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We critically reexamine the problem of interatomic exchange interactions, which describe the total energy
change caused by infinitesimal rotations of spins near some equilibrium state in the framework of constrained
spin-density functional theory (cSDFT). For small variations of the spin magnetization, such interactions can
always be related to the response function (or transverse spin susceptibility). However, the form of this relation
can depend on additional approximations supplementing the practical calculations. Particularly, the commonly
used magnetic force theorem prescribes the linear relation between the exchange interactions and the response
function, while the exact theory requires this dependence to be inverse, as it can be rigorously derived from
cSDFT. We explore the origin and consequences of these differences in the definition for a wide class of
materials, including ferromagnetic Ni, antiferromagnetic NiO, half-metallic ferromagnetic CrO2, multiferroic
HoMnO3, and layered van der Waals magnets CrCl3 and CrI3. While in most of these cases, the magnetic
force theorem produces quite reasonable results and can be rigorously justified in the long wavelength and
strong-coupling limits, the exact formulation appears to be more consistent, especially in dealing with two
important issues, which typically arise in the theory of exchange interactions: (i) the treatment of the ligand
spins and (ii) the choice of the suitable variable for the description of infinitesimal rotations in the system of
spins within cSDFT. Both issues can be efficiently resolved by employing the ideas of adiabatic spin dynamics
supplemented with the exact expression for the exchange interactions. Particularly, the ligand spins can produce
quite sizable contributions to the total energy change. For this case, we propose a simple downfolding procedure
of elimination of the ligand spins from the model by transferring their effects to the interaction parameters
between the localized 3d spins. Furthermore, the exchange interactions appear to be sensitive to the definition of
the variable, which is used to describe the rotations of spins in cSDFT: Generally, the rotations of spin moments
and spin magnetization matrix lead to different results. In this respect, we argue that the rotations of spin moments
are more suitable for the description of low-energy excitations, while the rotations of the whole magnetization
matrix cause much stronger perturbation in the system of spins.

DOI: 10.1103/PhysRevB.103.104428

I. INTRODUCTION

The interatomic exchange interaction is a very useful tool
for understanding the properties of magnetic materials on the
microscopic level: It is always nice to have a transparent toy
model representing a complex magnetic system as a bunch of
interacting magnetic centers. Such practice is commonly used
in experiments. For instance, inelastic neutron scattering data
are frequently interpreted in terms of the spin model, which
gives us an idea about the main magnetic interactions operat-
ing the considered compound. In theory, the proper spin model
can be constructed by eliminating all degrees of freedom
except the spin ones, for instance, by using perturbation theory
[1] or simply mapping the total energy changes obtained for
a number of magnetic configurations onto the spin model,
as is frequently done in first-principles electronic-structure
calculations.

*SOLOVYEV.Igor@nims.go.jp

Even without spin-orbit coupling, the model can be rather
complex and, besides commonly used Heisenberg pair inter-
actions, include other isotropic multispin contributions. There
is only a limited number of examples where the simplest
Heisenberg form of the model can be rigorously justified:
(i) direct exchange interactions, considered by Heisen-
berg himself [2]; (ii) the strong-coupling limit underlying
the superexchange [1] and Ruderman-Kittel-Kasuya-Yosida
interactions [3]; and (iii) effective interactions occurring be-
tween infinitesimally rotated spins near some equilibrium
state [4–6].

In the latter case, the Heisenberg form of the model follows
from the general property of the second-order perturbation
theory, which allows us to present the energy change caused
by local perturbations at the atomic sites as the sum of pair-
wise interactions. For isotropic systems in the absence of
spin-orbit coupling, these interactions should be described by
the scalar products of spins,

E = − 1

2N

∑
i j

Ji j eie j, (1)
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where ei is the direction of spin at site i located in the
lattice point Ri, and N is the number of such sites. In the
ground state, all spins are aligned parallel to z. The sys-
tem of the infinitesimally rotated spins can be specified by
their transversal components δe⊥

i = ( cos qRi, sin qRi, 0) θ

for some spin-spiral configuration with the propagation vector
q, where small polar angle θ is regarded as a perturbation
parameter. Then, if there is only one magnetic site per unit
cell, the energy change caused by the interactions of δe⊥

i is
given by δE = − 1

2 Jqθ
2. The generalization to the multisite

case is straightforward and given by

δE = −1

2

∑
μν

Jμν
q θμθν, (2)

with μ and ν numbering the atomic sites in the unit cell.
This equation contains all necessary information about the
interatomic interactions between the spins. The real-space pa-
rameters Ji j can be obtained via the Fourier transform of Jμν

q .
Therefore, the basic idea is to find the corresponding energy
change in the electronic-structure calculations and map it onto
Eq. (2). This can be done in the framework of spin-density
functional theory (SDFT), which presents a natural way for
deriving the parameters of the spin Hamiltonian from first
principles. Equation (2) can be also viewed as the Taylor
expansion for the total energy, where each Jμν

q is proportional
to the second derivative of this energy with respect to θμ

and θν , while all first derivatives are equal to zero due to the
equilibrium condition.

The main difficulty on the way to practical realization of
this strategy is that it is not always easy to control the rotation
of the magnetization by the given angles θμ and θν , which
should be tuned by applying some external magnetic field. In-
stead, it is much easier to rotate the exchange-correlation (xc)
potential by assuming that within SDFT it should correspond
to rotation of the magnetization by the same angles. This con-
stitutes the basis of the magnetic force theorem (MFT) [4–6],
which is widely used in practical calculations [7–11] and was
recently extended for treating exotic magnetic textures [12].
The great advantage of MFT is that it allows us to replace
the total energy change with the change of the single-particle
energies [13]. The exchange interactions within MFT are ba-
sically given by the transverse susceptibility (or the response
function) [4–6]. Furthermore, starting from this MFT-based
expression, one can readily reproduce many well-known re-
sults for the exchange interactions in the strong-coupling limit
[14].

However, the use of MFT for the exchange interactions
is an approximation, which is frequently questioned in the
literature [15–19]. The exact expression for the exchange
interactions is also anticipated and can be related to the in-
verse response function [18–22]. Nevertheless, the issue is
still rather controversial as there is no detailed analysis of
this problem as well as systematic applications for magnetic
materials. The key questions are still: (i) How good is MFT?
(ii) Are there any new aspects (besides a quantitative improve-
ment) and/or pitfalls if the exact formalism for the exchange
interactions is used instead of MFT?

In the present paper, we provide a detailed analysis of this
problem starting with the constrained SDFT and focusing on

the exact change of the total energy, which corresponds to
small rotations of spins near an equilibrium state (Sec. II A).
We will show how the exact expression for the exchange
interactions can be derived (Sec. II C) and discuss the simpli-
fications underlying the use of MFT (Sec. II B). Then, we will
deal with two important issues, which typically arise in the
theory of exchange interactions. The first one is that the real
solid consists of several types of states, some of which, like
the transition metal (TM) 3d states, are primarily responsible
for the magnetism, while other ones, like the ligand states, are
magnetized only due to the hybridization or weak intraatomic
exchange interactions with the 3d states and alone would de-
velop no spontaneous magnetization. How is it consistent with
the form of the Heisenberg model, which includes only the
localized spins? Although the 3d states, to a certain extent, can
be associated with localized spins, the ligand states definitely
cannot. To this end, using the adiabaticity concept, we will
show how the ligand spins can be naturally eliminated from
the model by redefining the interaction parameters between
the 3d spins and including into them the effects of magnetic
polarization of the ligand states (Sec. II D). Another issue is
that the exchange interactions depend on the definition of the
object, which is chosen to describe the rotations of spins in
SDFT (Sec. II E). Generally, the rotation of the magnetization
matrix does not act the same as the rotation of magnetic
moments: these are two different processes, which are char-
acterized by rather different energy scales. The right choice
of such an object is still largely phenomenological. Neverthe-
less, employing once again the adiabaticity concept, one can
argue that the rotation of magnetic moments (instead of the
magnetization matrix) should better describe the low-energy
excitations in the system of spins. These ideas are illustrated
on a number of examples: ferromagnetic (FM) face-centered
cubic nickel (fcc Ni, Sec. III A), antiferromagnetic (AFM)
NiO (Sec. III B), half-metallic FM CrO2 (Sec. III C), multifer-
roic HoMnO3 (Sec. IV), and layered van der Waals magnets
CrCl3 and CrI3 (Sec. III E). Finally, Sec. IV briefly summa-
rizes results of our paper.

