Eq. (16). The positive eigenval-
ues of Ȟ1 are calculated to be

E1,± =
√

ξ 2
1,± + �2

k, ξ1,±(k, ky) =ξk ± λ ky. (20)

The two Fermi surfaces characterized by ξ1,± = 0 are illus-
trated in Fig. 2(a). A wave number in the y direction ky

indicates a transport channel. As shown in Fig. 2(a), the
ky axis is divided into three regions: (I) −B+ � ky � −B−,
(II) −B− � ky � B−, and (III) B− � ky � B+, with B± =
[
√

1 + α2 ± α]kF . The wave numbers in the x direction are
calculated as

p1± ≡ [
k2

F − k2
y ∓ 2αkykF

]1/2
, (21)

as a function of ky. A transport channel at ky on the Fermi
surface of the ± branch is propagating for p2

1± > 0 and is
evanescent for p2

1± < 0. Therefore,

n+(ky) ≡ 

(
p2

1+
) + 


(
p2

1−
)

(22)

represents the number of propagating channels at ky, where

(x) is the step function. We also define

n−(ky) ≡ 

(
p2

1+
) − 


(
p2

1−
)

(23)

for later use. In Figs. 3(a) and 3(b), we plot n± as a function
of ky. As shown in Fig. 3(a), both ± branches are propagating
in (II) in Fig. 2(a), whereas only one branch is propagating in
(I) and (III) in Fig. 2(a). The number of propagating channels
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FIG. 3. In (a), n+(ky ) represents the number of propagating
channels at ky. n−(ky ) in (b) is an odd function of ky. The chiral
eigenvalues of the ZESs g+ and g− are plotted in (c) and (d), re-
spectively. In (e), the summation of the chiral eigenvalues g+ + g− is
shown. n−(ky ) in (b) and g+ + g− in (e) are nonzero at (I) and (III) in
Fig. 2(a).

is calculated as

Nc ≡
∑

ky

n+(ky) = W

2π

∫ ∞

−∞
dky n+(ky), (24)

=
[

2W kF

π

]
G

, (25)

where [· · · ]G is Gauss’s symbol, meaning the integer part
of the argument. Since a propagating channel hosts a ZES,
the number of ZESs at a surface is Nc. A superconductor
described by H1 hosts highly degenerate ZESs at its surface
around x � 0 in Fig. 1(b). As shown in Fig. 3(b), n− is an
odd function of ky. We use this property when we describe
an induced pairing correlation by a spin-orbit interaction in
Sec. IV A.

The wave functions of surface bound states at zero energy
are described by

ψ1+(x) =

⎡
⎢⎣

1
1

isk

−isk

⎤
⎥⎦e−qxx sin p1+x, (26)

ψ1−(x) =

⎡
⎢⎣

−1
1

isk

isk

⎤
⎥⎦e−qxx sin p1−x, (27)

sk = sgn(ky). (28)

Here the wave number in the superconducting state is given
approximately by[

p2
1s ± 2m�| p̄1sk̄y|

]1/2 ≈ p1s ± iqx (29)

for s = ±. The imaginary part of the wave number is esti-
mated at ε = 0 as qx = (�/vF )|k̄y|, with vF = kF /m being
the Fermi velocity. As shown in Eqs. (26) and (27), qx char-
acterizes the spatial area of the surface bound states. The
Hamiltonian Eq. (16) anticommutes to the extra chiral oper-
ator �̌BDI in Eq. (10). It is easy to show that

�̌BDI ψ1± = g±ψ1±, g± = ±sk . (30)

The chiral eigenvalues g+, g−, and g+ + g− are plotted as a
function of ky in Figs. 3(c), 3(d), and 3(e), respectively. By
reflecting the sign change of the pair potential, both g+ and g−
change their signs at ky = 0 as shown in Figs. 3(c) and 3(d).
The index in the terms of the chiral eigenvalue of �̌BDI can be
calculated as

NZES =
∑

ky

[g+ + g−] =
[
−2W kF

π
α

]
G

. (31)

The index is a finite value in the presence of spin-orbit in-
teraction. Thus, we conclude that Ȟ1 satisfies the necessary
conditions (i) and (ii) in Sec. II A. The zero-bias conductance
in a dirty NS junction in Fig. 1(c) can be quantized as Eq. (1).
The shift of the Fermi surface by the spin-orbit interaction in
Fig. 2(a) causes the index to be a nonzero value because the
integrand of Eq. (31) is nonzero at (I) and (III) in Fig. 2(a).
Therefore, we will clarify what happens on the anomalous
Green’s function in these regions in Sec. IV.

