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Tristability of cavity magnon polaritons
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We carry out a theoretical study of the nonlinear behavior of cavity magnon polaritons (CMPs) under strong
microwave driving, with two kinds of nonlinearity being involved: either (i) the photon Kerr effect (PKE) and the
magnon saturation effect (MSE) or (ii) the magnon Kerr effect (MKE) and the MSE. The effects arising in these
two cases are similar for the lower polariton mode of CMPs but opposite for the upper polariton mode. In case
(i), the dominant nonlinearity for the upper polariton mode of CMPs changes from the MSE to the PKE as the
driving intensity increases, which can lead to two hysteresis loops in opposite directions and hence to tristability.
In case (ii), however, the upper polariton mode exhibits only the usual bistability rather than tristability since the
MKE is dominated by the MSE. In particular, there is no bistable behavior in the upper polariton mode when
the two nonlinearities balance each other. The results of this study provide a possible basis for the practical
manipulation and control of information via the double nonlinearities in a cavity-magnon system.
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I. INTRODUCTION

Nonlinear optics associated with a dependence on driving
strength, as a significant characteristic of the interaction be-
tween light and matter, has been extensively studied using
various platforms in recent decades [1–19]. In one well-
known example, a Kerr medium embedded in a device such
as a cavity or other optical system is used to provoke op-
tical nonlinearity [20–32]. Under high levels of excitation,
the nonlinearity of the dynamics becomes so strong that the
behavior of the system is greatly modified in ways that can
be beneficial, for example, for the development of switches
and logic devices for quantum computing and information
processing [33–37]. The majority of applications in this field
focus on the infrared or visible spectrum, and the excitation of
nonlinearity at microwave frequencies has rarely been studied
owing to the weak nonlinear susceptibility of materials. How-
ever, advances in materials science and processing technology
have led to the development of artificial Kerr media, such as
carbon-loaded composite materials, in which it is possible to
stimulate an appreciable microwave photon Kerr effect (PKE)
[38–42], which extends nonlinear optics from the visible and
infrared regions down to microwave frequencies.

Lately, in the presence of magnetocrystalline anisotropy,
the magnon Kerr effect (MKE) has been realized in an exper-
imental configuration consisting of a small sphere of yttrium
iron garnet (YIG) placed inside a microwave cavity [43–45].
This phenomenon has been explained theoretically [46–48] in
terms of the cavity magnon polariton (CMP), which represents
a new kind of hybridized quasiparticle [49–68] produced by
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the strong coupling between the microwave photons and the
ferromagnetic insulator YIG with its high spin density and
extremely low magnetic damping rate. In CMP, optical nonlin-
earity is induced by magnetic nonlinearity via photon-magnon
interaction. Besides the MKE, another magnon nonlinear ef-
fect, i.e., the magnon saturation effect (MSE), was recently
proposed [69]. In the MSE, the large-angle precession of
magnetization at high excitation leads to a nonlinear attrac-
tion between two polariton modes and finally results in the
saturation of magnons.

Based on these recent developments, in this paper, we
theoretically predict nonlinear behavior of the cavity-magnon
system, involving hybridization of two types of nonlinearities:
either (i) the PKE and MSE or (ii) MKE and MSE. Our results
indicate that the upper polariton mode of CMP can display
tristability in case (i) but only the usual bistability in case (ii)
since MSE dominates over MKE. These findings provide a
means to manipulate the behavior of CMPs using the double
nonlinearities.

The remainder of the paper is organized as follows. In
Sec. II, we construct the model and present a comprehensive
derivation of the intracavity field amplitude for cases (i) and
(ii) based on the Heisenberg-Langevin equations in the steady
state. In Sec. III, we discuss the numerical results based on the
formulas derived in Sec. II. Our conclusions are presented in
Sec. IV.