II. ROTATIONS OF MAGNETIZATION AND TOTAL
ENERGY CHANGE

A. General conventions and remarks

We start with the constrained SDFT (or its refinements)
[23,24], describing the system of interacting electrons with
the energy

E[m] = T [m] + Exc[m] + 1

2N
hq · (m − mq), (3)

where T and Exc are, respectively, the kinetic and xc energies
(per one unit cell), depending on the spin magnetization m,
and hq is the constraining field enforcing the given distribu-
tion of the spin magnetization mq. For the sake of simplicity,
we drop here all dependencies on the electron density. Since
SDFT is designed to reproduce the physically correct energy,
Eq. (3) seems to be the most natural starting point for our
purposes [17].

The search of the constrained energy in SDFT is reduced
to the self-consistent solution of one-electron Kohn-Sham
(KS) equations with the Hamiltonian Ĥ [24]. To associate the
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magnetization with the atomic sites, we have to formulate this
KS problem on a lattice by adopting the appropriate represen-
tation of localized Wannier orbitals [25,26] and constructing
Ĥ = [Hab

i j ]
↑,↓

in the basis of such orbitals, which are denoted
as a and b for the atomic sites i and j. Furthermore, we
assume that the magnetic ground state for hq = 0 is collinear.
Therefore, Ĥ may depend on the spin indices σ = ↑ or ↓
but remains diagonal with respect to them. Then, the site-
diagonal part of Ĥ can be presented as 1

2 v̂i + 1
2 σ̂ zb̂z

i , where
σ̂ = (σ̂ x, σ̂ y, σ̂ z ) denotes the vector of Pauli matrices, v̂i =
Ĥ↑

ii + Ĥ↓
ii represents the scalar potential, and b̂z

i = Ĥ↑
ii − Ĥ↓

ii
is the xc field, which for an arbitrary direction of the magne-
tization is the vector b̂i = (b̂x

i , b̂y
i , b̂z

i ).
The magnetization at site i is related to the density matrix

n̂i =
(

n̂↑↑
i n̂↑↓

i

n̂↓↑
i n̂↓↓

i

)
(4)

as m̂i = TrS{σ̂n̂i} (with TrS denoting the trace over the spin
indices) and remains a matrix in the subspace spanned by the
orbital indices: m̂i = [mab

i ]. A similar property holds for b̂i

and ĥi. Hence, the spin moment is given by the trace over
the orbital indices: Mi = TrL{m̂i}. In SDFT, b̂i is related to
m̂i as b̂i = 2NδExc[m]/δm̂i. If Exc is an additive function of
m̂i at different sites, b̂i is local and at each site depends only
on m̂i at the same site. Then, it is convenient to introduce the
vector �mT = ( . . . , m̂i, . . . ) composed of m̂i at different sites

and similar vectors for the xc and external field, �bT
and (�hq)T ,

respectively.
Our goal is to find the energy change caused by infinitesi-

mal rotations of the magnetization near the ground state. Thus,
if m̂i = (0, 0, m̂z ) is the translationally invariant ground-state
magnetization, the rotated magnetization m̂qi can be written
as

m̂qi =
(

θ cos qRi, θ sin qRi, 1 − θ2

2

)
m̂z. (5)

This change of the magnetization is induced by the constrain-
ing field

ĥqi = (cos qRi, sin qRi, 0) ĥq, (6)

but the angle θ is additionally affected by the change of the
effective xc field [17]. The corresponding total energy can be
written as

E[ �mq] = Esp(�hq + �bq) − 1

2N
�mq · (�hq + �bq) + Exc[ �mq], (7)

where the first two terms correspond to T in Eq. (3), expressed
as the sum of the occupied KS single-particle energies (Esp)
minus the interaction of �mq with the external field �hq and
corresponding to it xc field �bq. In these notations, �mq · �hq

denotes the dot product of two vectors with the summation
over two orbital indices as

∑
ab mab

qi hba
qi and, if necessary, the

atomic indices.
Then, Exc[ �mq] is invariant with respect to rotations of the

spin magnetization, which is a consequence of the gauge
invariance in SDFT [27–29]. Therefore, Exc[ �mq] does not con-
tribute to the total energy change. A similar property holds for
�mq · �bq: due to the gauge invariance; any rotation of the spin
magnetization will rotate the xc field by the same amount [29],

thus making �mq · �bq invariant. This can be clearly seen for the
local xc functional of the form

Exc[ �m] = − 1

4N

∑
i

�mi · Ixc �mi, (8)

where Ixc = [Ixc(ab, cd )] is the rank-4 tensor, which can be
constructed as discussed in Ref. [30]. Then, we have

�bi = −Ixc �mi (9)

and, therefore, �bi ‖ �mi. The possibilities other than Eq. (8)
were discussed in Ref. [29]. Thus, m̂qi given by Eq. (5) should
correspond to

b̂qi =
(

θ cos qRi, θ sin qRi, 1 − θ2

2

)
b̂z, (10)

which consists of transversal, δ�b⊥
q (i.e., ∈ xy-plane), and lon-

gitudinal (‖ z) parts.
Then, the change of the single-particle energies is given by

[30,31]

δEsp = 1

4N
(�hq + δ�b⊥

q ) · R(�hq + δ�b⊥
q ) − 1

4N
�bz · �mz θ2 (11)

in terms of the rank-4 response tensor R, relating the transver-
sal magnetization, δ �m⊥

q , with the total magnetic field: R(�hq +
δ�b⊥

q ) = δ �m⊥
q , as will be discussed more in detail in Sec. II B.

The first term in Eq. (11) is nothing but the energy change
in the second order of perturbation theory with respect to
�hq + δ�b⊥

q , while the second term appears in the first order
of perturbation theory with respect to the longitudinal change
of the xc field, − 1

2 b̂zθ2. Then, using the definition of R and

noting that δ�b⊥
q · δ �m⊥

q = �bz · �mz θ2, one can find that

δEsp = 1

4N
δ �mq · �hq. (12)

By combining it with the second term of Eq. (7) and noting
that �mq · �bq does not depend on θ , we arrive at a simple but
exact expression for the total energy change:

δE = − 1

4N
δ �mq · �hq. (13)

Quite naturally, there would be no energy change without the
constraining field.

B. MFT-based expression

Before turning to the exact theory, let us consider the
MFT-based expression for the exchange interactions. It can
be derived from Eq. (11), assuming �hq = 0. In this case, the
second term in Eq. (7) does not contribute to the total energy
change, which is formally given only by δEsp. The basic idea

here is that δ�b⊥
q plays the role of constraining field, though

it does not guarantee to reproduce the required magnetization
change given by Eq. (5): The input xc field can be indeed taken
in the form of Eq. (10), corresponding to the magnetization
Eq. (5). However, the new magnetization, obtained from the
solution of KS equations with the effective xc field (10) will
deviated from Eq. (5) as, without applying the external field, it
will tend to relax toward the collinear ground state [18]. This
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can be paraphrased differently: Although for isolated atoms
there is one-to-one correspondence between Eqs. (5) and (10),
it is violated in solids because of additional contributions com-
ing from the kinetic energy change, which tend to additionally
rotate the magnetization. Thus, the MFT is an approximation.
Nevertheless, it is less time consuming computationally and
in many cases it provides quite a reasonable description of
magnetic properties, at least on a semiquantitative level.

