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Three-dimensional chiral magnetization structures in FeGe nanospheres
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Skyrmions, spin spirals, and other chiral magnetization structures developing in materials with an intrinsic
Dzyaloshinskii-Moriya interaction display unique properties that have been the subject of intense research in
thin-film geometries. Here, we study the formation of three-dimensional chiral magnetization structures in FeGe
nanospheres by means of micromagnetic finite-element simulations. In spite of the deep submicron particle size,
we find a surprisingly large number of distinct equilibrium states, namely, helical, meron, skyrmion, chiral-
bobber, and quasisaturation states. The distribution of these states is summarized in a phase diagram displaying
the ground state as a function of the external field and particle radius. This unusual multiplicity of possible
magnetization states in individual nanoparticles could be a useful feature for multistate memory devices. We
also show that the magnetodipolar interaction is almost negligible in these systems, which suggests that the
particles could be arranged at high density without experiencing unwanted coupling.
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I. INTRODUCTION

Three-dimensional (3D) nanoscale magnetization struc-
tures have recently evolved into a very active field of
research [1–3], including, e.g., magnetic structures in complex
nanoarchitectures [4], and the tomographic reconstruction
of 3D magnetic vector fields in nanocylinders [5]. Vari-
ous 3D magnetic structures have also been studied in the
context of noncentrosymmetric materials, where new con-
figurations such as skyrmion tubes and chiral bobbers have
been found [6,7]. In such helimagnetic materials, however, the
impact of 3D nanoscale confinement and finite-size effects on
the magnetization states has not yet been investigated in detail.
It is known that helical states and hexagonal skyrmion lattices
can develop in two-dimensional, extended thin films [8,9],
and that the additional degree of freedom that is present
in thicker films can give rise to further modulations and
complex magnetization configurations such as Bloch point
structures and chiral bobbers [6,7,10,11]. Moreover, patterned
thin-film elements can host a variety of complex chiral struc-
tures [12], including isolated skyrmions [13], spin spirals, and
“horseshoe”-type structures [14]. Previous studies on finite-
size effects in skyrmionic magnetic materials have addressed
the impact of the film thickness or the lateral size of thin-
film elements, but were generally restricted to flat geometries.
To study the influence of nanoscale 3D confinement on the
magnetization states forming in a helimagnetic material, we
perform finite-element micromagnetic simulations on FeGe
nanospheres. In spite of the simplicity of the geometrical
shape, we find highly complex magnetic structures in such
nanospheres, depending on the particle size and the applied
field. This complexity results from the inherently chiral mag-
netic properties of the noncentrosymmetric material and the
constraints imposed by the finite size of the sample.
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The general problem addressed in this study, i.e., identi-
fying the size dependence of the magnetic ground state in
a nanoparticle, has a long tradition in micromagnetic theory
and simulations [15–18]. The question of how a magnetic
structure is affected by the particle size is often related to the
concept of the single-domain limit [19–25], i.e., the critical
size below which the magnetization in a particle remains
homogeneous. This, in turn, is connected to the concept
of micromagnetic exchange lengths [26,27], which provide
material-specific estimates of the characteristic size of funda-
mental magnetic structures, such as the width of domain walls
or the size of vortex cores. The exchange lengths result from
competing interactions in micromagnetics. More specifically,
they describe a balance between the tendency of the ferromag-
netic exchange to maintain a homogeneous magnetic state and
other energy terms that favor the formation of inhomogeneous
structures. In the case of noncentrosymmetric magnetic ma-
terials with intrinsic chiral properties, the long-range helical
period ld = 4πA/|D| [28] appears as a further characteristic
length. It represents the period of magnetization spirals form-
ing as a compromise between the ferromagnetic exchange and
the antisymmetric exchange due to the Dzyaloshinskii-Moriya
interaction (DMI). The constant D denotes the strength of
the DMI, i.e., the tendency to form helical structures, and A
is the ferromagnetic exchange constant. The functional form
of ld is different from that of the magnetostatic exchange
length ls = √

2A/μ0M2
s (Ms is the saturation magnetization

and μ0 is the vacuum permeability), because the former refers
to a periodic modulation of the magnetization while the lat-
ter describes the width of a localized kink-type transition
between two domains. Nevertheless, the long-range helical
period ld can be expected to have similar implications on the
size dependence of magnetic structures as the other exchange
lengths, namely, that chiral and skyrmionic structures develop
in particles with sizes exceeding ld by a sufficiently large
amount.
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II. MODEL SYSTEM AND NUMERICAL METHOD