II. MODEL AND THEORY

A. Case (i): PKE and MSE

The model under consideration is a microwave cavity con-
taining a small ferromagnetic insulator (FMI) sphere with
N ∼ 1016 spins and two isotropic artificial Kerr-type media
with the same size and high damage threshold, as sketched in

2469-9950/2021/103(10)/104411(8) 104411-1 ©2021 American Physical Society

https://orcid.org/0000-0003-4448-6615
https://orcid.org/0000-0003-1349-2609
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.104411&domain=pdf&date_stamp=2021-03-08
https://doi.org/10.1103/PhysRevB.103.104411


BI, YAN, ZHANG, AND XIAO PHYSICAL REVIEW B 103, 104411 (2021)

FIG. 1. (a) Schematic layout of the cavity-magnon system under
study. The FMI sphere is positioned at the center of the microwave
cavity, and two isotropic artificial Kerr-type media are placed sym-
metrically, one on each side of the sphere. “Input” and “Output”
represent the incident and transmitted microwave driving fields, re-
spectively. (b) Schematic representation of the interaction between
the subsystems. The green arrow represents the PKE induced by
the Kerr-type medium with photon Kerr coefficient Ka, while the
blue arrow represents the coupling between the cavity photon with
dissipation rate κ and the magnon with dissipation rate γ . g is the
single-spin coupling strength.

Fig. 1. The FMI sphere is positioned at the center of the cavity
to provide strong coupling at the maximum of the microwave
magnetic field. The two isotropic artificial Kerr-type media,
with intrinsic third-order nonlinear susceptibilities χ (3), are
used to induce the PKE in the microwave cavity and are placed
symmetrically, one on each side of the FMI sphere, to ensure
that the maximum of the magnetic field remains at the center.
A microwave pump field is injected into the cavity from the
left and comes out from the right.

The effective Hamiltonian of the system comprises four
parts:

HKAS = Hc + HKA + Hm + HI + Hd , (1)

where Hc = ωca†a (in units of h̄ = 1) is the bare Hamiltonian
for the single-cavity mode with creation (annihilation) oper-
ator a† (a) at frequency ωc. The Hamiltonian of the photon
Kerr nonlinearity is [20]

HKA = 1

2

∫
εKa (r, t )E2(r, t ) dr, (2)

where E (r, t ) = E0(r)[a(t ) + a†(t )] is the electrical compo-
nent of the microwave field with amplitude E0(r) at r and
εKa (r, t ) = ε0χ

(3)E2(r, t ) is the nonlinear part of the permit-
tivity induced by the isotropic artificial Kerr-type medium,
with ε0 and χ (3) being the vacuum permittivity and third-order
nonlinear susceptibility, respectively. Neglecting the rapidly
oscillating and perturbation terms, we can express the second-
quantized form of Eq. (2) as

HKA = Kaa†aa†a, (3)

where Ka = ∫
ε0χ

(3)E4
0 (r) dr is the photon Kerr coefficient

related to the third-order nonlinear susceptibility, the ampli-
tude of the electric field, and the volume of the Kerr-type
medium.

A uniform static magnetic field H = Hez along the z di-
rection is applied to the FMI sphere of volume Vm to align
the magnetization and tune the uniform precession mode (i.e.,
Kittel mode) frequency, resulting in a Zeeman energy

Hm = −μ0

∫
Vm

M · H dρ = −B0MzVm, (4)

where M = (Mx, My, Mz ) is the macrospin magnetization
of the FMI sphere. The macrospin magnetization M and
macrospin operator S are related by [49]

M = −γsS
Vm

= −γs
∑

j s j

Vm
= − γs

Vm
(Sx, Sy, Sz ), (5)

where s j is the jth spin in the FMI sphere and γs is the
gyromagnetic ratio, and on inserting this relation into Eq. (4),
we obtain

Hm = ωmSz, (6)

with ωm = γsμ0H = γgrH .
Using the rotating-wave approximation (RWA) [70], the

Hamiltonian for the coupling between a microwave photon
and the FMI sphere via the magnetic-dipole interaction can be
written as [69]

HI = ig(a†S− − S+a), (7)

where g is the single-spin coupling strength and S± = Sx ±
iSy are the spin raising and lowing operators. Moreover, a
microwave driving field is applied to the cavity, leading to

Hd = �(a†e−iωt + aeiωt ), (8)

with � and ω being the driving field amplitude and the driving
frequency, respectively. Therefore, the full effective Hamilto-
nian for Eq. (1) can be expressed as

HKAS = ωmSz + ωca†a + Kaa†aa†a + ig(a†S− − S+a)

+ �(a†e−iωt + aeiωt ). (9)

In the rotating frame of the driving frequency ω, the Hamilto-
nian (9) is transformed to

H ′
KAS = −	mSz − 	ca†a + Kaa†aa†a + ig(a†S− − S+a)

+ �(a† + a), (10)

where 	m(c) = ω − ωm(c) is the magnon (photon) frequency
detuning relative to the driving frequency.

