
PHYSICAL REVIEW B 103, 104432 (2021)

Magnon photon coupling for magnetization antiparallel to the magnetic field
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Current studies of cavity magnon polaritons are focused on ferromagnetic magnons for which the frequency
increases with a static magnetic field. In this paper, we propose a ferromagnetic system with magnon frequency
decreasing with a static magnetic field. It is achieved by antiparallel alignment between the magnetization and
static magnetic field. The magnetization precession is stabilized by a large anisotropic field along the direction
of magnetization. The analysis of the Polder tensor shows that the magnon modes in parallel and antiparallel
alignments are analogous to those in an antiferromagnet. The strong coupling between a magnon and photon for
antiparallel alignment results in an anticrossing gap in the transmission spectrum. Based on the Tavis-Cummings
Hamiltonian and Bloch sphere representation, we show that the photon absorption decreases (increases) the
spin angular momentum in antiparallel (parallel) alignment. The coupled Hamiltonians of harmonic oscillators
are derived and have the same form for both parallel and antiparallel cases. The method developed and results
presented are expected to be helpful to realize low-frequency magnon photon coupling that is similar to those in
an antiferromagnet.
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I. INTRODUCTION

A cavity magnon polariton [1–8], i.e., a hybrid of a
magnon and cavity photon, provides considerable insights into
the light-matter interaction and has potential applications in
quantum information processing. A number of theories and
experiments show that strong coupling between a magnon
and cavity photon manifests itself in the anticrossing gap
of microwave transmission [9–18] and spin current spectra
[19–22]. The strong coupling and the long coherence time of
a spin and magnon make the cavity magnon polariton an ideal
candidate for the design of spintronic [23,24] and quantum
devices [25–27].

Intrinsically, the anticrossing gap represents the repulsive
interaction between magnon and photon modes and thus
sometimes is called level repulsion [28,29]. Currently, it has
been revealed that the level repulsion describes coherent cou-
pling between a magnon and photon with a relative phase of
0 or π [30,31]. In a mathematical form, the coupled mode
is written as ψ± = c+h ± c−m with photon field h, magne-
tization m, and constants c±. In the language of chemistry,
the two levels of coupled modes can be thought of as the
bonding and antibonding states of a hydrogen molecule [32].
Since the eigenstate is both magnonlike and photonlike, the
system energy is distributed on both modes. When viewing
the temporal dynamics of the level repulsion, one can find that
the energy is exchanged between a magnon and photon. This
is reminiscent of Rabi oscillation, which has been observed

in recent experimental measurements and predicted in some
theoretical works [33,34].

Currently, most studies of cavity magnon polaritons are
focused on a ferromagnetic magnon [1–22]. Only some
works have studied the coupling between a photon and an-
tiferromagnetic magnon [35–40]. Especially for conventional
antiferromagnets, e.g., Cr2O3, MnF2, etc., strong coupling has
yet to be reported. The main obstacles are the fabrication of a
high-frequency (THz) cavity and the low-damping material.
Despite these difficulties, antiferromagnetic magnon photon
coupling holds much promise for physics understanding and
device applications. In contrast to a ferromagnet, an antiferro-
magnet is composed of two-sublattice magnetization with two
magnon modes, which adds extra tunability into the magnon
photon coupling. Second, an antiferromagnet does not display
macroscopic magnetization and a stray field. Third, anti-
ferromagnetic spintronics is an emergent field [41] so that
the strong coupling between a photon and antiferromagnetic
magnon may find potential applications in it.

In this paper, we propose an alternative method to realize
magnon photon coupling that is similar to that in an antiferro-
magnet. As is known, the frequency of one magnon mode in
an antiferromagnet increases with a static magnetic field while
another one decreases. The former is similar to a ferromag-
netic magnon, but the latter one is not easy to find in a ferro-
magnet. Here, we propose an antiparallel alignment between
the magnetization and static magnetic field, which is stabi-
lized by an anisotropic field in the direction of magnetization.
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FIG. 1. Magnetization precession in (a) parallel and (b) antipar-
allel alignment between �M and �H0. In (b), a large anisotropic field
(HA > H0) is applied to stabilize the magnetization.