B. Surface bound states of Ȟ2

Next, we focus on Ȟ2 in Eq. (17). The positive eigenvalues
of Ȟ2 are calculated to be

E2,± =
√

ξ 2
2,± + �2

k, ξ2,±(k, ky) =ξk ± λ k. (32)

In Fig. 2(b), we illustrate the two splitting Fermi surfaces char-
acterized by ξ2,± = 0. The wave numbers in the x direction on
the Fermi surface are calculated as

p2± =
√

k2
F − k2

y ∓ αkF . (33)

For |ky| � kF , the transport channels are propagating. A topo-
logically protected ZES appears for each propagating channel.
The wave functions of such surface bound states are calculated
as

ψ2+(x) =

⎡
⎢⎣

sk

−isk

1
−i

⎤
⎥⎦e−qxx sin p2+x, (34)

ψ2−(x) =

⎡
⎢⎣

sk

isk

−1
−i

⎤
⎥⎦e−qxx sin p2−x. (35)

The Hamiltonian Ȟ2 anticommutes to an extra chiral operator
τ̂1, which is derived from the invariance of Ȟ2 under the
rotation about the second axis in spin space σ̂2 τ̂0. It is easy to
show that τ̂1 ψ2± = ±sk φ2±. We find NZES = 0 because the
chiral eigenvalues depend on sgn(ky). Namely, Ȟ2 does not
satisfy the necessary condition for the anomalous proximity
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effect (ii) in Sec. II A. Thus we conclude that the superconduc-
tor described by Ȟ2 does not exhibit the anomalous proximity
effect because the random impurity potential at its surface lifts
the degeneracy at zero energy.

IV. PAIRING CORRELATIONS AT A SURFACE

The purpose of this section is to examine the close rela-
tionship between conditions (ii) and (iii) discussed in Sec. II.
As Ȟ1 satisfies condition (ii), an odd-frequency spin-triplet
s-wave pairing correlation is expected to appear at the surface
of a superconductor. We will clarify mechanisms necessary to
generate such an odd-frequency pair. As Ȟ2 does not satisfy
(ii), we will confirm that an odd-frequency spin-triplet s-wave
pairing correlation is absent at its surface.

To this end, we calculate the Green’s function at the surface
of a superconductor as shown in Fig. 1(b). The outline of the
derivation is as follows. We first solve the Gor’kov equation
for the retarded Green’s function,

[ε + iδ − ȞBdG(k)] Ǧε (k) = τ̂0 σ̂0, (36)

Ǧε (k) =
[

Ĝε (k) F̂ε (k)

−F̂ε

˜
(k) −Ĝε

˜
(k)

]
, (37)

where iδ is a small imaginary part of the energy. The “under-
tilded” function is defined by

Xε

˜
(k) ≡ X ∗

−ε (−k), (38)

where X is an arbitrary function. Secondly, we calculate the
Green’s function in real space,

Ǧ(r, r′) =
∫ ∞

−∞

dk

2π
eik(x−x′ )

∑
ky

eiky (y−y′ )

W
Ǧ(k). (39)

for an infinitely long superconductor in the x direction as
shown in Fig. 1(a). Finally, we introduce a high potential
barrier V δ(x) τ̂3 to divide the infinitely long superconduc-
tor into two semi-infinitely long superconductors. One of
them is illustrated in Fig. 1(b). The Green’s function at the
surface ǦS(r, r′) can be calculated by solving the Lippmann-
Schwinger equation exactly as explained in Appendix C. The
Green’s function at a semi-infinite superconductor Ǧ is repre-
sented as

Ǧ(r, r′) = Ǧ(r, r′) + ǦS(r, r′). (40)

In the text, we will show only the results of the calculation;
the details of the derivation are given in Appendix B.