From Eq. (10), by inserting the dissipation terms κ and
γ for the photon and magnon, respectively, the Heisenberg-
Langevin equations can be obtained for the steady state as
follows:

d〈a〉
dt

= [i(	c − 2Ka〈a†〉〈a〉) − κ]〈a〉 + g〈S−〉 − i�, (11a)

d〈S−〉
dt

= (i	m − γ )〈S−〉 + 2g〈Sz〉〈a〉, (11b)

d〈Sz〉
dt

= −γ
(〈Sz〉 + 1

2 N
) − g(〈a†〉〈S−〉 + 〈S+〉〈a〉), (11c)
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where 〈· · · 〉 represents the expectation value of an operator.
To simplify numerical calculations, the following transfor-
mations of variables are made: 〈a〉 = √

Nα, 〈S−〉 = NS, and
〈Sz〉 = NSz. Here, the mean-field treatment neglects the quan-
tum fluctuation, indicating that our theory is a semiclassical
one. Equations (11a)–(11c) then take the simplified form

dα

dt
= [i(	c − 2KA|α|2) − κ]α + GS − iη, (12a)

dS

dt
= (i	m − γ )S + 2GSzα, (12b)

dSz

dt
= −γ

(
Sz + 1

2

) − G(α∗S + S∗α), (12c)

with G = g
√

N , KA = KaN , and η = �/
√

N . In the steady
state for Eqs. (12a)–(12c), i.e., dα/dt = 0, dS/dt = 0 and
dSz/dt = 0, we have

|η|2
|α|2 =

[
(	c − 2KA|α|2) − 	m

G2

	2
m + γ 2(1 + 4G2|α|2/γ 2)

]2

+
[
κ + γ

G2

	2
m + γ 2(1 + 4G2|α|2/γ 2)

]2

, (13)

which combines the driving field amplitude η and the intra-
cavity field amplitude |α|2. As KA = 0, Eq. (13) describes
the case with only MSE that was studied in our previous
work [69].

B. Case (ii): MKE and MSE

The second case is a single FMI placed in the microwave
cavity so that no PKE is present. Meanwhile, the MKE due
to strong magnetocrystalline anisotropy of FMI is involved.
Therefore, the total Hamiltonian containing MKE and MSE
can be expressed as

HKM S = Hc + Hm + HKM + HI + Hd , (14)

where Hc, Hm, HI , and Hd are the same as in Sec. II A. The
Hamiltonian

HKM = −μ0

2

∫
Vm

M · Han dρ (15)

represents the magnetocrystalline anisotropy energy, with μ0

and Han respectively denoting the vacuum permeability and
the anisotropic field resulting from the magnetocrystalline
anisotropy in the FMI sphere. The anisotropic field is given
by [43,44,46,71,72]

Han = −τ xKanMx

M2
ex − τ yKanMy

M2
ey − τ zKanMz

M2
ez, (16)

where Kan is the dominant first-order anisotropy constant, M
is the saturation magnetization, and τ x(y,z) is a dimensionless
parameter that depends on the angle between the crystallo-
graphic axis and the uniform external static magnetic field.
Inserting Eqs. (5) and (16) into Eq. (15), we have

HKM = Kx(Sx )2 + Ky(Sy)2 + Kz(Sz )2, (17)

where K(x,y,z) = τ (x,y,z)μ0Kanγ
2
s /2M2Vm are the magnon Kerr

coefficients in the (x, y, z) directions. Using the RWA [70],

the total effective Hamiltonian for Eq. (14) can then be
obtained as

HKM S = ωmSz + ωca†a + Kx + Ky

4
(S+S− + S−S+) + Kz(Sz )2

+ ig(a†S− − S+a) + �(a†e−iωt + aeiωt ). (18)

