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A system of hard spheres exhibits physics that is controlled only by their density. This comes about because
the interaction energy is either infinite or zero, so all allowed configurations have exactly the same energy. The
low-density phase is liquid, while the high-density phase is crystalline, an example of “order by disorder” as it is
driven purely by entropic considerations. Here we study a family of hard spin models, which we call hard-core
spin models, where we replace the translational degrees of freedom of hard spheres with the orientational degrees
of freedom of lattice spins. Their hard-core interaction serves analogously to divide configurations of the many
spin system into allowed and disallowed sectors. We present detailed results on the square lattice in d = 2 for
a set of models with Zn symmetry, which generalize Potts models, and their U(1) limits, for ferromagnetic
and antiferromagnetic senses of the interaction, which we refer to as exclusion and inclusion models. As the
exclusion and inclusion angles are varied, we find a Kosterlitz-Thouless phase transition between a disordered
phase and an ordered phase with quasi-long-ranged order, which is the form order by disorder takes in these
systems. These results follow from a set of height representations, an ergodic cluster algorithm, and transfer
matrix calculations.
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I. INTRODUCTION

Systems with constraints but no other interactions are a fas-
cinating corner of statistical mechanics on three counts. First,
their equilibrium physics is purely entropic, so any ordering
they exhibit is “order by disorder.” The canonical example
of this somewhat counterintuitive phenomenon is nematic
ordering in Onsager’s model of thin, hard rods [1]. While
at low densities this system lacks orientational order, with
rods arranged isotropically, at a critical density the increase in
translational entropy afforded by aligning the rods outweighs
the decrease in orientational entropy that such an alignment
evidently entails. Second, such systems probe universality in a
nontrivial fashion. Viewed as interacting systems, they involve
interactions of infinite strength, so many of the standard, per-
turbative arguments for long-wavelength universality do not
directly apply to them. Finally, their dynamics has some sim-
plifying features that have been used in simple cases to reach
conclusions that are otherwise difficult. The most famous case
of this is a set of results on ergodicity following the seminal
work of Sinai [2].

In this paper we study a family of classical spin models
in this class of “constraint-only” systems. Our models, most
generally, involve of M component spins S of fixed length
S2 = 1 on a specified lattice. In this paper we do not specify
their dynamics but only the pairwise additive energy function

H =
∑
〈i j〉

V (Si, Sj), (1)
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where 〈i j〉 indicates that i, j are nearest-neighbor sites and the
potential energy function has the form

V (Si, Sj) =
{

0, if |Si − Sj| � α

∞, otherwise. (2)

As the parameter α moves between 0 and 2, the neighbors
of a given spin are forced to lie outside a solid angle that
increases from 0 to eventually cover the entire unit sphere
in M dimensions on which the spins live. As the term hard
spins is already reserved for spins of fixed length, we refer to
these as hard-core spins. With the inequality as above we have
an exclusion model of an antiferromagnetic persuasion, while
with the sign of the inequality reversed we obtain an inclusion
model. Explicitly, we define hard-core inclusion models by
the pairwise potential

V (Si, Sj) =
{

0, if |Si − Sj| < α

∞, otherwise (3)

which is then of a ferromagnetic type. Finally, we will also
consider discrete models in which only a finite number of
points on the unit sphere are permitted.

One can view the exclusion models as representing a
departure from Onsager’s original problem in which the trans-
lational degrees of freedom are frozen while the orientational
degrees of freedom, no longer directors but now spins, face a
tunable set of local constraints. By contrast, the well-studied
system of hard spheres and disks can be viewed as a departure
in which the orientational freedom is removed and trans-
lational freedom retained. That system in three dimensions
exhibits a first-order phase transition at a critical density above
which crystallization occurs as a means to access greater free
volume per particle and increase entropy [3]. The hard sphere
system has been the subject of much work surrounding its
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FIG. 1. The classes of hard-core spin models studied in this
paper, in which the pairwise potential takes the form of Eq. (2) or
(3), specialized to the case M = 2 on the square lattice. (a) Valid
configurations for (left) an inclusion model with inclusion angle
� = 0.48π and (right) an exclusion model with exclusion angle
π − � = 0.52π . Red shading indicates orientations forbidden by
the nearest-neighbor interaction. (b) Sketch of the phase diagram in
the XY limit of the inclusion model. Increasing the inclusion angle,
defined in Eq. (5), tunes the system from a KT phase, consisting
of both a vortex-forbidden region and a quasi-long-ranged order by
disorder region, to a paramagnetic phase.

dynamical properties and potential connections to the long-
standing problem of vitrification, and in a subsequent paper
we will report results on the dynamics of the hard-core spins
studied here. Indeed, the question of dynamics is what got us
thinking about this family of models in the first place.

Returning to the statics, we focus in this paper on the
simplest case of M = 2 on the square lattice in d = 2. When
the spins are continuous, we get a hard-core spin model of
XY spins [Fig. 1(a)], and when they are discretized to take
N values, we obtain generalizations of Potts models with ZN

symmetry. In these cases we are able to search for order by
disorder and for universal long-wavelength physics dictated
by the usual criteria of symmetry and dimensionality. For
XY spins, true long-range order is, presumably, ruled out
and only algebraically long-ranged order of the Kosterlitz-
Thouless (KT) variety [4] is possible, although we are not
aware of a proof that actually covers the hard-core limit. For
the ZN cases, it would appear that true long-ranged order as
well as quasi-long-ranged order are both possible on grounds
of symmetry and as discussed in Ref. [5].

Our principal results are (i) that both the ZN models for
sufficiently large N and the XY limiting model exhibit KT
phases both when the constraint parameter forbids vortices but
also for a range where they are allowed, thereby furnishing a
case of order by disorder; (ii) that none of our ZN models or
their XY limits exhibit a phase with true long-ranged order;
and (iii) that for N � 4 and extending into the XY limit, there
are always models with nonzero interaction yet sufficiently
small (large) exclusion (inclusion) angles which exhibit short-
ranged correlations. We portray these results in the phase
diagrams in Figs. 1(b) and 3, of which the latter requires some

definitions that we introduce in Sec. II below. These results are
obtained by a combination of a set of height representations
for our ZN models, transfer matrix calculations, and finite-size
scaling using a cluster algorithm, henceforth referred to as the
reflect algorithm, whose ergodicity is proven for bipartite
lattices.

The paper proceeds as follows. In Sec. II, we define the
models and review the theoretical context for analyzing them.
We then describe, in Sec. III, the two numerical methods used
to construct the phase diagram, the transfer matrix method
and the cluster algorithm, as well as the height representations
for the vortex-free ZN models. In Sec. IV, we present results
for ZN models and the XY limit, along with a discussion
for how the phase diagram fits into and extends the general
understanding of critical spin systems. We conclude in Sec. V.

II. MODELS AND BACKGROUND

A. Models and notation

Equation (2) and its inclusion counterpart, Eq. (3), express
the hard constraint between neighboring spins in terms of
the norm of the difference between two M-component unit
vectors. Alternatively, we could formulate this constraint in
terms of the distance along the great circle connecting the
two vectors, or the inner product between them. The latter for-
mulation was used in a study of O(M ) and RPM−1 constraint
models for inclusion angles below π/4 [6]. For M = 2 these
formulations are all equivalent. We find it is most natural to
represent spins as complex exponentials s j = exp(iθ j ), where
θ j ∈ [0, 2π ) is the orientation of the jth spin on the unit
circle. In the XY limit, models are parametrized by an angle
�, with the nearest-neighbor interaction for inclusion models
given by

V (si, s j ) =
{

0, if angle(si, s j ) < �

∞, otherwise. (4)

This can be viewed as the zero-temperature limit of a step
model, which has mainly been studied at finite temperature
for � = π/2 [7–10] but was also examined, via the Migdal
approximation, for smaller angles [11].

At zero temperature, a precision study of the phase tran-
sition for the “constraint action” described by Eq. (4) found
that it belongs to the Kosterlitz-Thouless universality class
[12,13]. Where our results overlap with these papers, we are
in agreement. However, the present research goes beyond
previous works in two major respects.

First, we generalize to ZN (clock) models, where spins can
adopt N orientations at angles 2πσ/N on the unit circle, with
σ ∈ {0, 1, . . . , N − 1} [14]. Using complex notation, we say
that the spin at site j is in the state σ j if s j = exp(2π iσ j/N ). A
hard-core inclusion model can then be characterized by a set
of three parameters (N, pin, p′) where neighboring spins must
enclose <p sites on a clock with N orientations:

V (si, s j ) =
{

0, if angle(si, s j ) < 2π p/N
∞, otherwise (5)

and p′ is the number of allowed orientations for spin si given
a fixed orientation of neighboring spin s j .

