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Diffraction by multipoles in a 5d2 rhenium double perovskite
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A recent polarized neutron diffraction experiment on the 5d2 rhenium double perovskite Ba2YReO6 held at a
low temperature uncovered weak magnetic diffraction peaks. Data analysis inferred a significantly reduced Re
dipole moment, and long-range order compatible with an antiferromagnetic, noncollinear motif. To interpret the
experimental findings, we present a model wave function for Re ions derived from the crystal field potential,
Coulomb interaction, and spin-orbit coupling that fully respects the symmetry of the low-temperature ordered
state. It is used to calculate in analytic form all multipole moments visible in neutron and resonance enhanced
x-ray diffraction. A minimal model consistent with available neutron diffraction data predicts significant multi-
polar moments up to the hexadecapole and, in particular, a dominant chargelike quadrupole moment. Calculated
diffraction patterns embrace single crystal x-ray diffraction at the Re L edge, and renewed neutron diffraction, to
probe the presumed underlying multipolar order.
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I. INTRODUCTION

Scattering techniques yield a wealth of knowledge about
electronic properties of materials at an atomic level of de-
tail. To begin with, a Bragg diffraction pattern produced by
Thomson scattering of x rays is analyzed in terms of spheres
of electronic charge arranged on a structure defined by a
space group. Space-group forbidden Bragg spots attributed
to quadrupole moments produced by departures from spher-
ical distributions of charge are weak, by their very nature.
Their intensities can be enhanced by an atomic resonance in
what is often called Templeton-Templeton (TT) scattering.
Classic examples are sodium bromate and sodium chlorate,
which possess the same chirality yet opposite senses of
optical rotation [1]. Beyond, Bragg diffraction by a non-
magnetic hexadecapole was observed in ichorlike haematite
(α-Fe2O3) [2]. Magnetic octupoles occur in haematite and
vanadium sesquioxide (V2O3), for example, and are fully
understood [3,4]. Moreover, parity-odd magnetic (Dirac)
multipoles have been observed in both materials by x-ray
diffraction [5,6]. In addition to the examples of multipoles
in the two 3 d-transition metal materials are multipoles ob-
served in diffraction by rare earth and actinide ( f electron)
compounds, e.g., neptunium dioxide NpO2 [7] and URu2Si2

[8], and like work is reviewed by Suzuki et al. [9]. Neutron
diffraction came late to the party with respect to gathering in-
formation on higher-order magnetic multipoles, although it is
the technique of choice for determining motifs of conventional
(axial) magnetic dipoles, beginning with a demonstration by
Shull and Smart in 1949 of antiferromagnetic order in NaCl-
type MnO below 122 K [10]. Two decades later, Moon, Riste,
and Koehler demonstrated advantages of exploiting neutron
polarization analysis [11]. Specifically, the technique yields
superior statistics on weak magnetic Bragg spots. Recent

examples include the detection of long-range magnetic or-
ders in the pseudogap phases of YBCO and Hg1201 and
field-induced magnetization in Sr2IrO4 [12,13]. Subsequent
analyses of the patterns revealed contributions to diffraction
by Dirac multipoles in the ceramic superconductors, and 5d5

quadrupoles and octupoles in the iridate [14,15]. Extra knowl-
edge, including moment directions, derived from polarization
analysis refines models and, thereby, makes predictions and
functional designs ever more reliable [16].

