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Thermal transport in superconductors with coexisting spin density wave order
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We study thermal transport in a two-dimensional system with coexisting s- or d-wave superconducting (SC)
and spin density wave (SDW) orders. We analyze the nature of coexistence phase in a tight-binding square lattice
with Q = (π, π ) SDW ordering. The electronic thermal conductivity is computed within the framework of the
Boltzmann kinetic theory, using Born approximation for the impurity scattering collision integral. We describe
the influence of the Fermi surface (FS) topology, the competition between the SC and SDW order parameters,
and the presence or absence of zero energy excitations in the coexistence phase, on the low temperature behavior
of thermal conductivity of the various pairing states. We present qualitative analytical and fully numerical results
that show that the heat transport signatures of various SC states emerging from collinear SDW order are quite
distinct and depend on the symmetry properties of the SC order parameter under translation by the SDW nesting
vector Q. A combination of (π, π )-SDW and the dx2−y2 pairing state results in fully gapped excitations, whereas
(π, π )-SDW coexisting with either dxy or s-wave pairing states may always have gapless excitations. There
appear special stable Dirac nodal points that are not gapped by the SC order in the coexistence phase, resulting
in finite residual heat conductivity.

DOI: 10.1103/PhysRevB.103.104501

I. INTRODUCTION

In normal metals, at low temperatures transport proper-
ties are primarily determined by scattering of electrons by
impurities. The thermal conductivity κN (T ) has a linear T de-
pendence, which is well understood within the framework of
semiclassical transport theory based on the Boltzmann kinetic
equation [1]. The kinetic formulation was also successfully
used to explain the effects that conventional superconductivity
has on the thermal conductivity [2,3]. With the discoveries
of heavy fermion [4], cuprate [5–8], and iron based [9–11]
superconductors, new questions have arisen with regards to
the low temperature transport properties of superconductors.
The behavior of the thermal conductivity at low temperatures
for these unconventional superconductors is not at all like that
of the fully-gapped conventional type superconductors. One
reason is that most unconventional superconductors have a
nodal gap structure, i.e., there exist points on the Fermi surface
(FS), nodes, where the superconducting gap is zero. As the
energy gap is small around the nodes, the nodal quasiparticles
can be easily excited and they dominate the heat transport
properties of such superconductors. This problem has been
studied by a number of authors at various levels of complex-
ity [12–17], and thermal conductivity measurements became
a very useful probe of superconductivity as it can reveal the
gap structure of unconventional superconductors [18,19].

Another characteristic feature of many unconventional
superconductors is the proximity of magnetic and supercon-
ducting orders in these materials [20–24]. The electronic
phase diagrams of many highly correlated systems are com-
plex, with multiple broken symmetry phases appearing with
similar ordering temperatures as material properties, such as

dopant concentration, varied over wide ranges. For example,
there is a proximate antiferromagnetic (AF) state in the phase
diagrams of superconductors such as cuprates [22], iron pnic-
tides [24], and heavy fermion superconductors [21,23].

However much less is known about thermal transport in
superconductors with coexisting orders (spin-density wave
(SDW), charge-density wave (CDW)). Previous studies have
addressed mainly one aspect of the heat conductivity in co-
existing phases like superconducting (SC) and CDW or SC
and SDW [25,26], with cuprates as an application. In d-
wave superconductors heat transport by nodal quasiparticles
shows impurity-independent, universal, limit at low temper-
atures [16,17], seen in many materials [19,27]. Theoretical
investigations of thermal transport in “superconductor + den-
sity wave order” systems [25,26] attacked the issue of CDW
or SDW order influencing the T → 0 limit of thermal con-
ductivity by nodal quasiparticles in dx2−y2 superconductors,
in particular how the nodes get gapped by the additional
order. The transport calculations were carried out in 2D,
within Kubo linear response theory using Green’s function
technique, where impurity effects were included only through
non-self-consistent energy broadening parameter. The CDW
or SDW were also incorporated non-self-consistently, as an
additional tunable small order on top of the SC state, and
neither the nature of the coexistence, nor its temperature de-
pendence, was investigated. These calculations indicated that
the robustness of the universal limit of thermal conductivity
of dx2−y2 superconductors depends on the direction of the
ordering vector and the type of the coexisting order (CDW
or SDW). Additional order displaces the nodes in k space. For
example, the nodal quasiparticles become gapped by the SDW
once the d-SC nodes are separated by exactly the ordering Q
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vector [26]. Another study [28] looked at the changes in zero-
temperature heat transport across continuous SC to SC+SDW
transition for dx2−y2 superconductor, employing the same
non-self-consistent treatments of impurities and SDW order,
assumed to be controlled by doping. These calculations show
that thermal conductivity behaves very differently depending
whether emerging SDW is commensurate or incommensurate.
For a commensurate SDW the SC → SC+SDW transition
results in a gradual drop in κ as a function of growing SDW
order, whereas incommensurate SDW results in a sharp drop
across the transition [28].

To complement previous studies and provide a different
approach, in this paper we look at the thermal transport prop-
erties of a number of different superconducting states in which
the SC order coexists with the antiferromagnetic spin density
wave (SDW) order in the full temperature range. For transport
calculation we use quasiparticle Boltzmann equation which
is physically more transparent than the Green’s function or
quasiclassical techniques. The goal is to understand the nature
of the different coexistence states arising from the interplay
between the SC and SDW order parameters and its impact
on the temperature behavior of the thermal conductivity of
several pairing states: s-wave, dx2−y2 , and dxy symmetry. The
choice of the d-wave states is motivated by the fact that it is a
prototypical unconventional pairing state, with sign-changing
order parameter and nodal quasiparticles, applicable to heavy
fermion and cuprate superconductors [6]. In this paper we
calculate the thermal conductivity in which scattering of
quasiparticles by nonmagnetic impurities is the dominant pro-
cess. Within Boltzmann theory, we only consider the case of
small phase shifts, i.e., the Born approximation for weak inter-
action of electrons with impurities. The impurity scattering is
the dominant mechanism at lower temperatures, and at higher
temperatures the scattering rates can be augmented to incor-
porate temperature-dependent inelastic scattering [29,30], to
reflect the growth of thermal conductivity below Tc, seen in,
e.g., CeCoIn5 [23], or UPt3 [31].

The organization of the paper is as follows. In Secs. II A–
II C, we discuss the model Hamiltonian, symmetries of the
SC order parameter, and the topology of the Fermi surface.
Self-consistent approach to determining coexisting SDW and
SC order parameters is presented in Sec. II E. Kinetic for-
malism is described in Sec. II F. Numerical results for heat
conductivity is discussed in Sec. III. Section IV is a brief
conclusion.