We consider spherically shaped nanoparticles of FeGe with
a particle radius between 40 and 100 nm, thereby extend-
ing previous studies on the formation of magnetic structures
in this material in the case of planar geometries [12,29].
The spherical shape serves as a simple, fundamental 3D
geometry that can host different magnetization states. Its
rounded surfaces are particularly suitable for the formation
of swirling magnetization structures that typically develop
in helimagnetic materials. With the magnetic structure unaf-
fected by edges and corners [30–32], ellipsoids and spheres
traditionally play a fundamental role in determining the
size dependence of magnetic structures [33]. FeGe is a
well-known B20-type noncentrosymmetric ferromagnet with
an intrinsic (bulk) Dzyaloshinskii-Moriya interaction (DMI)
[9,13,34–38]. The competition between the symmetric fer-
romagnetic exchange interaction and antisymmetric DMI
gives rise to various complex chiral magnetization configu-
rations. We use our custom-developed general-purpose 3D
finite-element micromagnetic software package [39] to in-
vestigate the equilibrium magnetization states forming in the
presence of such competing interactions within a confined
three-dimensional space.

To model the material properties of FeGe, we use
Ms = 384 kA m−1, A = 8.78 × 10−12 J m−1, and D = 1.58 ×
10−3 J m−2 [12,40]. These material parameters yield a long-
range helical period [41] of ld = 4πA/|D| � 70 nm and
a magnetostatic exchange length of lex = √

2A/μ0M2
s ≈

9.7 nm.
The micromagnetic model includes exchange, magneto-

static interaction, DMI, and Zeeman energy. We assume that
the material of the nanospheres is isotropic, and hence neglect
the contribution of magnetocrystalline anisotropy. The total
energy thus reads

E =
∫ [

A
∑

i=x,y,z

(∇mi )
2 − μ0

2
Ms(Hd · m)

+ Dm · (∇ × m) − μ0Ms(Hext · m)

]
dV, (1)

where m(x) = M(x)/Ms is the unit magnetization vector, Hext

represents the externally applied field, and Hd = −∇u is the
magnetostatic field, defined as the gradient field of the mag-
netostatic scalar potential u [39]. The effective field Heff is
proportional to the variational derivative of the micromag-
netic energy with respect to the magnetization, μ0Heff(r, t ) =
−M−1

s · δE [m(r, t )]/δm. This effective field is used in the
Landau-Lifshitz-Gilbert (LLG) equation [42,43] to calculate
the magnetization dynamics.

To numerically determine equilibrium states of the mag-
netization we perform simulations starting from a random
initial configuration of the magnetization M(x) and integrate
the LLG equation in time until a stable, converged state
is found. Several runs are performed with different random
initial configurations in order to ascertain that the result rep-
resents the ground state, and not a metastable state. Our
finite-element software computes the partial effective fields
of all energy contributions at each time step and performs

the time integration of the LLG equation using an adaptive
Dormand-Prince scheme [44]. Since we are only interested in
the static ground state, we choose a high damping constant in
the LLG equation (α = 0.5) in order to accelerate the calcu-
lation and neglect any dynamic process occurring during the
relaxation. The time integration of the LLG equation is thus
only used as a means to reach a minimum energy state. The
magnetostatic field is calculated with a hybrid finite-element
method–boundary-element method (FEM-BEM) algorithm
that uses H2 hierarchical matrices [39], allowing for a par-
ticularly fast and memory-efficient computation. The spatial
discretization is done using irregular tetrahedral meshes [45]
with cell sizes not exceeding 2 nm, which is well below the
exchange length of the material. A typical mesh used in our
simulations contains approximately 6 × 105 elements for a
sphere of radius 70 nm.

III. MAGNETIC EQUILIBRIUM STATES

By varying the radius of the nanospheres and the external
magnetic field (applied along the positive z direction) we
obtain, for each combination of radius and external field, a
minimum energy equilibrium magnetization state. We first
describe in detail the different types of states that we observe.
Afterwards, in Sec. IV, we discuss their distribution as a
function of the external field and the particle size. Although,
generally speaking, the modifications that the lowest-energy
magnetic structures undergo by changing the size and the ex-
ternal field are not continuous, it is to some extent possible to
interpret the appearance of different magnetization states as a
gradual evolution that is driven by changes in the parameters.
To describe such an evolution, we discuss the appearance of
different magnetic ground states upon increasing the external
magnetic field.