Work reported here is motivated by the observation of
a magnetic powder Bragg diffraction pattern for the low-
temperature (1.8 K) modification of the rhenate Ba2YReO6,
which crystalizes in the elpasolite structure [17]. Albeit
composed of weak Bragg features, the pattern observed by
magnetic polarized neutron diffraction is beyond reasonable
doubt. The result is a cautionary note on a subtraction of
Bragg diffraction patterns obtained for high and low tem-
perature modifications of a sample to estimate the magnetic
signal. Its use in earlier studies of 5d2 double perovskites
returned null results for magnetic Bragg spots [18–21]. The
inferred magnetic crystal class for Ba2YReO6 is mmm1′
(no. 8.2.25) that contains all inversions (1̄, 1′, 1̄′), and any
kind of magnetoelectric (ME) effect is prohibited. Magnetic
dipoles, depicted in Fig. 1, possess an antiferromagnetic, non-
collinear motif represented by space group PCccn (no. 56.375,
BNS setting [22]) involving two arms of the star {(1, 0, 0) and
(0, 0, 1)}.

A wave function for the ground state of rhenium 5d2

compatible with symmetry uses five independent coeffi-
cients, and we report corresponding multipoles from dipole
to hexadecapole. We propose a minimal model with just
two coefficients; one measures the orientation of magnetic
dipoles, and the second is a mixing angle for nonmagnetic
and magnetic crystal-field states. The model can be tested
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FIG. 1. Rhenium magnetic dipoles in the ξ -η plane (components
red and blue arrows) and chargelike quadrupoles ∝ ξη in Ba2YReO6

using space group PCccn (no. 56.375). Grey spheres represent Y ions.

by confronting it with more knowledge on the primary mag-
netic order parameter, and, critically, missing knowledge
about chargelike quadrupoles that are likely a secondary
order parameter. Indeed, symmetry-allowed magnetoelastic
coupling creates TT scattering. The diagonal component of
the quadrupole is a function of the mixing angle alone, and a
nonzero hexadecapole contradicts our minimal model. Reso-
nance enhanced single-crystal Bragg diffraction of x rays can
test all aforementioned features of chargelike multipoles, for
which we report relevant scattering amplitudes. The diffrac-
tion technique can also provide the orientation of magnetic
dipoles, as in a previous example using an iridate [23]. Con-
cerning neutron Bragg diffraction, even rank multipoles that
result from dyadic correlations of the anapole and position
operators are absent in our calculations, because crystal-field
states for the atomic configuration d2 in an octahedral envi-
ronment belong to a J manifold. This is unlike an iridium
ion in Sr2IrO4, for which there is more than one J manifold
in crystal-field states and even rank multipoles are permitted
[15].

II. MATERIAL PROPERTIES

Two broad anomalies at temperatures ≈50 and ≈25 K are
evident in the specific heat of Ba2YReO6 as is the absence of a
sharp lambda peak, which would signal long-range magnetic
order [18]. The parent double perovskite crystal structure
is composed of rocksalt ordered, corner-shared octahedra.
Rhenium ions are in centrosymmetric sites with symme-
try m3̄m, namely, sites (4a) (0, 0, 0) in Fm3̄m (no. 225),
and Re chargelike hexadecapoles are permitted, with lattice
constant ≈8.3628 Å [18,20]. Miller indices for the parent
structure satisfy F centering with Ho + Lo, Ko + Lo, Ho + Ko

simultaneously even. For the most part, we use the magnetic
space group PCccn in which Re ions occupy centrosymmet-
ric sites (4e) with symmetry, 2′/m′ that forbids a dipole
moment parallel to the crystal b axis. ME and piezomag-

netic effects are absent, and Dirac multipoles are forbidden.
Local rhenium coordinates are denoted (ξ, η, ζ) with ξ =
[−1, 0, 0], η =[0, 0, 1], ζ =[0, 1, 0] and integer Miller in-
dices h = −Ho, k = Lo, and l = Ko.

The high-spin state of the Re5+ (5d2) is 3F . Spin-orbit
coupling is proportional to Z4, where Z is the atomic number,
and atomic states of the rhenium ion are assumed to be those
of the total angular momentum J. The value of the spin-orbit
coupling is likely to be lower than the free-ion value, because
of bonding effects known to reduce the observed magnetic
moment in antiferromagnetic structures [24].