II. MODEL AND FORMALISM

A. Hamiltonian

For our model we start with a tight-binding normal state
Hamiltonian

H0 =
∑

k,σ=±1

ξ (k)c†
kσ ckσ , (1)

where

ξ (k) = −t1(cos kx + cos ky) − t2 cos kx cos ky − μ

is the inversion-symmetric dispersion relation, ξ (k) = ξ (−k).
It describes the nearest neighbor (t1 > 0) and next-nearest
neighbor (t2 > 0) hopping on a 2D square lattice with lattice

spacing a = 1. We set the chemical potential to zero, and
therefore for t2 > 0 the electron filling is slightly less than
half. This results in a Fermi surface that is not perfectly
nested and therefore potentially susceptible to coexistence of
SC and SDW order parameters. The perfect nesting limit is
given by setting t2 = 0. The coexistence of SC and SDW
orders in models of this type have been previously studied by
Machida [32–34]. We wish to look at heat transport in these
models across the SDW → SC transition. The full mean-field
Hamiltonian for a system with intertwined SC and SDW order
is given by [34]

H = H0 + HSDW + HSC,

HSDW = 1

2

∑
k,σ

σM(c†
kσ ck+Qσ + H.c.),

HSC = 1

2

∑
k,σ

σ�k(c†
kσ c†

−k−σ + H.c.). (2)

The mean field order parameters are defined by the following
self-consistent equations

M = −U

2

∑
k,σ

σ 〈c†
k+Qσ ckσ 〉,

(3)
�k = −

∑
k′

g(k, k′)〈c†
−k′,↓c†

k′,↑〉,

where U is the repulsive onsite Coulomb interaction
which leads to the SDW formation [35]. We consider a
collinear sinusoidal SDW with spatial magnetization m(r) =
2M ẑ cos(Q · r). The SDW couples electron states with par-
allel spins and momenta differing by the nesting vector Q,
i.e., (k ↑) with (k + Q ↑) and (k ↓) with (k + Q ↓) (this
is schematically represented by dashed lines in Fig. 1). As
for the SC pairing interaction, we consider the singlet chan-
nel and assume the interaction to be of the form g(k, k′) =
gη(k)η(k′), η(k) being a basis function compatible with the
square symmetry of the 2D lattice. The SC order parameter
combines time-reversed electron states with opposite mo-
menta and antiparallel spins, i.e., (−k ↓) with (k ↑) and
(−k − Q ↓) with (k + Q ↑) (this is schematically repre-
sented by dotted lines in Fig. 1). For our purposes we consider
the case where the pure SDW transition temperature TSDW is
greater than the pure SC transition temperature TC0, i.e., the
ratio

p = TC0

TSDW
< 1 .

B. Symmetry classes of the SC order parameters

The coexistence problem critically depends on the sym-
metry properties of the SC order parameter and also on the
topology of the FS. If we consider the case of a commen-
surate SDW with nesting vector Q = (π, π ), i.e., 2Q = G =
(2π, 2π )—the diagonal reciprocal lattice vectors for the 2D
square lattice—then the various SC pairing states can be
classified [36] based on the combined symmetry operations
of parity, �−k = ±�k (even or odd), and translation by
the nesting vector, �k+Q = ±�k (even or odd). The sym-
metry classification of the pairing states (�k = �η(k)) are
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FIG. 1. The FS of the normal state (solid red curve) and in the
SDW phase (cyan curve). The parameters are t2/t1 = 0.2, M/t1 =
0.1 (this value is taken for illustration purposes, the typical value in
the calculations are M/t1 ∼ 10−3). Q = (π, π ) is the nesting vector.
The dashed blue square indicates the boundary of the reduced Bril-
louin zone (RBZ).

summarized in Table I. This classification has important con-
sequences for the coexistence problem [34]: The SC states
in the (E, E) class are competitive with the SDW, whereas
states in the (E, O) class are less competitive with the SDW
and the two orders can naturally coexist. The difference in the
nature of the coexistence problem in these two distinct sym-
metry classes has an obvious impact on the thermal transport
properties of the system across the SDW→SC transition. One
of the aims of this paper is to establish the relation between
the nature of the SC-SDW coexistence and its signatures in
the electronic thermal transport.

C. Topology of the Fermi surface

In Fig. 1 we show the Fermi surface for our model. In the
normal state the FS is indicated by the solid red curve. The

TABLE I. The symmetry classification of the various pairing
states and the corresponding basis functions. First letter (E—even,
O—odd) corresponds to parity symmetry �−k = ±�k, and the sec-
ond letter is for SDW translations �k+Q = ±�k.

Symmetry class Pairing state SC basis function

I or (E, O) dx2−y2 η(k) = 1
2 (cos kx − cos ky)

II or (E, E) dxy s wave η(k) = sin kx sin ky η(k) = 1

SDW with the ordering vector Q = (π, π ) doubles the lattice
cell size reducing the Brillouin zone to the dotted blue square
(RBZ). For this SDW ordering all four flat sides of the normal
FS are nested, and become gapped, leaving zero energy excita-
tions only at the corners—the FS in the SDW state is indicated
by the solid cyan curve. As the SDW gap grows from zero
and reaches its maximum value the FS continuously shrinks
from the N1 − N2 section to the S1 − S2 section. Points N1 and
B denote location of the nodes of the dx2−y2 and dxy pairing
states, respectively, they are indicated by the magenta dots.
Since SDW gaps region around point N1, appearance of the
dx2−y2 SC gap completely removes the low-energy excitations.
In the case of the dxy pairing state the low-energy excitations
remain since the nodal line crosses Fermi pocket at point B,
which is not gapped by the SDW. Further, in the case of the
dxy- and s-wave pairing states, we show that unusual zero
energy excitations remain on the boundary of the RBZ near
points S1,2, even when the SC order starts to grow inside the
SDW state. The stability of these zero energy excitations is
related to the even symmetry of the dxy- and s-wave states
under translations by the nesting vector Q. We explain this
in more detail in the following section. The relative positions
of the nodes for the two d-wave pairing states, and the ex-
tra zero energy excitations in the coexistence phase of the
dxy state leads to their different thermal conductivity κ (T )
behavior.

D. Diagonalization of the model Hamiltonian

The more general form for Hamiltonian (2), correspond-
ing to SDW magnetization m(r) = Re(MQeiQr ) is an 8 × 8
matrix

H =1

4

∑
k∈FBZ

�
†
kHk,Q�kHk,Q =

⎛
⎜⎜⎜⎝

ξk �k(iσy)
−�∗

−k(iσy) −ξ−k

M∗
Qσ 0
0 −M∗

Qσ∗

MQσ 0
0 −MQσ∗

ξk+Q �k+Q(iσy)
−�∗

−k−Q(iσy) −ξ−k−Q

⎞
⎟⎟⎟⎠, (4)

where we ‘folded’ the normal state band into the reduced
Brillouin zone appropriate for the (π, π )-SDW unit cell. The
1/4 in front comes from the particle-hole doubling of the
bands for superconductivity and the k, k + Q doubling for
SDW. We do our analysis in the full Brillouin zone (FBZ)
primarily to take advantage of the particle-hole symmetry,
which simplifies the calculation of scattering rates in Sec. F.

The Nambu state vector is

�
†
k = (

c†
kα1

, c−kα2 , c†
k+Qα3

, c−k−Qα4

)
, α1,2,3,4 = ↑,↓.