104407-2



FROM HARD SPHERES TO HARD-CORE SPINS PHYSICAL REVIEW B 103, 104407 (2021)

A second generalization of the constraint action comes
from inverting the piecewise relation in Eq. (4) to create an
exclusion model, wherein neighboring spins must enclose an
angle ��. Similarly, ZN exclusion models are parametrized
by (N, pex, p′), where neighboring spins must enclose a min-
imum of p sites on the clock, and p′ is again the number of
allowed orientations for spin si given a fixed orientation of
spin s j :

p′ = N − 2pex + 1 = 2pin − 1. (6)

The distinction between ferromagnetic inclusion and an-
tiferromagnetic exclusion models on frustrated lattices gives
rise to essential differences in the phase diagram [15,16]. In
this paper, we instead focus on the square lattice, which for
even widths and lengths is bipartite. This feature results in
an equivalence between inclusion and exclusion models: if
S denotes a valid (zero-energy) inclusion configuration with
inclusion angle �, then flipping all the spins on one sublattice
yields a zero-energy exclusion configuration S′ with angle
π − �, as depicted in Fig. 1(a). This equivalence is captured
for finite N by the parameter p′: an inclusion model with
a given set of parameters (N, p′) is fully equivalent to an
exclusion model with the same (N, p′). We can map both
classes of models onto a common set of axes, N vs inclusion
angle �, by the relation

π

N
(p′ − 1) < � � π

N
(p′ + 1). (7)

The inequality here comes from the fact that when the ori-
entations of spins are discrete, there is ambiguity in how
the real-valued inclusion angle is defined. In the following
analysis, the most sensible definition of the “effective in-
clusion angle” will prove to be the midpoint of the interval
� = π p′/N . In the XY limit (N → ∞), the inclusion angle is
uniquely defined.

The mapping between inclusion and exclusion means that
we can primarily focus our analysis on inclusion models.
However, the mapping only exists when the global rotation
by π on one sublattice is allowed by the discretization of the
spins, namely, for even N . On the other hand, inclusion and
exclusion models for odd N probe a complementary set of
parameters p′ (odd p′ for inclusion, even p′ for exclusion) as
the clock lacks the Z2 symmetry of the lattice. In these cases,
it will be necessary to separately examine exclusion models,
to probe the entire parameter space.

One striking example of an exclusion model with no equiv-
alent inclusion model is the (N, pex, p′) = (3, 1, 2) exclusion
model, which is simply a three-state zero-temperature Potts
antiferromagnet. Indeed, zero-temperature q-state Potts mod-
els can be viewed as special cases of our classes of clock
models, with p = 1: in our notation, an (N, 1, 1) inclusion
model is a zero-temperature Potts ferromagnet with q = N ,
while an (N, 1, N − 1) exclusion model is a zero-temperature
Potts antiferromagnet (AFM).

Zero-temperature Potts AFMs, which possess macroscopic
ground-state entropy, have been the subject of extensive re-
search over the past several decades, through evaluation of
chromatic polynomials [17–20] along with formal proofs for
the existence [21–24] or nonexistence [25] of entropy-driven
long-ranged order on various lattices. A given lattice has a

critical value qc, such that for q > qc, a q-state Potts AFM
is disordered at all temperatures, including T = 0; for q < qc

there is a finite-temperature phase transition; and for q = qc

there is a zero-temperature critical point [26]. On the square
lattice qc = 3, a rigorous result [27–29] which tells us that the
(3,1,2) exclusion model is critical.

Our class of hard-core spin models allows us to generalize
these observations about Potts models in two ways. First, by
considering families of fixed � according to the mapping in
Eq. (7), we can analyze trends in ferromagnetic and antiferro-
magnetic models upon approach to the XY limit. Second, by
constructing a height representation we show that the three-
state Potts antiferromagnet belongs to a family of models with
p′ = 2 which all have the same critical behavior, and in fact
each value of p′ hosts a critical family.

B. General remarks about phase diagrams in 2D

Having defined our classes of models, we now situate these
models within the broader context of phase transitions in spin
systems.

In the absence of a temperature T , the phase of the system
is determined instead by the tuning parameters (N, p′) (or �

in the XY limit). Moreover, since all allowed configurations
have the same energy, a transition at some critical angle
�c must be driven by the quest to maximize entropy. By
analogy to the phase transition in systems of hard spheres
[30], which crystallize at a critical density as a means to
access greater free volume per particle and increase entropy,
for inclusion models we would expect ferromagnetic order
to set in below �c, as a means to access a greater range of
allowed orientations per spin.

In classical systems with short-ranged interactions in fewer
than three dimensions, however, a continuous symmetry can-
not be broken at finite temperature, by the Mermin-Wagner
theorem [31]. In two dimensions, systems instead undergo
a Kosterlitz-Thouless (KT) transition [4] to a continuous
line of critical points. The critical phase is characterized by
quasi-long-ranged order (QLRO), as correlations decay alge-
braically, rather than exponentially, to zero [32]:

G(r) ≡ 〈s(0) · s(r)〉 ∝ 1

rd−2+η
, (8)

where G(r) is the spin-spin correlation function, d = 2 is the
dimensionality, and η is a critical exponent, which varies con-
tinuously with temperature in the KT phase. This follows from
applying the renormalization group to a Gaussian spin-wave
action with irrelevant vortex operators, which become relevant
at vortex unbinding where η = 1

4 .
Turning now to ZN models, for which the order pa-

rameter has a discrete symmetry, there are three potential
phases: paramagnetic, critical, and ordered. A pioneering
study of the clock model phase diagram considered a fer-
romagnetic XY model with symmetry-breaking interactions
hN

∑
r cos[Nθ (r)] [5]. These interactions become relevant at

an effective coupling of Ke f f = N2/8π , implying that within
the critical phase,

4

N2
� η � 1

4
. (9)
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Subsequent work [14,33–37] has confirmed that for N �
5 this intermediate phase is bounded by two KT transi-
tions, while for N � 4 the critical phase vanishes, leaving a
second-order phase transition between order and disorder. An-
tiferromagnetic clock models are less well studied, but it was
argued that odd N-state antiferromagnetic models belong to
the same universality class as 2N-state ferromagnetic models
[38].1 In both ferromagnetic and antiferromagnetic models, as
N → ∞ we recover the XY model, and the symmetry-broken
phase disappears at finite temperature.

The extent to which this canonical lore will hold for
constrained systems depends on the assumption that the
hard constraint becomes an irrelevant operator upon coarse
graining. Although simulations have demonstrated that long-
wavelength fluctuations do indeed destroy long-ranged order
in two-dimensional (2D) systems of hard disks [40], which
instead possess an intermediate hexatic phase with quasi-long-
ranged orientational order and a solid phase with quasi-long-
ranged translational order [41], the Mermin-Wagner theorem
is not guaranteed to hold for models with hard interactions
[42,43]. One extension to the theorem has come from analy-
sis of random surface models on the two-dimensional torus,
which map a set of vertices to real values {x} subject to the
nearest-neighbor potential U (xi − x j ) [44]. A lower bound
on the variance of fluctuations logarithmic in the length of
the torus is proven for a large class of potentials including
the hammock potential, defined as U (x) = 0 if |x| � 1 and
U (x) = ∞ otherwise. We have been informed that a followup
work currently in preparation extends this method of proof
to 2D XY models with rotationally invariant nearest-neighbor
interaction, which include our classes of hard-core models of
XY spins [45].

One clear departure of the hard-core spin models from
the KT picture is in the region where vortices are explicitly
forbidden. For inclusion angles below π/2, Eq. (5) dictates
that the winding number around a plaquette, and hence the
winding along any closed loop which does not intersect the
boundary, is zero. This amounts to setting the strength of
the vortex insertion operator, which is a function of the dual
field, identically to zero. This is to be contrasted with the
role of defects in the typical KT phase, in which they bind
into vortex-antivortex pairs up to the transition temperature
[46]. Thus, we might instead call the vortex-forbidden region
a Patrascioiu-Seiler phase, after the eponymous constraint
[47] applied to a 2D system of XY spins with ferromagnetic
interaction in Ref. [48] to induce algebraic correlations at all
temperatures, including T = ∞.

III. METHODS

This section introduces the three main methods of our
study: transfer matrix analysis on semi-infinite cylinders, a

1The purported correspondence between N-state antiferromagnets
and 2N-state ferromagnets again comes from considering symmetry-
breaking interactions with couplings hN , while for pure clock models
(hN → ∞), subsequent analysis challenged this interpretation [39].
However, we will find below that the height representation for odd-N
exclusion models gives rise to the same lower bound of 1/N2 on the
critical exponent η as that obtained in Ref. [38].

FIG. 2. Nearest-neighbor bonds with periodic boundary condi-
tions on a patch of a torus of width W . The element TAB is the
Boltzmann weight due to the energy within and between adjacent
columns in spin configurations A and B. The bottom row is a copy
of the top row for periodic boundary conditions; for twisted periodic
boundary conditions, used for exclusion models when W is odd, the
dashed bonds are used instead.

Monte Carlo cluster algorithm on finite lattices of aspect ratio
1, and a height representation within the vortex-forbidden
regime. Together, these methods are used to extract η, the
critical exponent of the equal-time spin correlation function
in the critical phase [Eq. (8)], from which we can assess how
these models fit inside our general understanding of 2D spin
systems.

A. Transfer matrix method

For tori of length L and width W with the nearest-neighbor
interaction defined by Eq. (5), the partition sum can be fac-
tored into a product over adjacent columns of W spins. This is
encapsulated in the NW × NW transfer matrix T , as shown in
Fig. 2. Numbering configurations of W spins by the index i ∈
{1, . . . , NW }, Ti j = 1 if there exists a valid state in which i and
j are adjacent columns, and Ti j = 0 otherwise. The matrix T
depends on the boundary conditions applied in the transverse
direction. We use periodic boundary conditions (PBCs) in all
cases except for exclusion models at odd widths. In that case,
the periodic boundary conditions are shifted by one lattice
constant to make the lattice bipartite, thus circumventing the
domain wall of infinite energy cost that would arise in an
antiferromagnetic state with regular PBCs. This allows us to
extract meaningful data for all numerically feasible widths.