Crystal-field states for the atomic configuration 5d2 in
an octahedral environment are well established [25–28]. The
crystal field is diagonalized before the Coulomb interaction,
which is assumed large compared to the spin-orbit coupling.
In octahedral symmetry, the ground state comprises three d-
electron states labeled t2, which take part in π bonding with
ligand ions. Irrespective of the balance between the strengths
of spin coupling and crystal field, the ground state of two
electrons possesses a total spin S = 1 and threefold orbital
multiplicity. Adding spin-orbit coupling leads to a ground
state denoted 3P2 in Ref. [28], with a total angular momentum
J = 2 formed from S = 1 and a fictitious angular momentum
=1 representing the orbital triplet [25]. The ground state is
composed of a doublet (�3 or E level) with magnetic pro-
jections M = 0,±2, and a triplet (�5 or T2) with projections
M = ±1,±2. Specifically,

|�3〉 = |0〉, (1/
√

2)[|+2〉 + |−2〉];
|�5〉 = |+1〉, |−1〉, (1/

√
2)[| + 2〉 − |−2〉], (1)

where |M〉 = |J = 2, M〉. The double direct product �3 × �3

of the cubic group does not contain �4(T1) Thus, a dipole
operator has vanishing matrix elements in the �3 manifold,
and the doublet is nonmagnetic. On the other hand, the direct
product �3 × �5 contains �4 once and nonvanishing matrix
elements of a dipole between the two manifolds may exist
[25].

III. MULTIPOLES AND MINIMAL MODEL

Our ground-state wave function Eq. (2) is consistent with
point-group symmetry in a magnetic space group inferred
from a measured Bragg diffraction pattern, namely, PCccn (no.
56.375) with Re ions using sites (4e). There are a large number
of parameters in Eq. (2), likely too many to be reliably inferred
from experiments. We derive all multipoles allowed by Eq. (2)
to facilitate a test against experimental data at some future
date. In the meantime, the number of parameters is pared
down, in the spirit of Ockhams’ razor, to a minimal model.
Paring down is not a random process, but one motivated
by consequences. And, indeed, we show that one retained
parameter measures the orientation of axial dipoles, which
remains to be tested. A second, mixing parameter furnishes
nonzero values for the measured magnetic dipole moment
through violation of time-reversal symmetry, i.e., its presence
in the minimal model is justified by observations. Analysis
at the mean-field level of a feasible model of the atomic
configuration d2 by Chen and Balents [17,29] yields specific
supporting evidence.
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Axial (parity-even) multipoles of integer rank K are de-
noted 〈T K

Q 〉, where projections Q obey –K � Q � K , and
angular brackets 〈 …〉 specify the time-average, or expec-
tation, value of the enclosed spherical tensor operator. The
property 〈T K

Q 〉∗ = (–1)Q 〈T K
−Q〉 yields 〈T K

0 〉 purely real. All
multipoles are time-odd for magnetic neutron scattering, of
course, and the dipole 〈T1〉 is a linear combination of spin
〈S〉 and orbital 〈L〉 moments, to a good approximation. For
x-ray Bragg diffraction enhanced by a parity-even atomic
resonance the time signature of 〈T K

Q 〉 depends on K alone, with
K even (odd) chargelike (magnetic). In consequence, the time
signature of multipoles σθ = (–1)K for magnetic neutron and
resonance enhanced x-ray diffraction.

Symmetry 2′
ζ at sites occupied by rhenium ions means that

multipole rank and projection obey K + Q even for all K, i.e.,
〈T K

0 〉 = 0 for K odd. Saturation values of multipoles 〈T K
Q 〉 =

〈g|T K
Q |g〉 are derived using a ground-state wave function,

|g〉 = β|0〉 + (1/
√

2)[α|+2〉 + α∗|−2〉]
+ (1/

√
2)[γ |+1〉 + γ ∗|−1〉], (2)

and coefficients {|α|2 + |β|2 + |γ |2} = 1 for normalization.
The time-reversal operator changes the sign of [γ |+1〉+γ *
|–1〉] and [|+2〉 – |–2〉] that transform as �5. We find