A. Helical state

The helical state is characterized by a continuous rotation
of the magnetization along an axis that is nearly perpendicular
to the applied field direction. According to our simulations,
the helical state is energetically favorable at low external
magnetic fields, where the exchange energy and DMI dom-
inate. The magnetization helix is the direct outcome of the
competition between the symmetric ferromagnetic exchange
interaction and the antisymmetric DMI. This arrangement
of the magnetization can also be interpreted as a periodic
sequence of narrow alternating domains, pointing along and
opposite to the direction of the external magnetic field, and
separated by Bloch walls with the same sense of rotation.
These alternating domains can be visualized with the help of
isosurfaces corresponding to mz = 0, as shown in Fig. 1. In
this picture, the mz = 0 isosurfaces can be regarded as hypo-
thetical domain walls separating domains aligned parallel and
antiparallel to the external field. Since the spatial rotation of
the magnetization is rather continuous than localized within
domain walls, this interpretation of alternating domains is
not strictly correct in micromagnetic terms. Nevertheless, this
picture can help to understand the transition towards other
states, as will be described later.
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FIG. 1. Helical state in an r = 80 nm FeGe sphere at μ0Hext =
10 mT. (a) shows the characteristic, regularly alternating contrast in
the my component on the surface. The external field is applied along
the z axis. The gray isosurfaces in (b) display the areas where mz is
equal to zero, while the color code on the central plane illustrates
the alternating z component. The magnetization components along
the central helix axis are shown in the graph on the left-hand side of
(c). The spin spiral is almost perfectly periodic, with a wavelength
close to the analytic value of the long-range helical period of the ma-
terial. The central axis of the helix (right) is slightly tilted, oriented
perpendicular to the mz = 0 isosurfaces.

Figure 1 shows a right-handed helix extending throughout
the sphere, along an axis that is nominally perpendicular to the
external field. The axis of the helix, oriented perpendicular to
the mz = 0 isosurfaces, is slightly tilted with respect to the
x axis, as shown in Fig. 1(c). One full rotation of the helix
(peak-to-peak spacing) occurs on a distance of about 66 nm,
which corresponds very well to the analytic value of the
long-range helical period [41] of the material ld � 70 nm. The
line scan displayed in Fig. 1(c) shows that the computed data
fit well with the assumption of a spin spiral with sinusoidal
oscillations of the mz and my components along the spiral axis.
Minor deviations from the ideal value are expected because
the analytic calculation of the spin spiral does not consider
problem-specific aspects that are included in the simulation,
such as the spherical shape, boundary conditions [46], and the
magnetostatic interaction. The small-amplitude oscillations in
the mx component arise from the misalignment of the helix
axis and the x axis.

B. Meron state

Interpreting the helical state as a magnetic structure with
narrow, alternating domains is helpful in order to understand
the evolution of the structure as the applied field is increased.
Magnetic domain structures react to an increase of the
external field such that the domains oriented parallel to
the field grow in size, at the expense of domains oriented
antiparallel to it. The transition from a helical state to a meron
state (Fig. 2) with increasing external field strength can be
interpreted in this sense. The increase of favorably oriented
regions is recognizable in the isosurface representation,
as the previously almost parallel isosurfaces mz = 0 bend
inwards and connect on one side [cf. Figs. 4(d) and 4(e)].

FIG. 2. Three-dimensional meron structure forming in an r =
70 nm FeGe nanosphere at μ0Hext = 30 mT. The mz = 0 isosurfaces
are displayed in (a). When compared with the almost planar isosur-
faces of the helical state [cf. Fig. 1(b)], a distinct curvature can be
noticed in the meron state. On the sphere surface, the alternating con-
trast of the z component shows a helical structure similar to the one
displayed in Fig. 1(a). The magnetization configuration on a central
cross section (c) evidences the 3D meron structure. The state can be
interpreted as a combination of a half-helical and half-skyrmion state
(cf. Fig. 3).

The simulations yield an augmentation of the tilting of the
mz = 0 isosurfaces with respect to the external field direction
[Fig. 2(a)] that was already observed in the axis of the helical
state [Fig. 1(c)]. Besides the system’s general tendency to
introduce, to some extent, a spiraling magnetization also
along the z direction, we currently do not have a simple
explanation for this tilting of the isosurfaces with respect
to the external field direction, which we have consistently
observed at different size and field parameters.

