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Topological superconductivity in semiconductor–superconductor–magnetic-insulator
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Hybrid superconductor-semiconductor heterostructures are promising platforms for realizing topological
superconductors and exploring Majorana bound state physics. Motivated by recent experimental progress, we
theoretically study how magnetic insulators offer an alternative to the use of external magnetic fields for reaching
the topological regime. We consider different setups, where (1) the magnetic insulator induces an exchange field
in the superconductor, which leads to a splitting in the semiconductor by proximity effect, and (2) the magnetic
insulator acts as a spin-filter tunnel barrier between the superconductor and the semiconductor. We show that
the spin splitting in the superconductor alone cannot induce a topological transition in the semiconductor.
To overcome this limitation, we propose to use a spin-filter barrier that enhances the magnetic exchange and
provides a mechanism for a topological phase transition. Moreover, the spin-dependent tunneling introduces a
strong dependence on the band alignment, which can be crucial in quantum-confined systems. This mechanism
opens up a route towards networks of topological wires with fewer constraints on device geometry compared to
previous devices that require external magnetic fields.

DOI: 10.1103/PhysRevB.103.104508

I. INTRODUCTION

Topological superconductivity has been predicted to ap-
pear in one-dimensional spin-orbit coupled semiconductors
proximitized by an s-wave superconductor. In these systems,
an external magnetic field causes the gap to close. In the
presence of a strong spin-orbit interaction, the gap reopens,
leading to a topological phase [1,2]. The quantum phase tran-
sition brings the system into the topological regime when

V 2
Z > μ2 + �2, (1)

where VZ is the Zeeman energy, μ the semiconductor chem-
ical potential, and � the superconducting pairing potential.
In the topological phase, the system behaves as a spinless
p-wave superconductor and Majorana bound states appear at
the edges of the system. These states have been proposed to
be used for topological quantum computation [3,4]. Follow-
ing this idea, different hybrid semiconductor–superconductor
(Sm–Sc) platforms have been proposed to exhibit topolog-
ical superconductivity, such as proximitized nanowires [5],
selective-area-grown wires [6], and two-dimensional electron
gas (2DEG) systems [7–10].

One limitation of these platforms is the requirement of
external magnetic fields to induce the topological phase
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transition. External magnetic fields have several drawbacks as
they are detrimental to superconductivity and the topological
phase is very sensitive to the relative orientation between the
magnetic and the spin-orbit fields. This problem becomes
even more evident when considering more complicated ge-
ometries featuring several nanowires that cannot be aligned
in the same direction, like the ones proposed to demonstrate
Majorana non-Abelian statistics in real space [11–13].

Magnetic materials are alternatives to the use of external
magnetic fields. This idea was discussed by some early works
in the field, where magnetic insulators (MIs) were used to
induce a spin splitting by means of stray fields [14,15]. In
addition, clean interfaces with a MI also lead to exchange
fields in the proximitized materials, which provide a more
effective way to control the local spin splitting.

Developments in the fabrication technology have enabled
the integration of thin layers of the MI EuS in the hybrid
Sm–Sc InAs-Al nanowires with excellent interface quality
[16–18]. This material has also been tested in combination
with Au showing signatures consistent with the presence of
Majorana bound states [19].

In experiments with ferromagnetic hybrid nanowires, spec-
troscopic measurements have shown the onset of a zero-bias
conductance peak which has been interpreted as a signature of
localized Majorana bound states at their ends [20]. This sig-
nature has been detected only when the Al and the EuS layers
overlap [Fig. 1(a)]. Samples with nonoverlapping facets, like
Fig. 1(b), have shown no signatures of topological phases.
This behavior is in contrast with expectations that the main
effect of MIs is to induce an exchange field in the Sm [21].

In these devices, however, the induced exchange field in
the Sm is weak and short range [18,20]. For this reason, the
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FIG. 1. Sketch of the cross section of a Sm nanowire in proximity
to a Sc and a MI. (a) Sm nanowire with partially overlapping Sc
and MI, where a zero-bias peak has been recently reported [20].
(b) Sm nanowire with no overlap between the Sc and MI layers,
which did not show signatures of topological superconductivity [20].
(c) Sm nanowire with completely overlapping Sc and a thin MI layer.
Measures of devices of the kind shown in (c) have not been reported
yet.

topological transition requires tuning the electrostatic gates, as
pointed out by recent theory works [22–24]. Another effect of
the MI layer is to induce an exchange field in the Sc due to the
proximity effect taking place at the Sc–MI interface [25,26].
Many experimental works have verified a strong effect of MI
on thin Sc layers in terms of an induced spin splitting of the Sc
density of states [27–32]. Excluding a direct effect of the MI
on the Sm, an alternative explanation can be that the spin-split
Sc induces superconductivity and exchange field at the same
time in the Sm. In this case, the relevant exchange coupling
would be directly between the MI and the Sc [20].

In this paper, we provide a theory for the combined super-
conductivity and magnetic proximity effect in Sc–MI–Sm and
MI–Sc–Sm heterostructures, as illustrated in Fig. 2. We show
that the combined magnetic and superconducting proximity
effects of a spin-split Sc cannot induce a topological transition
in the Sm by themselves. To overcome this limitation, we
propose a new heterostructure layout where a thin film of MI
between the Sm and the Sc leads to a spin-dependent tunnel
barrier [Fig. 1(c)]. Our proposal exhibits a parameter region
where topological superconductivity is present in the Sm for
strong enough spin-dependent tunneling.

II. MODEL

A MI layer can induce several effects in the Sm–Sc device,
depending on the heterostructure layout, as shown in Fig. 2.

One of the effects of the MI layer is the induction of an
exchange field in both the Sm and the Sc. This is due to
the microscopic scattering interactions between the electrons
and the localized magnetic moments in the MI. We can de-
scribe the effect of the interface through a Heisenberg-like
term Hint = −J

∫
d3r SMI · S, which describes the coupling

between the spin density of the metals S and the localized
spins in the insulator, SMI. The coupling strength J is related
to the exchange integral between the localized orbitals and the
free electron. This coupling strength is, in principle, different
for the conduction band electrons of the MI and the elec-
trons in the proximitized material [33]. These considerations
apply to ferromagnetic materials as well as antiferromag-
netic insulators [34]. We consider the Sc layer width smaller
than the superconducting coherence length, ξ0, which is the
characteristic decay length for the induced exchange field in

