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The optical conductivity contains relevant information on the properties of correlated electron systems. In
infinite dimensions, where dynamical mean field theory becomes exact, vertex corrections can be neglected
and the conductivity computed from particle-hole bubbles. An interesting question concerns the nature and
effect of the most relevant vertex corrections in finite-dimensional systems. A recent numerical study showed
that the dominant vertex correction near an ordering instability with wave vector π comes from a vertical
ladder, analogous to the Maki-Thompson diagram. Since the random phase approximation version of this ladder
diagram, dubbed π -ton, can be easily evaluated, this suggests a simple procedure for incorporating antiferro-
magnetic or charge density wave fluctuations into dynamical mean field estimates of the optical conductivity and
related susceptibilities. We implement this procedure for the half-filled Hubbard model, considering the π -ton,
a double-ladder extension of the π -ton and Aslamazov-Larkin-type diagrams, and reveal the spectral signatures
of these vertex corrections.
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I. INTRODUCTION

Optical probes play an important role in the study
of strongly correlated electron systems. In particular, the
frequency-dependent optical conductivity contains a wealth of
information on the correlated state, such as the energy gaps,
carrier density, and kinetic energy. Different types of scatter-
ing processes and the formation of composite particles, such
as excitons, also leave a trace in the optical conductivity. As a
result, this observable has been extensively used to investigate
correlated materials. It has played an important role especially
in the study of the unconventional normal state of high-Tc

cuprates [1,2].
In a diagrammatic language, the optical conductivity can

be expressed as a particle-hole bubble plus vertex corrections.
A recent numerical investigation by Kauch et al. [3] revealed
that in correlated systems with strong fluctuations at momen-
tum kπ = (π, π, . . .), such as systems on a hypercubic lattice
in the vicinity of an antiferromagnetic (AFM) or charge den-
sity wave (CDW) instability, the dominant vertex correction
comes from a vertical ladder with momentum exchange k −
k′ ≈ kπ . Physically, the optical conductivity diagram with the
vertical ladder describes the creation of a particle-hole pair.
This electron-hole pair thereafter creates other electron-hole
pairs at a wave vector displaced by kπ , which interact with
each other, two by two, until they recombine. In particular,
this vertex correction should be relevant in the simplest model
for high-Tc cuprates, the square lattice single band Hubbard
model near half filling, because of the strong AFM correla-
tions. The corresponding diagram, dubbed π -ton in Ref. [3],
has been shown to result in a broadening of the Drude feature
or a shift in the gap edge of the conductivity spectrum, but dis-
entangling its contribution from other processes in numerical
data is challenging.

A random phase approximation (RPA)-type π -ton ladder
with bare interactions can be easily evaluated, so that the
calculation of the corresponding vertex correction provides a
potentially simple way of incorporating relevant fluctuations
into the bubble approximation for the optical conductivity and
other susceptibilities. Motivated by the insights of Kauch et al.
[3] and the lack of systematic data on the importance of the
π -ton in the Hubbard model, we present here a dynamical
mean field theory (DMFT) [4] based study in which the RPA-
π -ton-type vertex correction to the optical conductivity and
to a related spin-spin correlation function is compared to the
bubble contribution, to a double-ladder extension of the π -ton,
and to an Aslamazov-Larkin-type vertex correction. We find
that in the weakly correlated metallic regime, the RPA-π -ton
leads to a broadening of the Drude peak in the conductivity,
and a characteristic feature (“in-gap peak”) in the spectral re-
gion between the Drude peak and the high-energy continuum
at energies of the order of the bandwidth and Hubbard inter-
action. The double ladder produces little qualitative effects,
while the Aslamazov-Larkin-type extension shifts the in-gap
feature to higher energies but does not significantly suppress
it. At stronger interactions, but still in the metallic regime, the
Drude peak is strongly suppressed, while the in-gap feature
grows. In the strongly correlated (Mott insulating) regime, the
strategy of adding RPA-π -ton vertex corrections breaks down
since the RPA ladder no longer has a pole near the DMFT
phase boundary, and hence is not particularly large in the pa-
rameter regions with the strongest AFM or CDW fluctuations.

Even though our DMFT based method does not capture
the physics specific to one-dimensional (1D) systems, we
also compare the results to the ground state correlation func-
tions obtained by the density matrix renormalization group
(DMRG) method [5,6], which do not show any obvious π -ton
related features in the conductivity and spin susceptibility.
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One reason is the presence of a Mott gap for any U > 0, which
leads to prominent peaks in the optical conductivity associated
with charge excitations, in the same energy region where the
π -ton contribution may be expected.

The paper is organized as follows: The Hubbard model
and the methods used to solve the DMFT equations are pre-
sented in Sec. II. In Sec. II C and Appendix A we derive the
formulas for the considered ladder-type vertex corrections.
The diagrammatic results for the half-filled Hubbard model
and the comparison to DMRG are presented in Sec. III. The
discussion and conclusions can be found in Secs. IV and V.

II. MODEL AND METHOD

A. Hubbard model

The single-band Hubbard model with Hamiltonian

Ĥ = −
∑
i j,σ

ti j (ĉ
†
i,σ ĉ j,σ + H.c.) + U

∑
i

n̂i,↑n̂i,↓

− μ
∑

i

(n̂i,↑ + n̂i,↓) (1)

captures key aspects of strongly correlated electron systems.
Here, the ti j are the hopping amplitudes between sites j and
i, σ ∈ {↑,↓} denotes the spin, ĉ(†)

i,σ are annihilation (creation)

operators for site i, while n̂iσ = ĉ†
i,σ ĉi,σ is the number operator,

U is the local repulsion, and μ the chemical potential. We will
consider nearest-neighbor hoppings and use the hopping t as
the unit of energy. We also set h̄, kB, the electric charge e, and
the lattice spacings a equal to unity. A half-filled system is
obtained for μ = U/2.

B. DMFT

1. General formalism

In DMFT [7–9], the lattice model is mapped to a single-site
impurity model with a self-consistently determined bath of
noninteracting electrons [4]. In this approximation the hy-
bridization function mimics the effect of electrons hopping to
neighboring sites of the lattice and back. The impurity Hamil-
tonian Ĥ′ including the hybridization to the noninteracting
bath reads

Ĥ′ = Ĥloc +
∑
iα,σ

(θα,σ ĉ†
σ b̂α + H.c.) +

∑
α,σ

εα,σ b̂†
α,σ b̂α,σ , (2)

where Ĥloc is the same local term as in the lattice model,
ĉ(†) annihilates (creates) an electron on the impurity and b̂(†)

annihilates (creates) an electron in the bath. The environment
is coupled to the impurity via the hybridizations θα,σ with α

labeling the noninteracting energy levels εα,σ . The impurity
Green’s function will be computed using a generalization
of the iterated perturbation theory [10,11] (IPT) method, in-
troduced in Secs. II B 4, and the noncrossing approximation
[12,13] (NCA) impurity solver, whose results will only be
outlined (not shown). These methods are complementary in
the sense that IPT should give reliable results at weak U , while
NCA is more appropriate for the strongly correlated regime.

To compute the susceptibilities and their corrections, we
work on the imaginary-time axis using fermionic (bosonic)
Matsubara frequencies ωn = 2π (n + 1)/β (νn = 2πn/β),

where n ∈ Z and β is the inverse temperature. Real frequency
information will be obtained by maximum entropy analytical
continuation [14].

2. Paramagnetic self-consistency

In DMFT, the lattice self energy is assumed to be local and
approximated by an impurity self energy 
σ . This allows us to
map the lattice system (1) in a self-consistent way onto the im-
purity model (2). As a self-consistency condition, we impose
that the interacting impurity Green’s function Gσ (iωn) is iden-
tical to the local lattice Green’s function. This self-consistency
condition fixes the bath related parameters in the impurity
Hamiltonian or (in an action formulation) the hybridization
function �σ resulting from Eq. (2) when one integrates out
the noninteracting bath electrons. This hybridization function
plays the role of a dynamical mean field. Alternatively, one
can define a so-called Weiss Green’s function G0

σ , which is
related to the hybridization function by

G0
σ (iωn) = 1

iωn + μ − �σ (iωn)
(3)

and allows us to express the impurity Green’s function G
by the impurity Dyson equation G−1

σ (iωn) = (G0
σ )−1(iωn) −


σ (iωn). 
[G0] will be computed using the impurity solver
described in Sec. II B 4.