Each outlined block represents a 4 × 4 matrix constructed
from spin up-down and particle-hole spaces, represented
by Pauli matrices σx,y,z and τ1,2,3 correspondingly. Di-
agonal blocks in the full matrix represent the ‘folded’
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superconducting bands, while off-diagonal 4 × 4 blocks ap-
pear as result of SDW mixing of the electron states with
momenta k and k + Q on ‘folded’ bands. With this ‘folded’
space we associate Pauli matrices ρ1,2,3. The Hamiltonian
is (anti)symmetric under particle-hole transformation by the
construction due to superconductivity doubling (K is complex
conjugation)

CHk,QC−1 = −H−k,−Q , C = 1ρ ⊗ τ1 ⊗ 1σ K. (5)

Also, while the time-reversal symmetry is definitely broken
in the SDW state, because transformation T = 1ρ ⊗ 1τ ⊗
(iσy)K reverses the magnetization direction M → −M, a
combination of time reversal and a ‘gauge’ transformation
ck+Q → −ck+Q, given by ρ3, can still be a symmetry

TπHk,QT −1
π = H−k,−Q , Tπ = ρ3 ⊗ 1τ ⊗ (iσy)K (6)

provided ξp = ξ−p, �∗
p = �p and M−Q = M∗

Q. (The gauge
transformation establishes an arbitrary phase ϕ between states
k and k + Q: ck+Q → eiϕck+Q, which results in a ‘slide’ of
the SDW profile m(r) ∝ Re(〈c†

k+Qck〉e−iQr ) : M cos(Q · r)
→ M cos(Q · r + ϕ), signifying arbitrariness of the coordi-
nate origin. Shift by half wavelength of SDW order, for ϕ =
π , reverses the magnetization direction, canceling the time
reversal.)

With real �k, M and inversion-symmetric ξk, both charge
conjugation and ‘time-gauge’ symmetries are present, so we
split the full Hamiltonian into two independent 4 × 4 blocks
for particular spin orientations σ = ±1(↑,↓),

H (σ ) = 1

4

∑
k∈FBZ

�
†
kσH

(σ )
k �kσ

H(σ )
k =

⎛
⎜⎝

ξk σ�k σM 0
σ�−k −ξ−k 0 σM
σM 0 ξk+Q σ�k+Q

0 σM σ�−k−Q −ξ−k−Q

⎞
⎟⎠, (7)

where �
†
kσ = (c†

kσ , c−k−σ , c†
k+Qσ , c−k−Q−σ ) represents par-

tial Nambu vector. Hamiltonian (7) is diagonalized by the
Bogoliubov transformation

�kσ =

⎛
⎜⎜⎜⎝

ckσ

c†
−k−σ

ck+Qσ

c†
−k−Q−σ

⎞
⎟⎟⎟⎠ = B̂σ (k)

⎛
⎜⎜⎜⎝

a1k

a†
3k

a2k

a†
4k

⎞
⎟⎟⎟⎠ (8)

with the matrix B̂σ (k), whose columns are the eigenvectors of
the Hamiltonian matrix

H(σ )
k B̂σ (k) = B̂σ (k)Êσ (k) (9)

where

Êσ (k) =

⎛
⎜⎜⎜⎝

Eσ
1 (k) 0 0 0
0 −Ẽσ

1 (k) 0 0
0 0 Eσ

2 (k) 0
0 0 0 −Ẽσ

2 (k)

⎞
⎟⎟⎟⎠. (10)

The −σ spin sector is diagonalized in a similar way, and
we obtain another matrix B̂−σ (k), and the quasiparticle

creation-annihilation operators

�k−σ = B̂−σ (k)(a1′k, a†
3′k, a2′k, a†

4′k )T (11)

H(−σ )
k B̂−σ (k) = B̂−σ (k)Ê−σ (k). (12)

The two spin sectors are connected by the present sym-
metries. For example, the particle-hole transformation con-
nects CH(σ )

k C−1 = −H(−σ )
−k and we can identify Ẽσ

1,2(k) =
E−σ

1,2 (−k), relating eigenvectors B̂−σ (−k) = CB̂σ (k) and the
quasiparticle branches 3k = 1′(−k), 4k = 2′(−k), etc. The
time-reversal + gauge combination reduces distinct energy
levels further, by requiring Eσ

1,2(k) = E−σ
1,2 (−k), leaving just

two different energy values for four quasiparticle branches.
Using definitions ξ±

k = 1
2 (ξk ± ξk+Q) and �±

k = 1
2 (�k ±

�k+Q), these eigenvalues of Ĥk can be written as [37,38]

E2
1 (k) = k + 2�k, E2

2 (k) = k − 2�k

k = (ξ+
k )2 + (ξ−

k )2 + (�+
k )2 + (�−

k )2 + M2

�k = [(ξ+
k ξ−

k + �+
k �−

k )2+ M2((ξ+
k )2 + (�+

k )2)]
1
2 . (13)

In the pure SDW state (� = 0) we get E2
1,2(k) =

(ξ+
k ±

√
(ξ−

k )2 + M2)
2

and we assign specific roots to the SDW
branches as Eα,β = ξ+

k ±
√

(ξ−
k )2 + M2 (Greek indices refer to

signs α(+), β(−)). In Fig. 2(a) we show the structure of the
two distinct (spin degenerate) quasiparticle bands in the pure
SDW phase when the FS is not perfectly nested, leaving a hole
pocket Eβ (k) = 0 around (π, 0).

In the coexistence phase we specify eigenvalues (13) for
the two symmetry classes: I = (E, O) class (�+

k = 0, or
�k+Q = −�k) and II=(E, E) class (�−

k = 0, or �k+Q = �k),

E2
1,2; I,II = k ± 2�I,II

k , k = (ξ+
k )2+ (ξ−

k )2+ (�k )2+ M2

�I
k = [(ξ+

k ξ−
k )2 + M2(ξ+

k )2]
1
2

�II
k = [(ξ+

k ξ−
k )2 + M2((ξ+

k )2 + (�k )2)]
1
2 . (14)

These dispersion relations have distinctly different character-
istics. Spectrum of class I is completely gapped: The lowest
energy state

E2
2;I =[ξ+

k −
√

(ξ−
k )2 + M2]2 + �2

k (15)

can only be zero when both terms on the RHS are zero, i.e.,
when nodal lines of �k intersect Fermi surface in the SDW
state, which is impossible in this case. The quasiparticle bands
in SDW + dx2−y2 -SC state are shown in Fig. 2(b).