Then, it is convenient to make a transformation to the local
coordinate frame, in which δm̂⊥

i (and all other vectors) are
parallel to x: δm̂⊥

i = (δm̂x, 0, 0), and express δ �mx via δ�bx

using the response tensor Rq ≡ [Rq(ab, cd )] [32],

δ �mx = Rq(�hx + δ�bx ), (14)

where

Rq(ab, cd ) = 1

2

BZ∑
k

∑
mn

f ↑
mk − f ↓

nk+q

ε
↑
mk − ε

↓
nk+q

× {(
Ca↑

mk

)∗
Cb↓

nk+q

(
Cc↓

nk+q

)∗
Cd↑

mk + H.c.
}

(15)

in terms of the eigenvalues εσ
mk and eigenvectors |Cσ

mk〉 =
[ . . . , Caσ

mk, . . . ]T of the KS quasiparticles (in the Bloch repre-
sentation and expanded in the basis of Wannier orbitals), and
the Fermi distribution function f σ

mk [31]. Here, the Hermitian
conjugate (H.c.) means the interchange of the orbital indices
a ↔ b and c ↔ d combined with the complex conjugation. k
points in the summation run over the first Brillouin zone.

So far, our analysis was limited by one site per unit cell.
The generalization to the multisite case is straightforward: the
elements of the tensor Rq will depend on the indices μ and ν

of atoms in the unit cell. Furthermore, it should be understood
that the orbital indices a and b belong to site μ, while c and d
belong to site ν.

Then, since δb̂x
μ = θμb̂z

μ and �hx = 0, we will have

δEsp = 1

4

∑
μν

(�bz
μ · Rμν

q
�bz
ν − �bz

μ · �mz
μ δμν

)
θμθν (16)

and, therefore,

Jμν
q = −1

2

(�bz
μ · Rμν

q
�bz
ν − �bz

μ · �mz
μ δμν

)
. (17)

Taking into account that

Rμν
q (ab, cd ) = − 1

2π

BZ∑
k

Im
∫ εF

−∞
dε

{
Gda↑

νμ (ε, k)Gbc↓
μν (ε, k + q)

+ Gda↓
νμ (ε, k + q)Gbc↑

μν (ε, k)
}
,

where Gbcσ
μν are the matrix elements of the one-electron

Green’s function,

Ĝσ (ε, k) =
∑

n

∣∣Cσ
nk

〉〈
Cσ

nk

∣∣
ε − εσ

nk + iδ
,

it is straightforward to see that Eq. (17) is nothing but the
MFT-based expression for the exchange interactions [4–6,33].
The second term in parentheses does not contribute to the
real-space parameters of interatomic exchange interactions.
Nevertheless, it is important to fulfill the sum rules. Indeed,

using the property

Ĝ↑(ε, k) − Ĝ↓(ε, k) = Ĝ↑(ε, k)b̂zĜ↓(ε, k),

which follows from the definition of the Green’s function, one
can find that

�mz
μ =

∑
ν

Rμν
0

�bz
μ.

Then, the second term in Eq. (17) can be rearranged as

�bz
μ · �mz

μ =
∑

ν

�bz
μ · Rμν

0
�bz
ν =

∑
ν

�mz
μ · [

R−1
0

]μν �mz
ν . (18)

As shown in the previous section, the contribution Eq. (16)
to the total energy change should vanish in the exact for-
malism due to the cancellation of the two contributions in
parentheses. However, in the case of MFT we have R δ�b⊥

q =
δ �m′

q, which is not the same as the required transversal mag-

netization �m⊥
q . Thus, the cancellation does not occur but

formally because of an intrinsic error of MFT.
The fact that the energy change near the ground state,

Eq. (16), can be fully expressed in terms of the electronic
structure of this ground state (thus requiring no additional
self-consistency) is regarded as one of the main advantages
of MFT [6]. Nevertheless, below we will show that absolutely
the same property holds for the exact expression.

C. Exact expression

Now, we turn to the analysis of exact expression for the
total energy change, Eq. (13). Formally, �hq serves as an input
parameter, while δ �m⊥

q can be again expressed via �hq and

δ�bq using Eq. (14) of the linear response theory in the local
coordinate frame, which yields

δE = − 1
4 (�hx · Rq �hx + �hx · Rqδ�bx ), (19)

where the dot product also implies the summation over the
site indices. However, this expression requires an extra step
to connect the field �hx with the angles {θμ}. This can be
done by using Eq. (14) and applying the self-consistent lin-
ear response theory to obtain δ�bx [30,31,34]. Thus, although
such a procedure can be realized, it is not very practical. It
appears to be more convenient to reformulate the problem in
a different way, by treating δ �m⊥

q as the input parameter and

finding corresponding to it �hq from the linear response theory,

�hx = R−1
q δ �mx − δ�bx, (20)

which yields

Jμν
q = 1

2

(
�mz

μ · [R−1
q ]μν �mz

ν − �bz
μ · �mz

μ δμν

)
. (21)

This expression is an exact analog of Eq. (17) and can be
formally obtained from it by replacing in the first term �bz

μ →
�mz

μ and Rq → R−1
q (with subsequent change of signs in the

whole expression). We would like to emphasize that Eq. (21)
has the same merit as its MFT-based analog: The exact inter-
actions are fully determined by the electronic structure and
parameters of the ground state. In this sense, the total energy
change near the ground state is the property of this ground

104428-4



EXCHANGE INTERACTIONS AND MAGNETIC FORCE … PHYSICAL REVIEW B 103, 104428 (2021)

state, which can be found analytically, without additional self-
consistency.

Equation (21) can be further rearranged using Eq. (9) and
expressing �bz

μ via �mz
μ as �bz

μ = −Iμ
xc �mz

μ, which yields

Jμν
q = 1

2

(
�mz

μ · [R̃−1
q ]μν �mz

ν

)
(22)

in terms of the self-consistent response tensor R̃q =
Rq[1 + IxcRq]−1, satisfying the condition δ �mx = R̃q �hx.

Then, using Eqs. (9), (17), and (22), and the approxi-
mation (�bz )−1 ⊗ (�bz )T ≈ 1 for the rank-4 unity tensor 1 ≡
[1(ab, cd )] = [δacδbd ], it is straightforward to obtain the fol-
lowing expression, connecting the exact parameters (Jq) with
the ones based on MFT (JMFTq ):

Jq ≈ JMFTq

[
1 − 2(�bz )−1 · ( �mz )−1JMFTq

]−1
, (23)

where, for simplicity, we drop the atomic indices. In these
notations, (�bz )−1 is the vector, which for each atomic site is
constructed from the elements of the inverse matrix, and the
dot symbol implies the summation over the orbital indices, as
described above. Equation (23) is nothing but the renormal-
ized MFT proposed by Bruno [18]. The only difference is that
Bruno considered a spherical case, where for each atomic site
bz

ab = bzδab and, therefore, the property (�bz )−1 ⊗ (�bz )T = 1 is
exact. In a more general case of aspherical �bz, Eq. (23) is
an approximation, while the correct expression is given by
Eq. (21). Nevertheless, Eq. (23) is very convenient as it shows
that Jq can indeed be reduced to JMFTq at least in two cases:
(i) long wavelength limit q → 0 and (ii) strong-coupling limit
�bz → ∞.

D. Adiabaticity and elimination of the ligand spins

Jμν
q contains all the information about the exchange inter-

actions, involving all sites in the unit cell. However, these
sites can be of completely different types. The typical situ-
ation is realized in TM oxides, where the TM 3d states are
primarily responsible for the magnetism and can be modeled
by localized spins. On the other hand, the oxygen sites carry
only small magnetic moments, which are induced by the hy-
bridization with the TM 3d states. Nonetheless, the magnetic
polarization of the oxygen sites plays a very important role
by mediating the exchange interactions between the TM sites
[35]. Generally, the effect of such polarization is not negligi-
ble and should be rigorously taken into account. In the present
section, we consider how this can be done in the framework
of the exact theory of exchange interactions.

Let us consider a general situation where all atomic sites
can be divided in two groups: the magnetizing (T) sites and the
magnetized ligand (L) sites. Then, the energy change, Eq. (2),
can be written as

δE = −1

2

(
θT

T JTT
q θT + θT

T JTL
q θL + θT

L JLT
q θT + θT

L JLL
q θL

)
,

(24)
where each JAB

q is a matrix with the indices of T or L sites and
θA is the column vector with the same indexing (the italic T
denotes the matrix transposition, as before).

