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Floquet engineering bulk odd-frequency superconducting pairs
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We introduce the concept of Floquet odd-frequency superconducting pairs and establish their emergence
in time-periodic conventional superconductors. We show that these exotic Cooper pairs are possible because
the Floquet modes in time-periodic systems provide an additional index (a Floquet index) that broadens the
classification of superconducting pair symmetries, with no analog in the static regime. Our results thus put
forward a different route for odd-frequency superconducting pairs, and pave the way for Floquet engineered
dynamical superconducting states.
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I. INTRODUCTION

Since its discovery, superconductivity has garnered
widespread attention not only owing to its fundamental mech-
anisms but also due to its large number of applications,
making it one of the core areas in condensed matter. Recent
developments have reported a plethora of remarkable super-
conducting states, such as chiral superconductors [1], high-
temperature superconductors [2], topological superconductors
[3], superconducting metamaterials [4], magic angle super-
conductors [5], and nematic superconductors [6]. This vast
diversity of superconductors is highly reliant on the symme-
tries of their fundamental building blocks, the Cooper pairs.

The symmetries of Cooper pairs are constrained by the
fermionic nature of the constituent electrons [7], which im-
poses antisymmetry on the Cooper pair amplitude under the
interchange of all quantum numbers of the paired electrons,
including the exchange of their time coordinates. This allows
for the usual pair correlations between electronic states at
equal times, but also permits electron pairing at different
times. Remarkably, such unequal time pairing enables the
emergence of Cooper pairs with a pair amplitude that is odd
under the exchange of time coordinates or, equivalently, odd
in frequency [8–15]. Since odd-frequency (odd-ω) pair ampli-
tudes vanish at equal times, this type of pairing is intrinsically
nonlocal in time and represents a truly dynamical effect.

The emergence of odd-ω pairs has been shown to be
related to the breaking of system symmetries, and a vari-
ety of superconducting systems are believed to host these
exotic correlations [16–20]. In particular, superconducting
heterostructures [11–15,21–25] with experimental observa-
tions in ferromagnetic junctions [26–28] and superconductors
with multiple degrees of freedom [29–35] are the most notable
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examples. In heterostructures, odd-ω pairs are induced by the
breaking of spatial translation symmetry, while in multiband
superconductors hybridization between bands, which can be
seen as an intrinsic symmetry breaking effect, gives rise to
odd-ω pairs.

Despite the dynamical nature of odd-ω pairing, the over-
whelming majority of previous work has focused on static
systems and static properties of odd-ω pairing. Moreover, the
few works which have found odd-ω pairing induced by time-
dependent drives have shown that mere time dependence is
not sufficient to generate odd-ω pairing. The drive must either
break translation invariance [36] or couple nontrivially to a
band index [37]. While time-dependent drives may reduce the
order parameter [38,39], e.g., via heating, there are strategies
to mitigate this effect, for example, choosing a drive frequency
that is large compared with the relevant energy scales in the
system [40]. Additionally, external drives have even been
shown to enhance or induce superconductivity [41–48].

In this work we show that odd-ω superconducting pairs are
generically present in time-periodic superconductors, where
properties are described in terms of Floquet bands (see Fig. 1).
We find that these Floquet bands provide an additional index

FIG. 1. (a) Sketch of a superconductor, described by a static
Hamiltonian Hsc driven by a time-periodic field E (t ) with frequency
� (wiggle orange arrow). (b) Within Floquet theory the original
problem is described in terms of Floquet bands, or sidebands, labeled
by the Floquet index n, which are replicas of the undriven system
Hsc shifted by n� and coupled by U (arc black arrows), which
depend on E (t ).
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that, remarkably, broadens the classification of pair symme-
tries with no analog in the static regime. In particular, we
introduce the concept of Floquet odd-ω pairing and demon-
strate its emergence in conventional (spin-singlet, s-wave)
superconductors driven by circularly polarized light, where it
acquires a large magnitude without any fine-tuning of model
parameters, and can be controlled by the drive. The prospect
of inducing and controlling dynamical pairs by time-periodic
fields opens the route for Floquet engineered dynamical su-
perconducting correlations.