Written in terms of the dynamical mean field �, the DMFT
self-consistency condition reads

Gσ [�](iωn) = 1

N

∑
k

1

iωn + μ − ε(k) − 
σ [�](iωn)
, (4)

where ε(k) = −2t
∑D

i=1 cos ki is the bare electronic
dispersion on the hypercubic lattice in D dimensions,
and the self-energy is expressed in terms of G
and � as


σ [�](iωn) = iωn + μ − Gσ [�](iωn)−1 − �σ (iωn). (5)

Equations (4) and (5) form a closed set of equations which
determines �σ and can be solved by iteration. For the param-
agnetic solution, we impose 
↑ = 
↓ and similarly for G and
�.

3. Antiferromagnetic self-consistency

DMFT can also treat two-sublattice-type order on a bipar-
tite lattice, such as antiferromagnetism [4]. We still assume
local self-energies, but they may now be different on the
two sublattices, and in the case of AFM order, they be-
come spin dependent. Using Dyson’s equation, and denoting
the sublattice degrees of freedom by the indices {A, B},
Gαβ

σ (iωn)−1Gβα′
σ (iωn) = δα,α′ becomes(

iωn + μ − hσ − 
A
σ (iωn) −ε(k)

−ε(k) iωn + μ + hσ − 
B
σ (iωn)

)

×
(
GAA

σ (iωn) GAB
σ (iωn)

GBA
σ (iωn) GBB

σ (iωn)

)
= 1, (6)

where ε(k) is the electronic dispersion restricted to the re-
duced Brillouin zone (rBZ), h a constant staggered magnetic
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field that may be used as an initial perturbation in the DMFT
self-consistency loop, and the 
α

σ are the sublattice local self-
energies for spin σ . Hence, the local Green’s functions for one
sublattice impurity depend on the self-energy of the opposite
sublattice as

Gαα
σ (iωn)

=
∑

k∈rBZ

[
iωn + μ − 
α

σ (iωn) − ε(k)2

iωn + μ − 
−α
σ (iωn)

]−1

,

(7)

which follows from the inversion of Eq. (6). Furthermore,
since in Néel type AFM systems quantities such as G and

 obey the symmetry X−α−α

σ = X αα
−σ , the DMFT equations

can be reduced to a single sublattice site with the two spin
projections. Equation (7) hence breaks down into a set of two
coupled DMFT equations, one for each spin projection.

4. IPT solver

Iterated perturbation theory (IPT) is a bare second-order
perturbation theory for the Anderson impurity model (2)
[10,11,15]. It is exact in both the noninteracting and atomic
limits, and provides the correct high-frequency behavior. The
self-energy is approximated as


σ (iωn) = U 2
∫ β

0
dτeiωnτG0

σ (τ )G0
−σ (τ )G0

−σ (−τ ), (8)

where the Weiss Green’s function is given by Eq. (3). In
addition, there may be a Hartree term, but in a half-filled para-
magnetic state, this term can be absorbed into the chemical
potential by choosing μ = U/2.

We can directly insert the self-energy (8) into Eq. (4)
and the impurity Dyson equation and iterate the solution un-
til convergence. To interpolate the self-energy when Fourier
transforming to fermionic Matsubara frequencies, a cubic
spline is used [16].

To break the spin rotation symmetry, one has to add to the
self-energy (8) the second-order expansion of the boldified
Hartree (or tadpole) diagram [15]


(2H )
σ (iωn) = U 2n0

σ

∫ β

0
dτ ′G0

−σ (τ ′)G0
−σ (−τ ′), (9)

where n0
σ = G0

σ (0−). Here, the boldified Green’s function loop
is expanded into a bare Green’s function loop with a (bare)
tadpole self-energy insertion. 
(2H )

σ produces a relative shift
of the chemical potentials on the two sublattices, which is
important to obtain converged IPT solutions in the AFM state.

C. Correlation functions

In this section we explain the general formalism for com-
puting the optical conductivity and related susceptibilities. We
make use of Hedin’s [17,18] equations to derive the π -ton
ladder-type vertex corrections to the current-current and spin-
spin correlation functions.

The vertex corrections to various response functions can be
computed using the Schwinger formalism [17]. Specifically,
we are interested in charge and spin response functions for
model (1) with local density-density interactions. For the sake

of an efficient notation, we introduce numbers encapsulating
space-time variables, i.e., 1 ≡ (x1, τ1), and use bars over the
numbers to indicate a space-time integration:

A(1̄) ≡
∫ β

0
dτ1

∫
· · ·

∫ ∞

−∞
dDx1 A(x1, τ1), (10)

with D the spatial dimension(s) of the system. Greek let-
ters represent the discrete electronic degrees of freedom such
as spin and orbitals. Repeated Greek letters are implicitly
summed over.

The functional Z that generates correlation functions is a
modified partition function:

Z[φ] = Tr[e−βK̂Tτ e−ĉ†
α′ (1̄)φα′β′ (1̄,2̄)ĉβ′ (2̄)], (11)

where φ is a source field, whose value has to be set to zero
when computing physical quantities. The system is connected
to both temperature and particle baths, so the grand-canonical
ensemble is used and K̂ = Ĥ − μN̂ , with μ the chemical po-
tential and N the total number of particles. The corresponding
imaginary-time Green’s function is

− δ lnZ[φ]

δφαβ (2, 1)
= −〈Tτ ĉα (1)ĉ†

β (2)〉φ = Gφ

αβ (1, 2), (12)

where the average value means

〈· · · 〉φ ≡ Tr

[
e−βK̂

Z[φ]
e−ĉ†

α′ (1̄)φα′β′ (1̄,2̄)ĉβ′ (2̄) · · ·
]
. (13)

By taking one more derivative with respect to the source field
one can generate the four-point correlation function linked
to the self-energy via the equations of motion and Dyson’s
equation

δGφ

αβ (1, 3)

δφγ δ (2+, 2)
=Gφ

δγ (2, 2+)Gφ

αβ (1, 3)

+ 〈Tτ ĉα (1)ĉ†
β (3)ĉ†

γ (2+)ĉδ (2)〉φ. (14)

Another important ingredient is the identity relation which
ensures that the generated Feynman diagrams of the
self-energy are irreducible, coming from the fact that
δ(Gφ

ηβ (1,4̄)Gφ
βθ (4̄,3)−1 )

δφγ δ (2+,2) = 0:

δGφ
η�(1, 3)

δφγ δ (2+, 2)
=Gφ

ηγ (1, 2+)Gφ

δ�(2, 3)δηγ δ�δ

+ Gφ

ηβ (1, 4̄)
δ


φ

βθ (4̄, 5̄)

δGφ
�� (6̄, 7̄)

δGφ
�� (6̄, 7̄)

δφγ δ (2+, 2)
Gφ

θ�(5̄, 3).

(15)

Equation (15) can be represented in terms of
Feynman diagrams as shown in Fig. 1. For the
sake of conciseness and clarity the following no-
tations will be employed on several occasions:
δ


φ
σ (4,5)

δGφ

σ ′′ (6,7)
→ �φ

σσ ′′ ( 4,5
6,7 ) and

δGφ

σ ′′ (6,7)
δφσ ′ (2+,2) → �φ

σ ′′σ ′ (6, 7, 2). In

the case of the Hubbard model, the first expression simplifies
to �φ

σσ ′′ (4 − 5)δ(4 − 6)δ(5 − 7)δσ ′′,−σ . Also, later on, to
distinguish ladder-type vertex corrections whose right
extremity terminates with a spin flip from those that do not,
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FIG. 1. Diagrammatic representation of δG
δφ

. The pink box rep-

resents δ


δG . Note that for the Hubbard model and a pink box
representing a vertical ladder, 4̄ = 6̄ and 5̄ = 7̄.

we will split up � into an even contribution containing an
even number of vertical ladders (pink boxes) terminating
with the same spin, denoted �(even) (see Fig. 14), and odd
contribution containing an odd number of vertical ladders
�(odd) terminating with a spin flip (see Fig. 15). Both �(even)

and �(odd) are discussed further in Appendix A.
We now combine Eqs. (14) and (15) to derive the expres-

sions for the density-density response, and based on this, the
current-current response along direction i ∈ {x, y} χ ji ji and
the spin-spin response χSzSz . As detailed in Appendix A, the
equations of motion provide an expression for 
G [Eq. (A2)],


φ
σ (1, 2̄)Gφ

σ (2̄, 2)

= −
∑
σ2

Uδσ2−σ δ(1 − 2̄)
〈
Tτ ĉσ (1)ĉ†

σ (2)ĉ†
σ2

(2̄+)ĉσ2 (2̄)
〉
φ
,

(16)

which involves the same four-point correlation function as
Eq. (14). We can combine Eqs. (14), (15), and (16) to express
the self-energy of the Hubbard model [19] as


φ
σ (1, 3) =UGφ

−σ (1, 1+)δ(1 − 3)

− U
∑
σ ′

Gφ
σ (1, 4̄)

δ
φ
σ (4̄, 3)

δGφ

σ ′ (5̄, 6̄)

δGφ

σ ′ (5̄, 6̄)

δφ−σ (1+, 1)
, (17)

where the Greek indices have been traded for the spin σ ∈
{↑,↓}. Equation (17) is illustrated in Fig. 12. The self-energy
(17) will be used in conjunction with Eqs. (14) and (15) to
compute the susceptibilities.