A. Pairing correlations of Ȟ1

We first study the pairing correlations at the surface of
a superconductor described by Ȟ1. The resulting anomalous
Green’s function at the surface is given by

F̂ S
iωn

(r, r′) = 1

W

∑
ky

eiky (y−y′ )

2 vF
e−qx (x+x′ )

[
i

�n
sin px(x − x′) � k̄y n+(ky) − i

�n
sin px(x − x′) � k̄y n−(ky) σ̂1

+ 2

ωn
sin pxx sin pxx′ � k̄y n+(ky)− 2

ωn
sin pxx sin pxx′ � k̄y n−(ky) σ̂1

]
iσ̂2, (41)

where �n =
√

ω2
n + �2

k, px =
√

k2
F − k2

y + 2α|ky|kF , and we

applied the analytic continuation ε + iδ → iωn to analyze
the symmetry of pairing correlations. We use the standard
expression in Eq. (12) to decompose the anomalous Green’s
function into four spin components. The first term in Eq. (41)
represents a spin-singlet dxy-wave pairing correlation because
it changes sign under x ↔ x′ and y ↔ y′ independently. Such
a pairing correlation is linked to the pair potential in the
presence of attractive interactions between two electrons. The
third term represents the pairing correlation belonging to an
odd-frequency spin-singlet py-wave symmetry class. This cor-
relation function changes sign under y ↔ y′, whereas its sign
is preserved under x ↔ x′. The spin-singlet dxy-wave compo-
nent in the anomalous Green’s function is an odd function of
x − x′, which is responsible for two phenomena at the surface:
the appearance of highly degenerate bound states at zero en-
ergy, and the appearance of an odd-frequency py-wave pairing
correlation. The first and third terms in Eq. (41) exist even in
the absence of spin-orbit interactions. The spin-orbit interac-
tion in Ȟ1 generates a spin-triplet px-wave symmetry at the
second term from a spin-singlet dxy-wave pairing correlation.

It is easy to confirm that the second term remains unchanged
under y ↔ y′ and changes sign under x ↔ x′. In addition, the
third term corresponds to an equal spin pairing correlation in
the standard expression in Eq. (12). The anomalous Green’s
function in an infinitely long superconductor consists of two
pairing correlations. One belongs to a spin-singlet dxy-wave
symmetry. The other belongs to a spin-triplet px-wave sym-
metry as shown in Eq. (B17). Since the spin-triplet px-wave
pairing correlation is also an odd function of x − x′, it induces
a subdominant pairing correlation at a surface, as shown in
the last term of Eq. (41). The relations among the four com-
ponents are illustrated schematically in Fig. 4(a). The last
pairing correlation in Eq. (41) belongs to an odd-frequency
spin-triplet s-wave symmetry. It is easy to check that this
component does not change sign in x ↔ x′ and y ↔ y′ inde-
pendently. As shown in n−(ky) in Fig. 3(b), this odd-frequency
correlation is nonzero at regions (I) and (III) in Fig. 2(a).
This property is closely related to the fact that g+ + g− in
Eq. (31) is a nonzero value of −1 at these regions as shown
in Fig. 3(e). We conclude that spin-orbit interaction in Ȟ1

generates an odd-frequency spin-triplet s-wave pairing corre-
lation at a surface. Thus a superconductor described by Ȟ1
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FIG. 4. The pairing correlations appearing in a dxy-wave su-
perconductor. At the surface of a dxy-wave superconductor, an
odd-frequency spin-singlet py-wave pairing correlation always ap-
pears as a result of the sign change in the dxy-wave pairing
correlation under x ↔ x′. In (a), a spin-orbit interaction λkyσ̂1

induces spin-triplet px-wave pairing correlation in bulk. An odd-
frequency spin-triplet s-wave component appears at the surface as
a result of the sign change of the px-wave pairing correlation. In (b),
−λkxσ̂2τ̂3 induces a spin-triplet py-wave pairing correlation in bulk,
while this interaction does not generate an odd-frequency spin-triplet
s-wave correlation at the surface.

also satisfies the last necessary condition (iii) for the anoma-
lous proximity effect.

The local density of states at a surface is calculated from
the normal Green’s function as

NS(x, ε) ≡ − 1

2π
Im

∫ W/2

−W/2
dy Tr

[
ǦS

ε (r, r)
]
. (42)

The calculated results of the normal Green’s function at a
surface are given by

ĜS
ε (r, r′) =

∑
ky

i eiky (y−y′ )e−qx (x+x′ )

2W vpx �

[
ε cos px(x + x′)

+ i � sin px(x + x′) + 2
�2

k̂

ε + iδ
sin pxx sin pxx′

]

× [n+(ky) + n−(ky) σ̂1]. (43)

The LDOS at a surface results in

NS(x, ε) = δ(ε)
∑

ky

2|�k|
vpx

{sin(pxx)e−qxx}2n+(ky) (44)

for ε � �. The local density of states at a surface has a peak at
zero energy, which reflects the presence of highly degenerate
surface bound states at zero energy. The appearance of an
odd-frequency pairing correlation and that of surface bound
states at zero energy are linked to each other directly. Mathe-
matically, ε + iδ in the denominator of ĜS in Eq. (43) and ωn

in the denominator of the odd-frequency components of F̂ S in
Eq. (41) have the same origin within the analytic continuation
ε + iδ → iωn. The transformation of

1

ε + iδ
= P

ε
− iπδ(ε) (45)

implies that the zero-energy peak in the LDOS is a conse-
quence of the appearance of an odd-frequency Cooper pair at
a surface.