In principle, one can propose several scenarios of how to
treat the L spins. All of them rely on some initial assumptions

about the spin dynamics in the system. Namely, the adiabatic
spin dynamics implies that all degrees of freedom can be
divided into slow magnetic and fast electronic, so for each
instantaneous configuration of spins, the electronic variables
have sufficient time to adjust the magnetic ones and reach the
equilibrium [36,37]. In this particular case, the key question
is, What is the nature of the L spins and should they be treated
as slow or fast? [30]. Although the question involves many
different aspects related to the role of the spins and their
implications to the magnetic properties of TM compounds,
the reasonably good assumption seems to be fast [30], which
we will explore below in detail.

Thus, for each configuration of angles θT, the angles θL can
be found from the equilibrium condition: ∂

∂θT
L
δE = 0, which

yields

θL = −[
JLL

q

]−1
JLT

q θT. (25)

Substituting it into Eq. (24), one can eliminate (or downfold)
θL and obtain the following equation for δE , solely in terms of
θT:

δE = −1

2
θT

T J̃TT
q θT, (26)

with the downfolded parameters

J̃TT
q = JTT

q − JTL
q

[
JLL

q

]−1
JLT

q . (27)

This idea of downfolding is quite general and can be
applied to any kind of exchange interactions: exact or approx-
imate. However, since it is based on the variational principle
and search for the energy minimum for the given configuration
of the T spins, it is more suitable for the exact theory aiming to
describe the exact change of the total energy. In this respect,
it is important to note that although MFT works reasonably
well for the magnetic T sites, the description of the L sites
within MFT is more subtle and any attempts to improve MFT
(for instance, using Bruno’s renormalized MFT [18]) mainly
correct to the behavior of this group of spins [7]. This is also
related to the fact that the behavior of the L sites is far from
the strong-coupling limit, where MFT is expected to work
well. In view of these arguments, MFT does not seem to be
a good starting point for this downfolding procedure and, as
we will see below, the exact approach typically produces more
consistent results.

We would also like to note that the ligand states contribute
to J̃TT

q in different ways. One important contribution, coming
from the shift of the ligand bands [38], is already included
in the bare parameters JTT

q , while the additional correction in
J̃TT

q comes from the magnetic polarization of the ligand states,
which is similar to the direct exchange and in most cases is
FM [39].

Finally, we would like to note that a different strategy
for the elimination of the L spins was proposed recently in
Ref. [40].

E. Right object to rotate: Magnetization matrix versus
magnetic moments

The next important question is, What is the right pertur-
bation of the spin magnetization at each site of the system,
which should be used for the evaluation of the total energy
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change and the exchange interaction parameters? One possi-
ble answer is δm̂x

μ = θμm̂z
μ (in the local coordinate frame),

where each element of the magnetization matrix m̂z
μ at the site

μ is rotated by the same angle θμ. Similar strategy is used
in MFT, where the xc field is the matrix and each element
of this matrix is also rotated by the same angle [8,9]. Never-
theless, such type of perturbation is merely our assumption
made about the low-energy excitations in the system of spins.
Is this choice unique? Are there other perturbations of the
spin magnetization matrix resulting in the same rotations of
the spin magnetic moments but at lower energy cost? In this
section, we further explore such possibilities.

For the symmetric matrix m̂z
μ, one can always choose

the diagonal representation m̂z
μ = diag( . . . , ma,z

μ , . . . ) with
respect to the orbital indices. In principle, each orbital
in such representation can be rotated by its own angle
θa
μ, which would yield the transversal magnetization m̂x

μ =
diag( . . . , θa

μma,z
μ , . . . ). Nevertheless, these angles are sub-

jected to the additional constraint for the total spin moment:
Mx

μ = TrL{m̂x
μ} should be equal to θμMz

μ, which corresponds
to the rotation of Mz

μ = TrL{m̂z
μ} by the angle θμ. Importantly,

this condition is softer than rigid rotation of the spin mag-
netization matrix with the same θa

μ = θμ for all a. Therefore,
it is reasonable to expect that the energy change caused by
this perturbation will be smaller, which should lead to smaller
exchange parameters. This can be viewed again in light of the
adiabaticity concept, where all degrees of freedom in m̂z

μ are
divided in two parts: slow Mz

μ and fast remaining parts, which
instantaneously follow the rotations of Mz

μ.
The mathematical formulation of the problem is based on

the minimization of the energy change, Eq. (13), with the
additional constraint

∑
a (θa

μ − θμ)ma,z
μ = 0 at each site of the

system. Then, this energy change is given by

δE = −1

4

∑
μa

{
θa
μma,z

μ ha,x
μ − (

θa
μ − θμ

)
ma,z

μ λμ

}
, (28)

where λμ are the Lagrange multipliers. By minimizing it with
respect to θa

μ, it is straightforward to find that ha,x
μ = λμ. Thus,

we arrive at a very simple but important conclusion: To rotate
the spin moments at the minimal energy cost, the external field
in the subspace of orbital indices should be proportional to the
unity matrix, hab, x

μ = hx
μδab.

Then, in terms of the linear response theory, we have
θμMz

μ = ∑
ν Rμν

q (hx
ν + bz

νθν ), where Rμν
q = ∑

ac R
μν
q (aa, cc)

and bz
ν = 1

nν
TrL{b̂z

ν} is the average field at site ν (with nν being
the number of orbitals). The corresponding energy change will
be given by Eq. (2) with the parameters

Jμν
q = 1

2

(
Mz

μ

[
R−1

q

]μν
Mz

ν − bz
μMz

μδμν

)
, (29)

where Rq ≡ [Rμν
q ] is the matrix in the subspace of atomic

indices. This is an analog of Eq. (19), but reformulated for the
rotations of the spin moments instead of the whole magnetiza-
tion matrix. This procedure can be also viewed as spherization
of more general Eq. (19) and, in light of arguments at the end
of Sec. II C, is equivalent to the MFT proposed by Bruno [18].

III. APPLICATIONS

In this section, we present results of calculations of the
interatomic exchange interactions using the MFT, which are
denoted as b̂ based (i.e., obtained by rotating the matrix of the
xc field), and exact expressions for the total energy change
corresponding to rotations of the spin magnetization matrix
and spin magnetic moments (denoted as m̂ based and M based,
respectively). All the calculations were performed using linear
muffin-tin orbital (LMTO) method in the atomic spheres ap-
proximation [41,42]. Then, for most applications (except fcc
Ni), we constructed a minimal model, including only the TM
3d and main ligand states. The details will be specified below,
separately for each case. The minimal model was constructed
in the basis of appropriate Wannier functions by applying
the projector operator technique [25,26]. We deliberately use
the local spin density approximation (LSDA), even despite
well-known limitations of it, for the description of TM oxides
and other strongly correlated systems [43]. In this paper, we
are not aiming at improving LSDA. Nevertheless, we believe
that the rigorous analysis of interatomic exchange interactions
should shed more light on the problem of what should be
improved in LSDA and why. As we will see, in a number
of cases the situation can indeed be rather nontrivial. For
practical purposes, we employ the Vosko-Wilk-Nusair LSDA
functional [44].

A. fcc Ni

The FM fcc Ni is one of the popular test-bed systems
serving to explore abilities of various theories and models of
magnetism [34]. Therefore, we would also like to start our
analysis with the comparison of magnetic interactions in fcc
Ni, calculated by employing three different techniques. We
use the standard LMTO method in the basis of Ni 3d4sp or-
bitals without the Wannierization. Furthermore, the 3d states
were regarded as magnetic states, while the remaining 4sp
states were associated with the ligand states. The response
tensor was calculated on the mesh of the 90 × 90 × 90 k
points and 10 × 10 × 10 q points in the first Brillouin zone.
Since the denominator of the response tensor Eq. (15) contains
the difference of the occupied and empty KS single-particle
energies, it is essential to use dense k mesh for the metallic
systems.