From Eq. (14), we obtain the charge susceptibilities

χσσ ′
(1, 1+; 2+, 2) = − δGφ

σ (1, 1+)

δφσ ′ (2+, 2)

∣∣∣∣
φ=0

=〈Tτ n̂σ ′ (2)n̂σ (1)〉 − 〈n̂σ ′ (2)〉〈n̂σ (1)〉
=〈Tτ (n̂σ ′ (2)−〈n̂σ ′ (2)〉)(n̂σ (1)−〈n̂σ (1)〉)〉.

(18)

Alternatively, one can express χ using Eq. (15) as well as
the Hubbard constraints as

χσσ ′
(1, 1+; 2+, 2)

= −Gσ (1, 2+)Gσ (2, 1+)δσ,σ ′

−
∑
σ ′′

Gφ
σ (1, 4̄)

δ
φ
σ (4̄, 3̄)

δGφ

σ ′′ (5̄, 6̄)

δGφ

σ ′′ (5̄, 6̄)

δφσ ′ (2+, 2)
Gφ

σ (3̄, 1+)

∣∣∣∣
φ=0

,

(19)

1+
1

2
2+

1+
1

2
2+

1+
1

4̄

3̄

5̄

6̄

2
2+

FIG. 2. Diagrammatic representation of the dressed susceptibil-
ity. The pink box represents δ


δG and the green shape represents δG
δφ

.

whose second term, denoted χcorr, corresponds to vertex cor-
rections and can be reexpressed with our notation as

χσσ ′
corr (1, 1+; 2+, 2)

= −
∑
σ ′′

Gφ
σ (1, 4̄)Gφ

σ (3̄, 1+)�φ

σσ ′′ (4̄ − 3̄)

× �φ

σ ′′σ ′ (4̄, 3̄, 2)

∣∣∣∣
φ=0

. (20)

A diagrammatic illustration of Eq. (19) is given in Fig. 2, and
we will derive the formulas for the different susceptibilities
χ ji ji and χSzSz from this.

Because we are specifically interested in RPA-ladder-type
vertex corrections, we consider three types of contributions,
two of which involve vertical ladder diagrams, while the third
is of Aslamazov-Larkin (AL) type, with two horizontal lad-
ders. We first treat the case involving single vertical ladder
diagrams only, χσσ ′

corr → χσσ ′
sl , for which a generic term is

shown in Fig. 3. The latter makes up the lowest order ver-
tex correction comprising an odd number of vertical ladders,
therefore leading to a spin flip once the photon is re-emitted.
We therefore use the first term of �(even) in Eq. (A6), since
Eq. (20) already has one vertical ladder (�). The formula is
derived in Appendix A, so we only write out its final form
here, using the four-vector notation:

χσ−σ
sl (q)

= − U

(βV )2

∑
k̃,k̄

Gσ (k̃)Gσ (k̃ − q)G−σ (k̄ − q)G−σ (k̄)

1 + U
βV

∑
q̃

Gσ (k̃ − q̃)G−σ (k̄ − q̃)

︸ ︷︷ ︸
≡χσ−σ

d (k̃−k̄)

= − 1

(V β )2

∑
k̃,k̄

Gσ (k̃)Gσ (k̃ − q)�σ−σ (k̃ − k̄)

× G−σ (k̄)G−σ (k̄ − q). (21)

FIG. 3. Illustration of the single-ladder vertex correction to the
susceptibilities. All diagrams sharing this topology are summed up
in Eq. (21). To represent χ ji ji , the vertices A and B are both set equal
to the velocity vi, while for χSzSz they are set to the Pauli matrices σz.
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FIG. 4. Illustration of the double-ladder vertex correction to the
susceptibilities. Similarly to Fig. 3 the vertices A and B equal vi for
χ ji ji and σz for χSzSz .

We denote the second term in the denominator by χd for
latter purposes. In reciprocal space, after Fourier transforming
Eq. (A5), the � term reads

�σ−σ (k̃ − k̄) = U

1 + χσ−σ
d (k̃ − k̄)

. (22)

We will also consider the double-ladder case where the set
of diagrams representing the vertex correction includes terms
with two vertical ladders stacked together sideways (χσσ ′

corr →
χσσ ′

dl ), as depicted in Fig. 4. That set of diagrams sums up the
lowest-order vertex corrections comprising an even number of
vertical ladders:

χσσ
dl (q)

= − 1

(βV )3

∑
k̃, k̄
q̄

Gσ (k̃)Gσ (k̃ − q)�σ−σ (k̃ − k̄)G−σ (k̄)

× G−σ (k̄ − q)�−σσ (q̄)Gσ (k̄ − q̄)Gσ (k̄ − q − q̄). (23)

As a third class of diagrams, we consider the AL-type
vertex corrections (χσσ ′

corr → χσσ ′
AL ) [20], where two ladders

are inserted horizontally, instead of vertically. The AL-type
vertex corrections lie in the particle-hole channel and can be
expressed in k space as follows:

χσσ ′
AL (q)

= 1

(V β )3

∑
k̃, k̄
q′

Gσ (k̃)Gσ (k̃ − q)�σ−σ (q′)G−σ (k̄ − q′)

× G−σ (k̃ − q′)�−σσ (q′ − q)Gσ (k̄)Gσ (k̄ − q). (24)

Equation (24) is illustrated diagrammatically in Fig. 5.
In the case of the density-density correlation function, the

vertices A and B in the diagrams of Figs. 3 and 4 (as well

FIG. 5. Diagrammatic representation of the AL-type vertex cor-
rection considered. Also here, the vertices A and B equal vi for χ ji ji

and σz for χSzSz .

as the particle-hole bubble) are identity operators, in the case
of χSzSz they are spin operators 1

2σz, and in the case of χ ji ji
the velocities vi(k) = ∂kiε(k) (since the charge is set to unity).
The longitudinal optical conductivity σii can be deduced from
the imaginary component of the current-current correlation
function (see Appendix B) as

Re σii(qi, ω) = χ ′′
ji ji (qi, ω)

ω
. (25)

D. DMRG

In order to provide accurate reference data for the 1D
case, we also use the density matrix renormalization group
(DMRG) method [5,6]. The calculation of the ground state
is described in Appendix C. Here, we briefly explain how to
obtain the optical conductivity using the kernel polynomial
method [21,22].

The optical conductivity is represented as σ (ω) = C(ω)/ω,
where

C(ω) = 〈�0|Ĵ δ(ω1̂ − Ĥ + E01̂)Ĵ |�0〉. (26)

Ĵ is the current operator, |�0〉 is the ground state, and E0 is
its energy. We focus on the energy region ω ∈ [0,W ] and map
it to the interval ω′ = [−1 + εs, 1 − εs] (εs is a small safety
factor, which is set to 0.0125 in our study) through

ω′ = 2(1 − εs)

W
ω − (1 − εs).

The Hamiltonian is mapped to

Ĥ′ = 2(1 − εs)

W
(Ĥ − E01̂) − (1 − εs)1̂.

Since −1 < ω′ < 1, the optical conductivity can be expanded
as

C(ω′) = 〈�0|Ĵ δ(ω′1̂ − Ĥ′)Ĵ |�0〉

= 2(1 − εs)/W

π
√

1 − ω′2

[
μ0 + 2

∞∑
n=1

μnTn(ω′)

]
(27)

by using the Chebyshev polynomials,

Tn(ω′) = cos(n arccos ω′).

The weight μn is calculated from 〈�0|Ĵ |tn〉, where |tn〉 =
Tn(Ĥ′)Ĵ |�0〉. We evaluate μn using the matrix product state
(MPS) method after obtaining the ground state by DMRG.
For the evaluation, the recurrence relation of the Chebyshev
polynomial is helpful,

|t0〉 = Ĵ |�0〉, |t1〉 = Ĥ′|t0〉,
|tn+2〉 = 2Ĥ′|tn+1〉 − |tn〉.

In the numerical calculation, the expansion of Eq. (27) is
carried out up to some fixed order N and we multiply the
Jackson damping factor [21]

gn = (N − n + 1) cos nπ
N+1 + sin nπ

N+1 cot π
N+1

N + 1
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to the weight μn as follows:

C(ω′) � 2(1 − εs)/W

π
√

1 − ω′2

[
g0μ0 + 2

N∑
n=1

gnμnTn(ω′)

]
.