The field-induced modification of the ground state struc-
ture from a helical state to a meron structure is consistent
with a decrease of the Zeeman energy while allowing the
magnetic system to preserve to a large extent a spiraling
magnetic structure on the length scale ld , as favored by
the competition between ferromagnetic exchange and DMI.
Note that without DMI, in ordinary ferromagnets, a gradual

FIG. 3. A 3D skyrmion is the magnetic ground state of an r =
80 nm FeGe nanosphere in a 110-mT field. (a) displays the mz = 0
isosurfaces, yielding a skyrmion tube in the center. A second, coax-
ial tube with opposite swirling is formed at a larger distance. The
nonuniform distribution of the my component on the tubes shows
that both mz = 0 isosurfaces are twisted along the z direction. The
magnetic configuration on a horizontal slice in the middle is shown in
(b), displaying strong similarities with the well-known magnetization
texture of a two-dimensional Bloch skyrmion in thin films.
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FIG. 4. Transformation of the magnetic ground state from a he-
lical state (left) into a meron state (middle) towards a skyrmion state
(right) as the external field increases. The top row (a)–(c) displays
simulation results, where the top hemisphere is removed to show the
magnetic structure on the central plane. The thick arrows between the
frames indicate an increase of the external field. The color code, from
blue to red, denotes the magnetization component mz antiparallel
and parallel to the field direction, respectively. In the bottom row,
the schematics (d)–(f) of the top view show, in a simplified way, the
evolution of equilibrium states as the field is increased. The growth
of the domains pointing in the direction of the field is not achieved
by reducing the width of the central domain, but by connecting the
isosurfaces, yielding first the meron state and, at higher fields, the
skyrmion state.

modification of a periodic domain structure in an increasing
external field would occur in a different way, namely by reduc-
ing or increasing the distance between neighboring domain
walls. Such a domain wall displacement, however, would have
a detrimental effect on the periodicity of the spin spirals, and
is thus not a viable channel in chiral magnetic materials.

An alternative interpretation of the meron structure consists
in considering the magnetization state as a hybrid form of two
different chiral structures. To illustrate this, the description on
the magnetization state can be split in two parts, separated
by the central y = 0 plane. The part of the nanosphere on the
front of Fig. 2(c) appears to preserve the structure of a helical
state, while the part on the rear displays the characteristic
concentric domains of a skyrmion, which will be discussed
in the following section. In this sense, the meron state can be
considered as an intermediate, transitional structure between
these two states. Meron structures are known from extended
two-dimensional system. In such thin films, theory predicts
that merons are unstable in isolation, and that instead bimeron
states should form [47]. However, here, the finite sample size
represents a stabilizing factor. We also note that similar exam-
ples of isolated meron states have been reported in rectangular
shapes [47] and in disk geometries [14,48], where the struc-
ture was denoted as a “horseshoe” state, for obvious reasons.

C. Skyrmion state

Further increasing the external field strengthens the ten-
dency to expand the regions—or domains—in which the

magnetization is aligned along the field direction. This ten-
dency is balanced by the necessity to preserve spin spirals,
as required by the interplay of symmetric and antisymmetric
exchange. In the isosurface representation, the evolution of a
meron state in an increasing external field can be interpreted
as a second inwards bending of the isosurfaces, now connect-
ing the isosurfaces on the opposite side, thereby yielding a
circular central core in which the magnetization points oppo-
site to the applied field [Figs. 4(e) and 4(f)]. The resulting
axially symmetric configuration is the skyrmion state.

The isosurface representation allows us to visualize the
concentric shape of the magnetization structure of the
skyrmion. The inner mz = 0 isosurface separates the skyrmion
core from the bulk [Fig. 3(a)]. This central cylindrical region
is sometimes referred to as a skyrmion tube or skyrmion line,
and it has recently been discussed in the context of high-
frequency modes [49]. In addition to the mz = 0 isosurface
around the core region, a further cylindrical isosurface ap-
pears at a larger distance from the central axis, indicating a
second zero crossing of the mz component. This is consistent
with the formation of helical structures imposed by the DMI,
which now form in a radial direction and with cylindrical
wave fronts. The outer cylindrical isosurface of the skyrmion
state can also be interpreted as the result of a connection of
the “horseshoe”-shaped outer isosurface of the meron state,
shown in Fig. 2(a).