We numerically compute the largest eigenvalues of T . If
the eigenvalues are nondegenerate, then in the limit L → ∞,
the free energy per ring is given by [32]

f = − 1

βL
log TrT L = − 1

βL
log

∑
	

	L

→ −(1/β ) log |	1|, (10)

where 	1 is the eigenvalue of maximum absolute value. For
a hard potential, the partition sum is taken over zero-energy
configurations only, so from the transfer matrix we can also
directly read off the entropy per ring on an infinite cylinder:

s = kB log |	1| = lim
L→∞

log(
/L). (11)
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The transfer matrix method diagnoses the critical phase
via the well-known mapping between the infinite plane and
the cylinder in conformal field theories (CFTs) [49]. Recall
that discretizing a model on a long, narrow cylinder of finite
width and infinite length makes it effectively one dimensional.
This destroys (quasi-) long-ranged order, so that, for a system
which in two dimensions is critical, Eq. (8) is modulated by
an exponentially decaying function whose correlation length
is given by the gap between the two largest eigenvalues [50]:

G(r) ∼ r−ηer/ξ where ξ = (log |	1/	2|)−1. (12)

The conformal mapping shows that ξ scales linearly with
width:

ξ (W ) = W/A where A = πη. (13)

Computational constraints limit us to small N and W , for
which linear fit to ξ (W ) tends to overestimate η. Alterna-
tively, we can calculate a width-dependent exponent η(W )
by plugging data at different widths into Eq. (13), and then
performing a fit to determine η∞:

η(W ) = η∞ + C/W 2 (14)

which tends to underestimate η. Therefore, we mainly use the
transfer matrix method as a tool to identify critical models,
for which a more accurate estimate of the critical exponents
can be determined using the cluster algorithm detailed in
the next section. For finite lengths, the correlation function
measured by the cluster algorithm can be checked against
G(r) as determined by explicit multiplication of the transfer
matrix. Most important for our purposes is Eq. (11), by which
we identify families of models with the same macroscopic
entropy density.

B. Cluster algorithm

To access larger system sizes, and the XY limit, we use
a Monte Carlo algorithm that remains ergodic in the critical
phase. An algorithm with single-spin updates does not fit these
criteria since it cannot unwind defects, and the acceptance
rate of single-spin moves becomes prohibitively low as the
inclusion angle decreases. To probe configuration space effi-
ciently, a cluster algorithm is required instead. To do so, we
need to specify (1) how the cluster is constructed and (2) what
operation is applied to this cluster.

A central ingredient in answering question (1) is the con-
cept of pocket Monte Carlo, which constructs a pocket, or
bag of elements (in our case, ZN or XY spins), to which the
cluster operation is applied [51]. We remove an item from the
pocket by applying the operation to it, which then causes other
elements (e.g., the neighbors of the element just transformed)
to be added to the pocket. The process terminates when the
pocket is empty.

The operation applied to the cluster in Algorithm 1 is a
reflection about the axis θ . The move begins by reflecting
one spin s j about this axis and builds the cluster with spins
that violate the hard constraint (line 9). This takes inspiration
from the pivot cluster algorithm for hard disks [52] and pocket
dimer algorithm for nonoverlapping dimers [53], in which the
items in the pocket are reflected about a chosen axis or point,
and overlapping disks and dimers are added to the pocket.

Algorithm 1. Reflect.

However, while these pivot algorithms implement a reflection
in real space, the reflect algorithm performs the transfor-
mation in spin space. In this sense it is more akin to the Wolff
algorithm [54], famous for its application to the 2D Ising
model but also generalizable to XY spins [55]. Previous works
have used this algorithm to simulate XY [12,13] and O(3)
[6] inclusion models, but Algorithm 1 can also be applied to
exclusion and inclusion clock models, simply by modifying
line 4 to sample from a discrete set of reflection axes.

Since the angles between each pair of spins in the cluster
are preserved, it is straightforward to prove that the reflect
algorithm respects detailed balance. Moreover, for the models
under consideration the algorithm is ergodic, as proven in
Appendix A. A given spin is added to the pocket at most
once, so the outer loop is guaranteed to terminate after �Ns

iterations, where Ns is the number of spins. In the worst case,
the cluster spans the entire lattice, and the move is a global
reflection. This is a problematic aspect of the pivot cluster
algorithm when applied to systems of monodisperse disks:
the algorithm, which becomes inefficient when clusters are
too large, has a percolation threshold below the liquid-solid
transition density [51]. Thus, we should be wary of a similar
issue occurring for hard-core spins. However, we instead find
that the scaling of cluster sizes closely tracks the critical
properties of the underlying spin system. Namely, as with the
Wolff algorithm applied to Potts models, the average cluster
size scales as 〈s〉 ∝ L2−η′

, where η′ ≈ η, with a relative error
�0.01 for inclusion angles near π/2. The potential exactness
of this relation is explored further in Appendix B.

The critical exponent η is determined from the Fourier
spectrum of the spin correlation function, denoted G(k). This
spectrum has a peak at k = (0, 0) for inclusion models, cor-
responding to the uniform susceptibility χu, and k = (π, π )
for exclusion models, corresponding to the staggered sus-
ceptibility χs. Given a model whose real-space correlation
function decays as a power law [Eq. (8)], the susceptibility on
an L × L lattice scales as L2−η, times subleading logarithmic
corrections [56]. Performing a linear fit to log χ vs log L
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provides an estimate of η. For small system sizes, the best fit
for η is sensitive to the minimum system size Lmin included
in the fit, but we find that the estimated value is roughly
stable for Lmin � 24, and therefore start all fits at L = 24.
By contrast, in the paramagnetic phase where G(r) decays
exponentially to zero, χ (L) approaches a plateau at a scale
set by the correlation length.

We employ a variety of checks to verify that the algo-
rithm converges to the stationary distribution of the system.
First, to check that the system decorrelates from its initial
state, we run the algorithm from different initial configura-
tions and measure the standard deviation between runs. To
generate disordered initial states, we soften the potential into
a continuous, differentiable function of the nearest-neighbor
angle. The system is initialized in a random configuration,
which is likely to have nonzero energy due to violated con-
straints. The initialization algorithm then alternates between
(1) gradient descent to the nearest minimum of the soft po-
tential and (2) a full sweep of zero-temperature single-spin
moves, which are accepted only if they reduce the energy.
This process is repeated until a zero-energy state is found,
which then becomes the initial state for the cluster algorithm
or, if no zero-energy state is found after a maximum number
of attempts, the ordered state is used instead. For ZN mod-
els, a differentiable soft potential cannot be defined, so we
instead initialize in one of the ideal states introduced below.
We also use the ideal-state initialization for large systems of
XY spins at low inclusion angles (� < π/2) for which the
minimization algorithm generally fails to find a zero-energy
state.

A second check is that the spatial correlations determined
for ZN models on tori of small widths should match those
determined from the transfer matrix. This comparison was
performed for three different models on tori of width 4 and
aspect ratios 1, 2, 4, and 8, with a maximum relative error of
2.54 × 10−3 for G(r) > 0.005.

To control for the effects of critical slowing down, a single
Monte Carlo step was defined as follows. First, we defined one
MCS as a single cluster move and calculated the autocorrela-
tion function of the susceptibility. The integrated correlation
time was conservatively estimated to scale with system size L
no faster than ∼L1/2. For comparison, this is not as efficient
as the Wolff algorithm for the Ising model, which scales
logarithmically or with a very small dynamical exponent near
the critical point [57,58], but it is a vast improvement on the
O(L2) critical slowing down observed for local algorithms
[59]. One Monte Carlo step (MCS) was then redefined to
consist of CL1/2 cluster moves, with C chosen such that
on the smallest system size considered (8 × 8), 1 MCS = 8
cluster moves. Through this redefinition, we could then gen-
erate at least as many independent samples with increasing
system size by running the algorithm for the same number
of steps.

Each run consisted of 104 MCS of equilibration followed
by 105 MCS of recording. The correlation time was (much)
less than 100 MCS for all models and system size considered,
so all error bars were estimated by averaging the data over
chunks of 100 MCS and computing the standard error over
1000 chunks. A data bunching analysis verified that these
chunks were uncorrelated [59].

C. Height representation for defect-free models

To complement this algorithmic approach, we formulate
a height representation for ZN models with N > 2(p′ − 1).
This condition forbids defects in the height field, which in
the case of inclusion models can be interpreted simply as
forbidding vortices and antivortices. In the height representa-
tion, also referred to as an interface model, the spin variables
are mapped to coarse-grained height variables, an approach
that has been used to study a range of critical ground-state
ensembles [60,61] including the three-state Potts AFM on
the square lattice [26] and the four-state Potts AFM on the
triangular [62] and kagome lattices [63].

For our class of inclusion and exclusion models, we map
from clock variables {σ } = {0, 1, . . . , N − 1} to heights {h}
as follows:

(i) At the origin, define

h(0) = σ (0). (15)

(ii) The local change in the height field from site x =
(x1, x2) to nearest neighbor site y is

h(x) − h(y) =
{

[σ (x) − σ (y)], inclusion
[σ (x) − σ (y) − N/2], exclusion mod N

(16)
with the modulus chosen such that, in both cases,

|h(x) − h(y)| � (p′ − 1)/2. (17)

(iii) For N > 2(p′ − 1), �h = 0 around a plaquette; this is
what is meant by the absence of defects. Only if this condition
is satisfied can h be uniquely defined:

h(x) =
{
σ (x), inclusion
σ (x) − α(x)N/2, exclusion (mod N ) (18)

where α(x) ≡ (x1 + x2) mod 2 is 0 on the even sublattice
and 1 on the odd sublattice. By the notation (mod N) we mean
that if the modulo operation is taken on both sides, then the
equality holds. For inclusion models, the distinction between
h and σ has a simple interpretation: while the spin state σ is
only defined modulo N , h has been “lifted” to Z [64].