B. Pairing correlations of Ȟ2

The Green’s function of a superconductor described by
Ȟ2 is also calculated by solving the Lippmann-Schwinger
equation. The anomalous Green’s function at a surface results
in

F S
iωn

(r, r′) = 1

W

∑
ky

eiky (y−y′ ) e−qx (x+x′ )

vx

×
[

i
�k

�n
sin kx(x − x′) + 2

ωn
�k sin kxx sin kxx′

+ α � k̄y

�n
cos kx(x − x′) σ̂2

]
i σ̂2. (46)

The first term belongs to spin-singlet dxy-wave symmetry and
is linked to the pair potential. The second term is induced
at the surface and belongs to odd-frequency spin-singlet py-
wave symmetry. Due to breaking local inversion symmetry
at the surface, a spin-singlet py-wave component is generated
from a spin-singlet dxy-wave pairing correlation. As already
discussed in Eq. (41), these two correlations exist in the ab-
sence of spin-orbit interactions. The spin-orbit interaction in
Ȟ2 generates a spin-triplet py-wave symmetry pairing corre-
lation at the third term, which changes sign under y ↔ y′ but
retains its sign under x ↔ x′. The relations among the pairing
correlations are illustrated in Fig. 4(b). In Eq. (46), however,
an odd-frequency spin-triplet s-wave correlation is absent,
as we expected at the beginning of this section. The usual
proximity effect is also absent in a normal metal attached to
a superconductor because all of the pairing correlations in
Eq. (46) are odd functions of y − y′ [14–16]. Thus the spin-
orbit interaction λkxσ̂2 τ̂3 does not contribute to the proximity
effect.

V. DISCUSSION

We have concluded that a superconductor described by
Ȟ1 in Eq. (16) satisfies all the necessary conditions for the
anomalous proximity effect. On the other hand, a supercon-
ductor described by Ȟ2 in Eq. (17) does not exhibit any type
of proximity effect. Here we discuss briefly the proximity
effect of a dxy-wave superconductor, where the two spin-orbit
interaction terms coexist and form the Rashba spin-orbit inter-
action λkyσ̂1 − λkxσ̂2 τ̂3. Unfortunately, the coexistence of the
two interaction terms weakens the anomalous proximity effect
seriously because the interaction −λkxσ̂2 τ̂3 breaks the extra
chiral symmetry of Ȟ1. It is easy to confirm that −λkxσ̂2τ̂3

does not anticommute to �BDI. Therefore, a random impurity
potential lifts the degeneracy at the zero energy. This explains
why the signal of the anomalous proximity effect in Ref. [11]
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is very weak. Simultaneously, this discussion will determine
the design guidelines for superconductors. We conclude that
a dxy-wave superconductor described by Ȟ1 is necessary to
observe the strong anomalous proximity effect such as the
conductance quantization in a NS junction in Eq. (1) and the
fractional current-phase relationship of the Josephson current
in an SNS junction.

The control of spin-orbit interactions has been an important
issue also in spintronics. The spin-orbit interaction in Ȟ1 can
be realized by tuning the Rashba spin-orbit interaction and
the Dresselhaus spin-orbit interaction. It has been known that
such an interaction stabilizes a specialized spin configuration
in momentum space called the persistent spin helix [30–34].
Thus it would be possible to fabricate a superconductor that
exhibits the strong anomalous proximity effect by combining
existing technologies.

The anomalous proximity effect has been considered as
a phenomenon unique to spin-triplet superconductors such
as a px-wave superconductor in Eq. (A2), a Majorana
nanowire [6–9], and two-dimensional artificial spin-triplet
superconductors hosting a flat Majorana band at its sur-
face [27,28]. There is no doubt that the existence of a
spin-triplet order parameter (pair potential) is a sufficient
condition for a superconductor to exhibit the anomalous
proximity effect. On the other hand, we conclude that the
necessary conditions discussed in Sec. II can be satisfied by
a specific spin-triplet pairing correlation on a spin-singlet
superconductor. Our results indicate a way of enriching the
superconducting properties of high-Tc cuprate superconduc-
tors.