〈
T 1

ξ

〉 = √
(2/5)(J||T 1||J )[

√
(1/3)(α γ ∗)′ + β ′γ ′],

〈
T 1

η

〉 = −√
(2/5)(J||T 1||J )[

√
(1/3)(αγ ∗)′′ + β ′γ ′′],

〈
T 2

0

〉 = √
(2/35)(J||T 2||J )[|α|2−|β|2 − (1/2)|γ |2],

〈
T 2

+2

〉 = √
(1/35)(J||T 2||J )[2α∗β ′ + (

√
3/2)(γ ∗)2],

〈
T 3

+1

〉 = √
(1/70)(J||T 3||J )[−√

3α∗γ + 2β ′γ ∗],
〈
T 3

+3

〉 = −√
(1/14)(J||T 3||J )α∗γ ∗,

〈
T 4

+2

〉 = (1/3)
√

(1/7)(J||T 4||J )[
√

3α∗β ′ − (γ ∗)2],
〈
T 4

+4

〉 = (1/6)(α∗)2(J||T 4||J ). (3)

Reduced matrix elements (J‖T K‖J ) for neutron and res-
onant x-ray diffraction are listed in the Appendix. Real and
imaginary parts of a coefficient obey the phase convention
α = α′ + iα′′ with α′ and α′′ purely real. Notably, α′ and β

specify �3 contributions, while α′′ and γ specify �5 contri-
butions. Multipoles of odd rank vanish for γ = 0. Magnetic
dipole moments derived from 〈T 1

ξ 〉 and 〈T 1
η 〉 are

μξ = 〈(L + 2S)ξ 〉 = (4/3)[(α γ ∗)′ + √
3β ′γ ′],

μη = −(4/3)[(α γ ∗)′′ + √
3β ′γ ′′],

(4)

with μζ = 0 from symmetry.
A minimal model is achieved with β = 0, α = cos(χ ), and

γ = sin(χ )exp(iφ). Evidently, the model includes the singlet
ground state of the crystal field potential [|+2〉 + |–2〉] mixed
with [γ |+1〉 + γ *|–1〉], possibly by courtesy of a quadrupole
force and opposing exchange forces [29]. Multipoles for the
minimal model are labeled (a) and

μξ (a) = {(2/3) sin(2χ ) cos(φ)},
μη(a) = {(2/3) sin(2χ ) sin(φ)}. (5)

These expressions reveal φ as the orientation of the dipole in
the ξ -η plane. PCccn allows two orthogonal magnetic dipole
components, along a and b directions of the magnetic space-
group setting depicted in Fig. 1. A combination of the two
components results in a noncollinear motif of dipoles, as
mentioned in Sec. I. Both components are permitted different
from zero and combined with any amplitudes, although one
component might actually dominate with the second vanish-
ingly small by comparison. Equation (5) defines a moment
direction within the ξ -η plane that, indeed, is compatible with
PCccn.

Multipoles with odd rank vanish when the mixing angle χ

is set to zero. One finds
〈
T 1

ξ

〉
a

= (3/2)
√

(1/30)(J||T 1||J )μξ ,

〈
T 1

η

〉
a = (3/2)

√
(1/30)(J||T 1||J )μη,〈

T 3
+1

〉
a = −(3/4)

√
(3/70)(J||T 3||J ) (μξ + iμη ),

〈
T 3

+3

〉
a = −(3/4)

√
(1/14)(J||T 3||J )(μξ − iμη ),

〈
T 2

0

〉
a = √

(1/70)(J||T 2||J )[3 cos2(χ ) − 1],
〈
T 2

+2

〉
a = (1/2)

√
(3/35)(J||T 2||J ) sin2(χ ) exp(−2iφ). (6)