The spin-wave dispersion ωq = 2
M (J0 − Jq) along the �-X

direction of the Brillouin zone is shown in the left panel of
Fig. 1. The corresponding parameters of exchange interactions
in real space, obtained by the Fourier transform of Jq, are
shown in the right panel. The values of Curie temperature in
the mean-field approximation kBT MF

C = 1
3

∑
j Ji j (in terms of

the real-space parameters Ji j) and the random phase approxi-
mation (RPA) [45],

kBT RPA
C = 1

3

(∑
q

1

(J0 − Jq)

)−1

, (30)

are listed in Table I.
Basically, for fcc Ni, we are able to reproduce the main

results of Ref. [34] by Katsnelson and Lichtenstein, which
can by summarized as follows: (i) the MFT-based exchange
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FIG. 1. Left panel: Spin-wave dispersion for the FM fcc Ni with
the parameters obtained in the framework of magnetic force theorem
for the infinitesimal rotations of the xc field (denoted as b̂ based) and
the exact formalism, corresponding to rotations of the whole mag-
netization matrix (m̂ based) and spin magnetic moments (M based).
Bare contributions of the Ni 3d spins are shown by closed symbols,
while those taking into account the contributions of the ligand Ni 4sp
spins are shown by open symbols. The experimental data are from
Ref. [46]. Right panel: Distance dependence of interatomic exchange
interactions obtained by using the same techniques.

parameters better agree with the experimental spin-wave dis-
persion [46] and (ii), on the other hand, the exact treatment,
based on the inverse response function, improves the agree-
ment with the experimental data for TC, as was also pointed
out by Bruno [18]. Nevertheless, the theoretical values for
TC are probably subjected to further corrections including
the quantum effects, etc. [34]. In any case, an interesting
point of this analysis is that the simple Heisenberg model
with the same parameters fails to simultaneously describe
the spin-wave dispersion and TC for fcc Ni, thus confirming
results of previous studies [37]. The well-known limitations
of LSDA for fcc Ni can be another serious issue [48], so good
agreement between MFT data and the experimental spin-wave
dispersion, obtained within LSDA, can be illusive.

Regarding the exact theory, in this particular case there is
not much difference whether it is formulated in terms of the
magnetization matrix (m̂ based) or the spin magnetic moments

TABLE I. Curie temperature in fcc Ni (in K) as obtained in the
mean-field approximation (T MF

C ) and RPA (T RPA
C ) for the parameters

derived by rotating (i) the xc field (denoted as b̂ based), (ii) the whole
magnetization matrix (m̂ based), and (iii) spin magnetic moments (M
based), where (i) is based on MFT, while (ii) and (iii) are based on
the exact expression for the total energy change. Bare contributions
of the Ni 3d spins are denoted as 3d , and the ones including the effect
of the ligand Ni 4sp spins are denoted as 3d + L. The experimental
Curie temperature is about 627 K [47].

b̂ based m̂ based M based

3d 3d + L 3d 3d + L 3d 3d + L

T MF
C 307 296 746 760 666 683

T RPA
C 277 266 594 611 524 542

(M based). As expected, the rotations of spin magnetic mo-
ments are less energy costly than those of the magnetization
matrix. However, in all other respects, these two methods
provide quite comparable results for the spin-wave dispersion
and the real space parameters of exchange interactions, which
substantially exceed the results obtained by rotating the xc
field in the framework of MFT. Quite naturally, the magnetism
of fcc Ni is almost solely associated with the 3d spins, while
the contributions of the ligand 4sp spins are small and do not
play a significant role.

B. Antiferromagnetic NiO

TM monoxides is another popular class of materials, which
is widely used for testing the theories and concepts aiming at
the description of strongly correlated systems [38,43]. Special
attention is paid to superexchange interactions responsible
for the formation of the type-II AFM ground state [1,38,49].
Particularly, the LSDA is known to overestimate these inter-
actions, which is directly related to the underestimation of the
energy gap [38,43]. The main reason is the wrong averaged
interaction parameter Iν

xc = 1
n2

ν

∑
ac Iν

xc(aa, cc), responsible
for the splitting between occupied and unoccupied states in
LSDA, which should be replaced by much stronger Coulomb
repulsion, U ν , enforcing the strong-coupling limit [43]. In this
section, we will turn to the analysis of NiO, also within LSDA.
Particularly, we will show that in this case MFT substantially
overestimates the interatomic exchange interactions and Néel
temperature, TN, in agreement with the previous finding. Nev-
ertheless, the situation is more complex and not only limited
to the overestimation of the superexchange interactions. The
exact expression, based on the inverse response function, fur-
ther deteriorates the agreement with the experimental data.

We use the minimal model for the electronic structure
formulated in the basis of Ni 3d and O 2p Wannier functions.
All calculations are performed for the type-II AFM state in
the ideal rock-salt structure (Fig. 2). The response tensor was
calculated on the mesh of the 16 × 16 × 16 k points and
10 × 10 × 10 q points in the first Brillouin zone. Since NiO
is an insulator, the response tensor can be reproduced using
a smaller number of k points in comparison with the metallic
fcc Ni.

The magnetic properties of NiO are typically considered in
terms of the nearest-neighbor (NN) interaction J1 and next-
NN interaction J2, operating via the oxygen sites [38,50] (see
Fig. 2). Nevertheless, since LSDA overestimates the itineracy
of the system, the exchange interactions in this approxima-
tion become long-ranged and not limited by only J1 and J2.
This is clearly seen in Fig. 3, illustrating the distance de-
pendence of exchange interactions: besides J1 and J2, there
is an appreciable interaction J6, operating between Ni atoms
with opposite directions of spins along the cube diagonal, and
other interactions controlling the properties of NiO in LSDA.
However, such long-range behavior is an artifact, resulting
from violation of the strong-coupling limit in LSDA. This
violation also leads to different values of the parameter J1,
operating in FM and AFM bonds: J↑↑

1 and J↑↓
1 , respectively

(see Table II). The experimental inelastic neutron scattering
also indicates a small difference between J↑↑

1 and J↑↓
1 [50].

However, it is much smaller than in LSDA and, more impor-
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FIG. 2. Type-II antiferromagnetic phase of NiO with the notation
of main exchange interactions.

tantly, stems from the small rhombohedral distortion of the
rock-salt structure, driven by the exchange striction, while the
LSDA parameters correspond to the ideal structure and do not
take into account the effect of the distortion.

Now, let us discuss the behavior of J2 in detail. First,
we note that the parameter J2 , obtained in the framework of
MFT, is even weaker than the experimental one. Certainly,
this contradicts the widespread belief that LSDA should over-
estimate |J2 | because it does not include the effects of the
on-site Coulomb repulsion, which stands in the denominator

FIG. 3. Distance dependence of interatomic exchange interac-
tions in NiO as obtained in the framework of MFT for the
infinitesimal rotations of the xc field (denoted as b̂ based) and the
exact formalism, corresponding to rotations of the whole magnetiza-
tion matrix (m̂ based) and only spin magnetic moments (M based).
Bare contributions of the Ni 3d spins are shown by closed symbols.
Corrected parameters, taking into account the contributions of the
ligand O 2p spins, are shown by open symbols.