VI. CONCLUSION

We theoretically studied the effects of spin-orbit inter-
actions in a spin-singlet dxy-wave superconductor on the
symmetry of the pairing correlations and those on the chiral
properties of the zero-energy bound states at the surface. The
Hamiltonian for a dxy-wave superconductor with a specific
spin-orbit interaction preserves chiral symmetry. The chiral
property of the surface bound states is analyzed in terms of
an index NZES, which is a measure of the strength of the
anomalous proximity effect. Our results show that the spin-
orbit interaction modifies the chiral property of the surface
bound states drastically. As a result, NZES can be nontrivial
nonzero values. The symmetry of the pairing correlations at
the surface of a superconductor are analyzed by using the
anomalous Green’s function, which is obtained by solving
the Gor’kov equation and the Lippmann-Schwinger equation
analytically. The spin-orbit interactions induce spatially uni-
form spin-triplet p-wave pairing correlations in a dxy-wave
superconductor. A p-wave pairing correlation generates an
odd-frequency spin-triplet s-wave Cooper pair at the surface
of a dxy-wave superconductor. We conclude that the pres-
ence of a spin-triplet pairing correlation causes the anomalous
proximity effect even when a spin-triplet order parameter is
absent.

To assist these conclusions, we should study low-energy
transport properties through a dirty normal metal such as the
conductance in a NS junction and the Josephson current in a

SNS junction. An investigation using numerical simulations is
underway, and the results will be presented elsewhere.
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APPENDIX A: SURFACE ANDREEV BOUND STATES

The BdG Hamiltonian on a two-dimensional tight-binding
lattice is represented by

H =
∑
r,r′

[ψ†
r,↑, ψ

†
r,↓, ψr,↑, ψr,↓]ȞBdG(r, r′)

× [ψr′,↑, ψr′,↓, ψ
†
r′,↑, ψ

†
r′,↓]T, (A1)

where ψr,σ is the annihilation operator of an electron at r =
jx̂ + mŷ, with x̂ (ŷ) being a unit vector in the x (y) direction,
σ =↑ or ↓ indicates the spin of an electron, and T represents
the transpose of a matrix. The BdG Hamiltonian for an equal
spin-triplet px-wave superconductor can be represented as

Ȟpx (r, r′) = Ht (r, r′)τ̂3 + Ĥ�p (r, r′) σ̂3 τ̂1, (A2)

Ht (r, r′) = −t[δr,r′+x̂ + δr,r′−x̂ + δr,r′+ŷ + δr,r′−ŷ]σ̂0

+ δr,r′ (4t − εF )σ̂0, (A3)

H�p = �

2i
[δr,r′+x̂ − δr,r′−x̂], (A4)

where τ j and σ j for j = 1–3 are Pauli’s matrices in particle-
hole space and those in spin space, respectively. The unit
matrix in these spaces is τ̂0 and σ̂0. The pair potential and
the hopping integral are denoted by � and t , respectively. We
calculate the eigenvalues of Ĥpx under the hard wall boundary
condition in the x direction and the periodic boundary condi-
tion in the y direction. The results for εF = 2t and � = t are
plotted as a function of ky in Fig. 5(a). The symbols for E �= 0
represent eigenvalues of bulk states. At the present parameter
choice, the superconducting gap has two nodes at ky = ±kF

with kF = π/2. The ZESs between the nodes in Fig. 5(a) are
localized at a surface. The wave function of the ZESs near
x = 0 are described by

φpx,−(r) =

⎡
⎢⎣

1
1
i

−i

⎤
⎥⎦ fky (r), φpx,+(r) =

⎡
⎢⎣

−1
1
i
i

⎤
⎥⎦ fky (r),

fky (r) = A eikyye−x/ξ0 sin kxx, (A5)

where ξ0 = vF /�, and A is a constant. It is easy to con-
firm that �̌BIII φ± = ±φ±. As a result, we find N+ = N− and
NZES = 0, in agreement with the prediction [26].
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(a) p  -wavex
(b) d     -wavexy

FIG. 5. The eigenvalues of the BdG Hamiltonian on a two-
dimensional tight-binding model are plotted as a function of the wave
number in the y direction. The results for a px-wave superconductor
in (a) have nodes at ky = ±kF with kF = π/2. The surface Andreev
bound states are degenerate at E = 0 as indicated by a line between
the two nodal points. All of the ZESs belong to the same chiral
eigenvalue of �̌BDI. In (b), the results for a dxy-wave superconductor
are shown. An additional nodal point appears at ky = 0. ZESs for
ky > 0 and those for ky < 0 belong to the opposite chiral eigenvalue
of �̌BDI.