FIG. 2. Sketch representing the proximity effects in the systems
considered in this work. In the illustrations, V MI is the native ex-
change splitting in the magnetic insulator and � and V Sc are the gap
parameter and the MI-induced exchange field in the Sc. Here, �̃ and
Ṽ are the Sc-induced gap and exchange field in the Sm. The matrix T
is the hopping matrix of the tunneling Hamiltonian coupling the two
materials. In panel (a), the MI induces an exchange field in the Sc.
The spin-split Sc is coupled to the Sm by a spin-symmetric tunneling
Hamiltonian. In panel (b), a thin magnetic insulator layer is placed
between the Sc and Sm. The MI induces an exchange field in the Sc,
also providing a spin-dependent tunnel barrier between the Sc and
the Sm. In both cases, we ignore the effect of the MI on the Sm as it
only increases Ṽ close to the interface to the MI.

a Sc–MI heterostructure [26]. In the experiments [20], the
SC and MI layers have a width of few nanometers while
the typical size of a magnetic domain in the EuS is ∼10ξ0

for EuS-Al heterostructures [31]. Since the dimensions of
the systems under consideration are smaller than ξ0, we can
disregard inhomogeneities and assume that the MI induces a
homogeneous exchange field in the Sc, which couples to the
spin of the electrons by the Zeeman term HZ = VSc · σ.

In this work we disregard the induced exchange field in
the Sm as experimental evidence suggests that it is small
in the tested devices [18,20]. We note that recent theoretical
works suggest that it can lead to topological superconductiv-
ity by careful control of the gate voltages [22–24]. A direct
MI-induced exchange field in the Sm would provide an en-
hancement of the Zeeman energy in the Sm, enlarging the
topological region in our case. We also neglect the magnetic
orbital effects induced by the stray field of the MI as they are
usually weaker than the ones induced by the exchange field
[16].

If the MI considered is a magnetic semiconductor like EuS,
the conduction band is not accessible at low temperatures. The
modest band gap can be used to fabricate spin-filter tunnel
barriers, using thin films, that allows spin-dependent tunneling
through it when placed between two metallic regions [33]. The
proposed setup is illustrated in Fig. 2(b).

In the following, we compare the two different situations
represented in Fig. 2. For the case shown in Fig. 2(a), the MI
only causes a spin splitting in the Sc density of states. This
situation is relevant for the geometry shown in Fig. 1(a) where
a thick MI layer is placed in between the two materials such
that the tunneling is strongly suppressed [20]. In Fig. 2(b) we
show a different situation where a thin layer of MI is placed in
between the Sc and Sm working as a spin-filter tunnel barrier,
having a weak effect on the Sm density of states. This case
applies to the device geometry shown in Fig. 1(c) but could
also be relevant in the case of Fig. 1(a) if the MI layer is
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sufficiently thin and, therefore, all the interfaces contribute to
the tunneling processes.

To simplify the treatment, we consider a translation-
invariant system along the longitudinal direction, z, consisting
of a single-channel Sm coupled to a Sc. The complete Hamil-
tonian of the system reads

H = HSm + HSc + Ht. (2)

The Sm is described by

HSm =
∑

pz

(
p2

z

2m∗
Sm

− μSm

)
c†

pz
σ0cpz + pzc

†
pz
αxσycpz , (3)

where we use the spinors cpz = (cpz↑, cpz↓) and cpzσ is the
electron annihilation operator in the Sm, while αx is the spin-
orbit coupling strength.

The bare Hamiltonian for the Sc is given by

HSc =
∑
npz

ξnpz a
†
npz

σ0anpz + a†
npz

VSc · σanpz

+ (a†
npz

�npz iσya†
n−pz

+ H.c.), (4)

where anpz is the electron annihilation operator for the mode n

in the Sc and ξnpz = p2
z

2mSc
+ εn − μSc. We neglect the possible

superconductive interband coupling and we assume singlet
pairing in the parent superconductor gap matrix �npz =
�0,npzσ0. As anticipated, our Sc model features a homoge-
neous exchange field VSc = Vzez induced by the nearby MI,
which we consider to be aligned to the wire. A piece of crucial
information is the distribution of the transverse modes in the
Sc, εn, which strongly depends on the device geometry. The
energy separation between transverse modes can range from
a value larger than the superconducting gap for very thin Sc
film to zero for a bulk superconductor, where the modes above
the gap form a continuum.

The Sc and Sm regions are coupled through a spin-
dependent, momentum conserving, tunneling Hamiltonian

Ht =
∑
npz

(c†
pz

Tnpz anpz + H.c.), (5)

where the hopping matrix Tnpz describes the electron tunnel-
ing processes taking place at the interfaces between the two
materials. We write Tnpz in the basis of Pauli matrices Tnpz =
t0,npzσ0 + ∑

i ti,npzσi. In the following, we set tx,npz = ty,npz =
0 as they are negligible for a uniformly polarized MI layer.
Moreover, we consider only the case of real and positive t0,npz

and tz,npz . This is justified as we are assuming that spin-orbit
coupling is absent in the Sc. An extended derivation with all
the terms can be found in Appendix A3.

The bare Sc retarded Green’s function in the basis of time-
reversed pairs reads

GR
Sc(ω, n, pz ) = [(ω + i0+)τ0σ0 − ξnpzτzσ0

− �npzτxσ0 − Vzτ0σz]
−1, (6)

where the τi are the Pauli matrices in the particle-hole space.
In this work we ignore any back action of the Sm on the Sc as
the electron density in the Sm is orders of magnitude smaller
than the one in the Sc.

The retarded Green’s function of the Sm reads
GR

Sm(ω, n, pz ) = [ω + i0+ − HSm(pz ) − 	(ω, pz )]−1 where
the self-energy 	(ω, n, pz ) = ∑

n Tnpz G
R
Sc(ω, n, pz )T †

npz

describes the coupling to the Sc. This allows us to write a
low-energy effective model for the Sm. Since we focus on the
the quantum phase transition characterized by the gap closing,
we work with the effective Hamiltonian Heff = HSm + H̃0

where the induced Hamiltonian is H̃0 = 	(ω = 0). We
can split the effective Hamiltonian into three different
contributions:

H̃0 =
∑

pz

c†
pz
μ̃(pz )σ0cpz + c†

pz
Ṽz(pz )σzcpz

+ [c†
pz
�̃(pz )iσyc†

−pz
+ H.c.], (7)

with �̃(pz ) = �̃0(pz )σ0 + ∑
i �̃i(pz )σi. These three terms

describe the shift in the chemical potential, the induced ex-
change field and the induced superconducting gap matrix in
the Sm. The explicit forms of these contributions are

Ṽ (1)
z (pz ) =

∑
n

Vz
(
t2
0,npz

+ t2
z,npz

)
ξ 2

npz
+ �2

0,npz
− V 2

z

, (8)