The main features of the skyrmion structure are readily
recognized by displaying the magnetic configuration on a
horizontal slice on the central plane, as shown in Fig. 3(b). The
magnetization configuration on the central slice exhibits obvi-
ous similarities with the well-known magnetization texture of
a two-dimensional Bloch skyrmion in a thin film. However,
the 3D structure in the sphere has additional features. For
instance, the magnetic structure undergoes a twist along the
axial direction, as shown in Fig. 3(a), to reduce the DMI
energy in the nanosphere. A similar behavior was previously
reported by Rybakov et al. [10] in the case of thick extended
films.

D. Chiral-bobber state

If the external field is further increased, the central core
of the skyrmion state pointing in the opposite direction of
the field shrinks in size, and the surrounding circular domain
oriented along the external field grows. At a certain field, the
axially symmetric skyrmion state becomes unstable and trans-
forms into a different magnetization configuration, known as
chiral-bobber state [6]. This structure retains to some extent
the central skyrmion core, which now however terminates in a
Bloch point structure [50,51] inside the sphere [cf. Figs. 5(d)
and 5(e)]. The chiral-bobber state can thus be regarded as a
hybrid state combining the skyrmion and Bloch point struc-
ture. The complicated magnetic structure of the chiral-bobber
state in a nanosphere is illustrated in Fig. 6. There, the purple
dot at the apex of the bobber-shaped isosurface indicates the
position of the Bloch point [52,53].

To further analyze this magnetic configuration, we display
in Fig. 7 the magnetic structure on two horizontal slices, one
above and one below the Bloch point. The configuration on the
upper slice resembles that of a skyrmion state, while the one
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FIG. 5. With increasing field, the skyrmion state (left) trans-
forms first into the chiral-bobber state (middle), which then further
evolves into a quasisaturation state (right). In the simulated structures
(a)–(c) half of the sphere has been removed to display the evolution
and disappearance of the skyrmion tube in the center of the sample.
The red and blue color code refers to the value of the magnetization
component mz parallel and antiparallel to the field, respectively. The
schematics in the bottom row (d)–(f) illustrate how the skyrmion
core, representing a nanodomain aligned opposite to the field, shrinks
as the external field increases. This central domain first becomes
smaller as a Bloch point is injected, yielding the chiral-bobber state,
then it vanishes completely, resulting in a quasisaturation state with
a DMI-induced twist on the surface.

below corresponds to a nearly homogeneous configuration in
which the magnetization is largely aligned in the direction
of the external field. The line scans in Fig. 7(b) display the
hugely different evolution of the magnetization along the
radius of these two slices. While the skyrmionlike structure
in the central plane evidences strong variations in the axial
component mz as well as in the azimuthal component mϕ ,

FIG. 6. The chiral-bobber state shown here at μ0Hext = 200 mT
and at r = 80 nm, is a complex 3D magnetization structure in which
a skyrmion tube terminates in a Bloch point. In (a), the characteristic
cone shape of the residual skyrmion core is visualized by the mz =
0 isosurface, color coded by the value of the x component of the
magnetization circulating around the central axis. (b) shows the same
structure on a vertical cross section. Here, the color code refers to
the z component of the magnetization. The purple sphere denotes the
position of the Bloch point, defined as a point in which the mx , my,
and mz components are zero.

FIG. 7. (a) shows an alternative representation of the magne-
tization configuration of Fig. 6. It displays the magnetization on
two slices, one above (at z = 0) and one below the Bloch point
(at z = −55 nm). On the slice above the Bloch point the structure
is similar to the skyrmion state, while below the Bloch point the
magnetization is almost saturated along the field direction. The top
and bottom graphs in (b) display the axial (blue, mz), radial (red, mr),
and azimuthal (mϕ) components of the magnetization on a radial line
on the center and bottom slice, respectively.

the magnetization is largely magnetized uniformly along the z
direction on the lower slice, showing only a more pronounced
azimuthal twist at the perimeter.

Chiral-bobber structures have been previously reported,
both in theoretical [6] and experimental [54] studies, in
thick extended films of noncentrosymmetric ferromagnets.
Recently, this magnetization structure has attracted consid-
erable attention as it has been proposed as a candidate for
a fundamental unit of information storage, along with the
skyrmion state, in future spintronics memory devices [54].

If the external field is further increased, the central core of
the chiral-bobber state shrinks in a lateral direction until, at
a certain field, the Zeeman energy dominates and a quasisat-
urated state becomes energetically favorable, as illustrated in
Figs. 5(e) and 5(f).