By analysis of the Polder tensor, we find that the magnon
mode in such an antiparallel alignment is analogous to the
above-mentioned antiferromagnetic magnon. The advantage
of this alignment is that the resonance frequency is within the
range of microwave frequency.

The remainder of the paper is organized as follows. First,
we introduce the model of antiparallel alignment between
magnetization and static magnetic field. The Polder suscepti-
bility tensor is analyzed for three cases. With a realistic model
of cavity and material parameters, we calculate the transmis-
sion coefficient for a yttrium iron garnet (YIG)-embedded
microwave cavity with antiparallel alignment. Second, we
employ the Tavis-Cummings Hamiltonian, together with the
Bloch sphere method, to analyze the behavior of magnon pho-
ton coupling in parallel and antiparallel alignments. Finally,
the findings are concluded in the summary.

II. POLDER SUSCEPTIBILITY TENSOR

We start by analyzing the Polder susceptibility tensor for
three cases. (i) The first is the parallel alignment between
magnetization �M and static magnetic field �H0 in a ferromag-
net. (ii) The second is the antiparallel alignment between �M
and �H0, which is the focus of this work. In order stabilize the
magnetization, we consider a large anisotropic field �HA along
the direction of �M with HA > H0. Cases (i) and (ii) are shown
in Figs. 1(a) and 1(b). (iii) For comparison, we also consider
an antiferromagnet in which each sublattice magnetization is
exerted by a static magnetic field, anisotropic field �Ha

A , and
exchange field �Ha

E .
The tensor describes the relation between dynamic magne-

tization �m and dynamic field �h. It can be calculated based on
the Landau-Lifshitz-Gilbert (LLG) equation [42]

d �m
dt

= −γ �m × ( �Heff + �h) + α �m × d �m
dt

, (1)

where α is the Gilbert damping rate and γ is the effec-
tive gyromagnetic ratio. Under the small-angle precession

approximation, the dynamic magnetization in Fourier space
(∼e−iωt ) takes the form of [42](

mx

my

)
= χ

(
hx

hy

)
, (2)

where χ is the Polder susceptibility tensor.
In case (i), the effective field is �Heff = H0�z. The tensor takes

the form of

χ (i) = γ M0

(
(γ H0−iαω)

(γ H0−iαω)2−ω2 −i ω
(γ H0−iαω)2−ω2

i ω
(γ H0−iαω)2−ω2

(γ H0−iαω)
(γ H0−iαω)2−ω2

)
, (3)

where M0 is the saturation magnetization.
In case (ii), schematically shown in Fig. 1(b), the effective

field is �Heff = (H0 − HA)�z and aligns along the −�z direction.
The tensor takes the form of

χ (ii) = γ M0

(
(γ HA−γ H0−iαω)

(γ HA−γ H0−iαω)2−ω2 i ω
(γ HA−γ H0−iαω)2−ω2

−i ω
(γ HA−γ H0−iαω)2−ω2

(γ HA−γ H0−iαω)
(γ HA−γ H0−iαω)2−ω2

)
.

(4)
In case (iii), an antiferromagnet consists of two sublattice

magnetizations, i.e., A and B. The effective field of each
sublattice magnetization is �H (A,B)

eff = H0�z ± Ha
A�z − �HA,B

E . The
exchange field is �HA,B

E = λ �MB,A with λ the exchange strength
between two sublattice magnetizations [37]. The tensor is
written as

χ (iii) = χ (iiia) + χ (iiib), (5)

with

χ (iiia) = γ M0

(
(γ HA−iαω)

ω2
r −(ω+γ H0 )2 i (γ HA−iαω)