Hexadecapoles 〈T 4
+2〉 and 〈T 4

+4〉 are proportional to (γ ∗)2

and cos2(χ ), respectively. The result for 〈T 2
0 〉a gives addi-

tional meaning to χ . An observed magnetic moment μo =
{(2/3)|sin(2χ )|} ≈ 0.29 in units of μB is consistent with χ

≈ 12.9 °, and [3 cos2(χ )−1] ≈ 1.85 [17].
A second magnetic space group that belongs to the mag-

netic crystal class mmm1′ is included in an analysis of the
observed neutron Bragg diffraction pattern in terms of states
in the Chen-Balents model [17,29]. CAmca (no. 64.480) de-
scribes a collinear antiferromagnetic structure involving one
arm of the star. For this case, Re ions are in centrosym-
metric sites (4a), and local coordinates (ξ , η, ζ ) are ξ =
[–1, 0, 0], η = [0, –1, 0], ζ = [0, 0, 1] with integer Miller in-
dices h = –Ho, k = –Ko, and l = Lo. Site symmetry mm′m′
requires σθ (–1)Q = +1, and 〈T K

Q 〉 = (–1)K 〈T K
−Q〉. In conse-

quence, dipoles 〈T 1
η 〉 = 〈T 1

ζ 〉 = 0, while 〈T 1
ξ 〉 = –

√
2〈T 1

+1〉.
Multipoles use φ = 0 in Eqs. (5) and (6) for the minimal
model.

IV. MAGNETOELASTIC COUPLING

Magnetic space groups under consideration belong to the
six-dimensional, time-odd mX 5+ irreducible representation
with the (0, 0; 0, δ4; δ5, 0) order parameter direction for the
PCccn and (0, 0; 0, 0; δ5, 0) for the CAmca [17]. As already
mentioned, PCccn involves two arms of the star {(1, 0, 0)
and (0, 0, 1)}. There is a trilinear free-energy invariant that
couples mX 5+ with the time-even representation X 4+(ρ; 0; 0)
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associated with the third arm (0, 1, 0), ρδ4δ5. In consequence,
diffraction created by time-even multipoles violating F cen-
tering is permitted, e.g., k + l odd. A specific example of
this type of space-group forbidden diffraction is presented in
Sec. VI.

The X 4+ representation does not enter into mechanical
decomposition of the reducible representation associated with
the Re site in Fm3̄m. This means that the magnetoelastic
coupling does not couple the relevant Re displacements with
this symmetry and, therefore, only higher order Re multipoles
will be responsible for the scattering at space-group forbidden
reflections (TT scattering). On the other hand, the X 4+ repre-
sentation does appear in the decomposition of the mechanical
reducible representation associated with oxygen positions.
This result implies that the magnetoelastic coupling will move
oxygen ions in such a way that normal Thomson scattering
will appear in the positions forbidden by the F centering, and
oxygen displacements have the propagation vector (0, 1, 0).

V. NEUTRON DIFFRACTION

Environments at sites (0, 0, 0) and (1/2, 0, 1/2) in PCccn
are related by a dyad 2ξ , and 2ξ 〈T K

Q 〉 = (−1)K〈T K
−Q〉. The

electronic structure factor for diffraction is �K
Q = [exp(iκ · d)

〈T K
Q 〉d], where the Bragg wave vector κ = (h, k, l ), and the

implied sum is over four rhenium sites in a unit cell. One finds

�K
Q (56.375)= [1+σθ (−1)h+k]

[〈
T K

Q

〉+(−1)h+l (−1)K
〈
T K

−Q

〉]