In our study, the system size is 200, the parameters are W =
15 or 20, and N = 60. The Jackson damping causes a Gaus-
sian broadening of the peak at ω with width πω

√
1 − ω′2/N

[22]. The number of Chebyshev moments N = 60 provides a
resolution which is sufficient for the purpose of this paper.

III. RESULTS

A. General remarks

We compute the longitudinal optical conductivity and the
magnetic susceptibility for the weakly interacting half-filled
one-band Hubbard model Eq. (1) in dimension D = 1 using
the DMFT Green’s functions obtained with IPT (Sec. II B 4).
DMFT produces results representative of high-dimensional
systems, irrespective of D, so our choice of D = 1 mainly
serves to reduce the computational cost of the momentum
summations. Qualitatively similar results have been obtained
for D = 2 but will not be explicitly discussed. Furthermore,
the existence of AFM long-range order at TN > 0 in the
DMFT solution is representative of D � 3, and we should
thus regard the following diagrammatic results as character-
istic properties of high-dimensional Hubbard models in the
vicinity of the AFM phase boundary.

We have also computed the π -ton-type vertex corrections
in the strongly correlated (Mott) regime using NCA as impu-
rity solver, but in this regime the RPA-type vertex correction
is not meaningful, since it yields large values at high tempera-
tures, far away from the AFM phase boundary. Also, the NCA
itself is not very reliable in the intermediate-coupling regime,
even at high temperature [23]. We thus restrict our attention
to the weak-correlation regime, where the poles in the π -ton
expressions can be shifted to the actual AFM boundary via
modest corrections of the bare interaction.

It is worth noting that since IPT and NCA are self-
consistent methods that capture local correlations, the bare
susceptibility results should fulfill conservation laws. All the
bare longitudinal optical conductivities presented in this paper
obey the sum rule Eq. (B7) within at least three digits.

B. Phase diagram and renormalized couplings

To identify the parameter regions with strong AFM fluctu-
ations, which are expected to enhance the π -ton type vertex
corrections, we first map out the AFM phase boundary at
half filling. The DMFT phase diagram computed with the IPT
solver is shown in Fig. 6.

In order to calculate a lattice susceptibility that diverges
at the DMFT phase boundary, one would have to compute a
local vertex from the impurity model and use this as an ap-
proximation for the vertex of the lattice model in the solution
of a Bethe-Salpeter equation [24,25]. If we use the DMFT
Green’s functions in an RPA-type ladder, the corresponding
susceptibility is not guaranteed to diverge, or become large,
in the vicinity of the phase boundary. To figure out in which
interaction regime the RPA-π -ton approach might produce

FIG. 6. AFM phase boundary (red line) obtained with the IPT
solver in the space of U and T at half filling. The black line indicates
the temperatures corresponding to the largest single-ladder vertex
corrections.

meaningful results, we plot in Fig. 6 the (U, T ) parameters,
where the denominator of the single-ladder diagram [Eq. (21)]
at k̃ − k̄ = π and ωn=0 vanishes (black line). Within DMFT +
IPT, at small U , the black line remains close to the AFM phase
boundary (it essentially follows the Hartree phase boundary
[15]). At U ≈ 4 it reaches a maximum of T ≈ 0.35, which is
almost 50% higher than the maximum Néel temperature (TN ),
and then drops to small values faster than the AFM bound-
ary. This drop, while qualitatively similar to the shape of the
phase boundary, is not found in DMFT + NCA, which should
provide a more accurate description on the “Mott insulating”
side of the AFM dome. In DMFT + NCA, the temperature
associated with the dominant ladder contribution increases
with increasing U . Hence, it is only meaningful to analyze
the RPA-π -ton corrections to DMFT susceptibilities in the
weak-coupling regime (U � 3), and we will thus from now
on focus on the DMFT + IPT results. (We have checked our
data against numerically exact DMFT results obtained with
a continuous-time Monte Carlo method [26] but found no
qualitative differences to DMFT + IPT in this regime.)

Because the dominant vertex corrections from the single-
ladder, double-ladder, and AL-type diagrams appear at
temperatures which may be quite far from the Néel tem-
perature, we introduce renormalized interactions U ren. This
renormalized coupling, which depends on U , ensures that the
pole in the single-ladder expression is shifted to TN at the
given U . (The DMFT Green’s functions which enter the sus-
ceptibility calculations are computed with the unrenormalized
U .) At U = 3, we find U ren = U/1.4, while at U = 2, we have
U ren = U/1.33. At U = 1, U ren is close enough to TN that we
do not need to consider a renormalized coupling [27].

These renormalizations of the bare interaction may be
regarded as a consequence of the fact that the π -ton dia-
grams discussed in Ref. [3] are not RPA-type ladders but
involve a nontrivial vertex. The procedure is similar in spirit
to the Kanamori theory for itinerant ferromagnetism, where
a renormalized interaction is used in the mean-field Stoner
condition [28].
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FIG. 7. 1D longitudinal optical conductivity for U = 1 (first column), U = 2 (second column), and U = 3 (third column) obtained using
DMFT + IPT and (for the ladder corrections) appropriately renormalized interactions. First row: bare response. Second row: bare response plus
single-ladder vertex corrections. Third row: bare response plus single-ladder and double-ladder vertex corrections. Fourth row: bare response
plus single-ladder and AL vertex corrections. The temperatures considered for the different interactions are shown in the legends.

C. Optical conductivity and q = 0 spin susceptibility

In the following, we focus on U = 1, 2, and 3 and com-
pute both the optical conductivity and magnetic susceptibility
for three temperatures approaching the phase boundary (see
green dots in Fig. 6). The Green’s functions entering the
bubble and π -ton diagrams are DMFT Green’s functions for
the corresponding U , while the interactions in the ladder
expressions are renormalized as discussed in Sec. III B. The
real-frequency spectra are computed using the maximum en-
tropy method [14].

Figure 7 shows the 〈 jx jx〉 data for U = 1 and T =
0.04, 0.02, 0.014, U = 2 and T = 0.111, 0.083, 0.056, and
U = 3 and T = 0.182, 0.154, 0.133, while Fig. 8 shows the
〈SzSz〉 data for the same parameter sets. In both figures, each
column shows for the indicated value of U starting from the
top panel and going down: (i) the bare response, (ii) the bare
response plus the single-ladder vertex corrections, (iii) the
bare response plus the single-ladder and double-ladder vertex
corrections, and (iv) the bare response plus the single-ladder
and AL-type vertex corrections. The bubble contributions to
the susceptibilities (top panels) exhibit a peak at small ω and
a weak hump feature near ω ≈ 4, which originates from the
peaks in the 1D density of states. For U = 2 and 3, there is
also spectral weight around ω ≈ U , coming from Hubbard
satellites in the density of states. As the temperature is low-
ered, the Drude peak of the optical conductivity becomes very
narrow and sharp. In a Fermi liquid, σDrude(ω) ∝ γ /[π (γ 2 +
ω2)] with γ ∼ T 2 the scattering rate. Hence, at U = 1 and

low T , we have an almost δ-function-like peak in the con-
ductivity at ω = 0. To suppress this peak and highlight the
structures at higher energies we plot Reσ j j (q = 0, ω) ∗ ω =
Imχ j j (q = 0, ω). Also in the case of the spin susceptibility,
we plot ImχSzSz (q = 0, ω). As U increases, the scattering rate
increases, the Drude peak becomes wider, and the features as-
sociated with the Hubbard subbands become more prominent.

The effects of the single-ladder vertex corrections [c.f.
Eq. (21)] on the optical conductivity are illustrated in the sec-
ond row, from top, of Fig. 7. This vertex correction contributes
a peak at ω ≈ 0.6, which grows as we approach TN . Since
this energy is larger than the width of the Drude peak, but
smaller than the bandwidth and U -related features, the π -ton
appears as an in-gap peak in the optical conductivity. For small
U , it also results in a broadening of the Drude peak, while
at U = 3, there are strong cancellations between the bare
bubble and π -ton vertex correction, which suppress the Drude
peak. At higher temperatures, the π -ton peak shifts to higher
energies and merges with the high energy spectral weight of
the bare bubble. Here, the effect of the vertex correction is a
broadening of the Drude peak and a redshift of the edge of
the high-energy spectral weight. These results from our RPA-
π -ton post-processing procedure look qualitatively consistent
with the data presented in Ref. [3] which (for a set of different
models) reported similar broadenings, in-gap peaks, and shifts
of the gap edge.