Ṽ (2)
z (pz ) =

∑
n

−2ξnpz tz,npz t0,npz

ξ 2
npz

+ �2
0,npz

− V 2
z

, (9)

�̃0(pz ) =
∑

n

�0,npz

(
t2
0,npz

− t2
z,npz

)
ξ 2

npz
+ �2

0,npz
− V 2

z

, (10)

where we have divided the induced Zeeman term into two
contributions Ṽz = Ṽ (1)

z + Ṽ (2)
z . The first one is proportional to

the splitting in the parent Sc (8), while the second one is linked
to the spin-asymmetric tunneling amplitude of the barrier tz
(9). If we include the energy dependence, a triplet component
�̃z is also present, vanishing for ω = 0. Therefore, only the
singlet pairing �̃0 is important to describe the topological
transition. We assume that the parent Sc pairing potential is
constant along pz, �0,npz = �0,n. This is justified since the
length of the wire is comparable to the Sc coherence length.
For thin films, �0,n is approximately constant for each band,
even if different from the bulk value [35]. For this reason, we
further simplify the model by assuming the gap to be equal for
each transverse mode of the Sc, i.e., �0,n = �0.

III. RESULTS

A. Semiconductor symmetrically coupled to a spin-split
superconductor

In this section, we show that the combined superconduct-
ing and exchange proximity effects induced by the coupling to
a spin-split Sc cannot induce, alone, a topological transition
in the Sm. We consider a system like the one sketched in
Fig. 2(a), where MI induces a spin splitting in the Sc. The
Sc, in turn, induces superconductivity and an exchange field
in the Sm. To check the presence of topological phases, we
calculate the ratio between the induced exchange field, Ṽz,
and the gap, �̃0. The topological phases appear when the
condition in Eq. (1) is met, which leads to a closing of the
superconducting gap at pz = 0. For this reason, we focus on
this point in momentum space in the following. A necessary
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condition to satisfy the inequality is having a gap polarization
ratio |VZ/�| > 1.

Taking the ratio of Eqs. (8) and (10) for tz = 0, we see that∣∣∣∣ Ṽz

�̃0

∣∣∣∣ =
∣∣∣∣ Vz

�0

∣∣∣∣, (11)

so the induced gap polarization ratio in the Sm is the same as
in the Sc.

The gap polarization ratio |V Sc/�0| has to be less
than unity in the parent Sc, otherwise superconductiv-
ity is suppressed in the whole device. In the case of a
large homogeneous Sc, this ratio is limited by the stricter
Chandrasekhar-Clogston bound, which dictates that a finite
superconducting gap can only be maintained if |V Sc/�0| <

1/
√

2 [36,37]. In thin Sc films, quantum confinement causes
an increase of the superconducting pairing amplitude lead-
ing to a superconductive phase that survives under stronger
exchange fields. However, the Chandrasekhar-Clogston limit
still holds in terms of gap polarization ratio [35]. Even below
this limit, the gap parameter in a clean Sc subjected to strong
exchange fields ceases to be spatially homogeneous [38,39].
Therefore, it is not possible to obtain topological phases by
coupling a spin-split Sc to a Sm.

This result is independent of the mode distribution in the
Sc within the constant �0 and Vz approximation [40]. The
same result is found for a continuous flat density of transverse
modes in the Sc where �0 is taken finite and constant for
a wide range of energies being zero otherwise, as shown in
Appendix B. In this case, the Zeeman term can be weakly en-
hanced, but this effect is totally negligible in realistic systems.
This result can be generalized to the case where a multimode
Sm is coupled to a multimode Sc as discussed in Appendix
A2.

B. Spin-dependent tunneling

We consider now the case of a spin-asymmetric tunneling
between the Sc and the Sm, taken as momentum independent
for simplicity and described by T = t0σ0 + tzσz. As Eqs. (8)–
(10) show, the induced terms in the effective Hamiltonian are
dependent on the distribution of the transverse modes in the
Sc with respect to the chemical potential. In particular, they
decay with the energy difference between the bottom of the
Sc subband and the chemical potential. This means that the
modes closer to the Sm Fermi energy give the dominant con-
tribution to the induced superconducting pairing and exchange
fields at pz = 0.

We first analyze the contribution of an isolated Sc mode
to the effective Hamiltonian, as the ones from the different
modes add up. The behavior of the induced term in the ef-
fective Hamiltonian is illustrated in Fig. 3. The two terms of
the induced exchange field V (1)

z and V (2)
z sum constructively

for μSc > εn. Both Ṽz and �̃0 decay for |ξn,0| → ∞, leading
to the existence of an optimal regime where both the induced
exchange field and superconducting pairing are maximal and
|Ṽz/�̃0| > 1. This is the ideal region for searching for topo-
logical superconductivity.

In general, a spin-dependent component ti in the tunneling
matrix enhances the collinear component in the exchange
field Ṽi, suppressing the noncollinear components in Ṽ and

−5 0 5
εn − μsc

−0.5

0.0

0.5

1.0 |Δ̃0|
Ṽ

(1)
z

Ṽ
(2)

z

|Ṽz|

FIG. 3. Induced gap �̃0 (blue line), exchange field contributions
Ṽ (1)

z and Ṽ (2)
z (dashed lines), and total spin splitting Ṽz = Ṽ (1)

z + Ṽ (2)
z

(red line) at pz = 0 induced in the Sm. We show results for a single
transverse mode of a spin-split Sc as a function of the chemical
potential in the Sc, μSc − ε0. Parameters: �0 = 1, t0 = 1, tz = 0.4,
Vz = 0.5. The area with gray background is topologically trivial
while the one with white background satisfies the condition |Ṽz| >

�̃0.

the superconducting gap in the Sm. From Eqs. (8)–(10) we
see that �̃ and Ṽ (1)

z share the same dependence on the Sc
band structure (they decay as ∼ξ−2) while having a different
prefactor which depends on the tunneling matrix. Therefore,
the spin splitting in the Sc leads to an enhancement of |Ṽz|
and provides a first mechanism to induce topological super-
conductivity in the Sm.

In contrast to Ṽ (1)
z , the second contribution Ṽ (2)

z to the
induced exchange field in the semiconductor is totally inde-
pendent of the spin polarization in the parent superconductor.
This term depends solely on the spin-asymmetric component
of the tunneling Hamiltonian. Moreover, Ṽ (2)

z has an energy
dependence ∼ξ−1, with a sign that depends on the relative
position of the mode to the Sc Fermi energy. Since �̃0 and
Ṽ (1)

z decay as ∼ξ−2, Ṽ (2)
z dominates as the energy difference

between the Sm and Sc modes increases. This contribution
exhibits a sign change, which leads to a cancellation of Ṽ (2)

z in
the limit of small energy separation between modes. However,
in thin Scs, the transverse modes can exhibit a large energy
separation because of quantum confinement effects.