E. Saturation state

At large external fields, a relatively simple equilibrium
state develops, which is characterized by the bulk of the mag-
netization pointing along the external magnetic field direction
as shown in Fig. 8. This configuration resembles an ordi-
nary ferromagnetic saturation state. However, near the surface
the magnetization deviates, in particular along the equatorial
plane. This deviation is primarily due to the DMI, which tends
to preserve a chiral structure as far as possible in the presence
of a strong external field. The slight curling of the magneti-
zation induced by the DMI is also favored by magnetostatics,
because the system thereby reduces the magnetostatic surface
charges as it forms a weakly developed vortex state. Further-
more, the particle surface plays a particular role in the curling
of the magnetization due to specific boundary conditions of
the DMI interaction [46].

IV. PHASE DIAGRAM

In the previous section, we have identified five princi-
pal equilibrium states of the chiral magnetization in a FeGe
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FIG. 8. Quasisaturated magnetization state in an r = 80 nm
FeGe sphere at μ0Hext = 500 mT. At such high external magnetic
fields, the tendency to minimize the Zeeman energy dominates and
the bulk of the magnetization is aligned in the direction of the field.
However, a rather significant deviation, which is primarily due to the
DMI, occurs at the boundary near the equatorial plane.

nanosphere, and described their evolution with increasing ex-
ternal field. The stability of these structures, however, also
depends on the particle size. To investigate these dependen-
cies, we have performed numerous additional simulations.
The numerical results allow us to determine the stability
ranges of the five states, as summarized in the phase diagram
shown in Fig. 9. The diagram displays the lowest-energy con-
figuration as a function of the external magnetic field and the
radius of the nanospheres.

Remarkably, the skyrmion phase does not exist as a ground
state in FeGe nanospheres below a radius of 65 nm, and it
becomes unstable below about 55 nm. Given that the long-
range helical period of the material is ld (70 nm), this result
indicates that the size of the sphere should be large enough
to accommodate almost two full rotations of the magneti-
zation across the diameter in order to host a 3D skyrmion
structure. This trend of disappearing phases continues as we
further decrease the radius. Below the radius of 50 nm, as
the nanosphere diameter approaches ld , the chiral-bobber and
meron phase also cease to be ground states. At this size, only
the helical phase (at lower external fields) and the saturation
phase (at higher external fields) are lowest-energy states. For

FIG. 9. Phase diagram of the magnetic ground state of a FeGe
nanosphere as a function of the external magnetic field and the radius.
The different regions outline the parameter ranges in which respec-
tive magnetization states represent the lowest-energy configuration.

radii smaller than 40 nm, only the saturation phase remains as
the particle size falls below ld , leaving no room for even one
full rotation of the magnetization.

A clear distinction of the five principal configurations men-
tioned above is only possible in particle sizes up to a radius of
about 90 nm. In larger nanospheres, hybrid structures appear,
which can contain, e.g., both a meron and skyrmion structure,
or a skyrmion as well as a chiral bobber. At these larger sizes,
the impact of the particle’s spherical shape on the magnetic
structure diminishes, and one observes a gradual transition
towards a quasicontinuum of 3D chiral magnetization states,
as it would occur in bulk material.

A. Impact of magnetostatic interaction

Having described the various magnetic structures and their
formation resulting from the competing interactions of Zee-
man energy, ferromagnetic exchange, and DMI, we now
discuss the impact of the dipolar (magnetostatic) field on these
configurations and their distribution. To illustrate the quantita-
tive impact of the dipolar magnetic field, Fig. 10 displays the
demagnetization energy as a percentage of the total energy for
respective equilibrium states.

It is well known that, in the case of ordinary ferromag-
nets, the magnetostatic interaction has a decisive impact on
the formation of inhomogeneous magnetic structures. The
size-dependent equilibrium structure in ordinary ferromag-
netic nanoparticles is primarily determined by the balance of
the competing interaction of the magnetostatic energy favor-
ing flux-closure states and the ferromagnetic exchange that
tends to prevent inhomogeneities of the magnetization. The
equilibrium structure is also impacted by the strength of an
external magnetic field, and thus the field- and size-dependent
distribution of magnetic states in nanoparticles is commonly
summarized in phase diagrams similar to ours [15]. However,
in our case, the competition is primarily driven, on one side,
by the tendency to align the magnetization along the external

FIG. 10. Demagnetization energy as a percentage of the total
energy for different magnetic ground states in the phase diagram.
In all cases the maximum value remains below 10% through out the
phases. The percentage increases only slightly towards the regions
of small radius and high fields, where the nanospheres are in the
saturation phase.
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field direction and, on the other side, by the material’s ten-
dency to develop spiraling magnetization structures on the
length scale ld , which in turn is the result of a balance between
the ferromagnetic and the antisymmetric exchange interac-
tion. In this latter case, the role of the demagnetizing field
is not clear, and it is in fact often neglected in simulations of
chiral magnetization structures.