The wave functions of the ZESs in Eq. (A5) are described
alternatively as

φpx,↑(r) =

⎡
⎢⎣

1
0
i
0

⎤
⎥⎦ fky (r), φpx,↓(r) =

⎡
⎢⎣

0
1
0
−i

⎤
⎥⎦ fky (r), (A6)

where φpx,σ is the wave function in the spin σ sector. It is
easy to confirm that �̌BDI φσ = φσ holds for both σ =↑ and
↓. Therefore, we find N+ = Nc and N− = 0, which results in
NZES = Nc as long as {Ȟpx , �̌BDI} = 0.

The eigenvalues of the BdG Hamiltonian of a dxy-wave
superconductor,

Ȟdxy (r, r′) = Ht (r, r′)τ̂3 + H�d (r, r′) σ̂2 τ̂2, (A7)

H�d (r, r′) = �

2
[δr,r′+x̂+ŷ + δr,r′−x̂−ŷ − δr,r′+x̂−ŷ − δr,r′−x̂+ŷ],

(A8)

are shown in Fig. 5(b). There are three nodal points at ky =
0 and ±kF . A surface Andreev bound state appears for each
propagating channel on the Fermi surface. The wave functions
of the ZESs are described by

φdxy,+(r) =

⎡
⎢⎣

1
−1
i sk

i sk

⎤
⎥⎦ fky (r), φdxy,−(r) =

⎡
⎢⎣

1
1

−i sk

i sk

⎤
⎥⎦ fky (r),

sk = sgn(ky). (A9)

It is easy to confirm that �̌BDI φdxy,± = ±sk φdxy,± holds. The
chiral eigenvalues of ZESs depend on the sign of ky in a
dxy-wave superconductor. As displayed in Fig. 5(b), the num-
ber of ZESs at ky > 0 is equal to that at ky < 0. Although
Ȟdxy anticommutes to �̌BDI, the index NZES is always zero in
the absence of spin-orbit interactions. The Hamiltonian Ȟdxy

anticommutes also to another chiral operator τ̂1. However, we
find that NZES = 0 in terms of the chiral eigenvalues of τ̂1.

APPENDIX B: GREEN’S FUNCTION IN REAL SPACE

The solution of the Gor’kov equation in Eq. (36) is obtained as

Ĝε (k) = [(ε − ĤN) + �̂ (ε + Ĥ
˜

N)−1 �̂
˜

]−1, F̂ε (k) = [�̂
˜

+ (ε + Ĥ
˜

N) �̂−1 (ε − ĤN)]−1. (B1)

The retarded Green’s function for H1 is represented as

Ĝε (r − r′) = 1

W

∑
ky

eiky (y−y′ )Ĝε (x − x′), F̂ε (r − r′) = 1

W

∑
ky

eiky (y−y′ )F̂ε (x − x′), (B2)

with

Ĝε (x − x′) = 1

2π

∫ ∞

−∞
dk eik(x−x′ ) 1

2

[
(ε + ξ1,+)(1 + σ̂1)

(ε + iδ)2 − E2
1,+

+ (ε + ξ1,−)(1 − σ̂1)

(ε + iδ)2 − E2
1,−

]
, (B3)

F̂ε (x − x′) = 1

2π

∫ ∞

−∞
dk eik(x−x′ ) �k

2

[
1 − σ̂1

(ε + iδ)2 − E2
1,−

+ 1 + σ̂1

(ε + iδ)2 − E2
1,+

]
iσ̂2. (B4)

To proceed with the calculation, it is necessary to carry out the integration

I1,± = 1

2π

∫ ∞

−∞
dk eik(x−x′ ) f (k, ξ1,±)