This result suggests that there are two different mecha-
nisms that can drive the system to the topological phase.
First, the spin-dependent tunneling enhances the induced
gap-polarization ratio of the spin-split superconductor. Al-
ternatively, the spin-dependent tunneling combined with the
quantum confinement in the Sc can lead to the appearance of
the topological phase in regimes where, otherwise, the phase
diagram would be globally trivial.

C. Combined proximity effect dominated by one transverse
mode

If the separation between transverse modes in the Sc is
large enough, the contribution of the mode closest to the
chemical potential dominates over the other ones. We can
visualize this system like two coupled one-dimensional wires,
where one features both spin splitting and superconductivity
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FIG. 4. Phase diagram for a single mode Sm coupled to a sin-
gle mode Sc. We represent the effective gap in the Sm |�eff | =
minn,pz En,pz , where En,pz are the Hamiltonian eigenvalues and the
sign is given by the topological invariant WZ2 (Appendix C). The
black dashed lines demarcate the boundaries of the topological
region (red color), described by Eqs. (12). We have set Vz = 0,
which leads to Ṽ (1)

z = 0. The remaining parameters are μSc/�0 =
10, m∗

Sc = 1, m∗
Sm = 0.25, αx/�0 = 5. For the left panel we take

t0 = 5 while for the right panel μSm/�0 = 1.

while the other features only spin-orbit coupling. In the rest
of this section, we set the energy of the bottom of the single
Sc band to zero, ε0 = 0, as it only causes a shift of the energy
scale. In this way μSc = −ξ0,pz=0.

The topological transition can occur when the induced
exchange field is larger than the induced gap. In this specific
case, both the spin splitting and the superconducting pairing
are inherited by the parent Sc, while the effective chemical
potential is the sum of the bare nanowire electrochemical po-
tential and the renormalization term induced by the proximity
effect. To identify the critical lines, we impose the condition
Ṽ 2

z = (μSm + μ̃)2 + �̃2
0. To simplify the calculation, we take

the limit �0 → 0 as the chemical potential of the Sc is usually
much bigger than the gap parameter. In this way, we find the
analytical conditions

tz = +t0 ± √+VzμSm + μSmμSc,

tz = −t0 ± √−VzμSm + μSmμSc.
(12)

This result allows us to identify the regions in the parameter
space where the topological phases exist. The same result can
be obtained by calculating analytically the Pfaffian invariant
of this system, as shown in Appendix C. An illustration of
the phase diagram of this simple system is shown in Fig. 4,
where topological superconductivity appears for a relatively
wide range of parameters. Except for very low tunneling am-
plitudes, topological superconductivity is present in the region
where tz/t0 ∼ 1, which is the point corresponding to one spin
tunneling component being completely suppressed (perfect
spin filter). A strong polarization of the barrier, however, tends
to suppress the induced gap, closing it for tz/t0 = 1. The
topological region can be enlarged by controlling the chemical
potential of the Sm and Sc. The size of the topological region
depends on the product μSmμSc, as shown in Eqs. (12).

The first conclusion is that the effect of the spin splitting
of the Sc is negligible for realistic parameters, as it appears
summed to the Sc Fermi energy which is many orders of mag-
nitude bigger [Eqs. (12)]. Analyzing the behavior with respect
to the tunneling parameters, it can be noticed that there exists
a region corresponding to t0 ∼ ±√−VzμSm + μSmμSc, where
a small polarization of the barrier can induce a topological
phase with a relatively big gap. Since the chemical potential
in the nanowire is tunable using electrostatic gates, it is, in
principle, possible to set the operating point of the device near
this optimal point.

D. Superconductor with several relevant transverse modes

In a more realistic scenario, the Sc features many trans-
verse modes. In this case, Eqs. (8)–(10) explain how the
induced terms in the Sm effective Hamiltonian are determined
by the sum of the contributions of each mode. The relative
energy of the transverse modes in the Sc strongly affects the
gap polarization in the Sm, becoming a critical factor for
the appearance of the topological phase. For the systems of
interest, the dimensions of the Sc section vary from a few to
hundreds of nanometers. For small length scales, the effect
of quantum confinement separates the Sc subbands such that
it is not possible to treat the density of state like a contin-
uum. Both �̃0 and Ṽ (1)

z have a Lorentzian shape with a full

width at half maximum 
 =
√

�2
0 − V 2

z . We can use 
 as
a reference to distinguish between discrete modes, δε 	 
,
and a continuum distribution of modes, δε 
 
, where δε

is the average separation of modes. Indeed, if the average
energy separation between the transverse modes is δε � 
,
the resonance peaks do not overlap entirely and the resonance
peaks of V (2)

z do not completely cancel out. In this case, the
net exchange field experienced in the Sm will be due to the
sum of the contribution of each transverse mode.

To provide clearer picture, we consider the case where the
band structure of the Sc can be described by perfectly equidis-
tant transverse modes. In this case, δε is the relative separation
between the Sc modes. This approximation recovers the con-
tinuum limit for a 2D system, where we expect a constant
density of transverse modes gm = (δε)−1. We also define δμSc

as the relative position of the Fermi energy in the Sc from the
middle of the band. We proceed by summing up the modes
contributions following Eqs. (8)–(10) to calculate the value
of the induced terms in the effective Hamiltonian (calculation
details can be found in Appendix D). The behavior of the
induced terms for pz = 0 is illustrated in Fig. 5.

By varying the chemical potential in the Sc, as the sub-
bands cross the Fermi energy we see an alternation of trivial
regions (gray background) and regions where topological
superconductivity can appear by tuning μSm (white back-
ground). This behavior is more clearly illustrated by the
topological invariant and the effective gap, shown in Fig. 6.
In this figure, the effective gap is given by the smallest eigen-
value of the effective Hamiltonian (7).

The observation of an alternation of topological and trivial
phases while varying δμSc is consistent with Fig. 5. The
limit gm 
 1/�0 corresponds to a large Sc where the ef-
fect of quantum confinement becomes completely negligible.
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−20 −10 0 10 20
δμsc

−0.5

0.0

0.5

1.0 Δ̃

Ṽ
(1)

z

Ṽ
(2)

z

|Ṽz|

FIG. 5. Induced gap �̃0 (blue line), exchange field contributions
Ṽ (1)

z and Ṽ (2)
z (dashed lines), and total spin splitting Ṽz = Ṽ (1)

z + Ṽ (2)
z

(red line) at pz = 0 in the Sm in the case of a multimode Sc.
Parameters: �0 = 1, t0 = 1, tz = 0.4, Vz = 0.5, δε = 10. The area
with gray background is topologically trivial while the one with
white background satisfies the condition |Ṽz| > �̃0. The effect of the
resonance peaks in Ṽ (2)

z cause an oscillation between topologically
trivial and nontrivial phases while varying the chemical potential in
the Sc.