To analyze the impact of magnetostatic interactions on
these configurations and their distribution in the phase
diagram, we repeated the calculations by excluding the de-
magnetization field from the simulation. Remarkably, we
found that this does not alter the results appreciably, yielding
in fact essentially the same phase diagram (not shown). This
is consistent with the observation that the relative impact of
the demagnetization energy, displayed in Fig. 10 as the per-
centage of total energy, is relatively small for all equilibrium
states. The demagnetization energy does not exceed 10% of
the total energy for any of the states. This indicates that,
although not strictly negligible, magnetostatic interactions do
not play a dominant role in the equilibrium state configuration
and distribution. The overall very low relative value of the
demagnetization energy shows in particular that this energy
term does not play an important role in the competition of
the interactions leading to the complex structures discussed
before. In fact, the demagnetization energy becomes only
sizable in the upper left part of the plot, i.e., towards small
radius sizes and high fields, where the particles are in a
quasisaturation state. In the other equilibrium states, the DMI-
induced helical nature of the magnetization structures already
reduces the magnetostatic energy by forming states similar
to periodically alternating domains, or swirling patterns. The
balance between ferromagnetic exchange and DMI thus leads
to the formation of magnetic structures which provide a fair
amount of magnetic flux closure, so that the demagnetizing
energy of the DMI-induced structures remains relatively low.
Dipolar fields therefore do not have a decisive impact on
helical or chiral magnetization structures. In conclusion, our
results indicate that neglecting the magnetostatic interaction
is a perfectly acceptable approximation in the simulation of
magnetic materials with strong DMI, at least in the case of
3D nanoparticles. This is not necessarily true for flat and
thin geometries, where demagnetizing fields generally play a
larger role, and where the magnetic surface charges generated
by chiral structures have a stronger relative impact on the total
demagnetizing energy. Moreover, the reduced dimensionality
of thin films may lower the degree by which chiral or heli-
cal magnetization states can achieve a partial magnetic flux
closure.

V. METASTABILITY AND ENERGY VARIATIONS

The phase diagram representation discussed in the previous
section describes a cartography of magnetic ground states as
a function of size and external field strength. This form of
data visualization helps understanding the succession of var-
ious lowest-energy configurations upon changes of either the
applied field or the particle diameter, but it does not provide
quantitative information on the energy of these configurations,
nor on how the energy varies within the studied parameter
range. Moreover, by singling out the magnetization state with

FIG. 11. Average micromagnetic energy density of different
magnetic configurations as a function of size, at a constant field value
of μ0Hext = 125 mT. Different magnetization states can be stable
over relatively large range of sizes. The phase diagram in Fig. 9
identifies only the lowest-energy configuration.

the lowest energy, it does not reflect the fact that several
different configurations can be stable at the same parameter
values.

In order to clarify these aspects, Fig. 11 displays the en-
ergy of four different magnetic structures as a function of
the particle size in the case of fixed external field strength
μ0Hext = 125 mT. The energy is represented as the spatially
averaged value of the sum of the energy densities due to the
exchange, the DMI, the magnetostatic, and the Zeeman term.
This example shows that, at certain sizes and field strengths,
the FeGe nanospheres can adopt several different magneti-
zation states. In some cases the relative difference in energy
between these configurations can be very small. For instance,
at 55 nm radius, the quasisaturated state and the meron con-
figuration yield a very similar value of the total energy, and
the total energies of the skyrmion state and the meron state
are almost identical at 60 nm radius.