After transformation to the rotating frame with respect to the
driving frequency ω, the Hamiltonian (18) can be rewritten as

H ′
KM S = − 	mSz − 	ca†a + Kx + Ky

4

× (S+S− + S−S+) + Kz(Sz )2

+ ig(a†S− − S+a) + �(a† + a). (19)

Solving the equations of motion for Eq. (19) in the steady
state, we obtain

Sz = − 1

2

[
1 + 4G2|α|2

γ 2 + (	m − 2KMSz )2

] (20)

and

|η|2
|α|2 =

[
	c + 2G2Sz(	m − 2KMSz )

γ 2 + (	m − 2KMSz )2

]2

+
[
κ − 2G2γ Sz

γ 2 + (	m − 2KMSz )2

]2

, (21)

with G = √
Ng, KM = (2Kz − Kx − Ky)N/2, and η = �/

√
N .

By combining Eqs. (20) and (21), we can obtain the relation-
ship between η and |α|2.

We have now derived the essential formulas for both cases,
which paves the way for later analysis and discussion. In this
paper, we focus on the positive PKE and MKE, i.e., KA > 0
and KM > 0.

III. RESULTS AND DISCUSSION

A. Only PKE

In the limit of extremely low excitation, the contribu-
tions of the nonlinearities to the system are negligible, and
thus, the behavior of the system is determined by the har-
monic oscillators. The frequency spectrum of the CMPs in
this limit is shown in Fig. 2(a), where a typical level re-
pulsion with a gap of 2G/2π between the lower and upper
polariton modes can be clearly seen when the magnon mode
is tuned to cross the cavity mode. The parameters in our
calculation are G/2π = 8 MHz, κ/2π = γ /2π = 0.7 MHz,
κa/2π = 0.6 MHz, ωc/2π = 10 GHz, and ωm = γgrH , where
γgr/2π = 28μ0 GHz/T is the gyromagnetic ratio. Figure 2(b)
shows the intracavity field amplitude |α|2 versus the detuning
	c/2π under weak driving power, namely, Pd = 1.4 mW,
when the magnetic field is fixed at μ0H = 357.1 mT (i.e.,
ωm = ωc), as shown by the vertical dashed red line in
Fig. 2(a). A clear Rabi splitting appears, in which the left
and right peaks correspond to the lower and upper polari-
ton modes of the CMPs, respectively, and are separated by
2G/2π .
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FIG. 2. (a) Frequency spectra of CMPs versus magnetic field.
The vertical dashed red line indicates the resonance between the
photon and magnon. (b) Intracavity amplitude |α|2 versus detuning
	c/2π at Pd = 1.4 mW (without any nonlinearity). (c) and (d) |α|2
in the presence of only PKE (without MSE) at 390.7 and 596.2 mW,
respectively. (e) and (f) |α|2 in the presence of only MSE (without
PKE) at 194.7 and 250.1 mW, respectively. The green and red arrows
indicate forward and backward sweeps, respectively.

To better understand the behavior of the system subject
to these two nonlinear effects, i.e., PKE and MSE, we first
separate them from each other and then analyze the influence
of each nonlinearity on the system. Figures 2(c) and 2(d)
show the responses of the intracavity field amplitude |α|2 to
only the PKE, respectively, at high excitation. In Fig. 2(c),
where KA/2π = 3.5 MHz, the two Rabi peaks bend to the
right and become unequal in height when Pd = 390.7 mW. It
can be seen that bistability occurs mainly in the right peak
with a clockwise hysteresis loop (indicated by the green and
red arrows) owing to the predominance of the anharmonic
oscillators resulting from the PKE under strong driving power.
The left peak does not exhibit bistability, as can be seen
from the remarkably small tilt compared with the right peak.
When the driving power reaches 596.2 mW, the right peak
bends to the right more obviously with a larger hysteresis
loop emerging, as shown in Fig. 2(d). This is due to the larger
PKE being excited by the strong driving field. However, the
left peak still presents a weak response to the strong driving.
Using the mean-field approximation, the photon Kerr term in
Eq. (10) can be expressed as 	KA a†a, where 	KA = 2KA|α|2 is
the photon frequency shift. This gives rise to a blueshift of the
effective photon frequency ωc,eff = ωc + 	KA . This frequency
shift increases the weight of the photon component in the
right peak and thereby promotes the occurrence of bistability
in the right peak. In contrast, this frequency shift decreases
the weight of the photon component in the left peak, thereby
weakening the photon Kerr effect.