This behavior can be realized if the average separation of
the transverse modes is such that δε 
 
. In this limit, the
contributions from each mode overlap leading to a globally
trivial or topological phase, depending on the polarization
of the spin-filter barrier tz/t0. A quantitative criterion can be
obtained by integrating Eqs. (8)–(10) over a constant density
of transverse modes as shown in Appendix B. In this limit, the
term in Eq. (9) vanishes and we get for the gap polarization∣∣∣∣ Ṽz

�̃0

∣∣∣∣ =
∣∣∣∣ Vz

�0

∣∣∣∣
∣∣∣∣ t2

0 + t2
z

t2
0 − t2

z

∣∣∣∣. (13)

We note that the spin-dependent tunneling leads to an
enhancement of the induced exchange field, while reducing
the induced superconducting gap. This effect can be used to
bring the induced gap polarization ratio above 1, closing the
gap at pz = 0 and inducing a quantum phase transition to the
topological phase. Therefore, the spin-asymmetric tunneling
provides a way to overcome the limitation of Eq. (11) and to
induce a phase transition to the topological phase, Fig. 2(b).
The topological phase appears for a barrier polarization

tz
t0

>

√
1 − |Vz/�0|
1 + |Vz/�0| . (14)

IV. DISCUSSION

In this section, we discuss the applicability of the spin
tunneling mechanism for generating topological superconduc-
tivity to the case of EuS-Al-InAs platforms.

EuS is a magnetic semiconductor with an optical band gap
of Eg = 1.65eV, which can be effectively tuned by quantum
confinement and, therefore, it depends on the film thickness
[41]. The magnetic properties of this material are attributed
to the Eu atoms which are characterized by strongly localized
half-filled 4 f shells. They behave as localized spins with a
magnetic moment of around 7μB. For this reason, the EuS

FIG. 6. Phase diagram for a single mode Sm coupled to a multi-
mode Sc, showing the effective gap in the Sm |�eff | = minn,pz En,pz ,
where En,pz are the Hamiltonian eigenvalues and sign given by the
topological invariant WZ2 . We observe an oscillation between the
topological (red) and trivial (blue) phases as we vary the chemical
potential measured from the middle of the band δμSc. As the density
of transverse modes gm increases, the peaks get closer and overlap
until they merge in the continuous limit gm 	 (�0)−1. In the con-
tinuum limit, the system is in a globally trivial or topological phase,
depending on the condition in Eq. (14). We assume that the chemical
potential in the Sm is tuned such that μSm = −μ̃. Parameters used:
m∗

Sc = 1, m∗
Sm = 0.2, αx/�0 = 20, Vz/�0 = 0.5, t0/�0 = 1. For the

left panel we use tz/�0 = 0.4, while for the right panel we use
tz/�0 = 0.7.

can be well described as a Heisenberg ferromagnet with a
Curie temperature of Tm = 16.6K [42,43]. The magnetization
induces a splitting of the conduction band of around �Ec =
0.36eV [44]. These properties are very promising in the view
of fabricating spin-filter tunnel barriers.

As discussed in the previous section, the behavior of the
system is strongly dependent on the band structure of the Sc,
which is controlled by the dimension of the Al region. If a
wide Al shell is used, the transverse modes of the nanowire
will be densely distributed in the energy spectrum. In this case,
Ṽ (2)

z vanishes and topological superconductivity can only be
induced using the spin-asymmetric tunneling to enhance Ṽ (1)

z

and suppress �̃0, Eq. (13).
To check if the ferromagnetic hybrid nanowire is in this

regime, we can estimate the average mode separation by a
simple particle in a box model δε � h̄2

2m∗
Sc

π2

L2
Sc

, where LSc refers
to the largest dimension of the cross section of the Sc shell.
Assuming that 
 ∼ 100 μeV, which is in line with the ex-
perimental measurements of Al-EuS heterostructures [20,31],
we estimate that, in order to observe well-separated modes,
the maximum dimension of the shell should be in the order of
60 nm. In experiments, the facet length is around 60 nm [20].
For this reason, we expect the contributions of the modes in
the Sc to overlap significantly.

Previous measurements performed on EuS-Al heterostruc-
tures have shown a polarization of around 50% of the gap
[31]. In this case, applying (14), we can estimate that a spin-
dependent barrier with a 58% polarization is enough to bring
the Sm to the topological regime.
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Estimating the optimal magnetic barrier length to achieve
this polarization is a complicated task as strong spin-polarized
band bending is expected at the interfaces. As the barrier gets
thicker, we expect a stronger polarization, but at the same
time, the coupling between the two systems gets strongly
suppressed. Therefore, the optimal barrier length would be
determined by the trade-off between a strongly polarizing
thick barrier, which, however, suffers low transparency, and
a thin transparent barrier with low polarization.

The introduction of MI in 2DEG is more challenging as the
geometry and fabrication constraints make the introduction
of Sc–Sm, MI–Sm, and MI–Sc interfaces at the same time
particularly complicated. The use of MI as a spin-filter tunnel
barrier simplifies the design of topological quantum devices
by eliminating the need of the Sc–Sm interface. Using this
new operating principle, the geometry sketched in Fig. 2(b)
can provide a viable alternative to achieve zero-field topolog-
ical superconductivity in 2DEG devices.

Finally, we note that both nanowires Sc shell and Sc layers
in the 2DEG system are around 5 nm thick, so we can already
expect a measurable effect of quantum confinement in this
direction. For this reason, we expect that the resonance effect
discussed previously can be measured by scaling down the
width of the devices.