The third row, from the top, illustrates the effect of the
double-ladder vertex corrections [c.f. Eq. (23)] on the optical
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FIG. 8. 1D magnetic susceptibility for U = 1 (first column), U = 2 (second column), and U = 3 (third column) obtained using DMFT +
IPT and (for the ladder corrections) appropriately renormalized interactions. First row: bare response. Second row: bare response plus single-
ladder vertex corrections. Third row: bare response plus single-ladder and double-ladder vertex corrections. Fourth row: bare response plus
single-ladder and AL vertex corrections. The temperatures considered for the different interactions are shown in the legends.

conductivity. For U = 1 and U = 2, including the double-
ladder diagrams in the vertex corrections suppresses the hump
at ω � 4 associated with the 1D density of states and broadens
the peak associated with the in-gap state. We also find a shift
of the π -ton peak to slightly higher energy. While the peak
is broadened for U = 1, it is not much affected in the case
of U = 2. Overall, the addition of a second vertical ladder
has little qualitative effect on the π -ton for U � 2. For U = 3
we find significant changes induced in the spectra as a result
of the double-ladder corrections. The π -ton peak disappears
and spectral weight is shifted to the high-energy and Drude
features. We interpret this as a signature of a breakdown of the
RPA-ladder post-processing approach, due to an increasing
importance of various types of diagrams and the need for
separate U ren for different types of corrections.

The last row illustrates the effect of the AL vertex cor-
rections [cf. (24)] on the optical conductivity. This class of
diagrams is clearly more significant than the double ladder
correction, but for all interactions considered, we still observe
a spectral feature below half the bandwidth (ω < W/2 = 2)
when approaching the phase boundary, as is the case for the
single-ladder vertex corrections (second row from the top).
The two main effects of the AL diagrams are an additional
broadening and enhancement of the Drude peak and a shift of
the π -ton feature to higher energies.

The results for the magnetic susceptibility, shown in Fig. 8,
are similar to those for the optical conductivity. We again
see the broadening of the “Drude peak” with increasing
U in the bare bubble contribution and the appearance of

high-energy spectral weight associated with Hubbard satel-
lites. The single-ladder π -ton vertex correction yields an
enhancement of the Drude feature at U = 1, a broadening at
U = 2, and a suppression of the Drude peak at U = 3, while
characteristic in-gap peaks appear near TN around ω = 0.8.
These π -ton peaks are slightly less prominent in the spin
susceptibility than in the longitudinal optical conductivity.

The third row, from the top, illustrates the effect of the
double-ladder vertex corrections for the various values of U .
As in the case of the optical response, the additional set of
diagrams does not significantly alter the main signature of
the π -ton for U = 1 and U = 2. The amplitude of the peak
is similar, while its position in the in-gap region is shifted
slightly up. At U = 3, the π -ton feature again disappears as
a result of the double-ladder correction. Its spectral weight
either merges with the hump produced by the 1D density of
states or with the Drude feature.

The last row shows the effect of the AL-type vertex correc-
tions on the magnetic susceptibility. The results are similar as
for the optical conductivity: The peak associated with the π -
ton is flattened and shifted to higher energies, while the Drude
feature increases and widens. The location of the shifted π -ton
peak is more or less the same as the one appearing in the
optical conductivity.

In connection with these spectra we should note that the
positivity of the spectral weight is not a priori guaranteed.
However, strong noncausal features should be detectable by
Padé analytical continuation [29] and would be evident al-
ready on the Matsubara axis in the form of a nonmonotonic
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FIG. 9. Longitudinal optical conductivity for U = 1, 2, 3 and
T = 0 obtained using DMRG.

ωn dependence [30]. Since neither are observed for U � 3, it
is valid to use maximum entropy analytical continuation [14],
which enforces the positivity of the spectra.

D. Comparison to DMRG

We now compare the DMFT + IPT results of the previ-
ous section to the T = 0 data obtained from DMRG for the
1D Hubbard model. DMRG is more accurate and captures
nonlocal correlations, as well as 1D specific physics such as
spin-charge separation [31]. While we cannot expect a very
close agreement between the DMFT susceptibilities, which
are representative of finite-temperature higher dimensional
systems [7,8], and the zero temperature DMRG results, it is
nevertheless interesting to ask if the π -ton related features
identified in the previous subsection leave some traces in the
DMRG spectra.

We show in Figs. 9 and 10 the DMRG results for both
the current and magnetic responses, respectively, for the same
values of the interaction U as in the previous section. For the
two susceptibilities, we attribute the spectral weight in the
energy range 2 � ω � 7 to structures in the 1D density of
states, essentially captured at the level of the bare bubble in
the diagrammatic calculation. Overall, the spin susceptibility
in DMRG has lower spectral weight compared to the opti-
cal conductivity, consistent with the bare bubble calculations
(compare Figs. 7 and 8). The latter can be attributed to the
factors 1

2 in the spin vertices, and the fact that the velocities at
the vertices entering the optical conductivity—corresponding
to the derivative of the bare electronic dispersion with re-
spect to momentum—are proportional to a sinusoidal function
weighted by (2t )2, with maxima at k = ±π

2 , which coincides
with the momenta for which the spectral weight of the inter-
acting Green’s function is large, i.e., where the self-energy
only results in weak broadening (c.f. Sec. IV).

FIG. 10. Magnetic susceptibility for U = 1, 2, 3 and T = 0 ob-
tained using DMRG.

The peak in ImχSzSz looks similar to the broadened “Drude”
feature found in the DMFT + IPT spectra with single-ladder
and double-ladder corrections. However, the amplitude of
the magnetic response is much weaker than that obtained in
DMFT and the trend as a function of interaction is opposite:
In DMFT the optical conductivity and magnetic susceptibility
follow qualitatively similar trends, but in DMRG the spin-spin
correlation function decreases with increasing U .

In 1D, the low energy effective theory describes an inde-
pendent sum of electronic and spin degrees of freedom, which
is known as the spin-charge separation. For any U > 0, the
charge sector is in the Mott gapped phase, and the spin sector
is described by the Heisenberg model. The exchange coupling
is proportional to t

√
1 − const(U/t ) in the weak U regime,

which connects to 4t2/U in the strong U regime. Hence, the
spin exchange coupling decreases with increasing U .

A prominent peak appears at low frequencies (ω ≈
0.2–1.2) in the optical conductivity. This peak moves up in
frequency and increases in amplitude with increasing U , a
behavior qualitatively similar to the π -ton peak identified
in the diagrammatic analysis at approximately the same en-
ergies (Fig. 7). While one might thus expect a significant
π -ton contribution, this peak in the DMRG solution is mainly
originating from charge excitations across the Mott gap [32].
One peculiarity of the half-filled 1D case is that it is Mott
insulating at zero temperature for any U > 0. (The absence
of a gap in the U = 1 and 2 spectra is due to broadening.)
Hence, even if a π -ton feature exists in the energy range
suggested by the ladder calculations, it is dominated by the
Mott gap feature in 1D. At U = 3, our DMFT results for both
the magnetic and optical responses show that the single-ladder
vertex corrections almost completely suppress the Drude peak
at ω = 0. (It is not completely suppressed when considering
the double-ladder vertex corrections.) This suppression is not
observed in DMRG in the case of the magnetic response. The
qualitative difference between the spin and charge responses
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in DMRG may be attributed to specificities of the 1D and
T = 0 physics of the Hubbard model.

In one dimension, the magnetic and charge degrees of
freedom are completely independent (spin-charge separation).
Hence, the low energy structure of the magnetic excitations
in the Hubbard model is always the same as that in the
Heisenberg model, and the excitations created are gapless
spinons. In higher dimensions, in contrast, the magnetic and
charge degrees of freedom cannot be easily separated, and the
magnetic excitation structure can be different from that of the
Heisenberg model. At T = 0, we expect gapless magnons be-
cause of the AFM order, while other collective spin excitations
may exist above TNéel.

The spin and charge sectors of the 1D system become less
asymmetric with increasing temperature [31], and we expect
the spectrum for the spin correlation function to look more
similar to that for the charge correlation function. Indeed, the
optical conductivity in 1D features a Drude peak at elevated
temperatures [31,33], and it would be interesting to perform a
comparison between the diagrammatic results of the previous
section and T > 0 DMRG results, which is however beyond
the scope of the present study.