TABLE II. Parameters of nearest-neighbor and next-nearest-
neighbor exchange interactions in NiO (in meV) obtained in the
framework of magnetic force theorem for the infinitesimal rotations
of the xc field (denoted as b̂ based) and the exact formalism, corre-
sponding to rotations of the whole magnetization matrix (m̂ based)
and only spin magnetic moments (M based). Bare contributions of
the Ni 3d spins are denoted as 3d and the ones taking into account
the effect of the ligand O 2p spins are denoted as 3d + L. Notations
of parameters are explained in Fig. 2. TN is the Néel temperature (in
K) evaluated within random phase approximation using the complete
set of exchange interactions as shown in Fig. 3. The experimental pa-
rameters are J↑↑

1 = 1.39, J↑↓
1 = 1.35, J2 = −19.01 (all are in meV),

and TN = 523 K [50].

b̂ based m̂ based M based

3d 3d + L 3d 3d + L 3d 3d + L

J↑↑
1 0.66 3.53 −0.65 6.28 −3.78 3.20

J↑↓
1 0.54 4.08 −3.62 4.75 −4.85 3.27

J2 −14.18 −12.70 −34.76 −30.46 −31.08 −26.69
TN 989 962 1730 1677 1539 1501

of superexchange interactions [1] and therefore should de-
crease |J2 |. However, the value J2 in LSDA is not limited
by the superexchange processes and includes other contri-
butions beyond the strong-coupling limit, which can be FM.
Thus, |J2 | in LSDA is not necessarily large. If we took only
NN and next-NN interactions from Table II and evaluated
TN in RPA (also including the quantum factor 1 + 1/S for
S = 1: all details can be found in the Supplemental Material
of Ref. [51]), we would get TN ∼ 403–465 K, which is even
smaller than the experimental value of 523 K. Nevertheless, if
we take into account all interactions, as shown in Fig. 3, we
obtain instead TN ∼ 962-989 K (see Table II), which is larger
than the experimental value by almost a factor of 2. Thus, the
problem of the LSDA description for NiO is not only (and
not necessarily) the overestimation of |J2 |. It is more general:
The violation of the strong-coupling limit, which leads to un-
physical contributions to J2 and other (long-range) magnetic
interactions. Furthermore, such analysis strongly depends on
the magnetic state. For instance, a rather different picture
(with unrealistically large |J2 |) was obtained by Oguchi et al.
[38], who considered the infinitesimal rotations of the xc fields
in the paramagnetic state, which is metallic within LSDA.

Anyway, the exact methods, based on the inverse response
function, changes the situation significantly. Particularly, |J2 |
substantially increases. This is reflected in the behavior of TN,
which also increases and exceeds the experimental value even
if one considers only J1 and J2. The longer-range interactions
only aggravate the situation, so the experimental TN becomes
overestimated by a factor of 3. We would like to emphasize
that all these changes again manifest the violation of the
strong-coupling limit where, according to Eq. (23), the exact
parameters are expected to be comparable to the ones in MFT.
As expected, the M based scheme produces slightly weaker
exchange interactions (and smaller TN), but generally the m̂
and M based data are comparable. The ligand O 2p spins
systematically strengthen the FM contributions by increasing
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J1 and making the AFM J2 somewhat weaker. Especially, in
the exact scheme, the bare interactions J↑↑

1 and J↑↓
1 are AFM

and only the ligand spins make them FM, in agreement with
the experiment [50]. This revives an old controversy about
the origin of FM J1 in NiO, which was originally believed
to be due to the direct exchange [52] but then was assigned
to kinetic effects [38]. However, this assignment was based
on MFT (in agreement with our finding), while in the exact
theory J1 becomes FM only due to the polarization of the O
2p states, which mimics the direct exchange interaction.

C. Half-metallic ferromagnetic CrO2

CrO2 provides a rare example of half-metallic ferromag-
netism realized in stoichiometric TM oxides. It is widely
considered in various applications related to spintronics. Fur-
thermore, it is still regarded as one of the best materials ever
invented for magnetic recording [47]. LSDA is believed to
be a reasonably good starting point for the analysis of the
magnetic properties of CrO2 [53–55].

We use the minimal model formulated in the basis of Cr
3d and O 2p Wannier functions. All calculations are per-
formed for the FM state using the experimental rutile structure
(the space group P42/mnm) [56]. The response tensor was
calculated on the mesh of the 20 × 20 × 32 k points and
8 × 8 × 12 q points in the first Brillouin zone.

The crystal structure and main magnetic interactions are
explained in Fig. 4. The interactions remain sizable up to at
least the eighth coordination sphere [39,57]. Moreover, since
the rutile structure is nonsymmorphic, there are two types of
interactions, J7 and J8, which are denoted by superscripts >

and <. The parameters of these interactions, calculated by
means of b̂, m̂, and M based techniques, are summarized in
Table III, together with the Curie temperature in RPA. All
methods predict robust ferromagnetism with TC varying from
820 to 1215 K, which substantially exceeds the experimental
value of 390 K [47], probably due to neglect of dynamic
electron correlations [39].

An interesting aspect of CrO2 is the relatively good agree-
ment between results obtained using MFT and the exact
method based on the rotation of the spin magnetic moments.
As expected, rotations of the magnetization matrix (instead
of the spin magnetic moments) additionally strengthen the
exchange interactions and increase TC. However, in this par-
ticular case, the effect is not particularly strong. The ligand

FIG. 4. (a) Fragment of the crystal structure of CrO2, illustrating
the arrangement of the CrO6 octahedra. (b) The lattice of Cr atoms
with the notations of exchange interactions.

TABLE III. Parameters of interatomic exchange interactions in
CrO2 (in meV) obtained in the framework of MFT for the infinites-
imal rotations of the xc fields (denoted as b̂ based) and the exact
formalism, corresponding to rotations of the whole magnetization
matrix (m̂ based) and only spin magnetic moments (M based). Bare
contributions of the Cr 3d spins are denoted as 3d and the ones
taking into account the effect of the ligand O 2p spins are denoted
as 3d + L. Notations of parameters are explained in Fig. 4. The
corresponding Curie temperature (TC, in K) is evaluated in RPA.

b̂ based m̂ based M based

3d 3d + L 3d 3d + L 3d 3d + L

J1 30.40 30.66 45.58 49.07 33.78 37.26
J2 20.97 20.96 26.76 31.24 21.97 24.94
J3 2.98 3.05 2.79 3.97 1.59 2.46
J4 1.34 1.36 0.09 0.02 1.14 1.05
J5 −0.82 −0.86 −1.15 −2.05 −1.04 −1.80
J6 −3.58 −3.66 −3.67 −4.77 −4.29 −5.22
J>

7 −6.16 −6.21 −6.82 −9.13 −7.10 −8.48
J<

7 −1.99 −1.96 −4.99 −2.89 −4.00 −3.09
J>

8 −0.55 −0.58 0.15 −0.73 −0.09 −0.70
J<

8 −1.39 −1.38 −3.19 −3.87 −1.59 −1.93
TC 820 820 1016 1215 831 826

spins do not play a significant role in the MFT-based calcu-
lations but become more important in the exact formalism
and increase the FM interactions in the first three coordina-
tion spheres. However, this effect is partly compensated by
strengthening some AFM interactions in the next coordination
spheres, so TC does not change much.

D. Multiferroic HoMnO3

In this section, we consider the capabilities of different
techniques for describing competing exchange interactions,
which lead to the breaking of the inversion symmetry in
multiferroic manganites with orthorhombic Pbnm structure.
We take HoMnO3 as an example. Experimentally, this ma-
terial displays a rather complex magnetic phase diagram.
The magnetic transition temperature is about 41 K. Then,
below the so-called lock-in transition temperature, TL ≈
29 K, HoMnO3 forms a twofold periodic texture with the
propagation vector k = (0, 1

2 , 0), which coincides with the
onset of spontaneous ferroelectricity [58,59]. The twofold
magnetic periodicity is accompanied by the exchange striction
and lowering the crystallographic symmetry [60,61], which
we do not consider in the present paper. Furthermore, the mag-
netocrystalline anisotropy can also be important for stabilizing
the twofold periodic magnetic texture [62,63]. Nevertheless,
we do not consider these effects by focusing solely on the
behavior of isotropic exchange interactions and the type of
the magnetic ground state with the particular direction of k
along the orthorhombic b axis, while the exchange striction
and magnetocrystalline anisotropy are responsible for the par-
ticular commensurate value of k = (0, 1

2 , 0).
The details of LMTO calculations can be found in

Ref. [64]. The calculations have been performed for the (lay-
ered) A-type AFM phase using the experimental parameters
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FIG. 5. (a) Fragment of the crystal structure of HoMnO3, illus-
trating the arrangement of MnO6 octahedra in the distorted cubic
perovskite, (b) the orthorhombic unit cell, and (c) the ab plane
with the notation of main exchange interactions. Atoms of four Mn
sublattices in the primitive cell are denoted by numbers.

of the crystal structure reported in Ref. [58]. The minimal
model was formulated in the basis of Mn 3d , O 2p, and Ho
5d Wannier functions. The response tensor was calculated on
the mesh of the 14 × 14 × 10 k points and 8 × 8 × 6 q points
in the first Brillouin zone.