We note in passing that the above construction for inclu-
sion models has also appeared in the mathematical literature
[65,66], where height fields with p′ = 2m − 1 are known as
m-Lipschitz functions. These works primarily focus on high
dimensions, where long-range order can be proven in the
vortex-forbidden regime.

Returning to d = 2 and a more physically motivated per-
spective, given a uniquely defined height field h, we posit that
it is governed by the effective Hamiltonian

F =
∫

d2x

(
K

2
(∇h)2 + Vlock (h)

)
, (19)

where K is the stiffness and Vlock is the so-called locking
potential. The latter favors heights on the ideal state lattice I,
the set of periodic, macroscopically flat height configurations
with maximal entropy (ideal states) [61,67].

In writing the effective Hamiltonian, a typical ground state
is assumed to be a patchwork of ideal-state domains. We refer
the reader to Ref. [26] for a detailed review of the terminol-
ogy and briefly recapitulate the main definitions here. Two
instances of the same domain X have equal heights modulo
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h̃, where h̃ is an element of the repeat lattice R. The repeat
lattice is a subgroup of the equivalence lattice E , the set of
elements a such that a + I = I. Thus, Vlock has the same
periodicity as the equivalence lattice, which in our case has
a one-dimensional representation with period 2π/g0.

If the locking potential is relevant (ηlock < 2d = 4), the
model is said to be in the smooth phase, with long-ranged
order in the height field. On the other hand, if ηlock > 2d , the
locking potential is irrelevant and the interface is rough, with
logarithmic correlations in the height field:

Gh(x, y) ≡ 〈[h(x) − h(y)]2〉 ∼ 1

πK
log |x − y|. (20)

The critical exponents associated with relevant vertex oper-
ators in the original spin model can then be determined by
expressing them as periodic functions of the height field and
applying Eq. (20). Due to the Gaussian form of the action, an
operator O with period 2π/g scales as

〈O∗(x)O(y)〉 = 〈exp{ig[h(x) − h(y)]}〉
= exp[−Gh(x, y)g2/2] (21)

implying a critical exponent

ηO = g2

2πK
. (22)

The roughening transition therefore occurs when g2
0/2πK =

4.
To determine the critical exponent of the spin correlation

function, denoted simply as η, we express the magnetization
in terms of the height field as

e±2π ih(x)/N = M1(x) ± iM2(x), (23)

where M = (M1, M2) is the unstaggered magnetization for in-
clusion models, and the staggered magnetization for exclusion
models. Equation (22) then implies

η = 2π

N2K
. (24)

For inclusion, ideal states consist of spins randomly sam-
pled from a set of p′ consecutive spin states. Equivalently, for
even-N exclusion models, we choose a set S of (p′ + 1)/2
consecutive integers as the spin states on the even sublattice
and populate the odd sublattice with the integers (S + N/2)
mod N (i.e., rotate the spins on the even sublattice by π ),
so per Eq. (18), the average height is constant and equal on
the two sublattices. In both cases, there are N ideal states,
in one-to-one correspondence with the average height mod
N . The magnetization has the periodicity of the repeat lattice
R = NZ, whereas the locking potential has the periodicity of
the equivalence lattice E = Z. Thus, for the system to occupy
the rough phase, this implies the relation

4 < ηlock = 2π

K
= N2η (odd p′). (25)

The lower boundary of the critical phase η = 4/N2 is consis-
tent with inequality (9) derived for ferromagnetic XY models
with clock perturbations.

For exclusion models with even p′ (odd N), the absence of
Z2 symmetry leads to an asymmetry in the ideal states: choose

FIG. 3. Phase diagram in the (N, p′) plane for ZN inclusion and
exclusion models. p′ families are represented by gray horizontal
lines, with open circles along the gray dashed line denoting N =
Nc(p′). Dark gray shaded regions are forbidden, and their black
dashed boundaries are the trivial limiting cases: p′ = 1 is strictly
ordered with zero macroscopic entropy density, while p′ = N is
disordered (unconstrained and noninteracting). Constant inclusion
angle corresponds to functions of the form p′ = N�/π ; the blue
dashed line has � = �c ≈ 0.56π and marks the upper boundary
(η = 1

4 ) of the quasi-long-ranged order by disorder phase [Eq. (37)].

a set S = {σi} of p′/2 consecutive clock orientations as the al-
lowed states on one sublattice, and a set T of p′/2 + 1 integers
on the other sublattice: T = [S + (N − 1)/2] ∪ {σp′/2 + (N +
1)/2}. Owing to this asymmetry, there are now 2N ideal states,
uniquely identified by their average heights mod N . Referring
back to Eq. (18), note that h(x) takes integer values on the even
sublattice, and half-integer values on the odd sublattice. The
ideal-state lattice and equivalence lattices are Z/2, whereas
the repeat lattice (which again has the same periodicity as M)
is NZ. This implies that within the rough phase

4 < ηlock = 8π

K
= 4N2η (even p′). (26)

Therefore, in contrast with Eq. (25), the lower boundary of the
critical phase is characterized by η = 1/N2. This agrees with
the bound on the critical phase derived from a renormalization
group (RG) treatment of odd-N antiferromagnetic clock mod-
els with standard action [38]. Interestingly, the RG arguments
applied exclusively to T �= 0, whereas the height representa-
tion allows us to derive the same bound at T = 0, for which
these clock models reduce to p′ = 2 exclusion models.

To summarize, the existence of a height representation
indicates that all inclusion and exclusion models with N >

2(p′ − 1) are either critical or ordered. The critical exponents
of models in the critical phase must satisfy either Eq. (25)
or (26). This leaves open two questions: whether any models
fall within the smooth phase (long-ranged order), and whether
there are critical models which do not admit a height represen-
tation.

IV. PHASE DIAGRAM

With the height representation as a guide, we now describe
in detail the phase diagram of ZN models (Fig. 3), using
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the reflect algorithm to determine the critical exponents.
Models described by a height representation are classified
into p′ families, all in the rough phase except for p′ = 1. For
small p′ the transition to the paramagnetic phase is geometric,
coinciding with the point at which defects are allowed, but
for large p′ and in the XY limit, we identify a region of the
phase diagram in which vortices are energetically allowed but
entropically disfavored, leading to quasi-long-ranged order by
disorder. The transition from the critical phase to the param-
agnetic phase is a Kosterlitz-Thouless–type transition, driven
by the unbinding of vortices at η = 1

4 .

A. Families of ZN models

We begin by assessing trends in the transfer matrix, from
which the following definition arises:

Definition 1. (p′ family) A class of models with a common
p′ and a critical value Nc(p′) such that all models with N >

Nc(p′) have the same maximum transfer matrix eigenvalue for
each width.

Each family has an assortment of scaling properties. On
a torus of finite length, the number of configurations can be
factored as


(N,W, L) = N exp[S(W, L)]. (27)

That is, for a fixed width W and length L, 
 scales pro-
portionally to N . Due to the use of longitudinal periodic
boundary conditions implicit in Eq. (10), this equation only
strictly holds for small lengths since longer strips can support
nontrivial windings.

While Definition 1 classifies p′ families in terms of their
eigenvalues in the spin representation, members of the same
family are related more fundamentally through their height
representation. On the square lattice,

Nc(p′) = 2(p′ − 1). (28)

Therefore, the condition N > Nc(p′) within a p′ family, which
for inclusion models amounts to forbidding vortices, coin-
cides with the criterion which allows the height field to be
uniquely defined. Defining � to saturate the right-hand side
of inequality (7), Eq. (28) corresponds to an inclusion angle of
π/2 (gray dashed line in Fig. 3). Below this angle, members
of the same p′ family admit a height representation obeying
the same local height rule [inequality (17)], and thus the same
stiffness.

The value of the stiffness determines whether the fam-
ily occupies the smooth or rough phase. In the latter phase,
Eq. (24) implies that ηN2 is invariant. Since ξ (W ) ∝ W/η at
criticality on semi-infinite cylinders of width W , the correla-
tion length factorizes as

ξ (W, N, p′) ≈ N2ξ̃ (W, p′). (29)

It must be emphasized that this scaling form is only approx-
imate for finite widths. The universal quantity measured in
different members of the same family is the correlation func-
tion of the height field Gh(x − y) defined in Eq. (20). This
can only be related to a correlation in the spin language if
the Gaussian action of the form (19) is assumed. In that case,
positing exponential decay on the left-hand side of Eq. (21)
in the quasi-1D limit immediately yields Eq. (29). But this is

FIG. 4. ξ (W )/N2 for the p′ = 2, as determined from the transfer
matrix for small values of N . Different-colored x’s correspond to
different members of the family, while the solid (dashed) lines show
linear fits for even (odd) widths. Very small widths (W < 4) were not
included in the fits.

a coarse-grained, long-wavelength description of the system,
and should not be expected to hold exactly for small widths.
Indeed, as seen in Fig. 4 for the p′ = 2 family, ξ/N2 at a given
width is a monotonically increasing function of N , although
this scaling correction becomes less severe as W increases.