(ε + iδ − E1,±)(ε + E1,±)
, (B5)

where f is an analytic function. For ε > 0, (ε + E1,±)−1 is analytic, whereas (ε + iδ − E1,±)−1 has two poles at k = ke
± + i0+

and k = −kh
± + i0+ with

ke
± =

[
p2

1± + 2m

h̄2 �

]1/2

, kh
± =

[
p2

1± − 2m

h̄2 �

]1/2

, � =
√

(ε + iδ)2 − �2
k, (B6)
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where p1± is defined in Eq. (21). Paying attention to the relations ξ1,± → � at k = ke
± and ξ1,± → −� at k = −kh

±, ε + iδ − E1,±
at the denominator of Eq. (B5) can be expanded around k = ke

± as

ε + iδ − E1,±(k) ≈ ε − E1,±(ke
±) + iδ − ξ1,±

E1,±(ke±)

h̄2ke
±

m
(k − ke

±) = −�

ε

h̄2ke
±

m
(k − ke

± − iδ′). (B7)

Around a pole of k = −kh
±, the ε + iδ − E1,± becomes

ε + iδ − E1,±(k) ≈ ε − E1,±(−kh
±) + iδ − ξ1,±

E1,±(−kh±)

−h̄2kh
±

m
(k + kh

±) = −−�

ε

(−h̄2kh
±)

m
(k + kh

± − iδ′). (B8)

By picking up the residues of these poles, the integral in Eq. (B5) is calculated as

I1,± = − i
m

2�h̄2

[
f (sxke

±,�)

ke±
eike

±|x−x′| + f (−sxkh
±,−�)

ke±
e−ikh

±|x−x′|
]

(p2

1±), (B9)

sx = sgn(x − x′), (B10)

where we consider the contribution from the propagating channels as indicated by a factor 
(p2
1±). The integral on the upper-half

complex plane converges for x − x′ > 0. On the other hand, for x − x′ < 0, the transformation of k → −k is necessary, which
produces a factor of sx. In the text, we mainly discuss the Green’s function for 0 < ε � �. In such a case, it is possible
to apply an approximation for the wave number ke

± = p1± + iqx and kh
± = p1± − iqx with qx = (�/h̄vF )k̄y. We also apply

p1+ ≈ p1− ≈ px =
√

k2
F − k2

y + 2αkF |ky| because the amplitude of the wave number is not important for analyzing the pairing

symmetry. For the same reason, we consider qx only in the exponential function. The integral under these approximations is
represented as

I1,± ≈ − i
m

2�h̄2 e−qx |x−x′|
[

f (sx px,�)

px
eipx |x−x′| + f (−sx px,−�)

px
e−ipx |x−x′|

]

(p2

1±). (B11)

The normal Green’s function in Eq. (B3) is calculated as

Gε (x − x′) = −i
m

4�h̄2 e−qx |x−x′|
[
ε + �

px
eipx |x−x′| + ε − �

px
e−ipx |x−x′|

]
(1 + σ̂1)
(p2

1+)

− i
m

4�h̄2 e−qx |x−x′|
[
ε + �

px
eipx |x−x′| + ε − �

px
e−ipx |x−x′|

]
(1 − σ̂1)
(p2

1−), (B12)

= −i
e−qx |x−x′|

2�h̄vpx

[ε cos(px|x − x′|) + i � sin(px|x − x′|)][n+(ky) + n−(ky)σ̂1]. (B13)

The anomalous Green’s function results in

Fε (x − x′) = −i
msx

4�h̄2 e−qx |x−x′|
[
�k̄y p̄x

px
eipx |x−x′| − �k̄y p̄x

px
e−ipx |x−x′|

]
(1 + σ̂1)
(p2

1+)iσ̂2

− i
msx

4�h̄2 e−qx |x−x′|
[
�k̄y p̄x

px
eipx |x−x′| − �k̄y p̄x

px
e−ipx |x−x′|

]
(1 − σ̂1)
(p2

1−) iσ̂2, (B14)

= −i
e−qx |x−x′|

2�h̄vF
i�k̄y sin px(x − x′)[n+(ky) + n−(ky)σ̂1]iσ̂2. (B15)

To obtain the Green’s function at a surface, the four parts of the Green’s function in a uniform superconductor are necessary.
We supply them as follows:

Ĝiωn (x − x′) = − m

2�nh̄2

e−qx |x−x′|

px
[ih̄ωn cos(px|x − x′|) − �n sin(px|x − x′|)][n+(ky) + n−(ky)σ̂1], (B16)

F̂iωn (x − x′) = − m

2�nh̄2

e−qx |x−x′|

px
�p̄xk̄y i sin px(x − x′)[n+(ky) + n−(ky) σ̂1]i σ̂2, (B17)