Crystal structure of HoMnO3 and main exchange interac-
tions are explained in Fig. 5. Particularly, besides the NN
interactions in and between the ab planes (J‖

1 and J⊥
1 , re-

spectively), there are several long-range interactions which
contribute to the properties of HoMnO3 and similar com-
pounds, namely, (i) the next-NN interaction between the
planes, J1

2 and J2
2 ; (ii) the second neighbor interactions in the

plane, Ja
2 and Jb

2 , operating along a and b, respectively; and
(iii) the third-neighbor interactions in the plane, J1

3 and J2
3 .

These interactions obey the symmetry properties of the space
group Pbnm. For example, around the Mn site 1 in Fig. 5(b),
J1

2 operates in the bonds ( a
2 ,± b

2 , c
2 ) and (− a

2 ,± b
2 ,− c

2 ), while
J2

2 operates in the bonds (− a
2 ,± b

2 , c
2 ) and ( a

2 ,± b
2 ,− c

2 ). The
behavior of J1

2 and J2
2 around sites 2, 3, and 4 is obtained

by the 180◦ rotations of these bonds about a, b, and c in
the combination with the lattice shifts by ( a

2 , b
2 , 0), (0, 0, c

2 ),
and ( a

2 , b
2 , c

2 ), respectively. The same rules can be applied to
J1

3 and J2
3 : Around site 1, J1

3 and J2
3 operate in the bonds

±(a, a, 0) and ±(a,−a, 0), respectively. The behavior around
other sites is obtained by applying above symmetry oper-
ations. The interactions J⊥

1 , J1
2 , and J2

2 are responsible for
the AFM coupling between the layers, while the formation
of long-periodic magnetic textures in the plane results from
the interplay of J‖

1 , Ja
2 , Jb

2 , J1
3 , and J2

3 . The behavior of these
interactions is related to the orbital ordering (the preferable
population of Mn 3d orbitals induced by the cooperative Jahn-
Teller distortion) [63,64]. The same orbital ordering makes the
spin magnetization m̂ strongly aspherical.

The parameters of exchange interactions are summarized
in Table IV. All techniques correctly reproduce the AFM
coupling between the planes. Nevertheless, there is a sub-
stantial difference in the behavior of magnetic interactions
within the plane. Particularly, the MFT predicts Ja

2 and Jb
2 to

be FM and AFM, respectively, which is consistent with the
twofold periodicity along b. Nevertheless, the interactions J1

3
and J2

3 are FM and stronger than Jb
2 . Therefore, the symmetry

TABLE IV. Parameters of interatomic exchange interactions in
HoMnO3 (in meV) obtained in the framework of MFT for the in-
finitesimal rotations of the xc fields (denoted as b̂ based) and the
exact formalism, corresponding to rotations of the whole magnetiza-
tion matrix (m̂ based) and only spin magnetic moments (M based).
Bare contributions of the Mn 3d spins are denoted as 3d and the ones
taking into account the effect of the ligand O 2p and Ho 5d spins are
denoted as 3d + L. Notations of exchange interactions are explained
in Fig. 5. Tk is the magnetic transition temperature (in K) evaluated
in RPA. k denotes the magnetic propagation vector.

b̂ based m̂ based M based

3d 3d + L 3d 3d + L 3d 3d + L

J‖
1 2.78 0.08 −0.89 27.93 −5.47 7.12

J⊥
1 −0.44 −0.15 −18.26 −15.51 −6.38 −6.27

J1
2 −0.92 −0.69 −6.94 −1.90 −4.54 −1.17

J2
2 −0.88 −0.69 −7.15 −2.33 −4.07 −1.27

Ja
2 2.63 1.74 −32.85 −7.48 −3.92 1.00

Jb
2 −1.50 −1.18 −14.50 −4.62 −5.55 −1.01

J1
3 1.38 1.32 −6.78 −13.93 −9.27 −6.35

J2
3 3.38 2.22 −18.93 −2.83 −0.87 −0.17
Tk 119 54 381 235 110 82
type k = 0 k = 0 k ⊥ b k ⊥ b k ‖ b k ‖ b

breaking does not occur and the system remains in the A-type
AFM state. Note that the long-range interactions in LSDA are
expected to be strongly oscillating [65] and can easily change
the sign, depending on the method used for their calculations.

In the exact m̂-based method, all interactions J2 and J3 are
AFM. However, Jb

2 appears to be weaker than Ja
2 . Then, the

magnetic symmetry breaking does occur, but the propagation
vector k is perpendicular to b. Moreover, like in other applica-
tions of the m̂-based technique, the exchange interactions and
the magnetic transition temperature (Tk) are strongly overes-
timated. Apparently, such discrepancy is related to the strong
asphericity of m̂, so the rotations of m̂, which preserve this
asphericity, do not describe properly (neither quantitatively
nor even qualitatively) the energy change associated with the
small rotations of spins in HoMnO3.

It appears that the only technique which correctly repro-
duces the type of the magnetic ground state and the direction
of k in HoMnO3, is M based (i.e., rotating the spin magnetic
moments instead of the whole magnetization matrix). In this
case, Jb

2 is stronger than Ja
2 and all J3 are AFM, yielding

the incommensurate magnetic ground state with k ‖ b. The
ligand spins mainly affect the quantitative estimates, while
the main tendencies are reproduced by bare exchange inter-
actions between the Mn 3d spins. For instance, k changes
from (0,0.46,0) in the bare case until (0,0.30,0) when the
ligand spins are taken into account. Moreover, the ligand spins
somewhat decrease Tk (see Table IV). The magnetic transition
temperature is overestimated by a factor of 2 [58,59], partly
because of the limitations of LSDA, partly because of the
oversimplification of the problem and neglect of other impor-
tant ingredients, which lead to the realization of experimental
incommensurate sinusoidal spin structure just below the
transition temperature.
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E. Layered chromium trihalides

Chromium trihalides, CrX3 (X = Cr or I), have attracted
considerable attention as candidates in the search for mag-
netic two-dimensional materials, which could be important
for developing ultracompact spintronic devices [66]. Indeed,
these materials form a layered van der Waals structure and,
therefore, can be rather easily prepared in the two-dimensional
form.

The details of LMTO calculations can be found in
Ref. [30]. These calculations have been performed for the FM
state using the experimental parameters of the R3 structure
reported in Refs. [67,68]. The minimal model was formulated
in the basis of Cr 3d and Cr 3p (I 5p) Wannier functions. The
response tensor was calculated on the mesh of the 10 × 10 ×
10 k points and the same mesh of q points in the first Brillouin
zone.

Crystal structure of CrCl3 and main exchange interactions
are explained in Fig. 6 and the distance-dependence of these
interactions is shown in Fig. 7. We note sizable interactions
spreading at least up to sixth-NNs at the distance ∼6.9 Å and
even beyond: For instance, there is a strong interaction be-
tween Cr sites separated by the hexagonal translation (0, 0, c)
at the distance ∼11.5 Å, etc. Similar tendencies were found
for CrI3.

The exchange interactions, evaluated using three different
techniques, are summarized in Tables V and VI, for CrCl3 and
CrI3, respectively. An interesting aspect of these materials is
that the obtained exchange parameters strongly depend on the
method. From this point of view, these systems are particu-
larly interesting for the purposes of our work. Let us consider
first the NN interaction in the honeycomb plane, J1, which
for the nearly 90◦ exchange path Cr-X -Cr is expected to be
FM, according to the Goodenough-Kanamori-Anderson rules
[35]. However, this ferromagnetism arises mainly from to the
intraatomic (Hund’s rule) exchange interaction at the ligand
sites so the result strongly depends on whether and how the

FIG. 6. (a) Top view on the CrCl3 layer. The unit cell is denoted
by the broken line. (b) Stacking of adjacent layers with the notation
of main exchange interactions. Two Cr sites in the unit cell are
denoted by different colors.