The linear trend with width exhibited in Fig. 4 is indicative
of the critical phase. But, just as the data collapse between
members of the same family improves with W , so too does
the critical exponent determined from a linear fit to the com-
bined data become more accurate as we access larger widths.
The largest feasible width is limited by computational con-
straints, which thus limits the accuracy of our estimate of η.
For the p′ = 2 family, a linear fit of the form ξ (W )/N2 =
BW + C to data points with W � 4 for even (odd) widths
yields ηN2 = 3.152 ± 0.013 (ηN2 = 3.152 ± 0.021). Alter-
natively, a fit of the form (14) yields ηN2 = 2.994 ± 0.3
(ηN2 = 2.996 ± 0.45). These fits are broadly consistent with
the known exponent of η = 1

3 for the staggered susceptibility
of the zero-temperature three-state Potts AFM [61], which
belongs to the family.

This not only provides a useful crosscheck of the transfer
matrix method, but also points to the power of the height rep-
resentation: we can immediately bootstrap exact knowledge
of the stiffness or approximate determination of η for just one
member of the family to a theoretical prediction of η for all
members of the family. In this sense, the p′ = 2 family (or, put
differently, the ground-state ensembles of odd-N clock models
with standard antiferromagnetic cosine action) can be said to
descend from the three-state Potts AFM at zero temperature,
whose critical exponent places the family safely in the rough
phase [Eq. (26), which crucially must be distinguished from
Eq. (25) for odd p′].

We will demonstrate below that all p′ > 1 families occupy
the rough phase, and thus the transfer matrix also enables
a crude estimate of the central charge c of the associated
conformal field theory. For p′ = 2 the central charge can be
deduced from the three-state Potts AFM at zero tempera-
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FIG. 5. Power-law scaling of the susceptibility. The left panel
shows log(χ/L2) as a function of log L for L = 8, 16, 24, 40, 60, 80.
Data from L = 8 and 16, marked with x’s, were not included in the
linear fit. From top to bottom, the inclusion angles are 0.44π , 0.46π ,
0.48π , 0.5π , 0.52π , 0.54π , 0.55π , 0.56π , and 0.57π . The right
panel shows residuals with respect to the fits, amplified by a factor
of 103 and with data from different inclusion angles scattered in the
horizontal direction to enhance visibility. Error bars are defined as the
standard error across 1000 consecutive bunches of 100 MCS each.

ture, for which c = 1 is known exactly [17]. In fact, through
finite-size scaling of the entropy density, we find c ≈ 1 for
all families examined. This matches our interpretation of p′
families as interface models governed by the effective action
in Eq. (19), which if the locking potential is irrelevant is a
free-boson CFT with c = 1 [68]. The same central charge was
determined numerically for clock models with 5 � N � 8
obeying the standard action [37].

B. Kosterlitz-Thouless transition

To determine η with greater accuracy, the finite-size scal-
ing of the susceptibility is measured using the reflect
algorithm. We begin by considering inclusion models in the
XY limit, as defined by Eq. (5), and provide evidence of
a Kosterlitz-Thouless transition at critical angle �c. Some
results in this section overlap with and confirm the findings
of Refs. [12,13] but are included for completeness, to contex-
tualize our findings on a broader class of models.

As shown in Fig. 5, the power-law scaling χ ∼ L2−η re-
mains a good fit to the susceptibility, with no obvious trend
in the residuals, up to � ≈ 0.57π . For larger inclusion an-
gles, the fit becomes increasingly poor; rather than scaling
linearly with log L, log χ becomes a concave down function
of L indicative of the paramagnetic phase. The persistence
of quasi-long-ranged order past the angle at which vortices
become allowed (� = 0.5π ) lends support to the interpre-
tation that the system becomes a paramagnet when defects
become relevant and vortices unbind, the same mechanism
which drives the KT transition in the XY model at finite
temperature.

To verify this interpretation and pinpoint the critical angle
�c at which this transition occurs, we consider three key
observables near the apparent transition: the critical exponent
η, the second moment correlation length ξ2nd, and the Binder
cumulant U . These are discussed in turn.

1. Critical exponents η and η′

Standard KT theory indicates that the most relevant defect
operator has ηvortex = 1/η, so vortex unbinding occurs at η =
1
4 . Therefore, if the transition in our class of inclusion models

FIG. 6. Critical exponents approaching the KT transition. The
gray line in the left panel marks the value of η = 1

4 at vortex un-
binding. The critical exponents η, determined from finite-size scaling
of the susceptibility, and η′, determined from finite-size scaling of
the average cluster size, are marked with circles and x’s respectively.
The plotted error bars show the statistical uncertainty of the log-log
fits in Fig. 5. Different colors denote models in the XY limit (blue),
the smallest members of p′ families, with p′ ranging from 5 to 63
(orange), and clock models just outside the p′ families, i.e., N = Nc,
with p′ ranging from 15 to 63 (green).

is in the KT universality class, we expect

η(� = �c) = 1/4. (30)

The threshold value of 1
4 is indicated by the gray line in

Fig. 6, implying a critical angle just above � = 0.56π . This is
roughly consistent with the above finding that the power-law
scaling of the susceptibility holds up to � ≈ 0.57π .

Figure 6 contains two other noteworthy features. First, the
exponent η′ determined from finite-size scaling of the average
cluster size, closely tracks η. This is a positive indication of
the algorithm’s efficiency and is addressed in Appendix B.
Second, the critical exponents associated with various clock
models, measured by the same method as in Fig. 5, are plotted
on the axes η vs �/π by defining � at the midpoint of the
interval in inequality (7), � = π p′/N . Two sets of models are
shown. Marked in orange are models for which N = 2p′ − 1,
which are the smallest members of their respective p′ families
and are therefore known rigorously to be critical based on
the existence of a height representation. Marked in green are
those with N = Nc(p′) = 2p′ − 2, which lie just outside the
p′ families. Both sets of models approach an inclusion angle
of 0.5π from above in the limit N → ∞. Strikingly, even
for finite N , the two sets of models collapse onto roughly
the same trend when plotted vs �, and this trend is also
consistent with that of the models in the XY limit. The ex-
istence of critical models outside the p′ families again points
to the phenomenon of quasi-long-ranged order (QRLO) by
disorder, as the N = Nc(p′) models exhibit power-law scaling
of the susceptibility (and cluster sizes) despite vortices being
allowed. This “QLRO by disorder” regime only exists for
sufficiently large p′, a statement that will be made quantitative
shortly.
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FIG. 7. Data collapse of dimensionless quantities, the rescaled
second moment correlation length, and Binder cumulant, near the
KT phase transition. System sizes from top (blue) to bottom (brown)
are L = 8, 16, 24, 40, 60, and 80. The gray line in the left panel marks
the value of limL→∞ ξ2nd/L = 0.750 691 2 at vortex unbinding [56];
gray line in the right panel marks the value of the Binder cumulant
U = 0.660 603 at the KT transition [70].

2. Second-moment correlation length

We now take Eq. (30) as our definition of the critical angle,
i.e., � = �c is the angle at which η = 1

4 . If the transition is of
a Kosterlitz-Thouless type, then this definition of �c should be
consistent with that estimated via other metrics. One of these
is the second-moment correlation length ξ2nd(L), defined as
[56]

ξ2nd(L) = 1

2 sin(π/L)

√
G(0, 0)/G(2π/L, 0) − 1. (31)

This quantity takes its name from the fact that it is the second
moment with respect to the Fourier-transformed correlation
function G(k). In the paramagnet, ξ2nd(L) is independent of
system size, whereas in the critical phase, it scales linearly
with system size L. Thus, the rescaled correlation length
ξ2nd(L)/L is independent of L up to the critical angle, up to
subleading corrections at small system sizes. In the thermo-
dynamic limit at the KT transition, this rescaled length takes
the value [56]

lim
L→∞

1

L
ξ2nd(L, T = TKT) = 0.750 691 2. (32)

For the XY model, ξ2nd(L)/L was found to quickly approach
this limit from below [69].

The hypothesis that our class of models exhibits a KT
transition thus yields two predictions: (1) ξ2nd/L should be
independent of system size up to �c, and (2) it should take
the value given by Eq. (32) at � = �c. (At the system sizes
reported in this paper we do not expect this limit to be obtained
with great accuracy, but it should fall in the rough neighbor-
hood.) These predictions both approximately hold, as shown
in the left panel of Fig. 7. Deviations from ξ2nd/L ≈ constant
appear above � ≈ 0.57π , and ξ2nd/L = 0.750 691 2 between
0.56π and 0.57π , consistent with the estimate of �c obtained
from Eq. (30).