II. FLOQUET PAIR AMPLITUDES

To show the emergence of Floquet odd-ω Cooper pairs, we
first provide a general characterization of their symmetries. To
begin, we note that the pair amplitudes of any superconductor
(driven or static) are given by the anomalous Green’s function
[49,50] F σ1,σ2 (k1, k2; t1, t2)=−i〈T ck1,σ1 (t1)ck2,σ2 (t2)〉, where
T is the time-ordering operator and ck,σ (t ) annihilates an
electronic state with spin σ , momentum k, at time t . The
fermionic nature of electrons then imposes the antisymmetry
condition F σ1,σ2 (k1, k2; t1, t2) = −F σ2,σ1 (k2, k1; t2, t1), which
is responsible for the different pair symmetries [18], and in
particular allows for pair amplitudes that are odd in ω when
F σ1,σ2 (k1, k2; t1, t2) = −F σ1,σ2 (k1, k2; t2, t1).

While the antisymmetry condition applies to any two-time
pair amplitude [18], we wish to investigate the proper-
ties of pair amplitudes in Floquet systems. Therefore, we
next consider a superconductor in a time-periodic field E (t )
with period T = 2π/�, as shown in Fig. 1(a). This sys-
tem is described by a time-dependent Hamiltonian H (t )
that inherits the time periodicity of E (t ), such that H (t )
= H (t + T ). For such a time-periodic Hamiltonian, the Flo-
quet theorem [51–53] allows us to decompose the solutions
to the Schrödinger equation in terms of harmonics of the
fundamental drive frequency �. Similarly, we decompose the
anomalous Green’s function as [54],

F σ1,σ2 (k1, k2; t1, t2)

=
∑
m,n

∫
dω

2π
e−i(ω+n�)t1+i(ω+m�)t2 F σ1,σ2

n,m (k1, k2, ω) , (1)

where the coefficients Fn,m represent the Floquet pair am-
plitudes, labeled by the Floquet indices n, m ∈ Z, and ω ∈
[−�/2,�/2]. For details see the Supplementary Material
(SM) [55]. Noting that the symmetries of the quantity on
the left-hand side of Eq. (1) are constrained by the fermonic
antisymmetry condition, we obtain a constraint for the sym-
metries of the Floquet modes, Fn,m,

F σ1,σ2
n,m (k1, k2; ω) = −F σ2,σ1−m,−n(k2, k1; −ω) . (2)

Here, the exchange in Floquet indices, (n, m) → (−m,−n),
stems from the Floquet decomposition in Eq. (1), intrinsic in
two-time periodic functions [54].

From the constraint in Eq. (2) we get all possible Floquet
pair symmetries that can emerge in a time-periodic super-
conducting system, as enumerated in Table I. Remarkably,
there are four different classes of odd-ω pairs, determined
by a combination of the Floquet index, spin (singlet, triplet),
and momentum (s-wave, p-wave etc.). At first sight, it might

TABLE I. All possible symmetries for Floquet pair amplitudes
allowed by the antisymmetry condition Eq. (2).

cl
as

s

Floquet index Frequency Spin Momentum

(n, m) → (−m, −n) ω → −ω s = ±1 k1 → k2

1 Even Even Singlet Even
2 Even Even Triplet Odd
3 Odd Even Singlet Odd
4 Odd Even Triplet Even
5 Even Odd Triplet Even
6 Even Odd Singlet Odd
7 Odd Odd Triplet Odd
8 Odd Odd Singlet Even

appear that the Floquet indices (n, m) simply act as a new
kind of band index, and thus Eq. (2) is just a generalization
of the antisymmetry constraint for a multiband superconduc-
tor [20] with an arbitrarily large number of band degrees of
freedom. To show that this is in fact not the case, we note that
the antisymmetry condition for a two-band superconductor
is given by F σ1,σ2

α,β (k1, k2; ω) = −F σ2,σ1
β,α (k2, k1; −ω), where α

and β are the band indices [20]. Thus, the Floquet symmetry
constraint, (n, m) → (−m,−n), is very different from that
of a multiband superconductor. Crucially, this implies that
the Floquet pair amplitudes Fn,m can in general develop even
and odd terms in the Floquet index, which can both exhibit
even-ω or odd-ω dependence. Yet another difference with
the multiband case is that n, m ∈ Z, implying that n, m can
also be negative. Here, inter-Floquet-band amplitudes Fn,−n

must be even in the Floquet index, while intra-Floquet-band
amplitudes Fn,n can develop both even and odd terms in the
Floquet index for n �= 0, which remarkably can be both even-
ω or odd-ω. This is in stark contrast to the case of multiband
systems in which only the interband pairing can be odd in the
band index, and thus odd in frequency for even-parity, spin-
singlet superconductors. Hence, the Floquet pair amplitudes
are unique and exhibit symmetry classes with no analog in
undriven systems.