FIG. 7. Distance dependence of interatomic exchange interac-
tions in CrCl3 as obtained in the framework of magnetic force
theorem for the rotations of the xc field (denoted as b̂ based) and
using the exact expression for the total energy change corresponding
to rotations of the whole magnetization matrix (m̂ based) and spin
magnetic moments (M based). Bare contributions of the Cr 3d spins
are shown by closed symbols. Corrected parameters, which include
the contributions of the ligand Cl 3p spins, are shown by open
symbols. Note different y-axis scale used for the m̂ based parameters
(left) and b̂ and M based parameters (right).

contributions of these particular sites are considered in each of
the schemes [30]. Indeed, MFT predicts bare J1 to be weakly
FM, in both CrCl3 and CrI3. Rather counterintuitively, the
ligand spins decrease J1. On the contrary, the m̂ scheme yields
the robust FM coupling J1, which is strongly enhanced by the
polarization of the ligand sites. Nevertheless, it does not mean
that the ground state is FM and in a moment we will see that
(also strong) longer-range AFM interactions in the m̂ case lead
to a noncollinear magnetic alignment. Then, in the M scheme,
the bare exchange integral J1 is AFM. This coupling is rela-
tively weak in CrCl3 but becomes strong in CrI3. However, the
ligand spins change the situation dramatically and restore the

TABLE V. Parameters of interatomic exchange interactions in
CrCl3 (in meV) obtained by rotating the xc field in the framework
of MFT (denoted as b̂ based) and using the exact energy change,
corresponding to rotations of the whole magnetization matrix (m̂
based) and spin magnetic moments (M based). Bare contributions
of the Cr 3d spins are denoted as 3d and the ones taking into account
the effects of the ligand Cl 3p spins are denoted as 3d + L. Notations
of exchange parameters are explained in Fig. 6. TX is corresponding
to the magnetic transition temperature (in K) evaluated in RPA. The
type of the magnetic ground state (X) is discussed in the text.

b̂ based m̂ based M based

3d 3d + L 3d 3d + L 3d 3d + L

J1 3.12 2.27 23.98 61.93 −1.36 2.35
J2 −0.72 −0.40 −4.93 −16.90 0.98 −0.40
J3 0.23 0.20 −9.11 −13.53 −0.05 0.21
J4 −0.80 −0.60 −3.11 −9.03 0.13 −0.64
J5 0.15 0.17 0.60 −0.67 0.16 0.17
J6 0.61 0.47 6.31 14.48 −0.17 0.49
TX 55 47 699 486 22 50
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TABLE VI. The same as Table V but for CrI3.

b̂ based m̂ based M based

3d 3d + L 3d 3d + L 3d 3d + L

J1 1.97 1.00 11.65 51.82 −9.32 1.38
J2 0.07 0.40 −1.74 −12.22 2.86 0.24
J3 0.80 0.81 −1.74 −8.46 −0.60 0.77
J4 −0.17 0.06 −1.32 −7.68 1.80 −0.05
J5 0.60 0.62 1.24 −0.93 −0.05 0.59
J6 0.43 0.27 3.07 11.63 −2.03 0.30
TX 91 67 652 499 132 67

ferromagnetism, as it should be. Thus, in the M scheme, the
FM character of the coupling J1 is entirely related to the ligand
spins. One may also ask why the bare J1 is so different in the b̂,
m̂, and M based methods. In fact, the bare J1 includes several
different contributions. For instance, considering only the su-
perexchange processes in the strong-coupling limit, the ones
connecting the t2g states are expected to be AFM, while the
ones connecting the occupied t2g and unoccupied eg states will
be FM. Furthermore, there will be other contributions to J1 be-
yond the strong-coupling limit [39]. Apparently, such FM and
AFM contributions emerge in different ways in different com-
putational schemes, which explains such a large spread in the
values of J1.

Next, let us consider the effect of the longer-range inter-
actions J2–J6. Here, we will discuss only the 3d + L results,
which take into account the effect of the ligand spins. Gener-
ally, one can see that the longer-range interactions are more
FM in the case of CrI3, while in CrCr3 at least two interac-
tions, J2 and J4, specifying the interlayer coupling, are always
AFM. The m̂ scheme is an exceptional case where all the
interactions J2–J5 are AFM, in both CrCl3 and CrI3. Then,
for CrCl3, the exchange parameters obtained within MFT
correspond to the spin-spiral ground state with the propaga-
tion vector k = ( 0, 0, 0.69) defined in the units of reciprocal
translations for the hexagonal frame. In this spin texture,
the spins in the adjacent layers rotate relative to each other
by nearly 90◦. A very similar spin-spiral ground state with
the propagation vectors k = ( 0, 0, 0.76) and ( 0, 0, 0.72) is
obtained in the m̂ and M based methods, respectively. For
CrI3, both MFT and M based methods yield the FM ground
state, in agreement with the experiment. On the contrary, the
rotations of the spin magnetization matrix in the framework
of the m̂ scheme lead to the spin-spiral ground state with
k = ( 0, 0, 0.84). The magnetic transition temperature for
CrCl3 and CrI3, evaluated in RPA using the exchange pa-
rameters obtained in the framework of MFT and M methods,
are consistent with the experimental data (TX = 17 and 68 K
for CrCl3 and CrI3, respectively [69]), while it is strongly
overestimated in the m̂ scheme.

IV. SUMMARY

We have critically reexamined the problem of interatomic
exchange interactions in SDFT or its refinements, where the
ground-state magnetization is described by means of one-
electron KS equations with some local (site-diagonal) xc

potential. In this case, the interatomic exchange interactions
can be associated with parameters of the Heisenberg model
aiming to reproduce the total energy change of the real system
caused by infinitesimal rotations of the magnetization near
the ground state [4–6]. Due to the perturbative character of
the problem, such an energy change can always be expressed
in terms of the response function, which relates the change
of the magnetization with the magnetic field inducing this
change.

In the theory of exchange interactions, the input parame-
ter is the magnetization change, which specifies the type of
perturbation near the ground state. Nevertheless, the magnetic
field, which is required to produce this magnetization change,
can be formally obtained from the latter by means of the
inverse response function. This constitutes the basis of the
exact theory, where the exchange interactions are given by
the inverse response function. Such a theory should provide
a more reliable estimate for the total energy change, caused
by infinitesimal rotations of spins, in comparison with MFT.

In the context of the exchange interactions, the MFT re-
lies on the additional assumption and, instead of using the
response theory to find the required magnetic field, replaces
it by the xc field corresponding to the input magnetization
change. Although such an identity holds for isolated atoms,
following from the general property of xc energy, it breaks
down in solids, where the magnetization tends to additionally
rotate toward the initial equilibrium state, being driven by the
kinetic energy change. Then, although the exchange interac-
tions in the framework of MFT can be still associated with the
response function, this functional dependence appears to be
linear. This is certainly an approximation, which affects the
behavior of interatomic exchange interactions. Nevertheless,
we would like to emphasize that, since MFT is based on the
properties of xc field and energy, which become exact for
isolated atoms, such theory is expected to work well in the
strong-coupling limit [14].

We have studied these differences between MFT and
the exact theory for the wide class of magnetic materials,
including FM fcc Ni, AFM NiO, half-metallic FM CrO2,
multiferroic HoMnO3, and layered van der Waals magnets
CrCl3 and CrI3. We have argued that, although in a number
of cases, the MFT-based approach provides quite a reasonable
description, the exact theory is more consistent in several re-
spects. Particularly, two important issues to be considered are
(i) the contributions of the ligand spins, which under certain
conditions can be eliminated by transferring their effects to the
interaction parameters between more localized 3d spins, and
(ii) proper definition of the variable, which would describe
the rotations of spins in SDFT. The first goal can be achieved
by minimizing the magnetic energy change with respect to
the ligand spins for a given configuration of the 3d spins, as
suggested by the adiabaticity concept, where the fast ligand
degrees of freedom always follow the slow 3d spins. The
second goal can be achieved by also minimizing the magnetic
energy change but with respect to the internal degrees of
freedom, which describe the spin magnetization. By using
this strategy, we have argued that the rotations of local spin
moments are less energy costly and therefore more suitable for
the description of low-energy excitations, than the rotations
of the full magnetization matrix. To describe properly all
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these effects, it is important do deal with the exact energy
change, which is provided by the exact theory of exchange
interactions.
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