ω2
r −(ω+γ H0 )2

−i (γ HA−iαω)
ω2

r −(ω+γ H0 )2
(γ HA−iαω)

ω2
r −(ω+γ H0 )2

)
(6)

and

χ (iiib) = γ M0

(
(γ HA−iαω)

ω2
r −(ω−γ H0 )2 −i (γ HA−iαω)

ω2
r −(ω−γ H0 )2

i (γ HA−iαω)
ω2

r −(ω−γ H0 )2
(γ HA−iαω)

ω2
r −(ω−γ H0 )2

)
, (7)

where the antiferromagnetic resonance frequency is ωr =
γ
√

Ha
A (Ha

A + 2Ha
E ). For the sake of simplicity, the imaginary

parts in the denominators of Eqs. (6) and (7) are not given.
With the Polder tensors, we first compare two cases in

Fig. 1. From Eqs. (3) and (4), one can see that the two expres-
sions of the tensors are almost the same, indicating that the
magnon photon couplings in these two cases are of a similar
mechanism. As discussed later, both couplings give rise to the
anticrossing, i.e., level repulsion. However, two differences
exist. First, the magnon frequency is different: One increases
with H0 while another decreases with H0. Second, the off-
diagonal elements in Eqs. (3) and (4) differ by a prefactor of
−1. This arises from the fact that the magnetization precession
in case (i) is right handed while in case (ii) it is left handed.

Further, an antiferromagnet has two magnon modes. As
shown in Eqs. (6) and (7), one can see that the tensors of the
modes with ωr ± γ H0 have similar structures to those in cases
(i) and (ii). Therefore, the magnetization precessions proposed
in cases (i) and (ii) are equivalent to two magnon modes of an
antiferromagnet. The advantage of the antiparallel system in
this work is the low frequency that can be implemented in a
microwave cavity.
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FIG. 2. |S21| spectrum of a ferromagnet-embedded cavity for (a) parallel alignment and (b) antiparallel alignment calculated with the
method given in Sec. II. In each figure, the horizontal blue lines represent the odd mode (12.8 GHz) and even mode (14.3 GHz) of cavity
resonance. The tilted lines represent the magnon mode and cross with cavity resonance to form level repulsion in (a) and (b). In the calculation
of (b), we set a large anisotropic field of HA = 0.5 T. (c) |S21| spectrum of an antiferromagnet-embedded cavity calculated with the method
given in Ref. [37].

In order to demonstrate the magnon photon coupling, we
consider a ferromagnet with parallel or antiparallel alignment
inside a microwave cavity to calculate the transmission coef-
ficient S21. To do so, we introduce the Maxwell’s equations

∇ × �e = −1

c

∂ �b
∂t

= −∂ (�h + 4π �m)

∂t
, (8)

∇ × �h = 1

c

∂ (εr�e)

∂t
, (9)

where �e, �b, �h, and �m are the electric field, magnetic induction,
magnetic field, and dynamic magnetization. εr and c are the
relative permittivity and the speed of light in the vacuum.

By simultaneously solving the Maxwell’s equations (8) and
(9) and LLG equation (2), we can obtain the propagation state
k inside the ferromagnet. With the propagation state, we can
calculate the transfer matrix(

ed
y

hd
x

)
=

(
cos(kd ) iZ sin(kd )

i 1
Z sin(kd ) cos(kd )

)(
e0

y

h0
x

)
, (10)

which connects the electric/magnetic fields at one surface
(z = 0) and those at another surface (z = d) of a ferromag-
net. Z = μsω

k is the impedance and the effective permeability
μs is determined by k = ω

c

√
εrμs. In this work, the relative

permittivity εr is 15.0, the thickness d is 0.1 mm, and the
Gilbert damping rate α is 1.25 × 10−4. In the calculation of
an antiferromagnet, the thickness d is 0.5 mm. The exchange
and anisotropic fields are Ha

E = 1.6 T and Ha
A = 0.1 T.