III. REALIZATION OF FLOQUET ODD-ω PAIRS

Next we show the emergence of the Floquet pair ampli-
tudes Fn,m discussed above. We consider a simple model that
both captures the essential physics of the problem and is easy
to implement experimentally: an electronic system possess-
ing a spin-singlet s-wave superconducting order parameter
� driven by a circularly-polarized light field E(t ) [56,57].
Superconductivity could be realized using a conventional su-
perconductor, or could be engineered using proximity effects
in heterostructures for additional control of � [58,59]. The
superconductor is modeled by Hsc = ξk τz + �τx in Nambu
space �k(t ) = [ck,↑(t ), c†

−k,↓(t )]T, where ξk = k2/2m − μ is
the kinetic energy with k = (kx, ky, kz ), m the effective mass,
μ the chemical potential, � considered to be an input pa-
rameter, and τi the i-Pauli matrix in Nambu space. The
effect of E(t ) is taken into account via the minimal coupling
k → k + eA(t ), where A(t ) is the vector potential, E(t ) =
−∂t A(t ), and e > 0 the elementary charge. We take A(t ) =
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A0(− sin �t, σ cos �t, 0) with period T = 2π/�, where σ =
±1 denotes left-/right-handed polarizations and � the fre-
quency of the light. Then, if we redefine μ as μ →
μ − e2A2

0/(2m), the time-dependent Hamiltonian takes the
form Hk(t ) = Hsc + Vk(t ) with Vk(t ) = (e/m)A(t ) · k τ0 a pe-
riodic function in t .

We are interested in the pair amplitudes of the time-
periodic superconducting system Hk(t ). These are the
electron-hole component of the Nambu space Green’s func-
tion Ĝ(k; t1, t2) = −i〈T �k(t1)�†

k (t2)〉, obtained by solving
the equation of motion [i∂t1 − Hk(t1)]Ĝ(k; t1, t2) = δ(t1 − t2).
Given the time periodicity of the Hamiltonian Hk(t ), we can
decompose Ĝ in terms of Floquet modes [51–53] and write the
equation of motion for Ĝ as [54]

∑
m′

[ωδn,m′ − Hn,m′ ]Gm′,m(k, ω) = δn,m , (3)

where ω ∈ [−�/2,�/2] and Hn,m′ = (Hsc − m′�)δn,m′ +
Ukδn+1,m′ + U ∗

k δn−1,m′ is the Floquet Hamiltonian. Here

Uk = (1/T )
∫ T

0 dtei�tVk(t ) = eA0/(2m)(σky − ikx )τ0

couples nearest-neighbor sidebands, which involves the
emission/absorption of a photon. Finally, the Floquet pair
amplitudes Fn,m are given by the off-diagonal elements of the
Floquet Green’s function Gn,m, see SM [55]. Note that spin
rotation symmetry is preserved such that all pair amplitudes
must be spin singlet.

The sum over Floquet modes in Eq. (3) runs in principle to
infinity, but since we focus on a finite range of ω, a truncation
of this sum approximates the exact answer well [40,54,60].
For instructive purposes, we first restrict our attention to
modes with n, m ∈ {−1, 0, 1}. Even though G can be directly
found from Eq. (3), to visualize its functional dependences
we consider the limit Uk/� � 1 and expand the Dyson’s
equation to second order in Uk/�. Here we show the main
findings, while details are found in the SM [55]. We find Flo-
quet pair amplitudes of the form Fn,m with n, m ∈ {−1, 0, 1},
and for a better analysis we decompose them into their even
and odd terms in Floquet indices as F±

n,m = (Fn,m ± F−m,−n)/2,
obtaining all nonzero amplitudes,

F+
0,0(k, ω) ≈ �

D
+ �|Uk|2A�

ω

D2D−1D1
,

F+
1,1(k, ω) ≈ �[D + �2]