From the normal-mode perspective, Eq. (13) can be sim-
plified to ∣∣∣∣αη

∣∣∣∣
2

=
∣∣∣∣ λ+
�

KA+ − i	c

+ λ−
�

KA− − i	c

∣∣∣∣
2

, (22)

where

λ+ = �
KA+ − γ

�
KA+ − �

KA−
, λ− = �

KA− − γ

�
KA− − �

KA+
, �

KA± = κ + γ

2

+ i[KA|α|2 ±
√

G2 + (KA|α|2)2]. (23)

The system under extremely low microwave driving (i.e.,
when |α|2 is very small) resembles two coupled harmonic
oscillators. The normal modes �

KA± corresponding to the right
and left peaks in Fig. 2(b) are located at 	c/2π = ±G/2π .
However, these two normal modes gradually tilt to the right as
the driving intensity increases. At sufficiently high excitation
(i.e., when |α|2 is very large), the left peak gets close to
	c/2π = 0, which is the limit that it can reach. However,
there is no limit to the tilt of the right peak because of the
photonlike upper polariton mode resulting from the blueshift
of the effective photon frequency.

B. Only MSE

When we consider only the MSE by setting KA/2π =
0 GHz in Figs. 2(e) and 2(f), the nonlinear behavior is quite
different from that in Figs. 2(c) and 2(d). When the driving
intensity becomes strong, e.g., Pd = 194.7 mW, the two Rabi
peaks attract each other and simultaneously exhibit bistability,
as shown in Fig. 2(e), which is a signature of MSE [69]. It is
not difficult to find that the bistability displays a clockwise
hysteresis loop for the left peak but a counterclockwise hys-
teresis loop for the right peak. As the driving power increases
further to 250.1 mW, the bistability of the two peaks becomes
more obvious, as shown in Fig. 2(f). At a very high level of
driving power, two tilted peaks will merge with each other and
become a single peak at the cavity resonance frequency, i.e.,
	c/2π = 0 GHz. This limiting behavior at ultrahigh power
indicates the magnon saturation effect which was studied in
our recent work on cavity magnon polariton [69]. When the
power is high enough, i.e., the photon number is very large,
the spins are all excited. Therefore, there are no available
spins to couple with photons so that the spin system does
not contribute to the spin-photon dynamics. This behavior is
analogous to the interaction between many atoms and a cavity
at high power [9]. It is possibly difficult to observe the limiting
case with a single peak in experiment. This is because many
other nonlinear interactions may start to contribute when the
magnon number is huge. In this work, we do not study this
limiting case of MSE but consider the combined effect of
MSE and PKE or MKE on magnon-photon dynamics at in-
termediate power.

We can understand the nonlinear behavior of MSE by solv-
ing for the normal modes from Eq. (13):

�S
± = κ + γ

2
± i

√
G2

1 + 4G2|α|2/(	2
c + γ 2

) , (24)
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FIG. 3. (a)–(h) |α|2 versus 	c/2π for various Pd . The left and
right panels are for KA = 3.5 and 8 MHz, respectively. The green
and red arrows indicate forward and backward sweeps, respectively.

which corresponds to the Rabi peaks in Fig. 2(b) at ultralow
excitation. When the driving intensity increases (i.e., |α|2
becomes larger), the behavior of the system is governed by
the anharmonic oscillators, and consequently, �S

± moves to
the cavity resonance frequency, i.e., 	c/2π = 0.

Up to this point, we have discussed the effect of each non-
linear effect on the system under strong microwave driving.
In brief, the behavior induced by the PKE exhibits a tendency
to bend to the right for both Rabi peaks. However, the MSE
results in the attraction of the two peaks. Consequently, the
two nonlinearities have similar influences on the left peak
but opposite influences on the right peak. Therefore, as both
nonlinear effects are involved inside a system, some novel
physical phenomena may appear, which will be explored later.