In the case of (E, E) class (II), the spectrum has symmetry
nodes on the SDW Fermi surface for dxy state. But there is also
an additional nodal point on the boundary of the RBZ (where
ξ−

k = 0) that is not removed by the SC order:

ξ−
k = 0 : E2;II = M −

√
(ξ+

k )2 + �2
k = 0 . (16)

The nodal point, given by condition ξ+
k = ξk =

√
M2 − �2

k, is
robust even in the SC state as long as �k < M. This point is
the base of a (anisotropic) Dirac cone, obvious in the inset of
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FIG. 2. The quasiparticle energies in the Brillouin zone along
the path (0, 0) → (π/2, π/2) → (π, 0) → (0, 0). The normal state
band is depicted by the dashed magenta curve. (a) The two bands
Eα,β , and their negatives, in the pure SDW phase; (b) the four quasi-
particle bands ±E1,2(k) in the coexisting phase dx2−y2 -SC and SDW;
(c) the four quasiparticle bands in the coexisting phase s-SC and
SDW. Insets show the zoomed low energy sector. In the SDW state
there remains a hole FS pocket around (π, 0). This remaining Fermi
surface is completely gapped by emerging dx2−y2 -SC order. In the
co-existing SDW and s-SC a Dirac nodal point remains on the bound-
ary of RBZ. The parameters used for illustration are t2/t1 = 0.2,
M/t1 = 0.1, and �/t1 = 0.05 (the characteristic computed values are
M/t1 ∼ �/t1 ∼ 10−3).

FIG. 3. Location of the extra nodes S′
1 on the boundary of the

RBZ in the coexisting SDW and s-SC states shown by the blue
crosses. They are the remnants of the FS points S1 in the pure
SDW state. The parameters used for illustration are t2/t1 = 0.2,
M/t1 = 0.1, and �/t1 = 0.05 (the characteristic computed values are
M/t1 ∼ �/t1 ∼ 10−3).

Fig. 2(c). In our model location of the extra node is given by

(kx, ky) = π

2
± arcsin

⎡
⎣

√
M2 − �2

k

t2

⎤
⎦

1/2

(17)

and at the corresponding symmetry points, as shown by the
blue crosses in Fig. 3.

As a final remark, we have diagonalized the full Hamil-
tonian (7) in the RBZ by computing the B̂σ (k) eigenvectors
numerically. The Hamiltonian can also be diagonalized by
a ‘two-step process’ which is sometimes employed in liter-
ature [39]. The methods are equivalent; we explain this in
Appendix.

E. Self-consistent equations for SC and SDW

We solve for the mean-fields M, � self-consistently, using
the Green’s function method [33]. In the reduced Brillouin
zone, the Green’s functions required to derive the self consis-
tent equations for �k are

〈Tτ c†
−k−σ (τ )c†

kσ (0)〉 , 〈Tτ c†
−k−Q−σ (τ )c†

k+Qσ (0)〉
and for M

〈Tτ ckσ (τ )c†
k+Qσ (0)〉 , 〈Tτ c†

−k−Q−σ (τ )c−k−σ (0)〉 .

They are all elements of the following bare Matsubara Green’s
function, which we define to be the following 4 × 4 matrix,

Ĝ(k, τ )ab = −〈T �kσ,a(τ )�†
kσ,b(0)〉, (18)
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where the indices a, b represent the components of the partial
Nambu vector �

†
kσ,a = (c†

kσ , c−k−σ , c†
k+Qσ , c−k−Q−σ ). The

Green’s functions relevant for SC are contained in the diago-
nal blocks, whereas those relevant for the SDW are contained
in the off-diagonal blocks. To obtain them we use the fact that
Ĝ(k, ωn) satisfies the following Dyson equation

Ĝ(k, ωn) = (iωn−Ĥk )−1, (19)

where ωn = 2πT (n + 1
2 ) with integer n. Taking the pairing

interaction to be of the form g(k, k′) = gη(k)η(k′), calcu-
lating the relevant Green’s functions from the above Dyson
equation and substituting them into (3), we arrive at the
following self-consistent equations for the two symmetry
classes [33].

The (E, O) class: dx2−y2 with �k = 1
2�(cos kx − cos ky)

1

g
= T

Ec∑
ωn

∑
k∈FBZ

η2(k)

DI (ωn, k)

(
ω2

n + (ξ−
k )2 + (ξ+

k )2 + M2 + �2
k

)

1

U
= T

EB∑
ωn

∑
k∈FBZ

1

DI (ωn, k)

(
ω2

n + (ξ−
k )2 − (ξ+

k )2 + M2 + �2
k

)

DI (ωn, k) = (
ω2

n + (ξ−
k )2 + (ξ+

k )2 + �2
k + M2

) − 4(ξ+
k )2

(
(ξ−

k )2 + M2
))

= (
ω2

n + E2
1;I

)(
ω2

n + E2
2;I

)
. (20)

The (E, E) class: the isotropic s wave with �k = � and dxy with �k = � sin kx sin ky

1

g
= T

Ec∑
ωn

∑
k∈FBZ

η2(k)

DII (ωn, k)

(
ω2

n + (ξ−
k )2 + (ξ+

k )2 − M2 + �2
k

)

1

U
= T

EB∑
ωn

∑
k∈FBZ

1

DII (ωn, k)

(
ω2

n + (ξ−
k )2 − (ξ+

k )2 + M2 − �2
k

)

DII (ωn, k) = (
ω2

n + (ξ−
k )2 + (ξ+

k )2 + �2
k + M2

) − 4(ξ+
k )2((ξ−

k )2 + M2)) − 4�2
kM2 = (

ω2
n + E2

1;II

)(
ω2

n + E2
2;II

)
, (21)

where E1,2;I,II are the quasiparticle energies for symmetry
classes I and II, defined in (14). EC and EB are the SC cutoff
and the SDW cutoff energies, respectively.

Numerical solution of self-consistent equations

In the following, we solve the self-consistent equa-
tions (20) and (21) for band parameters t1/2πTSDW = 100,
t2/2πTSDW = 10, EC/2πTSDW = 30, and EB/2πTSDW = 60,
and eliminate interactions g and U , to obtain the temperature
dependence of the order parameters �(T ) and M(T ). For
perfect nesting with t2 = 0, SDW order gaps the entire FS.
This prohibits SC order to open up a gap anywhere on the FS
when TC0 < TSDW, and the superconductivity never appears
in this case. This is verified by numerically solving the self-
consistent equations (20) and (21) with t2 = 0. The result is
the usual BCS profile [35] for M(T ) and � = 0.

However, both SC and SDW orders can appear when we
go away from the perfect nesting limit. The nature of the
coexistence is very different for the (E, O) and (E, E) sym-
metry classes. Solutions of the self-consistent equations (20)
and (21) depend on the parameter p = TC0

TSDW
. We show the

order parameter profiles later, together with thermal conduc-
tivity results, in Sec. III and here summarize the main points.

For the (E, O) class of SDW+dx2−y2 -SC, one numerically
solves Eqs. (20). In this case SC can naturally coexist with
SDW, and in fact below TC the magnetization M is enhanced
compared to the pure SDW state. SC transition temperature
is also increased on the SDW background, TC > TC0, see

Figs. 6(a) and 6(c). The SDW→SDW+SC transition is al-
ways second order.