3. Binder cumulant

The Binder cumulant U (L), defined as

U (L) = 1 − 〈|M|4〉/3〈|M|2〉2, (33)

is, like the rescaled correlation length, asymptotically inde-
pendent of L within the critical phase. Therefore, for a system

which undergoes a KT transition we should observe data
collapse between different system sizes up to � = �c, above
which U (L) will decay with L. At the KT transition point, U
takes the value [70]

lim
L→∞

U (L, T = TKT) = 0.660 603. (34)

In the XY model, the approach to this limit is sufficiently rapid
[U (L = 32) is within 0.02% of the limiting value] that we
expect Eq. (34) to be well approximated for the finite system
sizes simulated in this study. Our general expectations are
confirmed, as shown in the right panel of Fig. 7. Again, U (L)
is roughly independent of L within uncertainties up to � ≈
0.57π , crossing the value given in Eq. (34) at � ≈ 0.56π .
Interestingly, as was pointed out in an earlier study of the
constraint-only model [13], the L → ∞ limit is approached
from above, consistent with the 1/ log L scaling corrections
of a Gaussian model, but of opposite sign to the scaling cor-
rections measured for the members of the universality class
studied in Ref. [70], including the nearest-neighbor XY and
Villain models. In that work, a large 1/(log L)2 correction was
attributed to the presence of vortices neglected in the spin-
wave theory. While it is not clear where our highly nonlinear
model falls on the RG flow to the Gaussian theory, we suspect
that the strong suppression of defects which persists even
above π/2 could explain the absence of this vortex-driven
correction.

In summary, the various measures discussed in this section,
i.e., qualitative estimate of the goodness of fit to the suscepti-
bility, the value of η determined from this fit, the system size
independence of ξ2nd/L and U (L), and their agreement with
Eqs. (32) and (34) in the vicinity of the transition, collectively
lend support to the hypothesis that, in the XY limit, our class
of inclusion models undergoes a Kosterlitz-Thouless transi-
tion between � = 0.56π and 0.57π .

C. Scaling of η and QLRO by disorder

Recall that the Kosterlitz-Thouless phase is character-
ized by a line of critical points, with continuously varying
exponents. While in the standard case η is a function of
temperature, in the hard-core spin models η is a function of
� instead. In this section we find that η(�) takes a simple
functional form, and relate it to the subtler features of the
phase diagram in Fig. 3.

In Fig. 8(a) we perform a power-law fit to η(�) for inclu-
sion angles ranging from � = 0.05π to 0.56π . Strikingly, a
single trend

η(�) ∼ �2 (35)

holds for the entire range of �. In particular, the functional
form of η(�) does not appear to change as the system crosses
over from the defect-forbidden region (� < 0.5π ) to the
“QLRO by disorder” region marked in Fig. 1(b). This is a
manifestation of universality in that the critical exponent is
not sensitive to whether vortices are strictly forbidden by the
hard constraint. This perhaps makes the simplicity of Eq. (35)
all the more surprising, as it relates the scaling exponent of a
macroscopic observable and the microscopic parameter � in
such a straightforward way. Assuming that Eq. (35) holds
yields a more precise estimate of the critical angle �c, by
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(a)

(b)

FIG. 8. Scaling of the critical exponent η in the critical phase.
(a) Power-law scaling as a function of � in the XY limit. Error bars
are derived from the statistical uncertainties in the power-law fits to
the susceptibility. The right panel shows residuals with respect to
the fit η = 0.79�1.999, amplified by a factor of 103. The �/π axis
uses a logarithmic scale. (b) Scaling of ηN2 as a function of p′ for
p′ families of ZN models. Error bars are statistical uncertainties from
power-law fits to the susceptibility of one model within the p′ family
(except p′ = 2 where the theoretical value of 3 is used). The p′ axis
uses a logarithmic scale. The right panel shows the residuals with
respect to the fit ηN2 = 0.784p′2, starting at p′ = 6.

solving for the angle at which η = 1
4 . A single parameter fit

fixes the constant of proportionality and implies

�c = (0.561 92 ± 0.000 14)π. (36)

It must be emphasized that the error bars here only capture
the statistical uncertainty of the fit to Eq. (35) and not any
of the uncertainties associated with the limited number of
independent samples, logarithmic corrections to scaling for
small system sizes, and so on. In particular, taking logarithmic
corrections into account in the fit to susceptibility for system
sizes sizes up to L = 4096 yielded a value for �c that is 0.5%
greater than our estimate [13]. Nevertheless, it is remarkable
that we could come this close to the precision determination
of �c from such a simple ansatz for η(�).

Returning to clock models, in Fig. 8(b) we fit ηN2, the
invariant quantity within p′ families, to a power law as a
function of p′ and find

ηN2(p′) = 0.784(p′)α, α = 2.0020 ± 0.0005 (37)

for a fit beginning at p′ = 6. This is equivalent to Eq. (35) once
we make the identification � = π p′/N . This equivalence was
partly anticipated by Fig. 6, in which clock models, both in-
side and outside their respective p′ families, followed a similar
trend in η as models in the XY limit near an inclusion angle
of 0.5π . But given the presence of the symmetry-breaking
hN interaction which forces the spins to be discretized, it is
not obvious beforehand that models of ZN and XY spins will

exhibit the same scaling once we have mapped the parameters
(N, p′) ↔ �. Thus, a few explanatory remarks are in order.

First, the monotonic increase of ηN2 as a function of p′
implies the absence of a symmetry-broken (smooth) phase
in the phase diagram in Fig. 3. (We exclude p′ = 1, which
is trivially ferromagnetic or antiferromagnetic and maps to
an interface of constant height.) If there existed a region of
(N, p′) parameter space that possessed long-ranged order, it
would overlap with the defect-forbidden region, and thus we
could identify some p′ family with ηlock < 4. For odd p′,
this would imply [Eq. (25)] ηN2 < 4, while for even p′, this
would imply [Eq. (26)] ηN2 < 1. Since small p′ families are
in the rough phase, as determined both from finite-size scaling
of the transfer matrix and from the reflect algorithm, the
monotonicity of ηN2(p′) implies that all p′ families are in the
rough phase. This is a peculiar result, as nothing in our class of
models forbids a smooth phase a priori. But, the fact that the
locking potential becomes strongly irrelevant as p′ increases
is also internally consistent with the observation that, for p′
of order 10 and above, there is no real distinction in terms
of critical exponents between ZN models and XY models of
commensurate inclusion angle. This is reminiscent of a known
feature of the phase diagram of ZN models with standard
action: while the Z5 model exhibits a lower transition temper-
ature between the QLRO and paramagnetic phase as well as
stronger finite-size effects in the partition function zeros and
helicity modulus, these quantities are roughly independent of
N for N � 6, collapsing onto the XY limit [36,37].

Having ruled out a smooth phase, there remain two other
potential phases for clock models: the critical phase and the
paramagnetic phase. As indicated by the unshaded region in
Fig. 3 for a fixed N � 4 there exists a sufficiently large p′ <

N such that the corresponding (N, p′) model is nontrivially
paramagnetic. This phase includes, for example, the q-state
Potts antiferromagnets, which are disordered for q � 4 on the
square lattice [26]. This leaves open the question of whether
all models outside the p′ families are disordered, or whether
there exists a regime, as in the XY limit, in which defects are
allowed but irrelevant.

For small p′, there is no such regime, a feature that can
be understood via the height representation. A defect in the
height field of winding number 1 has �h = N , which, when
substituted into the effective free energy in Eq. (19), implies
that the most relevant vortex operator has critical exponent
[64]

ηvortex = N2K

2π
= 1

η
. (38)

Within a p′ family, if η > 1
4 for some N , this implies that the

vortex operator is relevant, and quasi-long-ranged order is pre-
served only because the strength of the operator is identically
zero. In that case, the transition from QLRO to the paramagnet
as a function of N for fixed p′ is not Kosterlitz-Thouless in
nature but geometric, occurring exactly at N = Nc(p′) when
defects become allowed. This is the case, for example, for
p′ = 2, as the smallest member of the family, the three-state
Potts AFM, has η = 1

3 . Within the range of p′ exhibiting
this geometric transition, the corresponding value of ηN2 also
deviates slightly from the trend in Eq. (37). Including the data
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points with p′ < 6 leads to a greater reduced χ2 value and a
noticeable trend in the residuals indicative of deviations from
a power law, although it does not significantly change the
predicted exponent. These deviations from the trend possibly
reflect the greater influence of the locking potential at low p′,
as well as the fundamental contrast between the geometric
nature of the transition for low p′ and the KT transition for
XY spins.

As p′ increases, however, the effective inclusion angle of
the smallest member of the p′ family decreases, and the as-
sociated critical exponent decreases. Evaluating Eq. (37) at
N = Nc(p′) + 1 indicates that for p′ � 5, all members of the
corresponding p′ family have η < 1

4 . This allows for critical
models outside the family. The minimum value of p′ for which
this QLRO by disorder phase exists can be estimated by posit-
ing that the critical exponent in the vortex-allowed critical
region obeys the same scaling form as in the vortex-forbidden
region, and evaluating Eq. (37) at N = Nc(p′):

η(Nc, p′) = 0.784(p′)2/(2p′ − 2)2 (39)

which implies a crossover at p′ ≈ 8.7. Since p′ only takes
integer values, this indicates that the (N, p′) = (16, 9) model
is the smallest p′ critical model not described by a height
representation.

V. CONCLUSIONS

It is a marvel of statistical mechanics that systems with
drastically different microscopic physics can exhibit the
same macroscopic behavior near critical points. The class of
“constraint-only” spin models examined in this paper serve as
an extreme example of this phenomenon. The divergent nature
of the potential means that temperature is not well defined,
and the ordering and phase transitions are driven solely by
entropy. It is not immediately obvious that these phenomena,
examined here for models of ZN and XY spins on the square
lattice, will fall into the same universality classes as their
finite-temperature cousins and, yet, when the dust settles, they
do. That said, there are many interesting details, most notably
the existence of a vortex-free and yet nonlinear “spin-wave”
regime and that the long-range ordered phases that can exist
for ZN models do not arise in our models. We have investi-
gated our models using height representations, transfer matrix
calculations, and an ergodic cluster algorithm, arriving at the
phase diagram shown in Fig. 3.