(7)

with σθ = −1 for magnetic neutron scattering. Bulk magneti-
zation is zero, as expected. The selection rule h + k odd from
antitranslation violates F centering, and there is no nuclear
scattering. The amplitude for magnetic neutron diffraction
〈Q⊥〉 is readily obtained from standard expressions, e.g., K
= 1 and 3 in Eqs. (6.2)–(6.4) in Ref. [30]. With h + k odd,
leading-order contributions to the intermediate magnetic scat-
tering amplitude in 〈Q⊥〉 = {p × (〈Q〉 × p)} are

h + l even; 〈Qξ 〉 ≈ 6
〈
T 1

ξ

〉

〈Qη〉 ≈ √
21pξ pη

[√
15

〈
T 3

+3

〉′ + 〈
T 3

+1

〉′]
,

〈Qζ 〉 ≈ −4
√

21 pξ pζ

〈
T 3

+1

〉′
,

h + l odd : 〈Qξ 〉 ≈ −√
21pξ pη

[√
15

〈
T 3

+3

〉′′ − 〈
T 3

+1

〉′′]
,

〈Qη〉 ≈ 6
〈
T 1

η

〉
, 〈Qζ 〉 ≈ −4

√
21 pη pζ

〈
T 3

+1

〉′′
,

(8)

where the unit vector p = (κξ , κη, κζ )/κ .
Diffraction from a powder sample has an intensity

I =
∑
K,Q

[3/(K + 1)]|〈T K
Q

〉|2, (9)

in the absence of even rank multipoles. In the present case, K
= 1 and 3, and Q = ±1,±3. Intensity derived from Eq. (6)
for the minimal model,

I (a) = (1/6) μ2
o{d (κ ) + 0.170[〈 j2(κ )〉 + (10/3)〈 j4(κ )〉]2}

(10)
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FIG. 2. Powder intensity Eq. (10) for the minimal model is
displayed as a function of κ = {4π sin(θ )/λ}, where θ is the
Bragg angle in Fig. 3, in the range 0–8 Å-1 using [(1/6) μ2

o]
as a unit of intensity. Blue curve: dipole intensity d (κ ) =
[〈 j0(κ )〉 + (76/35) 〈 j2(κ )〉]2. Red curve: dipole plus octupole con-
tributions with K = 3, Q = ±1, ±3. Radial integrals for Re5+

(5d2)
from Kobayashi et al. [30].

with dipole intensity d (κ ) = [〈 j0(κ )〉 + (76/35)〈 j2(κ )〉]2,
displayed in Fig. 2, together with I(a). Radial integrals 〈 jn(κ )〉
for Re5+

(3F2) are taken from Ref. [31]. In the so-called dipole
approximation for d(κ) the coefficient of 〈 j2(κ )〉 is replaced
by (2−g)/g = 2, where the Landé splitting factor g = 2/3
[30]. For observed Bragg spots [17]

(1, 0, 0)κ ≈ 0.7513 Å−1, 〈 j0(κ )〉2 = 0.8689(0.9801),

I (a) = 0.9802,

(1, 0, 1)κ ≈ 1.0625 Å−1, 〈 j0(κ )〉2 = 0.7546(0.9589),

I (a) = 0.9594,

(1, 0, 2)κ ≈ 1.6800 Å−1, 〈 j0(k)〉2 = 0.4913(0.8883),

I (a) = 0.8913, (11)

with I(a) in units of (1/6) μ2
o, and values of d(κ) are given

in brackets. There is next to no difference between d(κ) and
I(a), which includes octupoles, in the range of κ covered
in the available diffraction pattern [17]. Returning to Fig. 2,
the contribution from octupoles to scattering is discernible
beyond κ ∼ 4 Å-1.

VI. RESONANCE ENHANCED X-RAY DIFFRACTION

Parity-even absorption events are the only ones allowed
for rhenium ions in PCccn. Dipoles and quadrupoles con-
tribute to x-ray Bragg diffraction enhanced by an electric
dipole–electric dipole (E1-E1) event, while the octupole
and hexadecapole are additions to an electric quadrupole–
electric quadrupole (E2-E2) event. Absorption at Re L
edges access multipoles formed with 5 d states (L2 edge ≈
11.95 keV, L3 ≈ 10.53 keV). Calculated dipole strengths
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FIG. 3. X-ray diffraction. Primary (σ, π ) and secondary (σ ′, π ′)
states of polarization. Corresponding wave vectors q and q′ subtend
an angle 2θ . Local rhenium axes (ξ, η, ζ ) and depicted Carte-
sian coordinates (x, y, z) coincide in the nominal setting of the
crystal.