For states of (E, E) class the interplay is more complicated.
In Figs. 7(a) and 7(c) we show numerical solution of (21) for
the dxy pairing state. Depending on the value of TC0/TSDW the
SDW→SC transition can be either first or second order. For
relatively strong SC order, p = 0.5, the SC state completely
replaces SDW order via a first-order transition. For a lower
p = 0.35, SDW survives and allows for a smaller � order
to appear simultaneously through a second-order transition.
This competition comes with suppression of the supercon-
ducting transition temperature in the presence of the SDW
background, TC < TC0. Behavior for the isotropic s-wave state
is similar to the dxy case, Fig. 8.

F. Kinetic method for heat conductivity

We use the Boltzmann kinetic-equation approach to calcu-
late the thermal conductivity for the system with intertwined
orders. This method was widely used to compute thermal con-
ductivity, both in s-wave superconductor [2,3], as well as in
unconventional superconductors [12,40–42], and for quantum
critical systems [43–45]. We begin with the expression of the
total heat current carried by the quasiparticles

jE = 2
2∑

n=1

jn = 2
2∑

n=1

∫
d2k

8π2
En(k)vn(k) fn(k). (22)

In the above expression we integrate momentum over the
FBZ, double counting the states, and therefore require an extra
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factor of 2 in the denominator: 2 × 4π2. The sum is over
the two quasiparticle branches with distinct energies E1 and
E2 (as given in (13)) and fn(k) is the distribution function
of the respective quasiparticle branches. The factor of two
takes care of the spin degeneracy of each branch. The thermal
conductivity tensor is the proportionality coefficient between
the heat current and temperature gradient.

(jE )i = −κi j∇ jT (23)

The quasiparticle distribution function fn(k) satisfies the
Boltzmann equation

∂ fn(k)

∂t
+ ∂En

∂k
∇ fn − ∇En

∂ fn(k)

∂k
= Icoll

n (k), (24)

Icoll
n (k) being the collision integral. We follow the usual pro-

cess of linearizing the left hand side of (24) by writing fn(k) =

f 0
n (k) + δ fn(k), where f 0

n (k) = 1
eEn (k)/T +1 is the equilibrium

Fermi-Dirac distribution function. δ fn(k) is the deviation
from the equilibrium value caused by the presence of the
stationary thermal gradient. The linearization yields [40]

∂δ fn(k)

∂t
− En(k)vn(k)

∇T

T

∂ f 0
n (k)

∂En
= Icoll

n (k). (25)

The quasiparticle velocity is defined as

vn(k) = ∇kEn(k). (26)

For a stationary thermal gradient the first term is zero. We now
look at the right hand side; the collision integrals in the case
of weak disorder are obtained by multiplying the contribution
of a single impurity by their concentration Nimp:

Icoll
1 (k) = Nimp

∫
d2k′

(2π )2
[W11(k, k′)(δ f1(k′) − δ f1(k)) + W12(k, k′)(δ f2(k′) − δ f1(k))]

Icoll
2 (k) = Nimp

∫
d2k′

(2π )2
[W22(k, k′)(δ f2(k′) − δ f2(k)) + W21(k, k′)(δ f1(k′) − δ f2(k))], (27)

where Wnm(k, k′) is the rate of elastic scattering between the quasiparticle branches n and m in the FBZ. Therefore we have two
coupled kinetic equations for δ f1(k) and δ f2(k). We can rewrite (25) for δ fn(k) as

E1(k)v1(k)
∇T

T

∂ f 0
1 (k)

∂E1
= −Nimp

[ ∫
d2k′

(2π )2
(W11(k, k′)δ f1(k′) + W12(k, k′)δ f2(k′))

]
+

(
1

τ11
+ 1

τ12

)
δ f1(k)

E2(k)v2(k)
∇T

T

∂ f 0
2 (k)

∂E2
= −Nimp

[ ∫
d2k′

(2π )2
(W22(k, k′)δ f1(k′) + W21(k, k′)δ f2(k′))

]
+

(
1

τ22
+ 1

τ21

)
δ f2(k) (28)

where we have defined the quasiparticle relaxation time as

τ−1
nm (k) = Nimp

∫
d2k′

(2π )2
Wnm(k, k′). (29)

The above equations are decoupled by the usual symmetry argument [12,40]. The driving term is odd under spatial inversion since
v(−k) = −v(k), whereas the quasiparticle relaxation time is even under spatial inversion τ−1

nm (−k) = τ−1
nm (k) due to symmetry

Wnm(−k,−k′) = Wnm(k, k′), which implies that δ fn(k) is odd under k → −k. Thus the first terms on the right in (28) are
integrals of odd functions over a symmetric region of integration and therefore go to zero: [ . . . ] = 0, which represents vanishing
vertex corrections. Thus the heat current carried by the quasiparticle branches with energies E1,2(k) are

(j1)i =
∫

d2k

8π2
E2

1 (k)v1i(k)v1 j (k)
∇ jT

T

∂ f 0
1 (k)

∂E1

(
1

τ11
+ 1

τ12

)−1

(j2)i =
∫

d2k

8π2
E2

2 (k)v2i(k)v2 j (k)
∇ jT

T

∂ f 0
2 (k)

∂E2

(
1

τ22
+ 1

τ21

)−1

(30)

which results in the following expression for the thermal conductivity tensor,

κi j = (κ1)i j + (κ2)i j

(κ1)i j = − 2

T

∫
d2k

8π2
E2

1 (k)v1i(k)v1 j (k)
∂ f 0

1 (k)

∂E1

(
1

τ11
+ 1

τ12

)−1

(κ2)i j = − 2

T

∫
d2k

8π2
E2

2 (k)v2i(k)v2 j (k)
∂ f 0

2 (k)

∂E2

(
1

τ22
+ 1

τ21

)−1

. (31)

The expression for the scattering rate in the Born limit is given by

Wnm(k, k′) = 2π

h̄
|〈k′, n|Himp|k, m〉|2δ(En(k) − Em(k′)) = 2π

h̄
|V (k, k′)|2|Cnm(k, k′)|2δ(En(k) − Em(k′)). (32)
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FIG. 4. Schematic representation of the various scattering pro-
cesses in the full BZ. The band structure is along the path (0, 0) →
(π, π ) → (π, 0) → (0, 0). The dashed blue and green horizon-
tal lines represent intraband scattering processes; the dash-dotted
black horizontal lines represent interband scattering processes.
The parameters used for illustration are t2/t1 = 0.2, M/t1 = 0.35,
and �/t1 = 0.2.

The quasiparticle state with momentum k and energy E1(k)
is defined as |k, 1〉 = a†

1k|0〉. Similarly the quasiparticle
state with momentum k and energy E2(k) is defined as
|k, 2〉 = a†

2k|0〉. |0〉 is the vacuum state with no quasiparticles.
〈k′, n|Himp|k, m〉 is the amplitude for a single impurity to
scatter from the particle state k with energy Em(k) to the
state k′ with energy En(k′). The matrix Cnm(k, k′) contains the
coherence factors coming from the Bogoliubov transforma-
tion between the normal and ordered states. In the following
we consider the case of an isotropic scattering amplitude
V (k, k′) = V = const. Therefore the expression (29) for the
quasiparticle lifetimes becomes

τ−1
nm (k)

= NimpV
2 2π

h̄

∫
d2k′

(2π )2
|Cnm(k, k′)|2δ(En(k)− Em(k′)).