IV. DISCUSSION

To understand the origin of the π -ton peaks appearing
in the energy range ω ∈ [0.2, bandwidth/2] (c.f. Figs. 7 and
8), we separately consider the numerator and denominator of
Eq. (21). We focus on Eq. (21), since for weak interactions
Eq. (23) yields only a small correction to the peak location.
The analytical continuation to the real-frequency axis of χd in
the denominator of Eq. (21) reads

χσ,−σ
d (ω, k̃ − k̄)

= U
∫ π

−π

dDk

(2π )D

∫∫ ∞

−∞
dω′dω′′

× Aσ

k+k̃−k̄(ω′)A−σ
k (ω′′)

nF (ω′) − nF (ω′′)
ω + iη − (ω′ − ω′′)

, (28)

where Ak(ω) = − 1
π

Im G(k, ω) is the spectral function, nF is
the Fermi-Dirac distribution, and η → 0+.

As mentioned before, the π -ton type vertex correction orig-
inates mainly from k̃ − k̄ = π . However, in Eq. (21) not all
such (k̃, k̄)-tuples give comparable contributions when one
considers the numerator together with the denominator. The
reason is that the k-dependent spectral weight of the inter-
acting Green’s function varies with momentum: The spectral
functions for momentum values around k = ±π

2 exhibit a
sharp peak near ω = 0, while the spectra broaden as k ap-
proaches 0 or π (corresponding to peak positions near ω =
±2). This means that the numerator of Eqs. (21) and (23)
yields the largest values for tuples (k̃ � ±π

2 , k̄ � ∓π
2 ). On

the other hand, the real part of Eq. (28) approaches 1 in the
energy range ω ∈ [0.4, 0.9] for all considered interaction val-
ues, as illustrated in Fig. 11. This energy range corresponds to
the Ak peak position near k = ±π

2 , so that the corresponding
poles get amplified by the numerator and show up as peaks in
the responses. Note that, as shown in Fig. 11, for all values
of the interaction except U = 3 (U ren = 2.14), a second pole

FIG. 11. Real part of Eq. (28) as a function of energy ω. The
energies at which the real part approaches 1 correspond to the peaks
observed near ω � 0 and ω ∈ [0.5, 0.8].

appears even closer to ω = 0 implying a rise in the responses
close to ω = 0 (c.f. Figs. 7 and 8). This is the origin of the
observed broadening of the Drude peak.

V. CONCLUSIONS

We have studied the effect of ladder-type vertex corrections
on the q = 0 optical and magnetic response of the half-filled
Hubbard model. The single vertical ladder vertex correction
(π -ton) has been identified in Ref. [3] as the most relevant one
in the vicinity of an ordered phase with ordering wave vector
kπ , as in the present system near the AFM phase boundary.
We have considered RPA-π -tons, where the vertical ladder
is constructed using a (properly renormalized) instantaneous
Hubbard interaction, instead of a vertex, and with interact-
ing Green’s functions obtained from a DMFT simulation.
According to the results of Kauch et al. [3] this should be
a meaningful and efficient post-processing procedure which
allows us to incorporate relevant fluctuations into the q = 0
responses measured with DMFT.

This weak-coupling diagrammatic approach yields stable
and physically plausible results for weak interactions, while
the calculation of RPA-π -tons in the intermediate coupling
and Mott regimes suffers from inconsistencies. In particular,
in the Mott regime, the corresponding vertex correction is
larger in the high temperature region than close to the AFM
phase boundary (if the diagrams are evaluated with the more
reliable NCA Green’s functions). As a side remark, we note
that also diagrammatic extensions of DMFT [34], even though
more accurate, suffer convergence problems at intermedi-
ate to strong coupling, related to the multivaluedness of the
Luttinger-Ward functional or the occurrence of divergences in
the two-particle-irreducible vertex functions [35,36].
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Even at weak interactions, the U used in the evaluation of
the π -ton diagram needs to be renormalized in order to shift
the pole to the actual phase boundary. If this is done, the π -ton
results at weak U in a broadening of the Drude peak and in a
characteristic in-gap feature of the optical and spin response.
With increasing U , the Drude peak is suppressed, while the
in-gap feature grows and shifts up in energy, eventually merg-
ing with the higher energy spectral weight associated with the
bubble contribution.

We have also considered a double-ladder extension of the
RPA-π -ton to estimate the dominance of the single-ladder
contribution. This double ladder has little qualitative effect
for U � 2 and results mainly in a broadening and small red-
shift of the π -ton peak and a suppression of the high-energy
spectral weight in the optical conductivity. This indicates that
the prominent features in the responses stem mainly from the
single-ladder contributions to the vertex corrections.

With increasing U , the poles of the ladder-type vertex
corrections stray away from the DMFT phase boundary. This
indicates that the contribution from other diagram topolo-
gies becomes significant and resorting solely to vertical
ladder-type vertex corrections [Eqs. (21) and (23)] becomes
insufficient to account for the relevant physics.

In the context of superconductivity, the vertex correc-
tion analogous to the single-ladder π -ton is known as
the Maki-Thompson (MT) diagram [37,38]. In this com-
munity, the significance of the MT and other diagrams
has been extensively discussed, and it is known that the
Aslamazov-Larkin (AL) diagram [20], with horizontal lad-
ders instead of vertical ladders, plays an important role.
Hence, also in the present context of optical and spin re-
sponses near an AFM phase, it may be important to consider
non-π -ton diagram topologies, including AL-type vertex
corrections.

We have computed the AL-type vertex corrections and
checked their effect on the optical conductivity and spin re-
sponse. The AL-type correction is clearly more significant
than the vertical double ladder correction, but it does not
qualitatively affect the characteristic π -ton features associ-
ated with the single vertical ladder. If both vertex corrections
are considered, we still find a peak in the in-gap region,

both in the optical conductivity and spin response func-
tion. This is consistent with the conclusions of Ref. [3].
Further systematic studies of the interplay between differ-
ent diagram topologies would however be helpful for a
better understanding of cancellation effects. Diagrammatic
Monte Carlo [39,40] or the Parquet summation of diagrams
[41,42] are unbiased numerical techniques which in princi-
ple allow us to check the relevance of different classes of
diagrams.

Benchmarking our DMFT and RPA based post-processing
scheme is difficult because of a lack of numerically exact
results for the optical conductivity and spin response. Our re-
sults for small U are qualitatively consistent with the findings
reported in Ref. [3] which were also obtained with approx-
imate (but more advanced) formalisms. In particular, Kauch
et al., using different models, found similar broadenings of
the Drude peak, in-gap features, and shifts in the edge of the
high-energy spectral weight, which were traced back to the
π -ton contribution (see also Ref. [43]). In order to benchmark
against numerically exact data, we considered the 1D Hub-
bard model at T = 0, which can be solved with DMRG. The
physics of this system is, however, qualitatively different from
that captured by the DMFT treatment, which is representative
of high-dimensional finite-temperature systems [7], even if the
1D density of states is used in the self-consistency loop. One
reason is the presence of a Mott gap at T = 0 in the half-filled
1D Hubbard model for any U > 0 and the very asymmetric
spin and charge response. While a π -ton contribution to the
optical conductivity of the 1D system cannot be excluded, it is
difficult to disentangle it from the dominant charge excitation
peak. Comparisons to finite-temperature DMRG data would
be an interesting topic for future investigations.
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APPENDIX A: DERIVATION OF THE VERTEX CORRECTIONS

The equations of motion in D dimension(s) read

−∂τ1〈Tτ ĉσ (1)ĉ†
σ (2̄)〉φ = − δD(x1 − x2)δ(τ1 − τ2) − 〈

Tτ ∂τ1 ĉσ (1)ĉ†
σ (2)

〉
φ

− 〈Tτ [K̂, ĉσ (1)]ĉ†
σ (2)〉φ, (A1)

which, using Dyson’s equation, yields


φ
σ (1, 2̄)Gφ

σ (2̄, 2) = −
∑
σ2

Uδσ2,−σ δ(1 − 2̄)
〈
Tτ ĉσ (1)ĉ†

σ (2)ĉ†
σ2

(2̄+)ĉσ2 (2̄)
〉
φ
. (A2)

Making use of Eqs. (14) and (15), we may re-express the right-hand side as


φ
σ (1, 2̄)Gφ

σ (2̄, 2) = −
∑
σ2

Uδσ2,−σ δ(1 − 2̄)

[
Gφ

σ (1, 2̄+)Gφ
σ (2̄, 2)δσ,σ2 − Gφ

σ2
(2̄, 2̄+)Gφ

σ (1, 2) +
∑
σ ′

Gφ
σ (1, 4̄)

δ
φ
σ (4̄, 3̄)

δGφ

σ ′ (5̄, 6̄)

× δGφ

σ ′ (5̄, 6̄)

δφσ2 (2̄+, 2̄)
Gφ

σ (3̄, 2)

]
. (A3)
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FIG. 12. Diagrammatic representation of 
 [Eq. (17)]. The first diagram is the Hartree diagram (tadpole) while the second term contains
an infinite number of diagrams that can be generated self-consistently. In the last term, both the green and pink shapes together define the
vertex function [18].