D1D−1
+ �|Uk|2B�

ω

2D(D−1D1)2
,

F−
1,1(k, ω) ≈ −2ω��

D1D−1
+ 2ω��|Uk|2C�

ω

D(D−1D1)2
,

(4)

F+
1,−1(k, ω) ≈ −�[U ∗

k ]2E�
ω

DD1D−1
,

F+
0,1(k, ω) ≈ −2ω�Uk

D1D−1
,

F−
0,1(k, ω) ≈ −��UkE�

ω

DD1D−1
,

where D(ω) = ω2 − (�2 + ξ 2
k ) and Dn(ω) = D(ω + n�).

Here, A�
ω , B�

ω , C�
ω , E�

ω , and D1D−1 are even functions of k
and ω, whose explicit expressions are not necessary for our

FIG. 2. (a) Schematics of the intra- and intersideband Floquet
pairs, where black arrows represent the couplings between sidebands.
(b) Formation of the pairs in (a) involve bare and dressed processes
due to the coupling between sidebands, shown here for (i) F0,1 (blue),
(ii) F1,1 (red), and (iii) F1,−1 (magenta), with absorption/emission of
photons (orange wiggle arrows).

discussion but are given in the SM [55]. The first three ex-
pressions in Eqs. (4) describe Cooper pairs that emerge within
each sideband (intrasideband), while the last three describe
pairs between electrons in different sidebands (intersideband),
as depicted in Fig. 2(a). All these pairs contain both bare
and dressed processes due to the coupling between side-
bands via Uk, shown in Fig. 2(b) for three illustrative cases,
which involve absorption/emission of photons (orange wiggle
arrows).

The intrasideband amplitudes, F+
0,0 and F±

1,1 in Eqs. (4),
include bare contributions (first term on the right-hand side)
and corrections proportional to |Uk|2, that involve transitions
between sidebands assisted by two-photon (emission and
absorption of a photon) processes, see, e.g., process (ii) in
Fig. 2(b) and the SM [55]. We verify that higher order cor-
rections always require an even number of photons. The
amplitude for n = m = 0 is purely even in Floquet indices
F+

0,0, even-ω, and even in k, thus belonging to symmetry class
1 in Table I. Interestingly, we find that n, m = ±1 pair am-
plitudes develop both even and odd terms in Floquet indices,
F±

1,1. Here F+
1,1 is even in both frequency and momentum, thus

belonging to class 1 in Table I, while F−
1,1 instead clearly has

an odd-ω dependence even at zeroth order in Uk, which is
directly controllable by the drive frequency �. We note that
F−

1,1 is also odd in the Floquet indices but even in momen-
tum and thus belongs to symmetry class 8 in Table I. These
results highlight a key aspect: the characterization of pair
symmetries of periodically-driven superconducting states of
matter is unique and intrinsically different from the equilib-
rium case and can be induced and controlled by time-periodic
fields.

In contrast to the intrasideband case, the intersideband pair
amplitudes in Eqs. (4) always require transitions between
sidebands (via Uk) and thus involve absorption or emission
of photons. We distinguish between two types of pair am-
plitudes, requiring nearest-neighbor (e.g., F±

0,1 between n = 0
and n = 1) or next-nearest-neighbor transitions (e.g., F+

1,−1).
Here, F±

0,1 is linear in Uk and only necessitates a one-photon
process as depicted in process (i) Fig. 2(b). However, F+

1,−1 is
proportional to [U ∗

k ]2 and thus needs two-photon processes of
the same kind, either absorption or emission of two photons,
as depicted in process (iii) Fig. 2(b). Note this two-photon
process is still fundamentally different from the intrasideband
amplitudes. Here we find that only the even Floquet index
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component F+
0,1 develops an odd-ω term which is proportional

to ω, instead of ω� found for intrasideband terms. Surpris-
ingly, it is also odd in momentum k (class 6 in Table I)
and thus of p-wave nature, despite the s-wave symmetry
of the superconductor. This is a consequence of the linear
coupling between the light field and momentum. Finally, we
find that F−