(33)

We evaluate the momentum integral (33) numerically us-
ing the high precision sampling method [46]. Using τ−1

nm (k)
from (33) we numerically evaluate the momentum integrals
in (31) over the FBZ, see Fig. 4. We also numerically compute
the values for τ−1

nm (k) and κ (T ) in the normal state, by setting
� = 0 and M = 0 in equations (33) and (31), respectively,
and eliminating the unknown NimpV 2 in favor of normal state
relaxation time τN that only appears in κN (T ). We assume τ−1

N
is small enough and neglect order parameter suppression by
impurities. The matrix of coherence factors Cnm(k, k′) is also
computed numerically, by first writing the impurity scattering
Hamiltonian in the same Nambu basis as (7)

Himp = V
∑

k,k′,σ

c†
k′σ ckσ

= V

4

∑
k,k′∈FBZ

�
†
k′σ,aSab�kσ,b

FIG. 5. Thermal conductivity for pure SC states: s-, dx2−y2 - and
dxy-wave (dispersion parameters t1/2πTC = 100, t2/2πTC = 10), or
for pure SDW state in perfectly nested regime (t1/2πTSDW = 100,
t2/2πTSDW = 0).

Sab =

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎠, (34)

where the factor 1
4 comes from both particle-hole doubling

for SC and (k, k + Q) doubling for SDW in the FBZ. Upon
performing the Bogoliubov transformation (8) on the Nambu
vectors, we get

Himp = V

4

∑
k,k′∈FBZ

A†
k′aDab(k, k′)Ak,b, (35)

where A†
k = (a†

1k, a3k, a†
2k, a4k ) and the matrix D̂(k, k′) from

which we get the coherence factors

D̂(k, k′) = B̂†
σ (k′)ŜB̂σ (k). (36)

The k dependence in D̂(k, k′) comes from �(k) and ξ (k)
through the eigenvectors of Ĥk, and since we artificially
quadruple our bands we only include physically available
in-band scattering, so Sab is diagonal. From the ordering of
the A†

k vector, the intraband coherence factors

C11(k, k′) = D11(k, k′), C22(k, k′) = D33(k, k′),

and interband

C12(k, k′) = D13(k, k′), C21(k, k′) = D31(k, k′),

all for scattering inside the FBZ, as shown in Fig. 4.

III. NUMERICAL RESULTS AND DISCUSSION

We begin our discussion by first calculating thermal con-
ductivity of the pure SC or SDW states for our tight binding
model. For various pairing, s-, dx2−y2 -, and dxy-wave, the val-
ues of �(T ) are obtained by self consistently solving the weak
coupling gap equation and neglecting Tc suppression by impu-
rities. The numerical results for κxx are shown in Fig. 5. We see
the characteristic exponential fall in the thermal conductivity
for the isotropic fully-gapped s-wave superconductor [2,3].
The general behavior of κ (T )/T for the dxy and dx2−y2 states
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also agrees with earlier calculations [12,17], where the low-T
regime is dominated by the nodal quasiparticles, producing
the finite residual κ/T . However, while for circular FS κxx

is the same for the dxy and dx2−y2 states, in the case of our
anisotropic FS the two symmetries result in very different
values of heat conductivity. The dx2−y2 pairing has nodes on
flat parts of the FS with large Fermi velocity and smaller
DOS. By gapping the corners of the FS with large DOS, the
scattering rate is significantly reduced, producing longer-lived
high-velocity nodal quasiparticles that result in heat conduc-
tivity exceeding that of the normal state. The dxy state, on the
other hand, has nodes where Fermi velocity is small, resulting
in much lower κ/T .

For completeness, we note that for strong scattering centers
one has to go beyond Born approximation to explain exper-
imental data in cuprates and heavy fermions [12,47]. Also,
quasiparticle Boltzmann approach fails at low temperatures
when low-energy quasiparticles cannot be well established
due to impurity broadening [12].

We also show thermal conductivity for pure SDW state
when the Fermi surface is nested perfectly, i.e., μ = 0 and
t2 = 0 in our model. The SDW opens a gap along the entire
FS. The sharp fall in the thermal conductivity seen in Fig. 5 is
often seen in thermal conductivity experiments on spin density
wave antiferromagnets [48–50].

The difference between slopes of κ (T ) just below the tran-
sition temperature for s-, d-wave superconductors and SDW
can be explained by the difference in coherence factors. For a
singlet superconductor,

∣∣CSC
11

∣∣2 = 1

2

(
1 + ξkξk′ − �k�k′

E1(k)E2(k′)

)
, (37)

∣∣CSC
22

∣∣2 = 1

2

(
1 + ξk+Qξk′+Q − �k+Q�k′+Q

E2(k)E2(k′)

)
(38)

∣∣CSC
12

∣∣2 = ∣∣CSC
21

∣∣2 = 0 (39)

with E1(k) =
√

(ξk )2 + �2
k and E2(k) =

√
(ξk+Q)2 + �2

k+Q be-
ing the two branches that together count the states of the
superconductor in the full BZ. For the SDW state

∣∣CSDW
11

∣∣2 = ∣∣CSDW
22

∣∣2 = 1

2

(
1 + ξ−

k ξ−
k′ + M2

�k�k′

)
, (40)

∣∣CSDW
12

∣∣2 = ∣∣CSDW
21

∣∣2 = 1

2

(
1 − ξ−

k ξ−
k′ + M2

�k�k′

)
, (41)

�k =
√

(ξ−
k )2 + M2. For both the s and d wave super-

conductors, the ξkξk′ terms vanish after k′ integration in
equation (33), due to cancellation of positive and negative
ξk′ contributions. This leaves τ−1

11 (k) = τ−1
N

N (E1(k))
N0

(1 − �2

E2
1 (k)

)

and τ−1
22 (k) = τ−1

N
N (E2(k))

N0
(1 − �2

E2
2 (k)

) for the s-wave case. For
the d-wave states also the �k�k′ terms vanish on integrat-
ing over the directions of k′ in equation (33), resulting in
τ−1

11 (k) = τ−1
N

N (E1(k))
N0

and τ−1
22 (k) = τ−1

N
N (E2(k))

N0
for the d-

wave states. N (E1,2(k)) denotes the density of SC states
with energies E1,2(k), and N0 being the normal density of
states at the Fermi level. For a SDW with a perfectly nested
FS, ξk+Q = −ξk, so ξ+

k = 0 and ξ−
k = ξk. Thus Eα (k) = �k

and Eβ (k) = −�k. Again, terms ξ−
k ξ−

k′ will drop out un-
der the k′ integration in equation (33), leaving τ−1

11 (k) =
τ−1

N
N (Eα (k))

N0
(1 + M2

E2
α (k) ) and τ−1

22 (k) = τ−1
N

N (Eβ (k))
N0

(1 + M2

E2
β (k)

).