A similar situation can also be observed in Fig. 12, which
shows the variation of the energy of different magnetization
states as a function of the external field strength. In the vicinity
of μ0Hext = 125 mT, the energies of the meron, skyrmion,
and chiral-bobber states fall within a comparatively small
range, differing by less than 2%. While energy differences
of this magnitude can be resolved in the simulations, there
can also be situations in which the energy difference between
two different magnetization states is so small as to approach
the inevitable limits of numerical accuracy. Although such
situations with nearly degenerate states may result in an
uncertainty about the precise position of boundaries in the
phase diagram, these cases are rare and not of particular
importance. These effects only concern details of the over-
all picture and have a negligible effect on the subdivision
into different regions as described in the phase diagram of
Fig. 9.

In this context of metastable configurations it should also
be noted that, in general, the different magnetization states
are separated by large energy barriers. Therefore, two dif-
ferent states can each display strong stability, in spite of
having nearly identical energies. Analyzing the barrier height

104414-7



SWAPNEEL AMIT PATHAK AND RICCARDO HERTEL PHYSICAL REVIEW B 103, 104414 (2021)

FIG. 12. Average micromagnetic energy densities of various sta-
ble and metastable magnetization states as a function of the applied
external field strength. The particle radius is constant and equal to
r = 70 nm. The inset shows a magnified view on the field range
around 125 mT, in the vicinity of the intersection points of three
curves with similar energies.

between the various states is a nontrivial task [55] that goes
beyond the scope of this study.

Finally, as an example to illustrate how the individual
energy terms contribute to the total energy of the system,
Fig. 13 displays the partial energies of the skyrmion state
at 125 mT as a function of the particle radius. As a general
tendency, one can notice that the absolute value of all energy
density terms decreases with increasing particle size. This
is a normal observation in micromagnetics, as an increas-

FIG. 13. Variation of the partial energy densities of the skyrmion
state as a function of the particle size. The total energy density
(red curve in the top left panel) is the sum of the partial energy
contributions displayed in the other panels. The external field value
is kept fixed at 125 mT.

ing volume generally gives the system more possibilities to
adapt the magnetic structure such as to reduce the average
energy density. Figure 13 further shows that the total energy
is largely dominated by the contributions of the DMI and the
ferromagnetic exchange energy. By contrast, the dipolar (de-
magnetization) energy is about an order of magnitude smaller
than the sum of the antisymmetric and symmetric exchange
terms, in accordance with the discussion in Sec. IV A. The
kink appearing at r = 95 nm indicates a qualitative change
in the micromagnetic structure. As mentioned before, the
finite sample geometry ceases to provide an efficient spatial
confinement for individual magnetic structures at sizes larger
than r � 90 nm. The transition to a quasicontinuum of chiral
magnetization occurring at these sizes results in magnetic
structures that cannot be uniquely classified into the main
states discussed in Sec. III.

VI. CONCLUSION

Using three-dimensional finite-element micromagnetic
simulations, we identified a collection of possible magnetiza-
tion states in FeGe nanospheres and classified them into five
principal categories: Helical, meron, skyrmion, chiral-bobber,
and saturation states. Each of these states can develop as a sta-
ble minimum-energy configuration depending on the particle
size and external field. This multitude of well-defined mag-
netic states largely exceeds the variety of magnetic structures
that are known from ordinary ferromagnetic nanoparticles,
where the size- and field-dependent variations of the mag-
netic structure are typically limited to a transition from a
homogeneous state to a flux-closure vortex state. In con-
trast to this, the rich spectrum of magnetic structures in
FeGe nanospheres offers the possibility to switch between
distinctly different states and thus bears interesting poten-
tials for applications as nanoscale multistate data storage
units.

We note that the geometric confinement, provided by the
spherical shape of the nanospheres, allows for the formation
of the respective states in isolation. The formation of such
structures in individual nanoparticles, with a well-defined po-
sition and orientation, makes it possible to directly address
these magnetic structures, thereby opening a pathway towards
further investigations on their individual static and dynamic
properties.

Our simulations have further allowed us to analyze the
influence of magnetostatic interactions on the formation of
the magnetic equilibrium configurations and their distribution
within a phase diagram. Unlike ferromagnetic particles, where
demagnetizing fields decisively impact the equilibrium states,
we find that magnetostatic fields only play a negligible role
in the case of chiral magnetic structures in FeGe nanospheres.
This suggests that, when simulating 3D structures with strong
DMI effects, it is acceptable to omit dipolar fields, whose
calculation is usually the most expensive part in numerical
terms. From a possible application perspective, the small im-
pact of magnetostatic interactions in these systems indicates
that it should be possible to arrange such magnetic nanopar-
ticles close to each other without experiencing an unwanted
coupling.
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