[〈3p|R|5d〉/〈2p|R|5d〉] ≈ 3.3 imply that diffraction intensity
is an order of magnitude larger at M3 ≈ 2.45 keV [32]. Unlike
neutron diffraction, our x-ray multipoles do not depend on
the magnitude of the scattering vector, although the E2-E2
amplitude is proportional to the square of the photon energy.
Absorption at rhenium s-state edges include the K edge ≈
71.67 keV and L1 edge ≈ 12.52 keV, and amplitudes have
relative values ∼{[〈2s|R2|5d〉EL1]/[〈1s|R2|5d〉EK ]}2 ≈ 0.3.

In the general case, x-ray multipoles 〈tK
Q 〉 are calculated

using Eq. (3) and reduced matrix elements in the Ap-
pendix. Celebrated sum rules include [〈t1〉L2 + 〈t1〉L3] =
−〈L〉/(10

√
2) [33]. Explicit results for the minimal model

used throughout this section are derived from Eq. (6). Diffrac-
tion amplitudes are calculated with the electronic structure
factor (7). Amplitudes in the rotated E1-E1 channel of
photon polarization, labeled π ′σ in the standard notation
used in Fig. 3 [34], access magnetic dipoles and charge-
like quadrupoles, while dipoles are absent in the unrotated
σ ′σ channel. For Bragg spots κ = (h, 0, 0) and enhancement
at the L2 edge, 〈t1

η (11)〉L2 = –{[26/(225
√

2)]μη} for h odd,
while for h even scattering is by the real part of quadrupoles,
including 〈t2

0 (11)〉L2 = {[8/(525
√

6)][3 cos2(χ )–1]}. Corre-
sponding multipoles at the L3 edge are obtained by simple
multiplication by fractions (19/26) or – (13/4) for dipole
and quadrupole, respectively, and the cited dipole sum rule is
readily confirmed. Different magnetic information is derived
from Bragg spots indexed by (0, k, 0). Specifically, the dipole
〈t1

ξ (11)〉 is for k odd, while chargelike scattering is also by the
real part of quadrupoles. In summary, measurements of Bragg
spots indexed by (h, 0, 0) and (0, k, 0) have the potential to
deliver the orientation of dipole moments in the ξ -η plane and
the �3–�5 mixing angle.

All Bragg spots indexed by (0, 0, l) arise from chargelike
multipoles. Space-group forbidden TT scattering that occurs
for l odd is created by purely imaginary multipoles with
rank K = 2 and 4. For this case, and enhancement by an
E1-E1 absorption event, the amplitude in the rotated channel

of diffraction is

Fπ ′σ (11) = –4 sin(θ ) cos(2ψ )
〈
t2
+2(11)

〉′′
. (12)

Here, ψ is the angle of rotation of the crystal about the Bragg
wave vector, and the origin of the azimuthal-angle scan places
the ξ axis normal to the plane of scattering. Primary and
secondary x-ray beams subtend an angle 2θ as in Fig. 3.
Continuing with our use of the minimal model, 〈t2

+2(11)〉L2
′′ =

–(3/350)[(μξμη )/cos2(χ )]. The amplitude for diffraction en-
hanced by an E2-E2 event, K or L1 edge, is similar,

Fπ ′σ (22) = 2
√

(1/7) cos(2ψ )
[√

3 sin(3θ )
〈
t2
+2(22)

〉′′

+ sin(θ ){1 + sin2(θ )}〈t4
+2(22)

〉′′]