For perfectly nested FS the two bands do not overlap in energy
and thus there is no interband scattering, τ−1

12 (k) = τ−1
21 (k) =

0. N (Eα,β (k)) once again denotes the density of SDW quasi-
particle states with energy Eα,β (k).

Comparing the coherence factors for various states, one can
notice that the effective relaxation times in equation (31) have
this hierarchy near their transition temperatures

τSDW < τd < τs

resulting in the observed different slopes in Fig. 5. Finally,
we note that the difference in signs inside coherence factors
for fully gapped s-SC (1 − �2/E2) and SDW (1 + M2/E2),
comes from the particle-hole difference in the impurity scat-
tering matrix, SSC

ab ∝ diag(1,−1) vs SSDW
ab ∝ diag(1, 1).

A. The (E, O) class

We now turn to the discussion of the pairing states
belonging to the various symmetry classes. For all cases
below the parameters used for FS are t1/2πTSDW = 100,
t2/2πTSDW = 10.

The dx2−y2 pairing state which belongs to the (E, O) sym-
metry class is not competitive with the SDW, and below TC the
SC order enhances the SDW order, as shown in Fig. 6. The
temperature dependence of the self-consistently determined
order parameters �(T ) and M(T ), and of the thermal conduc-
tivity, are presented for two values of the parameter

p = TC0

TSDW
,

where TC0 is the transition temperature of the SC order in the
absence of the SDW and TSDW is the transition temperature of
the SDW in the absence of the SC. The dx2−y2 pairing state
coexists with the SDW order for all values of p. Further, the
transition temperature of the SC is enhanced in the presence
of the SDW. The onset of the SDW gaps the nested flat parts of
the FS (orange shaded regions in the inset of Fig. 6(b)) leading
to a weaker metallic state (remaining Fermi surface shown
by cyan curves in the inset), causing the gradual fall in the
thermal conductivity for TC < T < TSDW, seen in Figs. 6(b)
and 6(d). The nodes of the dx2−y2 pairing state appear under
the SDW gap on nested FS parts and thus do not result in
any low-energy excitations. The sharp fall of the thermal
conductivity for T < TC , and exponential low-T behavior, is
characteristic of the fully gapped FS [2,3] due to the simulta-
neous coexistence of the SDW and SC orders. Notice that the
heat conductivity shows a kink at the coexistence transition.

B. The (E, E ) class

The dxy-wave and the isotropic s-wave SC pairing states
belong to the (E, E) symmetry class. Behavior of these states,
and their signatures in thermal transport, are quite different
from those for the (E, O) symmetry class.

We begin by discussing the dxy pairing state in order to
contrast its behavior with the dx2−y2 pairing state. This state
does not coexist with the SDW order for all values of relative
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FIG. 6. Coexistence of SDW and dx2−y2 -SC in (E, O) class. (a),
(b) temperature dependence of SDW and SC order parameters and
thermal conductivity for p = 0.5; (b), (d) same for p = 0.35. Inset in
(b) shows FS, dx2−y2 nodal lines, and the SDW-gapped regions. Ther-
mal conductivity in the co-existence phase is shown by the dotted
blue curve, and by the black dashed curve in a purely SDW phase.
The normal state thermal conductivity is T-linear κN (T )=const × T .

temperatures p. In Fig. 7(a) we show that for p = 0.5 the
SC state appears through a first order phase transition, com-
pletely replacing SDW order, whereas for p = 0.35 it appears
through a second order phase transition, and both SC and
SDW order parameters are present (Fig. 7(c)). However, the
(E, E) SC states compete with SDW, resulting in suppression
of the magnetic order at temperatures below TC , which itself is
reduced.

In the case of the first order phase transition Fig. 7(a), the
system goes from a weak metallic phase to a purely supercon-
ducting phase. The SDW order M, that gaps only the nested
parts of the Fermi surface, is replaced at T = 0.49TSDW with
SC gap �, that covers more of the Fermi surface, and thus
can have a lower value of the free energy, even at a smaller
magnitude of the SC gap. This results in a sharp increase in
the thermal conductivity. Behavior of the thermal conductivity
for T < TC in this case is the same as that of the dxy pairing
state in the absence of the SDW. The dashed red curve is the
appropriately scaled thermal conductivity in the pure SC state,
from Fig. 5.

When the SC and SDW order can coexist, e.g., for the
case of p = 0.35 shown in Figs. 7(c) and 7(d), behavior of
thermal transport is very unusual. Below TSDW, a part of the
FS gets gapped with M, indicated by the shaded orange in
the sketch in the inset of 7(d). κ (T ) drops, but gets saturated
at a finite value due to the remaining FS, shown by the cyan
lines, which gives a weaker-than-normal metallic state that we
denote as SDW-metallic state. One expects that at the onset of
dxy order with symmetry nodes (magenta dots) on this FS, the
heat conductivity would show a somewhat similar behavior
to the one for the pure SC state, as in Fig. 5. This is indeed
the case, as can be seen in 7(d). The only quantitative differ-
ence is due to appearance of the extra nonsymmetry nodes
in the SDW+SC state, discussed in Sec. II D. They arise near
the SDW-gapped region, and marked as the blue crosses in the
sketch. Since the excitation gap collapses in both symmetry
node and the extra node, the SC order parameter �k, although
growing in amplitude below TC , does not efficiently gap the
FS between the nodes, resulting in a more gradual reduction of
κ (T )/κN (T ) below TC . In the low temperature limit the extra
nodes result in relative enhancement of the residual thermal
conductivity.

Fully gapped s-wave state shows similar coexistence pat-
tern: it fully replaces SDW order for strong SC pairing,
resulting in a sudden jump of physical observables, Figs. 8(a)
and 8(b). For p = 0.35, the s-wave SC state appears through
a second order phase transition, resulting in SDW+SC co-
existence, Fig. 8(c). At TC the emerging SC order gaps the
SDW-metallic state resulting in a suppression of κ . Again, the
gapless excitations in the additional nodes (blue cross marks
in the inset of Fig. 8(d)), at low temperatures result in finite
thermal conductivity, eliminating the exponential character of
the fully-gapped s-wave heat transport.

IV. CONCLUSION

We have considered a single-band electronic system
where spin-singlet superconducting order can appear inside
a collinear spin-density-wave phase, at the mean-field level. It
is based on a tight-binding model on a square lattice with a
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FIG. 7. Same as in Fig. 6 but for interplay of SDW and dxy-SC
in (E, E) class. (a), (b) for p = 0.5 the SDW and SC states do not
coexist, switching through a first order transition. Heat conductivity
makes a jump reflecting � < M relation. (c), (d) Coexistence regime,
p = 0.35; thermal conductivity in the SDW+SC phase behaves sig-
nificantly different from the pure dxy-SC. Inset in (d) shows the
dxy-symmetry nodes (magenta circles) and extra nodes (blue crosses)
relative to the FS in k space. See text for details.