C. PKE and MSE

We first discuss the behavior in the presence of both the
PKE and the MSE under strong driving field. Figure 3 shows
the intracavity field amplitude |α|2 versus the detuning 	c/2π

for various driving powers Pd . The left panels in Fig. 3 are for
a small photon Kerr coefficient, namely, KA/2π = 3.5 MHz.
When Pd = 114.4 mW, as shown in Fig. 3(a), the two Rabi
peaks are attracted to each other in response to the nonlinear-
ity. The left peak exhibits bistability with clockwise hysteresis
loops, but the bistability in the right peak is not obvious. In
addition, two intriguing phenomena occur. First, the two peaks

KA/2π = 3.5 MHz KA/2π = 8 MHz 

|α
|2

Pd (mW) Pd (mW)

Δc/2π = 6.3 MHz Δc/2π = 9 MHz 

0 300 600
0

0.5

1 (a)

0 300 600
0

0.3

0.6 (b)

FIG. 4. (a) and (b) |α|2 versus Pd for 	c/2π = 6.3 and 9 MHz,
respectively. The left and right panels are for KA = 3.5 and 8 MHz,
respectively. The green and red arrows indicate forward and back-
ward sweeps, respectively.

become asymmetric, with the right peak being higher than the
left peak. Here, the PKE induces a blueshift of the effective
photon frequency and thus results in a larger photon compo-
nent in the right peak than in the left peak. Second, the tilt of
the left peak is larger than that of the right peak. The reason
for this is that the two nonlinearities have similar effects on
the left peak but opposite effects on the right peak. As for
a stronger driving field, e.g., Pd = 163.6 mW, the left peak
becomes more tilted, and the right peak displays bistability
with counterclockwise hysteresis loops as the MSE dominates
in the right peak, as shown in Fig. 3(b). With a further increase
in driving power, the competition between PKE and MSE
becomes stronger and stronger, as shown in Fig. 3(c). When
the driving power Pd is increased to 390.7 mW, as shown in
Fig. 3(d), the tilt of the left peak becomes more pronounced
than in Figs. 3(a)–3(c). The right peak is now changed to
tilt to the right, which gives rise to two opposite hysteresis
loops: a counterclockwise loop arising from the MSE and a
clockwise loop arising from the PKE. The occurrence of these
two hysteresis loops generates tristability in the right peak due
to the competition between the two nonlinear effects.

The right panels in Fig. 3 are for a larger photon
Kerr coefficient, namely, KA/2π = 8 MHz. As the PKE be-
comes strong, it dominates over the MSE, and therefore,
the nonlinear behavior is close to that of PKE, as shown in
Figs. 3(e)–3(h). In this regime, the PKE dominates over the
MSE. The normal modes can be written as

�
KAS
± = κ + γ

2
+ i

[
KA|α|2

±
√

(KA|α|2)2 + G2

1 + 4G2|α|2/(	2
c + γ 2

)
]
, (25)

where KA|α|2 and 4G2|α|2/(	2
c + γ 2) arise from the PKE and

MSE, respectively. We find that the left normal mode always
satisfies the relation −G < Im(�KAS

− ) < 0. This indicates that
both nonlinearities make the left peak tilt to the right. How-
ever, there exists a competition in the right normal mode �

KAS
+

between two nonlinear effects. With an increase in the driving
power, the right peak begins to tilt, with the direction of tilt
depending on the relative strengths of the nonlinear effects.

We next undertake a qualitative analysis of the behavior
of the right peak (	c = G) shown in Fig. 3. First, we as-
sume that the change due to nonlinearity is not so large that
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FIG. 5. (a)–(c) |α|2 versus 	c/2π for various values of KM .