After some manipulations, one obtains the expression (17) for the self-energy. The general diagrammatic form of this self-energy
is shown in Fig. 12.

To compute the susceptibilities introduced in Sec. II C, one must work out expressions for δ

δG from Eq. (17). Carrying out the

functional derivative with respect to the interacting Green’s function and keeping the first terms, one gets

δ
φ
σ (1, 3)

δGφ

σ ′ (4, 5)
=Uδσ ′,−σ δ(4 − 5)δ(1 − 3)δ(1 − 4)

− Uδ(1 − 4)δσ,σ ′
δ
φ

σ (5, 3)

δGφ
−σ (7̄, 8̄)

Gφ
−σ (7̄, 1+)Gφ

−σ (1, 8̄)

− Uδσ ′,−σ δ(1 − 5)Gφ
σ (1, 7̄)

δ
φ
σ (7̄, 3)

δGφ

σ ′ (4, 8̄)
Gφ

σ ′ (5, 8̄)

− Uδσ ′,−σ δ(1 − 4)Gφ
σ (1, 7̄)

δ
φ
σ (7̄, 3)

δGφ

σ ′ (8̄, 5)
Gφ

σ ′ (8̄, 4+) − · · ·, (A4)

which is shown diagrammatically in Fig. 13.
The expression for a single vertical ladder is obtained when keeping the first and last terms in Eq. (A4). Isolating δ


δG from
those two kept terms gives

δ
σ (1, 3)

δGσ ′ (4, 5)
= Uδσ ′,−σ δ(3 − 5)

δ(1 − 3)δ(4 − 5) + Uδ(1 − 4)Gσ (1, 3)Gσ ′ (5, 4+)
. (A5)

This relation is the real-space equivalent of the � term Eq. (22). The source field is set to 0 (φ → 0) in Eq. (A5) since this is the
final form sought.

We next derive the expression for �(even), which sums up all even-ladder corrections to the triangle vertex:

δGφ,(even)
σ ′′ (5, 6)

δφσ ′ (2+, 2)

= Gφ

σ ′′ (5, 2+)Gφ

σ ′′ (2, 6)δσ ′′,σ ′ +
∑
σ̃ ′,σ̃ ′′

Gφ

σ ′′ (5, 1̄)Gφ

σ ′′ (3̄, 6)
δ


φ

σ ′′ (1̄, 3̄)

δGφ

σ̃ ′ (7̄, 8̄)
Gφ

σ̃ ′ (7̄, 1̄0)Gφ

σ̃ ′ (1̄1, 8̄)
δ


φ

σ̃ ′ (1̄0, 1̄1)

δGφ

σ̃ ′′ (1̄2, 1̄3)

δGφ,(even)
σ̃ ′′ (1̄2, 1̄3)

δφσ ′ (2+, 2)

⇔�φ,(even)
σ ′′σ ′ (5, 6, 2)

= Gφ

σ ′′ (5, 2+)Gφ

σ ′′ (2, 6)δσ ′′,σ ′ +
∑
σ̃ ′,σ̃ ′′

Gφ

σ ′′ (5, 7̄)Gφ

σ ′′ (8̄, 6)�φ

σ ′′σ̃ ′ (7̄ − 8̄)Gφ

σ̃ ′ (7̄, 1̄0)Gφ

σ̃ ′ (1̄1, 8̄)�φ

σ̃ ′σ̃ ′′ (1̄0 − 1̄1) �φ,(even)
σ̃ ′′σ ′ (1̄0, 1̄1, 2)

︸ ︷︷ ︸
≡ �φ,(even),corr

σ ′′σ ′

.

(A6)

FIG. 13. Diagrammatic representation of δ


δG when only keeping the first term of δG
δφ

. The first and last terms are those that will be retained

in our approximation for δ


δG .
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FIG. 14. Diagrammatic representation of the terms of �(even) containing solely an even number of vertical ladders (pink boxes); the violet
box is comprised of two pink boxes connected together by two Green’s functions. The first term is the one that will be retained in our
approximation.

Equation (A6) is illustrated diagrammatically in Fig. 14. Note that self-consistently substituting �(even) into the right-hand
side will generate a ladder containing an even number of vertical ladders (�). �(even),corr corresponds to the last term in Fig. 14,
where the two ladders are represented by a violet box. Retaining only the first term on the right-hand side of (A6), one obtains
the real-space expression for the single-ladder vertex corrections, corresponding to the lowest-order vertex correction consisting
of an odd number of vertical ladders:

χσσ ′
sl (1, 2) = − Uδσ ′,−σGσ (1, 5̄)Gσ ′ (6̄, 2+)Gσ ′ (2, 3̄)Gσ (3̄, 1+)

δ(5̄ − 3̄)δ(6̄ − 3̄) + Uδ(5̄ − 6̄)Gσ (5̄, 3̄)Gσ ′ (3̄, 6̄)
, (A7)

with φ → 0. Fourier transformed to (k, ωn) space, Eq. (A7) gives Eq. (21).
Similarly to �(even), one can come up with an expression for �(odd) to calculate the double-ladder (χdl) and higher-order

even-ladder corrections. The only difference between �(odd) and �(even) is the first term with which the diagrams are generated
self-consistently. Therefore, considering the notation introduced and the symmetries inherited from the Hubbard model, one gets

�φ,(odd)
σ ′′σ ′ (5, 6, 2) = Gφ

σ ′′ (5, 7̄)Gφ

σ ′′ (8̄, 6)�φ

σ ′′σ ′ (7̄ − 8̄)Gφ

σ ′ (7̄, 2+)Gφ

σ ′ (2, 8̄)+ �φ,(odd),corr
σ ′′σ ′ (5, 6, 2). (A8)

Equation (A8) has the diagrammatic representation shown in Fig. 15. This time, Eq. (A8) generates iteratively terms consisting
of a ladder containing an even number of vertical ladders. Keeping only the first-order term of Eq. (A8) and inserting it into
Eq. (20) yields the expression for the double-ladder vertex corrections (φ → 0):

χσσ ′
dl (1, 2) = −

∑
σ ′′

Gσ (1, 4̄)Gσ (3̄, 1+)�σσ ′′ (4̄ − 3̄)Gσ ′′ (4̄, 7̄)Gσ ′′ (8̄, 3̄)�σ ′′σ ′ (7̄ − 8̄)Gσ ′ (7̄, 2+)Gσ ′ (2, 8̄). (A9)

Carrying out the Fourier transformation of Eq. (A9) into (k, ωn) space yields Eq. (23).
We finally discuss how to compute the Aslamazov-Larkin-type diagram χσσ ′

AL shown in Fig. 5. It can be expressed in real
space in the form

χσσ ′
AL (1, 1+; 2+, 2)=Gσ (1, 1̄2)Gσ (1̄6, 1+)�σ−σ (1̄2 − 1̄3)G−σ (1̄8, 1̄3)G−σ (1̄2, 1̄6)�−σσ (1̄8 − 1̄6)δσ ′,σGσ ′ (1̄3, 2+)Gσ ′ (2, 1̄8),

(A10)

from which the vertex function can be isolated as:

�σ−σ (1̄2 − 1̄3)G−σ (1̄8, 1̄3)G−σ (1̄2, 1̄6)�−σσ (1̄8 − 1̄6)δσ ′,σ . (A11)

Equation (A11) is illustrated diagrammatically in Fig. 16. The expression for the ladders is the same as in Eq. (22). Fourier
transforming Eq. (A10), one obtains Eq. (24).

FIG. 15. Diagrammatic representation of the terms of �(odd) containing solely an odd number of vertical ladders (pink box); again the
violet box is comprised of two pink boxes connected together by two Green’s functions. The first term is the one that will be retained in our
approximation. Note that in the case of the Hubbard model, for instantaneous interaction, 7̄ = 3̄ and 8̄ = 4̄ for the pink box.
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FIG. 16. Vertex function for the AL-type diagram (cf. Fig. 2). The red boxes represent particle-hole ladders [Eq. (22)].