Using the transfer matrix, we solve for the microwave
transmission inside a microwave cavity that has been used
in a recent experimental measurement [43]. The cavity is a
circular waveguide with two circular-rectangular transitions at
each end of the waveguide [43]. The length of the waveguide
is 85.0 mm. To form a standing wave, a strong reflection of
the intracavity wave is required. The reflection coefficient is
0.997 at the transitions. The phase change due to the reflec-
tion is 313.5◦. More details of calculating the transmission
coefficient can be found in Refs. [37,43]. As shown in Fig. 2,
the S21 spectra of both parallel and antiparallel alignments

present a level repulsion, but the mode polarization is opposite
in Figs. 2(a) and 2(b). The antiferromagnetic magnon pho-
ton coupling in Fig. 2(c) shows an anticrossing gap of two
magnons which could correspond to cases (i) or (ii).

III. TAVIS-CUMMINGS HAMILTONIAN

In the preceding section, we consider an explicit cavity
geometry and material specifics to demonstrate magnon pho-
ton coupling of parallel and antiparallel alignments. In this
section, we provide an intuitive discussion based on the Tavis-
Cummings Hamiltonian. In the Tavis-Cummings model, the
magnetization of a ferromagnet is represented by collective
spin (magnon). The Hamiltonian is written as [44,45]

H = h̄ωmSz + h̄ωca†a + h̄g0(aS+ + S−a†)

+ h̄g0(aS− + S+a†), (11)

where Sx,y,z = � js
x,y,z
j is the collective spin operator with s j

the operator of the jth spin. ωm is the magnon frequency. The
raising and lowering operators are S± = Sx ± iSy. a† (a) is
the creation (annihilation) operator of photons with resonance
frequency ωc. g0 is the coupling strength between a single spin
and photon. The former two terms in the Hamiltonian are for a
bare magnon and photon. The third and fourth terms describe
the interaction between a magnon and photon.

In the case of parallel alignment shown in Fig. 1(a), the
magnetization �M is parallel to the effective magnetic field
( �Heff = H0�z). Due to the relation �M = −γ �S, the spin angular
momentum �S is antiparallel to �Heff shown in Fig. 3(a). In the
ground state, Sz takes the minimum value, i.e., Sz = −S and
thus ωm = ω0 = γ H0. As a photon is absorbed, the spin an-
gular momentum is deviated from the ground state (Sz = −S)
and is promoted to the first excited state (Sz = −S + 1). In
other words, a photon is annihilated while a magnon is created
and vice versa. This is what the third term (aS+ + S−a†)
exactly refers to. Therefore, the fourth term does not mat-
ter, which is usually called the rotating wave approximation
(RWA) [46].
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FIG. 3. Magnetization �M and spin angular momentum �S in the
Bloch sphere representation. The static magnetic field �H0 aligns
along the +�z direction while the effective magnetic field follows
the magnetization. (a) �M ‖ �H0 and Sz = −S in the ground state;
(b) �M ‖ (− �H0) and Sz = +S in the ground state. (c) and (d) are the
corresponding |S21| spectra of (a) and (b). The parameters used are
ωc = 5 GHz, g = 0.1 GHz, and κc = Tm = 0.01 GHz.

As for antiparallel alignment in Fig. 1(b), the magneti-
zation is antiparallel to the static magnetic field but follows
the effective field [ �Heff = (H0 − HA)�z]. In the ground state,
Sz takes the maximum value, i.e., Sz = +S and thus ωm =
γ (H0 − HA) = ω0 − ωA < 0. The photon absorption results
in a decrease of Sz from S to S − 1. Hence, only the fourth
term in Eq. (11), i.e., (aS− + S+a†), dominates.