−Ĝ
˜

iωn (x − x′) = − m

2�nh̄2

e−qx |x−x′|

px
[ih̄ωn cos(px|x − x′|) + �n sin(px|x − x′|)][n+(ky) − n−(ky)σ̂1], (B18)

−F̂
˜

iωn (x − x′) = − m

2�nh̄2

e−qx |x−x′|

px
�p̄xk̄y i sin px(x − x′)[−n+(ky) + n−(ky) σ̂1]i σ̂2, (B19)
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where �n =
√

(h̄ωn)2 + �2
k and the particle-hole transformation is expressed by

X
˜

iωn (x, ky) = X ∗
iωn

(x,−ky) (B20)

in this representation.
The solution of the Gor’kov equation for Ȟ2 is represented as

Ĝε (x − x′) = 1

2π

∫ ∞

−∞
dk eik(x−x′ ) 1

2

[
(ε + ξ2,+)(1 + σ̂2)

(ε + iδ)2 − E2
2,+

+ (ε + ξ2,−)(1 − σ̂2)

(ε + iδ)2 − E2
2,−

]
, (B21)

F̂ε (x − x′) = 1

2π

∫ ∞

−∞
dk eik(x−x′ ) �k

2

[
1 − σ̂2

(ε + iδ)2 − E2
2,−

+ 1 + σ̂2

(ε + iδ)2 − E2
2,+

]
iσ̂2. (B22)

Within first order α, the retarded Green’s functions in an infinitely long superconductor are calculated as

Ĝε (x − x′) = −i

� h̄vkx

e−qx |x−x′|[ε cos kx|x − x′| + i� sin kx|x − x′|], (B23)

F̂ε (x − x′) = −i

� h̄vkx

e−qx |x−x′|[i�k sin kx(x − x′) + α � k̄y cos kx(x − x′)σ̂2] iσ̂2. (B24)

Here we apply the relation

I2,± = 1

2π

∫ ∞

−∞
dk eik(x−x′ ) f (k, ξ2,±)

(ε + iδ − E2,±)(ε + E2,±)
, (B25)

= −i
e−qx |x−x′|

2�h̄vx
[ f (∓αkF + sxkx,�) eikx |x−x′| + f (∓αkF − sxkx,−�) e−ikx |x−x′|], (B26)

where vx = h̄kx/m, and kx =
√

k2
F − k2

y is a real wave number.

APPENDIX C: LIPPMANN-SCHWINGER EQUATION

The Lippmann-Schwinger equation relates the Green’s function in the presence of a perturbation Ǧ to that in the absence of
the perturbation Ǧ as

Ǧiωn (r, r′) =Ǧiωn (r, r′) +
∫

dr1 Ǧiωn (r, r1)V̌ (r1) Ǧiωn (r1, r′), (C1)

where V̌ (r) is the perturbation potential. In this paper, we introduce a wall at x = x0,

V̌ (r) = V δ(x − x0) τ̂3, (C2)

to divide an infinitely long superconductor into two semi-infinite superconductors. Thus Giωn is the Green’s function in an
infinitely long superconductor in the x direction. Although the wall breaks the translational symmetry in the x direction, the
superconductor is translationally invariant in the y direction. Therefore, it is possible to represent the Green’s function as

Ǧiωn (r, r′) = 1

W

∑
ky

Ǧiωn (x, x′)eiky (y−y′ ). (C3)

By substituting the expression into the equation, we find

Ǧiωn (x, x′) = Ǧiωn (x, x′) + Ǧiωn (x, x0)V τ̂3 Ǧiωn (x0, x′). (C4)

By setting x = x0, we obtain the Green’s function

Ǧiωn (x0, x′) = [1 − Ǧiωn (x0, x0)V τ̂3]−1Ǧiωn (x0, x′). (C5)

Finally, we obtain the relations

Ǧiωn (x, x′) = Ǧiωn (x, x′) + ǦS
iωn

(x, x′), (C6)

ǦS
iωn

(x, x′) = Ǧiωn (x, x0)V τ̂3
[
1 − Ǧ(0)

iωn
(x0, x0)V τ̂3

]−1
Ǧiωn (x0, x′). (C7)

The Green’s function at the surface of a superconductor is calculated by taking the limit of V → ∞. In the text, we input x0 = 0
and analyze Eq. (C7) near the surface 0 < x � ξ0 and 0 < x′ � ξ0, with ξ0 = h̄vF /π� being the coherence length.
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