Our focus in this paper has been on the equilibrium proper-
ties of this class of spin models. Yet, the simplified nature of
the interaction, constructed by analogy to that of hard spheres
and disks, also imbues the spin models with interesting dy-
namics. This dynamics will be addressed in a following paper.

Note added. Recently, we came across Ref. [71] which
has applied “replica-symmetry-breaking” techniques to re-
lated models on random graphs, and it will also be instructive
to make contact with this line of work.
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APPENDIX A: ERGODICITY OF THE reflect

ALGORITHM

In this Appendix we prove that Algorithm 1 is ergodic for
inclusion models on any lattice. Furthermore, ergodicity of
exclusion models on bipartite lattices is proven. While this
has already been proven elsewhere [6], the alternate proof
provided here will also serve to introduce the notation em-
ployed in the following Appendix, for a closer study of the
algorithm’s properties.

Since each move is reversible, in proving ergodicity it
suffices to prove that a chosen target configuration can be
attained from any initial state via a finite sequence of cluster
moves [61,62].

Theorem 1. Let T be a ferromagnetic target configuration
on a lattice of Ns spins, with θ = 0 for all spins. Given any
initial configuration A which respects the inclusion constraint,
A can be transformed to T by a series of �Ns iterations of the
reflect algorithm.

Proof. Let S denote the (possibly empty) domain of spins
on which A agrees with T . To transform A into T , we succes-
sively add spins to this domain, with each move adding �1
spin to the domain and leaving the spins in S unchanged.

A cluster move starts by adding a random spin s to the
pocket P . Without loss of generality, let s = exp(2iθ ), where
0 < θ < π . A reflection about the axis θ will align s with the
ferromagnetic domain, that is, it will add s to S. If C denotes
the set of all spins that participate in the cluster move, i.e.,
all spins that are at some point added to the pocket P , then it
suffices to prove that C ∩ S = ∅.

For convenience, we redefine our angles with respect to
the axis θ , so that s = exp(iθ ), and all spins in S are aligned
with −θ . For reasons that will become clear in the next
section, each spin on the lattice can be written in the form
si = exp(iσiφi ), where σi = ±1 is an Ising variable, and φi ∈
[0, π ]. Then, the proposed reflection flips the Ising variable
while leaving φ unchanged.

A spin s j is added to the pocket if and only if one of its
neighbors si is reflected and if, after the reflection, the pair
violates the inclusion constraint. This leads to the following
proposition:

Proposition 1. Consider two neighboring spins si =
exp(iσiφi ), s j = exp(iσ jφ j ), where φ ∈ [0, π ], σ = ±1. If,
after reflecting si about the axis θ = 0, i.e., si → s∗

i , the pair
(s∗

i , s j ) violates the inclusion constraint, then σi = σ j .
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For, since each move starts from a valid configuration, si

and s j must initially enclose an angle less than �:

cos � < cos(σ jφ j − σiφi ) = cos φi cos φ j + σiσ j sin φi sin φ j

(A1)
while, after reflecting the spin si, the inclusion constraint will
only be violated if the inner product satisfies

cos � > cos(σ jφ j+σiφi )=cos φi cos φ j − σiσ j sin φi sin φ j .

(A2)
Inequalities (A1) and (A2) can only hold simultaneously if
σi = σ j .

Every spin in the set C can be viewed as the end point
of a directed path of spins s1 → s2 . . . → sn where si gets
reflected, which then violates the hard constraint with its
neighbor si+1, which is then added to the pocket, and so on.
Since the cluster move starts by transforming s, every such
path can be traced back to s, and since all spins on the path
have the same Ising variable due to Proposition 1, it follows
that every spin in C has σ = 1. Recalling our convention that
all spins in the ferromagnetic domain S have a negative Ising
variable, Theorem 1 immediately follows. �

The same proof applies for inclusion ZN models, the only
difference being that the set of initial allowed configurations
is restricted to discretized spin states.

Theorem 1 is independent of the choice of lattice. On
bipartite lattices, the algorithm is also ergodic for exclusion
models, including those which lack a direct mapping to in-
clusion models, namely, odd-N clock models. In this case,
the target configuration consists of θ = 0 on the A sublat-
tice and θ = π (N − 1)/N on the B sublattice, approaching
an antiferromagnet in the XY limit. Using the same def-
initions as before, with angles defined with respect to the
axis of reflection, we arrive at the following corollary to
Proposition 1.

Proposition 2. Consider two neighboring spins si =
exp(iσiφi ), s j = exp(iσ jφ j ), where φ ∈ [0, π ], σ = ±1. If,
after reflecting si about the axis θ = 0, i.e., si → s∗

i , the pair
(s∗

i , s j ) violates the exclusion constraint, then σi = −σ j .
This implies that C contains only σ = 1 (σ = −1) on the

A (B) sublattice, whereas S contains only σ = −1 (σ = 1)
on the A (B) sublattice. Once again, C ∩ S = ∅, so the target
configuration can be attained in �Ns moves.

APPENDIX B: MAPPING TO RANDOM CLUSTER MODEL

1. Fortuin-Kasteleyn mapping

An appealing feature of the reflect algorithm is that the
average cluster size near the transition scales with the same
exponent, within error bars, as the susceptibility, as shown
in Fig. 9. This property is observed for “good” cluster algo-
rithms, such as the Wolff algorithm for Ising and Potts models
[54] and a generalized geometric cluster algorithm used to
study lattice gases and Ising models at constant magnetization
[72,73]. Conversely, the pivot cluster algorithm is inefficient
for systems of hard disks, and even more so for hard rods, near
the transition because the percolation threshold and transition
density do not match [51]. Thus, agreement between η and
η′ is a measure of the algorithm’s efficiency, indicating the
extent to which the clusters produced by the algorithm are the
“physical” clusters mediating the transition [74].

FIG. 9. Discrepancy between η and η′ as a function of inclusion
angle. Vertical axis is the relative error (η − η′)/η, with error bars
estimated from the statistical uncertainty of the power-law fit used in
finite-size scaling. Data from clock models were plotted by defining
� = π p′/N .

The scaling of cluster sizes in the Wolff algorithm fol-
lows from an exact mapping between the Ising model and
the Fortuin-Kasteleyn random cluster model [75–77]. This
equivalence is constructed from a joint probability distribution
over Ising spins {σi}, which live on the sites of the lattice,
and bond variables {bi j} defined on the nearest-neighbor links.
Each bond is either occupied (bi j = 1) or empty (bi j = 0). A
given bond configuration decomposes the lattice into clusters,
where two sites (i, j) are said to be in the same cluster if
and only if they are connected by a path of occupied bonds,
denoted i ↔ j. The Swendsen-Wang algorithm uses this bond
configuration to generate the next spin state by independently
flipping each cluster with probability 1

2 [78]. On the other
hand, the Wolff algorithm selects just one of these clusters and
flips it with probability 1; this single cluster is constructed by
choosing a random site and adding neighbors to the cluster
with the conditional probability p(bi j = 1|{σ }). This leads to
two questions: (1) Can the scaling of clusters in the reflect
algorithm likewise be explained through an exact mapping to
a bond model? (2) If such a mapping exists, what drives the
systematic discrepancy between η and η′ at lower inclusion
angles seen in Fig. 9?

As a first step toward such a mapping, we define an
Ising variable (“pseudospin”) on each site and relate the
pseudospin correlation function to the correlation function
of the original spins, following a similar procedure to that
in Refs. [47,48,79]. As in Appendix A, we let σ = sgn(ϕ),
where ϕ ∈ [−π, π ] is the angle with respect to the axis of
reflection θ . Then, expressing the angle ϕ = σφ where the
“auxiliary spin” φ is in the interval [0, π ], a reflection about
axis θ flips the Ising variable while leaving the auxiliary spin
unchanged. The inclusion models considered in this paper
belong to a class of ferromagnetic Hamiltonians whose pair
potential V (ϕi, ϕ j ) obeys the inequality

V (φi, φ j ) = V (−φ j,−φ j ) � V (φi,−φ j ) = V (−φi, φ j ).
(B1)

That is, given a choice of auxiliary spins φi, φ j , the pair
potential between like Ising pseudospins is less than or equal
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to the pair potential between opposite Ising pseudospins. This
suggests the following definition of the bond occupation prob-
ability, conditioned on both {σ } and {φ}:

p(bi j = 1|{σ }, {φ}) = δσiσ j pi j ({φ}), (B2)

where

pi j ({φ}) = 1 − exp[V (φi, φ j ) − V (−φi, φ j )]. (B3)

Note that pi j depends only on the auxiliary spins; the condi-
tional bond occupation probability in Eq. (B2) depends on the
Ising pseudospin only through the Kronecker delta function.
This allows us to define the joint probability distribution of
the {σ }, {b} variables, conditioned on a given configuration of
auxiliary spins, as

p({σ }, {b}|{φ}) = Z−1
∏
〈i j〉

[(1 − pi j )δbi j ,0 + pi jδbi j ,1δσiσ j ],

(B4)
where Z is the partition function used to normalize the proba-
bility distribution. Summing out over the bond variables yields
the marginal distribution for {σ } conditioned on {φ}:

p({σ }|{φ}) = Z−1
∏
〈i j〉

eV (φi,φ j )
∏
〈i j〉

e−V (σiφi,σ jφ j ). (B5)

The first product depends only on the auxiliary variables while
the second product is simply the Boltzmann weight associ-
ated with a given spin configuration; supplemented with an
appropriately normalized definition of the {φ} probability dis-
tribution as p({φ}) ∝ ∏

〈i j〉 exp[−V (φi, φ j )], we recover the
partition function of the original Hamiltonian. Equation (B5)
further implies the conditional bond occupation probability as
defined in Eq. (B2). The marginal distribution for the bond
variables also has a simple form [80], but in the present
context we are most interested in the resulting form of the
pseudospin probability distribution conditioned on the bond
variables. As with the Fortuin-Kasteleyn (FK) representation
of the Ising model, Ising spins belonging to the same cluster
are aligned, while different clusters are uncorrelated. Sum-
ming over all possible bond configurations, the expectation
value of the Ising variable correlation is

〈σiσ j〉 = p(i ↔ j), (B6)

where p(i ↔ j) is the probability, over all possible bond con-
figurations, that i and j belong to the same cluster. Equation
(B6) is the central identity to the FK mapping.