0,1 and F+
1,−1 belong to classes 3 and 1, respectively,

in Table I.
After analytically confirming the emergence of Floquet

pair amplitudes Fn,m within perturbation theory, we proceed
to compare the relative sizes of each of the symmetry classes
by solving Eq. (3) numerically to infinite order. For this pur-
pose we truncate the sum over the Floquet indices, such that
n, m ∈ [−N, N] for some integer cutoff N , and numerically
obtain G, whose anomalous components then yield Fn,m. Fi-
nally, we decompose Fn,m into the various symmetry classes
of Table I and find finite amplitudes belonging to classes 1,
3, 6, and 8, shown in Fig. 3 as a function of ω and k. We
verify that the overall physical dependencies on ω and k of
these amplitudes are consistent with the second order results
given by Eqs. (4) and that all other symmetry classes are equal
to zero, supporting the validity of the perturbation approach
used above. We have also checked that the results of Fig. 3
remain unchanged for larger values of N and do not depend
sensitively on the choice of model parameters.

The bright areas of the pair amplitudes in Fig. 3 extend
to higher ω and reflect the fact that each pair amplitude
contains the contribution from many Floquet components.
Indeed, in all panels we observe the energy versus momen-
tum dispersion Floquet replicas, a standard feature of Floquet
superconductors. These Floquet replicas can be measured,
e.g., by time- and angle-resolved photoemission spectroscopy
[56,61]. Since the pair amplitudes exist only when the Flo-
quet replicas are present, the experimental observation of
these replicas constitutes an indirect but strong sign of the
emergence of Floquet pair amplitudes. Note that the even-ω
(a,d) and odd-ω classes (b,c) exhibit high and low intensities,
respectively, near ω = 0, thus enabling their distinction. This
can be understood by noting that effects at low ω stem from
the lowest Floquet mode n = 0 [40,54,60], and that F+

0,0 has
even-ω symmetry, see Eqs. (4). At finite frequencies (e.g., at
ω ≈ �) the odd-ω amplitudes also acquire large values due
to individual odd-ω contributions from higher Floquet modes,
e.g., F−

1,1 in Eqs. (4). Moreover, Fig. 3 shows that the even-ω
and odd-ω amplitudes are of the same order of magnitude, an
unusual feature for odd-ω correlations in conventional super-
conductors [18].

From the analytical and numerical results presented above,
we see that circularly polarized light applied to a conventional
s-wave spin-singlet superconductor gives rise to a very rich
variety of Floquet pair amplitudes which do not emerge in
static systems. In particular, we find substantial odd-ω pairing
which only requires breaking the continuous time-translation
invariance in time-periodic superconductors, unlike previous
studies which needed to break additional symmetries [36,37].
These results not only provide a fundamental understanding
of Cooper pairs in driven superconductors, but we also an-
ticipate that the Floquet pair amplitudes can have important
consequences in experimental observables [62]. For example,
it has been shown that odd-ω pairing can induce a paramag-

FIG. 3. Floquet pair amplitudes in the ω, kx-plane, projected onto
the symmetry classes of Table I: (a) class 1, (b) class 6, (c) class 8,
and (d) class 3. Parameters: � = �/10, eA0/2m = �/20, 2m = 1,
N = 10.

netic Meissner contribution in multiband systems [28,35,63–
66]. However, the magnitude of this paramagnetic effect is
small due to the small odd-ω term, and thus is hard to dis-
tinguish from the diamagnetic even-ω contribution. The large
Floquet odd-ω pair amplitudes found here would be expected
to remedy that situation. Moreover, our findings might also be
relevant for other recent advances in superconductors under
time-periodic driving fields, such as Higgs modes in supercon-
ductors under radiation [67–69], Floquet Majorana fermions
[70,71], and time-crystalline superconductors [72], where the
emergence of Floquet odd-ω pairs should be inevitable and
could play an important role.

IV. CONCLUSIONS

In conclusion, we have demonstrated that the symmetry
classification of superconducting pair amplitudes is signifi-
cantly broadened in time-periodic superconductors by virtue
of their Floquet bands. In particular, we have introduced the
concept Floquet odd-frequency pair amplitudes with no ana-
log in static systems and showed that they can be induced and
controlled by the drive frequency even in fully conventional
superconductors. The ability to induce and control supercon-
ducting pair amplitudes via time-periodic fields [40,73–76]
paves the way for Floquet engineering dynamical supercon-
ducting states, whose fundamental understanding allow for
the design of novel superconducting devices.
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