V. CONCLUSIONS

In this work, we have demonstrated that a spin-split super-
conductor cannot induce, alone, topological superconductivity
in a spin-orbit coupled semiconductor by the combined su-
perconducting and magnetic proximity effect. This is in
contradiction with the hypothesis that an exchange field in
the superconductor can induce a topological transition in the
semiconductor. We have shown how a spin-filter tunnel bar-
rier, provided by a thin magnetic insulating layer between
the semiconductor and the superconductor, can be used to
overcome this limitation. The spin-dependent tunneling sup-
presses the induced superconducting pairing potential while
enhancing the spin splitting, thus providing a way to bring the
system to the topological phase. In the case of a distribution
of discrete modes in the superconductor, the phase diagram
exhibits an alternation of trivial and topological regions as a
function of the chemical potential of the superconductor due
to a change on the sign in the contributions to the exchange
field. The total induced exchange field strongly depends on
the relative energy difference between the closest levels to
the Fermi energy in the superconductor. While this mecha-
nism is unlikely to explain the results in Ref. [20] because
of the relatively thick EuS layer used, the concept of spin-
dependent coupling can be exploited in the next generation of
topological superconducting devices without magnetic field.
Spin-filter tunnel barriers can be achieved by depositing a thin
film of few nanometers of a ferromagnetic insulator at the
interface between the superconductor and the semiconductor.
The proposed mechanism is compatible with the currently
used hybrid superconductor-semiconductor platforms, includ-
ing nanowires and 2DEG systems.

Note added. Recently, several independent papers on the
same subject have been made publicly available as preprints.
The result concerning the impossibility of topological
phases by superconductor-mediated exchange field has been

extended to generic systems in terms of a more general re-
quirement about the minimal Zeeman field required for a
topological phase transition [45]. The ferromagnetic hybrid
nanowire physics has been explored using a self-consistent
treatment of a diffusive superconductor in Ref. [46]. The
results are in agreement with the ones presented in our work.
Another independent work has found that perfectly clean sys-
tems with an extremely thin superconductive layer could be
used to obtain topological phases in the MI–Sc–Sm stack [47].
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APPENDIX A: COMPLETE SELF-ENERGY
CALCULATION

In this Appendix, we discuss more in detail the self-energy
model employed to derive the effective Hamiltonian discussed
in Eq. (7). We derive the model, discussing the frequency
dependence, the presence of multiple modes in the Sm, and
the effect of a general hopping matrix with arbitrary direction
of the magnetization axis. Our model consists in a translation-
invariant system composed by a Sm region coupled to a Sc
in which an exchange field is induced by the nearby MI. This
system is described by the Hamiltonian

H = HSm + HSc + Ht, (A1)

where the three terms read

HSm =
∑
mpz

ζm(pz )c†
pz
σ0cpz +

∑
pz

pzc
†
pz
αxσycpz , (A2)

HSc =
∑
npz

ξn(pz )a†
npz

σ0anpz + Vza
†
npz

σzanpz

+ [a†
npz

(iσy�npz )a†
n−pz

+ H.c.], (A3)

Ht =
∑
mnpz

c†
mpz

Tmn(pz )anpz + H.c. (A4)

We adopt the spinor basis cpz = (cpz↑cpz↓), where cpzσ is
the electron annihilation operator in the nanowire for spin
σ . Both the Sm and the Sc have a multimode structure. In
Eq. (A2), we label the Sm modes by the index m and we

write the kinetic energy as ζm(pz ) = εm + p2
z

2m∗
Sm

− μSm, where
m∗

Sm and αx are the electron effective mass and the spin-orbit
coupling parameter in the Sm. The Hamiltonian in Eq. (A3)
describes the Sc, where anpz is the electron annihilation oper-

ator for mode n with kinetic energy as ξn(pz ) = εn + p2
z

2m∗
Sc

−
μSc. Here, �npz = �0,npzσ0 is the superconducting pairing for
each band. We neglect superconducting interband coupling
and the proximity-induced exchange field by MI in the Sc, Vz.
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The two regions are coupled by a spin-dependent tunneling
Hamiltonian with hopping matrix Tmn(pz ), which takes into
account all the different electron transmission processes tak-
ing place at the interfaces between the different materials in
the device. We can write Tmnpz in the basis of Pauli matrices:

Tmn(pz ) = t0,mn(pz )σ0 +
∑
l=xyz

tl,mn(pz )σl , (A5)

where the tl,mn = t ′
l,mn(pz ) + it ′′

l,mn(pz ) parameters are, in gen-
eral, complex numbers.

In the following, we will use the basis of time-reversed
pairs, where τi are Pauli matrices for the particle-hole space,
being H the total Hamiltonian in this basis. In this basis, the
bare Sc retarded Green’s function reads

GR
Sc(ω, n, pz ) = [(ω + i0+)τ0σ0 − HSc]−1

= [(ω + i0+)τ0σ0 − Vzτ0σz − ξnpzτzσ0 − �npzτxσ0]−1

= 1

(ω + i0+ − Vzσ )2 − ξ 2
npz

− �2
0,npz

[(ω + i0+ − Vzσ )τ0 + ξnpzτz + �npzτx].

(A6)

The full Green’s function for the semiconductor subspace
reads

GR
Sm(ω, pz ) = 1

ω + i0+ − HSm − 	(ω, pz )
, (A7)

where HSm is the bare Sm Hamiltonian matrix and we have
defined the self-energy as

[	(ω, pz )]mm′ =
∑

n

Ht,mn(pz )GR
Sc(ω, n, pz )H†

t,m′n(pz ),

(A8)
where the Ht matrix is the tunneling Hamiltonian written in
particle-hole space

Ht,mn = [t ′
0,mn(pz )τz + it ′′

0,mn(pz )τ0]σ0

+
∑

l

[t ′
l,mn(pz )τ0 + it ′′

l,mn(pz )τz]σl . (A9)

In the next sections, we will explore in more detail different
situations outlined in the main text adopting case-by-case
assumptions and approximations.

1. Frequency dependence

We now focus on the frequency dependence of the Sm
Green’s function. For this reason, we consider a single-band
Sm, dropping the index m. We simplify the hopping ma-
trix by assuming that the tunneling matrix has the form
Tn,pz = t0σ0 + tzσz with t0 and tz real and positive. We pro-
ceed by splitting the self-energy like 	(ω, pz ) = Ẽ (ω, pz ) +
H̃ (ω, pz ) where Ẽ ∝ τ0σ0 while the frequency-dependent ef-
fective Hamiltonian H̃ (ω, pz ) contains all the other τiσ j terms.
We study a low-energy model for the semiconductor valid in
the limit ω → 0. Since we have taken the tunneling amplitude
energy independent, we can directly Taylor expand the Sc
Green’s function and consider the lowest orders in ω:

GR
Sc(ω, n, pz ) = + 1

V 2
z − ξ 2

npz
− �2

0,npz

[−Vzσzτ0 + ξnpzσ0τz + �0,npzσ0τx]

+ ω(
V 2

z − ξ 2
npz

− �2
0,npz

)2

[ − (
V 2

z + �2
0,npz

+ ξ 2
npz

)
τ0σ0 + 2Vz�0,npzσzτx + 2V ξnpzσzτz

]
+ O(ω2) .