We next calculate the transmission spectra based on the
Tavis-Cummings Hamiltonian. In order to obtain quantum
mechanical expectation values, we write the equation of mo-
tion for Eq. (11) and then add the dissipation terms into the
equation. The resulting Bloch equation is written as

d

dt

( 〈a〉
〈S−〉

)
=

(−(κc + iωc) −ig0

−i2g0S −(Tm + iωp,ap
m )

)( 〈a〉
〈S−〉

)
,

(12)
where ω

p
m = ω0 and ω

ap
m = ωA − ω0. κc and Tm are the damp-

ing rates of the photon and magnon. The above derivation is
performed on the semiclassical limit with which the decou-
pling can be done, i.e., 〈Sza〉 ∝ 〈Sz〉〈a〉. Such a semiclassical
limit implies that the quantum noise is excluded in our cal-
culation which is valid in the experiment with large photon
and magnon numbers. With this approximation, Eqs. (12) are
close and thus can be solved analytically for the calculation of
transmission. To do so, we consider the input-output theory
[47] and introduce the microwave amplitudes propagating
inwards the input port ain and outwards the output port aout.
Finally, the transmission coefficient is written as

S21 = 〈aout〉
〈ain〉 =

√
κinκout

(κc + iωc − iω) + 2g2
0S

(Tm+iωp,ap
m −iω)

, (13)

where κin,out is the coupling strength between the cavity and
input (output) port. In the calculation of Eq. (13), the fol-
lowing parameters are chosen: ωc = 5 GHz, g = 0.1 GHz,
κc = Tm = 0.01 GHz. The S21 spectrum is shown in Figs. 3(c)
and 3(d), which is in good agreement with those shown in
Fig. 2.

Furthermore, the Tavis-Cummings Hamiltonian, i.e.,
Eq. (11), can be transformed to a coupled Hamiltonian of two
harmonic oscillators with the help of the Holstein-Primakoff
(HP) transformation [37]. As for parallel alignment, the spin
angular momentum starts from the lowest value (south pole)
and increases to create a magnon. Hence, the HP transforma-
tion is written as

S+ =
√

2Sb†,

S− =
√

2Sb, (14)

Sz = −S + b†b,

and Eq. (11) becomes

H p = h̄ω0b†b + h̄ωca†a + h̄
√

2Sg0(ab† + ba†). (15)

As for antiparallel alignment, the spin angular momentum
starts from the highest-energy position (north pole) and its
decrease (increase) means the creation (annihilation) of a
magnon. The HP transformation is thus written as

S+ =
√

2Sb,

S− =
√

2Sb†, (16)

Sz = S − b†b,

and Eq. (11) becomes

Hap = h̄(ωA − ω0)b†b + h̄ωca†a + h̄
√

2Sg0(ab† + ba†).
(17)

Equations (15) and (17) represent the coupling Hamilto-
nian of level repulsion, which has been widely used in the
studies of a cavity magnon polariton [1–22].

IV. CONCLUSION

In summary, we investigate magnon photon coupling of
a ferromagnetic system in which the magnetization is an-
tiparallel with a static magnetic field. This system provides
a magnon mode with a frequency that decreases with a static
magnetic field. We analyzed the Polder susceptibility tensor
and found that the tensors of parallel and antiparallel align-
ments have almost the same structure. This results in the level
repulsion of magnon photon coupling for both alignments.
In contrast to parallel alignment, the antiparallel alignment
presents left-handed magnetization precession with respect
to a static magnetic field and thus has a distinct magnon
polarization. Further, one can find that the magnon modes
of parallel and antiparallel alignments are analogous to two
magnon modes of a antiferromagnet. In addition, we pro-
vide an intuitive analysis of magnon photon coupling based
on the Tavis-Cummings Hamiltonian. It is shown that the
photon absorption increases the spin angular momentum in
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parallel alignment while it decreases it in antiparallel align-
ment. The coupled Hamiltonians of two harmonic oscillators
are also given. Due to the difficulty in the fabrication of a
high-frequency cavity and low-damping material, the cou-
pling between a photon and antiferromagnetic magnon is hard
to observe. The system proposed in this paper provides an
alternative method to study antiferromagnetic magnon photon
coupling.
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