FIG. 8. Interplay of SDW and s-SC (a), (b) temperature depen-
dence of M,�, and thermal conductivity when TC0/TSDW = 0.5.
The SDW and SC states do not coexist, similarly to the dxy case.
(c), (d) Coexistence is possible for lower TC0/TSDW = 0.35; thermal
conductivity at low temperatures reaches a finite value due to the
emergent nodes, shown by the blue crosses in the inset of (d). See
text for details.
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commensurate SDW with ordering vector Q = (π, π ). Coex-
istence of the SC and SDW orders is controlled by selecting a
band structure with a Fermi surface, such that only a part of it
is nested supporting SDW order, leaving the other part for SC.
The amplitudes of the SC and SDW orders were determined
self-consistently at all temperatures.

The nature of the coexisting phase depends, most impor-
tantly, on the properties of the SC order parameter connected
by the nesting vector Q. If the SDW order mixes up pairs
with �k+Q = −�k, as is the case for the dx2−y2 SC symmetry,
the two orders attract each other and naturally coexist [34].
Mixing states with �k+Q = �k (dxy- or s-wave) results in
competition of SDW and SC, although they can still co-
exist for weak enough SC state arising inside the SDW
phase.

One of the most interesting differences between the two
versions of SC+SDW mixture is the spectrum of low-energy
excitations. For SDW+dx2−y2 the nodes of the SC order
appear on the nested parts of the FS and thus appear un-
der the SDW gap, resulting in the fully gapped system.
On the other hand, in SDW+dxy the symmetry-protected
SC nodes appear on the non-nested part of the Fermi sur-
face. In addition to those, we found an additional set of
robust nodes, appearing on the boundary of the folded Bril-
louin zone. These nodes are the remnants of the SDW-state
Fermi surface and exist even in the s-wave superconducting
state. They form an anisotropic Dirac cone of low-energy
excitations.

Temperature dependence of the electronic heat conductiv-
ity in the SDW+SC system was computed using Boltzmann
transport equation method, where the impurity scattering col-
lision integral and quasiparticle lifetime were determined (in
Born limit) from the correct coherence factors of the coex-
istence phase. Our numerical analysis shows that there are
significant differences in the thermal conductivity behavior
that are determined by the symmetry of the order parame-
ter, FS topology, and the nodal structure of the coexistence
phase.

For the SDW+dx2−y2 combination, the nodal structure of
SC order parameter is immersed under the SDW gap produc-
ing only gapped excitations that result in the rapid drop of
the thermal conductivity below the second-order coexistence
transition and typical exponentially-small residual κ (T )/T .
On the other hand, in the SDW+s, dxy system, the two orders
may completely avoid each other, resulting in the trivial first-
order jump in heat conductivity. However, the most interesting
situation arises when SC does not replace SDW completely at
low temperature, and they coexist. The nodal quasiparticles
are preserved in this case, and even new Dirac-like excitations
appear in both dxy and s-wave systems. These low-energy
excitations lead to a finite residual κ/T in the T → 0 limit
for both the SDW+s, dxy systems.
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APPENDIX: TWO-STEP DIAGONALIZATION

We wish to clarify certain aspects of the diagonalization
procedure that we have employed in this paper and compare
it with previous work done on similar models by several
authors [39]. We have diagonalized the full mean field Hamil-
tonian Ĥ(k) in (7) using a unitary Bogoliubov transformation
B̂(k) by numerically computing eigenvectors in the RBZ. In
literature a ‘two-step’ procedure is often employed to diag-
onalize the model Hamiltonian (7), which yields identical
results to our case, provided all pairing terms are properly
accounted for. Step one of the two-step process involves diag-
onalizing the first two terms in (2) via a unitary transformation
by introducing new quasiparticle operators αk, βk for the
two SDW bands with dispersions Eα,β

k = ξ+
k ±

√
(ξ−

k )2 + M2.
Namely the first two terms in the Hamiltonian are written as

H0 + HSDW =
∑

σ

∑
k∈RBZ

ψ
†
kih1ki jψk j

h1ki j =
(

ξk sgn(σ )M
sgn(σ )M ξk+Q

)
, (A1)

where ψ
†
ki = (c†

kσ , c†
k+Qσ ) defines the Nambu basis. The

above Hamiltonian is then diagonalized using the following
Bogoliubov transformation

ckσ = ukαkσ − sgn(σ )vkβkσ

ck+Qσ = sgn(σ )vkαkσ + ukβkσ , (A2)

where uk =
√

1
2 (1 + ξ−

k
�k

), vk =
√

1
2 (1 − ξ−

k
�k

) with �k =√
(ξ−

k )2 + M2. The diagonalization reduces (A1) to

H0 + HSDW =
∑

k ∈ RBZ
σ

Eα
k α

†
kσαkσ + Eβ

k β
†
kσ βkσ . (A3)

In step two, the same unitary transformation (A2) is applied to
the superconducting term HSC in (2), which when combined
with (A3), results in the following mean field Hamiltonian

H0 + HSDW + HSC = 1

2

∑
k∈RBZ

γ
†
kihki jγk j

hki j =

⎛
⎜⎜⎜⎜⎝

Eα
k �α

k 0 �
αβ

k

�α
k −Eα

k −�
αβ

k 0

0 −�
αβ

k Eβ

k �
β

k

�
αβ

k 0 �
β

k −Eβ

k

⎞
⎟⎟⎟⎟⎠,

(A4)

where γ
†
ki = (α†

k↑, α−k↓, β
†
k↑, β−k↓) defines the Nambu basis.

The superconducting order parameters dressed by the SDW
coherence factors are given by �α

k = u2
k�k − v2

k�k+Q, �
β

k =
u2

k�k+Q − v2
k�k, and �

αβ

k = ukvk(�k + �k+Q). If one ne-
glects the off-diagonal blocks in the above Hamiltonian, i.e.,
interband pairing terms of the form 〈α†

k↑β
†
−k↓〉 etc., then (A4)

can be diagonalized by two independent Bogoliubov trans-
formations which yield the energy dispersions [39] Eγ

k =√
(Eγ

k )2 + (�γ

k )2 where γ = (α, β ). We do not neglect the
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interband pairing terms of the form 〈α†
k↑β

†
−k↓〉 when diago-

nalizing (A4). If we diagonalize (A4) keeping the off diagonal
terms [51], we get the following dispersion relation

E2
1,2 = 1

2 (�k ± �k )

�k = [(
Eα

k

)2 + (
Eβ

k

)2 + (
�α

k

)2 + (
�

β

k

)2 + 2�
αβ

k

]

�k = [
�2

k − 4
((

Eβ

k

)2(
�α

k

)2 + 2Eα
k Eβ

k

(
�

αβ

k

)2

+ ((
�

αβ

k

)2 + �α
k�

β

k

)2 + (
Eα

k

)2((
Eβ

k

)2 + (
�

β

k

)2))] 1
2 .

(A5)

Upon substituting the expressions for �α
k,�

β

k ,�
αβ

k , Eα
k , and

Eβ

k , one recovers the eigenvalues given in (13).
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