G2/(	2
c + γ 2) ≈ 1 still holds. Second, we Taylor expand

Eq. (25) and obtain

Im(�KAS
+ ) = KA|α|2 +

√
(KA|α|2)2 + G2(1 − 4|α|2). (26)

In order to see the frequency shift around G, we solve the
equation Im(�KAS

+ ) = G and obtain (KA − 2G)|α|2 = 0. One
can clearly see that for KA < 2G, the MSE is dominant and
the right peak first tilts to the left, i.e., Im(�KAS

+ ) < G, leading
to the bistability shown in Figs. 3(b) and 3(c). With a further
increase in the driving power, |α|2 increases, and the PKE be-
comes dominant. Based on Eq. (26), the term KA|α|2 increases
and finally results in Im(�KAS

+ ) > G. That is to say, the right
peak tilts to the right, and the tristability appears as seen in
Fig. 3(d). For a larger KA that still satisfies KA < 2G, although
the dominance of the MSE can still induce a tilt to the left at
first, the larger PKE rapidly balances the MSE so that the right
peak does not produce the tristability.

The behavior of tristability can be further appreciated when
checking the intracavity field amplitude |α|2 versus the driving
power Pd at fixed detuning. As Pd increases, the nonlinear
behavior is initially determined by the MSE, which gives rise
to the first hysteresis loop. With a further increase in Pd , the
strength of the PKE exceeds that of the MSE, and hence,
a second hysteresis loop appears. Consequently, tristability
occurs, as can be seen in Fig. 4(a). However, for a larger KA,
as shown in Fig. 4(b), only one hysteresis loop arises due to
stronger PKE than MSE.

D. MKE and MSE

Figure 5 shows the results in the presence of MKE and
MSE for various magnon Kerr coefficients KM . One can see
that the left peak tilts to the right, which is similar to the
results in case (i). But the difference is that the height of the
left peak is higher than that of the right peak. This is because
of the blueshift of the effective magnon frequency, resulting in
a larger weight of photon components of the lower polariton
mode. Like for Eq. (25), we can write

�
KM S
± = κ + γ

2

+i

{
KM (1 + 2Sz )

2
±

√
−2G2Sz + [KM (1 + 2Sz )]2

4

}
,

(27)

where KM (1 + 2Sz ) and −2G2Sz correspond to the MKE
and MSE, respectively. It is obvious that the relation −G <

Im(�KM S
− ) < 0 always holds for the left normal mode �

KM S
− ,

which suggests that the left peak always tilts to the right.
However, the competition occurs for the right normal mode
�

KM S
+ . Assuming that Im(�KM S

+ ) = G, we have (KM − G)(1 +
2Sz ) = 0. For KM < G shown in Fig. 5(a), the right peak tilts
to the left owing to the dominance of the MSE. As KM = G
[Fig. 5(b)], there is no tilt for the right peak without any
bistability due to the cancellation of two nonlinearities. When
KM > G, the MKE plays a crucial role, reproducing tilt to the
right for the right peak shown in Fig. 5(c). Here, we should
emphasize that the mechanisms leading to tristability in case
(i) and bistability in case (ii) are different. As can be deduced
from Eq. (20), Sz changes from − 1

2 to 0 with increasing intra-
cavity field amplitude |α|2, which means that the direction of
the macroscopic spin rotates from vertical to in plane. In this
process, the PKE used in case (i), i.e., Ka|α|2, is unrelated to
Sz. However in case (ii), both MKE and MSE are determined
by Sz, which greatly suppresses the occurrence of tristability.

IV. CONCLUSIONS

In conclusion, we have investigated the response of a
cavity-magnon system to double nonlinear effects under
strong microwave driving. In plots of field amplitude versus
detuning, the left Rabi peak always tilts to the right as a
result of the similar effects of the two nonlinearities. For the
right Rabi peak, however, the two nonlinearities have opposite
effects, and the competition between them induces a variety
of nonlinear behaviors. In case (i), where the PKE and MSE
are present, the right peak tilts to the left at first, owing to
the dominance of the MSE, and then to the right as the PKE
becomes dominant, resulting in tristability. In case (ii), where
the MKE and MSE are present, the right peak tilts only to the
left or only to the right, depending on the value of the magnon
Kerr coefficient, which leads to the usual bistability instead
of tristability. In some case, the MKE and MSE cancel each
other, reproducing no tilt. Our research results have revealed
a double nonlinear dynamics in the cavity-magnon system,
which may have applications to information processing and
to novel spintronics applications.
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