(A10)

Introducing the expansion in the self-energy term and keeping the zeroth and first order for each component, we see that the
τ0σ0 component reads

Ẽ (ω, pz ) = −ω
∑

n

(
t2
0 + t2

z

)(
ξ 2

npz
+ �2

0,npz
+ V 2

z

) − 4t0tzV ξnpz(
ξ 2

npz
+ �2

0,npz
− V 2

z

)2 + O(ω2). (A11)

We further split the effective Hamiltonian according to
H̃ (ω, pZ ) = H̃0 + H̃1(ω, pz ) + O(ω2). The terms in H̃0 have
the same form as the ones in Eqs. (8)–(10) in the main text
and do not depend on the energy. The first-order terms in ω

are H̃1(ω, pz ) = �̃z(ω, pz )τxσz + P(ω, pz )τzσz where

�̃z(ω, pz ) = −
∑

n

ω
2
(
t2
0 − t2

z

)
Vz�0,npz(

ξ 2
npz

+ �2
0,npz

− V 2
z

)2 (A12)

and we denoted by P(ω, pz ) the remaining τzσz component.

The semiconductor Green’s function can be rewritten like

GSm(pz ) = Z (pz )

ω − Z (pz )[HSm(pz ) − H̃0(pz ) + H̃1(ω, pz )]
,

(A13)
where Z (pz ) = [1 + C(pz )]−1 with Ẽ = −ωC(pz ).

We can see that the first-order terms are proportional to

ω/
√

ξ 2
npz

+ �2
0,npz

− V 2
z < ω



. Therefore, provided that we are

interested in the |ω/�0| 
 1 region, we can ignore these
terms. This approximation breaks down in the strong-coupling
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regime, namely, when the tunneling amplitudes overcome �0.
In this case, while the phase diagram can still be studied
within the ω → 0 limit, Eq. (A12) overestimates the size of
the induced gap. For a more complete reference to the strong
tunneling regime, we refer to [48].

2. Multimode semiconductor

Our objective now is to generalize the previous study to
the case of a multimode Sm in the case of spin-symmetric
tunneling (tl = 0). Since we focus on the phase diagram, we
consider the lowest order in the effective Hamiltonian H̃0 =
	(ω = 0, pz ). The three contributions read

μ̃(pz ) =
∑

n

ξnpz

t0,mnpz t
∗
0,m′npz

ξ 2
npz

+ �2
0,npz

− V 2
z

, (A14)

Ṽ (1)
z (pz ) =

∑
n

Vz

t0,mnpz t
∗
0,m′npz

ξ 2
npz

+ �2
0,npz

− V 2
z

, (A15)

�̃0(pz ) =
∑

n

[+(t0,mnpz t0,m′npz − t ′
0,mnpz

t ′
0,m′npz

)τx

− (t ′
0,mnpz

t0,m′npz + t0,mnpz t
′
0,m′npz

)τy]

× �npz

ξ 2
npz

+ �2
0,npz

− V 2
z

. (A16)

For pz = 0, t0 real and �0,npz = �0, we can write the
effective Hamiltonian matrix as

Heff = � ⊗ σ0τz + M ⊗ (Vzσzτ0 + �0σ0τx ), (A17)

where we have defined the � matrix as

�mm′ = ζmδmm′ −
∑

n

ξnpz

t0,mnpz t0,m′npz

ξ 2
npz

+ �2
0,npz

− V 2
z

, (A18)

where ζm are the energies of the Sm modes. The M matrix is

Mmm′ =
∑

n

t0,mnpz t0,m′npz

ξ 2
npz

+ �2
0,npz

− V 2
z

. (A19)

The M matrix is Hermitian so it is diagonalizable as M =
U�U †. We can apply the unitary transformation U ⊗ τ0σ0 to
the Hamiltonian matrix and get to

Heff = U †�U ⊗ σ0τz + � ⊗ (Vzσzτ0 + �0σ0τx )

= T̂ ⊗ σ0τz +
∑

m

[ζ̂mσ0τz + λm(Vzσzτ0 + �0σ0τx )]δmm′ ,

(A20)

where the last term is the diagonal element ζ̂m. The off-
diagonal hopping terms in the matrix T̂ come from the
transformed U †�U ⊗ σ0τz. This Hamiltonian is a com-
bination of independent modes

∑
m[ζ̂mτzσ0 + λm(Vzσzτ0 +

�0σ0τx )] interacting through the spin-independent T̂ terms
which acts as a tunneling Hamiltonian for these channels. The
gap polarization ratio is given by |Vz/�0| for these channels,
which is the same as in the parent Sc. For this reason, if the
parent Sc is in a trivial state, all the modes in the Sm will
be in the trivial regime as well. The eigenmodes of the full
effective Hamiltonian will be given by superpositions of these
states. However, since we are mixing trivial states we can only
obtain trivial states as a result.

3. Case of general tunnel matrix with complex element

We now move to the case of a general tunneling matrix Tnpz

coupling a multimode Sc to a monomodal Sm (thus we drop
the index m). In this case we consider only the zeroth-order
term in ω which is the effective Hamiltonian H̃0. We can split
it into three different contributions:

H̃0 =
∑

pz

μ̃(pz )c†
pz
σ0cpz + c†

pz
Ṽ(pz ) · σcpz

+ [c†
pz
�̃(pz )c†

−pz
+ H.c.], (A21)

with �̃(pz ) = �̃0(pz )σ0 + ∑
i �̃i(pz )σi and Ṽ = Ṽ(1) + Ṽ(2).

The three terms are given by

μ̃(pz ) =
∑

n

+ξnpz (|t0,npz |2 + |tx,npz |2 + |ty,npz |2 + |tz,npz |2) − Vz[(t0,npz t
∗
z,npz

+ H.c.) + (tx,npz t
∗
y,npz

− H.c.)]

ξ 2
npz

+ �2
0,npz

− V 2
z

, (A22)

Ṽ (1)
z (pz ) =

∑
n

Vz
|t0,npz |2 + |tz,npz |2 − |tx,npz |2 − |ty,npz |2

ξ 2
npz

+ �2
0,npz

− V 2
z

, (A23)

Ṽ (2)
i (pz ) =

∑
n

−ξnpz

[(t0,npz t
∗
i,npz

+ H.c.) + (tk,npz t
∗
j,npz

− H.c.)]