APPENDIX B: LONGITUDINAL CONDUCTIVITY

The continuity equation associated with the electric charge conservation reads

∂ρ(r, t )

∂t
+ ∇ · j(r, t ) = 0, (B1)

where j is the current density, and ρ is the charge density. When transforming Eq. (B1) to Fourier space, one gets

−ωρ(q, ω) + q · j(q, ω) = 0. (B2)

The two-particle spectral function χ ′′
ρρ corresponding to the charge density observable is, within the linear response theory

framework,

χ ′′
ρρ (q, ω) = 1

N
〈[ρ̂(q, ω), ρ̂(−q,−ω)]〉Ĥ0

, (B3)

where Ĥ0 is the noninteracting Hamiltonian and N is the number of k points, such that according to Eq. (B2), the current-current
two-body spectral function reads

χ ′′
ji ji (qi, ω) = ω2

q2
i

χ ′′
ρρ (qi, ω), (B4)

where the index i denotes the Cartesian axes. The spectral representation of the current-current correlation function χ ji ji is

χ ji ji (qi, ω) =
∫

dω′

π

χ ′′
ji ji (qi, ω

′)

ω′ − ω − iη
. (B5)

With these ingredients we can derive an expression for the real part of the longitudinal electric conductivity, denoted Re σii(qi, ω).
According to Eq. (B4),∫

dω

π

χ ′′
ji ji (qi, ω)

ω
= 1

q2
i

∫
dω

π
ωχ ′′

ρρ (qi, ω) =
[

2i

q2
i

∂

∂t

∫
dω

2π
e−iωtχ ′′

ρρ (qi, ω)

]∣∣∣∣
t=0

= 1

Nq2
i

〈[
i
∂

∂t
ρ̂(qi, t ), ρ̂(−qi, 0)

]∣∣∣∣
t=0

〉
Ĥ0

= 1

Nq2
i

〈
[[ρ̂(qi ), Ĥ](t ), ρ̂(−qi, 0)]

∣∣∣∣
t=0

〉
Ĥ0

, (B6)

where Ĥ is the Hubbard Hamiltonian Eq. (1). The last expression of Eq. (B6) relates directly to the first moment of the density
correlation function. Evaluating the commutators and taking the limit qi → 0, one gets∫

dω

π

χ ′′
ji ji (qi, ω)

ω
= 1

q2
i N

∑
k,σ

∂2εk,σ

∂k2
i

〈n̂k,σ 〉H ≡ −〈 ĵi,d〉, (B7)

where εk,σ is the dispersion relation in D dimensions and σ is the spin. Equation (B7) will serve as a sum rule to verify if the
longitudinal optical conductivity obeys conservation laws, namely Re χ ji ji (iqn = 0) = ∑

σ

∫ · · · ∫ π

−π
dDk ∂2ε(k)

∂ki
〈nk,σ 〉. Equation

(B7) represents the diamagnetic contribution ĵi,d to the current fluctuations δ〈 ĵi(ω)〉 (when multiplying the expression by −1),
that is

δ〈 ĵi(ω)〉 = [〈 ĵi,d〉 + χ ji ji (ω)
]
Ai(ω). (B8)

Hence, given that without scalar potential, the electric field obeys Ei(t ) = − ∂Ai (t )
∂t , the longitudinal conductivity reads

σii(qi, ω) = 〈 ĵi,d〉 + χ ji ji (ω)

i(ω + iη)
, (B9)

104415-14



DIAGRAMMATIC STUDY OF OPTICAL EXCITATIONS IN … PHYSICAL REVIEW B 103, 104415 (2021)

owing to the relation linking the current fluctuations to the electric field in linear response theory: δ〈 ji(ω)〉 = σii(ω)Ei(ω). Now
using Eqs. (B5) and (B7), we aim at extracting the real part of the longitudinal conductivity:

σii(qi, ω) = 1

i(ω + iη)

[∫
dω′

π

χ ′′
ji ji (qi, ω

′)

ω′ − ω − iη
−

∫
dω′

π

χ ′′
ji ji (qi, ω

′)

ω′

]
= 1

i(ω + iη)

∫
dω′

π

(ω + iη)χ ′′
ji ji (qi, ω

′)

ω′(ω′ − ω − iη)

= 1

i

∫
dω′

π

χ ′′
ji ji (qi, ω

′)

ω′(ω′ − ω − iη)
⇒ Re σii(qi, ω) = χ ′′

ji ji (qi, ω)

ω
. (B10)

APPENDIX C: DMRG

Here, we briefly explain the basic principle of the DMRG method [5,6]. In DMRG, quantum states are represented in the
form of matrix product states (MPSs),

|�〉 =
∑

{αi},{si}
Mα1 [s1]Mα1α2 [s2]Mα2α3 [s3] · · · MαN−1 [sN ]|s1, s2, . . . , sN 〉, (C1)

where N is the number of sites, si represents the quantum state on site i, and in the present system si = 0, 1, 2, 3 correspond
to (ni↑, ni↓) = (0, 0), (1, 0), (0, 1), (1, 1), respectively (ni↑ and ni↓ are the number of electrons with spin up and spin down). αi

(i = 1, . . . , N − 1) is the suffix for the matrices. We also represent the Hamiltonian as a matrix product operator (MPO)

Ĥ =
∑

{βi},{si},{s′
i}

Pβ1 [s1, s′
1]Pβ1β2 [s2, s′

2] · · · PβN−1 [sN , s′
N ]|s1, s2, . . . , sN 〉〈s′

1, s′
2, . . . , s′

N |. (C2)

DMRG is a method to obtain the MPS of the ground state variationally using the MPO form of the Hamiltonian. The initial MPS
is derived as follows. First, diagonalizing the two-site Hamiltonian

Ĥ1 =
∑

β1,s1,s′
1,sN ,s′

N

Pβ1 [s1, s′
1]Pβ1 [sN , s′

N ]|s1, sN 〉〈s′
1, s′

N | (C3)

and performing the Schmidt decomposition to the lowest energy state, we obtain the matrices Mα1 [s1] and MαN−1 [sN ] (in the latter
α1 is relabeled as αN−1). Next we can construct M[s j+1] and M[sN− j] from M[s1], . . . , M[s j] and M[sN− j+1], . . . , M[sN ]. We
build the matrix

Ĥ j =
∑

{βi},{si},{s′
i}

∑
α1, . . . , α j−1

αN− j+1, . . . , αN

∑
α′

1, . . . , α
′
j−1

α′
N− j+1, . . . , α

′
N

M∗
α1

[s1] · · · M∗
α j−1α j

[s j]M
∗
αN− jαN− j+1

[sN− j+1] · · · M∗
αN−1

[sN ]

× Mα′
1
[s′

1] · · · Mα′
j−1α

′
j
[s′

j]Mα′
N− jα

′
N− j+1

[s′
N− j+1] · · · Mα′

N−1
[s′

N ]Pβ1 [s1, s′
1] · · · Pβ j−1β j [s j, s′

j]

× Pβ jβ j+1 [s j+1, s′
j+1]Pβ j+1βN− j [sN− j, s′

N− j]PβN− jβN− j+1 [sN− j+1, s′
N− j+1] · · · PβN−1 [sN , s′

N ]|s j+1, sN− j〉〈s′
j+1, s′

N− j |,
and calculate the lowest energy state by the Lanczos method. After the Schmidt decomposition, we only keep the bond indices
corresponding to the χ largest singular values and truncate the others to obtain the matrices Mα jα j+1 [s j+1] and MαN− j−1αN− j [sN− j].
In our study, we set χ = 32. By repeating this process N/2 − 1 times, the initial MPS M[s1], . . . , M[sN ] is constructed.

Then we optimize this MPS by the variational method. As for the two neighboring sites j and j + 1, we construct the matrix
in a similar way as above:

Ĥvar =
∑

{βi},{si},{s′
i}

∑
α1, . . . , α j−2
α j+2, . . . , αN

∑
α′

1, . . . , α
′
j−2

α′
j+2, . . . , α

′
N

M∗
α1

[s1] · · · M∗
α j−2α j−1

[s j−1]M∗
α j+1α j+2

[s j+2] · · · M∗
αN−1

[sN ]

× Mα′
1
[s′

1] · · · Mα′
j−2α

′
j−1

[s′
j−1]Mα′

j+1α
′
j+2

[s′
j+2] · · · Mα′

N−1
[s′

N ]Pβ1 [s1, s′
1]Pβ1,β2 [s2, s′

2] · · · PβN−1 [sN , s′
N ]|s j, s j+1〉〈s′

j, s′
j+1|,

and calculate the lowest energy state by the Lanczos method. Then the matrices on the sites j and j + 1, that is Mα j−1α j [s j]
and Mα jα j+1 [s j+1], can be updated by the Schmidt decomposition and the bond truncation. We perform this variational update
process on pairs of neighboring sites, ( j, j + 1), ( j + 1, j + 2), ( j + 2, j + 3), . . ., and sweep over all sites iteratively until the
calculated energy converges. Thus we can derive the MPS form of the ground state.
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