+ 2 sin(θ )cos2(θ ) cos(4ψ )
〈
t4
+4(22)

〉′′
. (13)

This diffraction is an analog of observations reported by
Finkelstein et al. for haematite [2,35]. Intensities measure
the orbital angular momentum content of the d shell, since
the s-like core state is not split by the spin-orbit interaction
[36]. As for numerical values in our minimal model, we find
〈t2

+2(22)〉′′ = –{(9/2)
√

(3/7) 〈t2
+2(11)〉L2

′′}, 〈t4
+2(22)〉′′ =

–{(55/4)
√

(1/7)〈t2
+2(11)〉L2

′′}, and 〈t4
+4(22)〉′′ = 0. In

consequence, diffraction enhanced by an E2-E2 event is
a straightforward test of the model.

VII. CONCLUSIONS

In summary, we have demonstrated that the small ordered
magnetic dipole moment observed in a recent neutron diffrac-
tion experiment on Ba2YReO6 implies significant multipolar
moments [17]. These arise from a combination of the spin-
orbit coupled J = 2 ground state and the PCccn space group
symmetry of the dipole ordered low-temperature state. The
contribution of each multipole may be estimated by consid-
ering a minimal model for the ground state wave function
that includes the mixing between the�3 and �5 states and the
dipole moment direction as parameters inferred from experi-
mental data. When the experimental ordered dipole moment is
inserted into the corresponding model expectation value, it is
found that the dominant multipolar component is the charge-
like quadrupole, albeit with significant contributions up to the
hexadecapole. Quadrupoles in a J manifold do not contribute
to magnetic neutron diffraction, and magnetic scattering from
octupoles is peaked at large scattering wave vectors κ , illus-
trated in Fig. 2, which together explain why no evidence of
either is observed in existing neutron data. As such, the likely
underlying multipolar orders in Ba2YReO6 must be probed
by renewed neutron diffraction investigations or other means;
resonance-enhanced x-ray diffraction at the Re L edge is
sensitive to both dipoles and quadrupoles through E1-E1 and
octupoles and hexadecapoles through E2-E2 events. These ex-
periments must, however, await the growth of single crystals.

APPENDIX

Here we present the reduced matrix elements used in text.
First is the neutron diffraction [30],

(J||T 1||J ) = (2/3)
√

(10/3)[〈 j0(κ )〉 + (76/35)〈 j2(κ )〉],
(J||T 3||J ) = −(6/7)

√
(2/5)[〈 j2(κ )〉 + (10/3) 〈 j4(κ )〉],

(A1)
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with κ = {(4π/λ) sin(θ )}, where θ is the Bragg angle displayed in Fig. 3 and λ is the wavelength. Radial integrals are defined
such that 〈 j0(0)〉 = 1, and 〈 jn(0)〉 = 0 for n � 2.

Turning to resonance enhanced x-ray diffraction [34],

[J||t1(11)||J]L2 = −(52/45)
√

(1/15), [J||t1(11)||J]L3 = −(38/45)
√

(1/15),

[J||t2(11)||J]L2 = (8/15)
√

(1/105), [J||t2(11)||J]L3 = −(26/15)
√

(1/105). (A2)

Last, for E2-E2 reduced matrix elements (ns edge, valence d state) we use [34]

[J||tK (22)||J] = (1/5)
√

[2(2K + 1)](−1)K W (0K )K ,

W (0K )K = (2J + 1)

⎧⎨
⎩

S S O
L L K
J J K

⎫⎬
⎭W (0K ) with W (0K ) = √

[(1/2) (2S + 1)]V (K ),

where the Racah unit tensor V(K) is tabulated in Ref. [35]. For the atomic configuration 3F2,

[J||t1(22)||J] = −(4/5)
√

(1/3), [J||t2(22)||J] = −(12/35)
√

(1/5),

[J||t3(22)||J] = (3/5)
√

(1/7), [J||t4(22)||J] = (11/35). (A3)
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