ξ 2
npz

+ �2
0,npz

− V 2
z

εi jk, (A24)

�̃0(pz ) =
∑

n

�npz

(
t2
0,npz

− t2
x,npz

− t2
y,npz

− t2
z,npz

)
ξ 2

npz
+ �2

0,npz
− V 2

z

, (A25)

where εi jk is the Levi-Civita symbol. We can see that the
presence of transverse components in the tunneling matrices
causes a reduction of both the induced exchange field and
superconducting pairing potential. However, if these ampli-
tudes are complex, a nontrivial resonance contribution can
appear in the Ṽ (2)

i term enhancing the induced exchange field.
Moreover, when complex amplitudes are present the induced

gap can show interference effects due to the coupling between
the various Sc bands induced by the Sm.

APPENDIX B: BCS INTEGRATION-INDUCED GAP AND
EXCHANGE FIELD

In this section we integrate the induced gap and exchange
field due to the coupling to the superconductor. We take the
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usual BCS approximation which considers an attractive in-
teraction between electrons with absolute energies below ωD.
Therefore, the parent gap becomes finite and equal to �0 for
energies in the range [−ωD, ωD], being zero otherwise. Using
this approximation, the induced gap is given by

�̃0 = 2�0 gm
(
t2
0 − t2

z

)atan
(
ωD/

√
�2

0 − V 2
z

)
√

�2
0 − V 2

z

, (B1)

where gm is the density of transverse modes, considered to be
energy independent. The induced exchange field is given by

Ṽz = Vz gm(|t0|2 + |tz|2)
π√

�2
0 − V 2

z

, (B2)

where the superconductor bandwidth has been taken infinite
for simplicity.

For tz = 0, Ṽz/Vz � �̃0/�0, where the equal case cor-
responds to the limit ωD → ∞. Taking realistic numbers
for bulk aluminum, where ωD/�0 ≈ 200, we find (Ṽz/Vz −
�̃0/�0)/(�̃0/�0) ∼ 10−2. If we consider that the Sc prox-
imitized by the MI fulfills the Chandrasekhar-Clogston limit,
Vz < �0/

√
2 [36,37], the spin splitting cannot cause a topo-

logical transition in the Sm, unless ωD/Vz ∼ 1. We do not
expect that an energy-dependent tunneling amplitude signif-
icantly changes this conclusion.

APPENDIX C: ANALYTIC DERIVATION OF THE
PFAFFIAN

In this section we analytically derive the topological invari-
ant of the two-wires system, namely, a system composed by
a single mode Sm coupled to a single mode Sc. We can write
the Hamiltonian matrix as

H =
(HSm Ht

H†
t HSc

)
, (C1)

where the three terms read

HSm =
(

p2
z

2m∗
Sm

− μSm

)
σ0τz + αx pzσyτz, (C2)

HSc =
(

p2
z

2m∗
Sc

− μSc

)
σ0τz + Vzσzτ0 + �σ0τx, (C3)

Ht = t0σ0τz + tzσzτ0. (C4)

We proceed by rewriting the Hamiltonian in Majorana ba-
sis by using a unitary transformation HMJ = UHU † where the
transformation matrix reads

U = 1√
2

⎛
⎜⎜⎜⎝

+1 0 0 −1

i 0 0 i

0 1 1 0

0 i −i 0

⎞
⎟⎟⎟⎠ ⊗ I2, (C5)

where I2 is the 2 × 2 identity matrix.
Since the nanowire belongs to symmetry class D, the ap-

pearance of Majorana zero modes is characterized by a change
of the sign of the topological invariant

WZ2 = sgn

[
PfA(pz = 0)

PfA(pz → +∞)

]
, (C6)

where A = iHMJ [49]. The matrix A is real and antisymmetric
and thus the Pfaffian is well defined. Since the kinetic energy
dominates for large pz, the Hamiltonian approaches the one
for quasi-free electrons, which have Pfaffian PfA(pz → ∞) =
1. Therefore evaluating Eq. (C6) reduces to computing the
Pfaffian for pz = 0. Taking the limit �0 → 0 we found the
same condition described by Eq. (12).

APPENDIX D: MULTIBAND SUPERCONDUCTOR
COUPLED TO A SEMICONDUCTOR

In this section we derive expressions for the induced pa-
rameters in the Sm due to the coupling to a multimode Sc. We
consider that, in the relevant energy scale, the band structure
of the Sc can be described by Nm modes distributed in an en-
ergy range EB. For simplicity, we will take equidistant modes
with energy difference δε = EB/Nm. This is also consistent
with the continuum limit since, for a 2D system, we can
expect a density of transverse modes gm = (δε)−1 constant
in energy. We also define δμSc as the relative position of
the Fermi energy in the Sc from the middle of the band. We
proceed by summing over the mode contributions following
Eqs. (8)–(10) to derive the value of the induced terms in the
effective Hamiltonian. In the limit Nm = EB/δε 	 1 we get to

Ṽ (1)
z (pz ) � π

2
gmVz

(
t2
0 + t2

z

)cot
[
πgm

(
i
 + δμ − p2

z

2m∗
Sc

)] + cot
[
πgm

(
i
 − δμ + p2

z

2m∗
Sc

)]
i


, (D1)

Ṽ (2)
z (pz ) � πgmt0tz

{
cot

[
πgm

(
i
 + δμ − p2

z

2m∗
Sc

)]
− cot

[
πgm

(
i
 − δμ + p2

z

2m∗
Sc

)]}
, (D2)

�̃0(pz ) � π

2
gm�0

(
t2
0 − t2

z

)cot
[
πgm

(
i
 + δμ − p2

z

2m∗
Sc

)] + cot
[
πgm

(
i
 − δμ + p2

z

2m∗
Sc

)]
i


. (D3)

To simplify the expression, we can define the auxiliary functions

F (x, y) = cot(ix + y) − cot(ix − y)

2
= sin(2y)

cosh(2x) − cos(2y)
,

G(x, y) = i
cot(ix + y) + cot(ix − y)

2
= sinh(2x)

cosh(2y) − cos(2x)
. (D4)
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We finally get to compact expressions for the effective Hamiltonian terms:

Ṽ (1)
z (pz ) � πgm

Vz




(
t2
0 + t2

z

)
G

[
πgm
, πgm

(
δμ − p2

z

2m∗
Sc

)]
, (D5)

Ṽ (2)
z (pz ) � 2πgmt0tzF

[
πgm
, πgm

(
δμ − p2

z

2m∗
Sc

)]
, (D6)

�̃0(pz ) � −πgm
�0




(
t2
0 − t2

z

)
G

[
πgm
, πgm

(
δμ − p2

z

2m∗
Sc

)]
. (D7)

This expression can be used to derive the Sm effective Hamiltonian and, with a simple linear search for the minimum
eigenvalue, find the effective gap shown in Fig. 6.
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