While this construction works for any ferromagnetic
Hamiltonian defined on XY spins (and can straightforwardly
be generalized to antiferromagnetic Hamiltonians by consid-
ering a staggered correlation function), it is most useful in the
context of our hard-core inclusion models. In this case, the
bond configuration is fully determined by the spin configura-
tion

pi j (φ) =
{

1, angle(−φi, φ j ) � �

0, angle(−φi, φ j ) < �.
(B7)

In words, this equation says that the bond 〈i j〉 is occupied
if and only if reflecting spin si about the chosen axis would
cause the inclusion constraint with s j to be violated. This is
precisely the condition for adding a spin to the cluster in line
8 of Algorithm 1. Thus, the reflect algorithm identifies and

FIG. 10. Sketch of the relationship between the Ising variable σ

and the piecewise function C(ϑ ) defined in Eq. (B8). For the Ising
pseudospins, σ = 1 for spins pointed above the x axis, and σ = −1
for spins pointed below the x axis. For the function C(ϑ ), we define
ϑ with respect to an external magnetic field H oriented along the
positive y axis. Then, given an inclusion angle �, spins pointing
in the blue shaded region have C(ϑ ) = 1 and spins pointing in the
unshaded region have C(ϑ ) = −1. For the inclusion angle shown,
C(ϑ ) = σ everywhere except in the narrow shaded region below the
x axis.

transforms one of the clusters in the bond configuration {b},
which in turn is determined by the original spin state and the
randomly chosen axis of reflection.

To relate Eq. (B6) to the XY spin correlation function 〈si ·
s j〉, consider instead the correlation function 〈C(ϑi )C(ϑ j ))〉,
where

C(ϑ ) =
{

1, |ϑ | < �

−1, |ϑ | � �
(B8)

with ϑ the angle with respect to an external field H. This
correlation function was used to study the phase diagram of
a finite-temperature step model with � = π/2 in Refs. [7,8],
in which it was speculated that the associated susceptibility
scales with the same exponent as that associated with 〈si · s j〉.
To justify this speculation, note that C(ϑ ) can be expanded as
a cosine series on the interval [−π, π ], yielding the correla-
tion function

〈C(ϑi )C(ϑ j )〉 =
∞∑

n=1

a2
n〈cos(nϑi ) cos(nϑ j )〉, (B9)

where an is the Fourier coefficient of the nth term in the
series and charge neutrality ensures that cross terms vanish
[46]. Since the associated critical exponent of each term in
the series scales as n2, Eq. (B9) is dominated by the first
term, which is proportional to 〈si · s j〉. The justification for
using the C(ϑ ) correlation function as a proxy for the XY
spin correlation function is especially strong at an inclusion
angle of � = π/2, for which the coefficients an are identi-
cally zero for even n. In this case, the subleading correction
is 〈cos(3ϑi ) cos(3ϑ j )〉 which, although relevant, is strongly
suppressed compared to the leading term 〈cos ϑi cos ϑ j〉.

At � = π/2, C(ϑ ) is also in exact correspondence with the
Ising variable σ , if we align H at an angle of π/2 with respect
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to the axis of reflection (Fig. 10). Equation (B6) then implies

〈C(ϑi )C(ϑ j )〉 = p(i ↔ j) (� = π/2). (B10)

For inclusion angles near π/2, such as those in the neigh-
borhood of the Kosterlitz-Thouless transition, Eq. (B10)
approximately holds. Then, summing over lattice sites i, j
to obtain the susceptibility and recalling that the reflect
algorithm selects one cluster in the random bond configuration
with probability proportional to the size of the cluster, we
arrive at the final result

L2−η ∼ χ ∼ 〈s〉 ∼ L2−η′
. (B11)

Equation (B11) justifies the close agreement of η and η′ near
the critical angle �c ≈ 0.56π , which is fortuitously close to
the angle at which Eq. (B10) holds exactly. On the other hand,
the sharp deviation of η′ from η for low inclusion angles seen
in Fig. 9 is explained by the fact that far away from � = π/2,
the approximate relation between the pseudospin correlation
function and the C(ϑ ) correlation function no longer holds.

2. Scaling of the cluster-size distribution

To further assess whether the reflect algorithm chooses
the appropriate physical clusters, we measure the distribution
of cluster sizes at � = 0.5π . Defining n∗(s) as the probability
density function of hitting on a cluster of size s, we obtain a
bimodal distribution, with a large peak at small cluster sizes
and a secondary peak at large cluster sizes. This indicates
that the scaling of the average cluster size, from which the
exponent η′ is determined, results from a subtle interplay
between these two peaks.

The cluster-size distribution is typically studied in the
context of the Swendsen-Wang algorithm, for which scal-
ing forms have been derived, through the FK mapping to a
critical percolation problem, to describe observables such as
(1) the percolation probability 〈P∞〉, which exhibits the same
finite-size scaling ∼L−β/ν as the net magnetization, (2) the
distribution of the size of the largest (spanning) cluster in each
bond configuration, whose mean scales as LdF where dF is the
fractal dimension, and (3) the number per site of clusters of
size s [74,81]. The scaling form of this third observable must
be modified when considering a single-cluster algorithm, such
as the Wolff and reflect algorithms. Under the hypothesis
that the inclusion model at � = 0.5π maps, via the above
construction, to the critical point of some unknown percola-
tion problem, we posit the scaling form [82]

n∗(s, L) ∼ s−τ+1 f (s/LdF ), (B12)

where ñ(x) is a universal scaling function. To verify this scal-
ing form, in Fig. 11 the cluster-size distribution is multiplied
by sτ−1 and plotted as a function of s/LdF for system sizes
ranging from L = 8 to 128. The exponents dF and τ are
related to the exponent η′ by summing Eq. (B12) over s to
obtain the average cluster size:

L2−η′ ∼ 〈s〉 =
∑

s

n∗(s)s ∼ LdF (3−τ )

⇒ dF = 2 − η′

3 − τ
. (B13)

FIG. 11. Rescaled probability distribution ñ(s/LdF ) of cluster
sizes at � = 0.5π . The horizontal axis is cluster size s rescaled by
LdF , where dF = 1.901 is the fractal dimension determined from
Eq. (B15), using η = 0.198. The vertical axis is n∗(s)sτ−1. Optimal
data collapse was achieved using a cluster exponent of τ − 1 =
1.089, obtained from a power-law fit described in the text. The
distribution was measured over ≈8 × 105 cluster moves for L = 8,
≈1.1 × 106 cluster moves for L = 16, ≈1.65 × 106 cluster moves
for L = 32, ≈2.3 × 106 cluster moves for L = 64, ≈3.2 × 106 clus-
ter moves for L = 128, and ≈4 × 106 moves for L = 200.

Assuming hyperscaling, dν = γ + 2β [32], the cluster expo-
nent τ can be related to the fractal dimension dF via

τ = 1 + d/dF (B14)

which, when substituted into Eq. (B13) with d = 2, implies

dF = 2 − η′

2
= 2 − η

2
. (B15)

Using the critical exponent η = 0.198 at � = 0.5π , this im-
plies a fractal dimension dF = 1.901. As a test of internal
consistency, dF can be estimated via finite-size scaling of smax,
the cluster size at which sτ−1n∗(s, L) is a maximum. A fit to
the form smax ∼ LdF yields dF = 1.902 ± 0.003.

Substituting Eq. (B15) into (B14) yields

τ = 1 + 4

4 − η
(B16)

which, for η = 0.198, implies a cluster exponent of τ =
2.052. Again, we can verify the internal consistency of the
scaling form by fitting n∗(s) ∼ s−τ+1 in the regime 1 � s �
LdF [81]. At the accessible system sizes, however, such a fit is
prone to error, so we instead measure τ through a power-law
fit to the value of n∗(s, L) measured at the position of the
secondary peak at system size L vs the position of the peak.
This yields the estimate τ = 2.089, which is used to achieve
the data collapse between different system sizes in Fig. 11.
The good data collapse at large cluster sizes, particularly for
L � 16, provides evidence in favor of the assumed scaling
form as the leading behavior of the distribution.

Taken together, Figs. 9 and 11 illustrate the connection
between the scaling exponents of the original spin model
and the cluster model derived from the reflect algorithm.
Combined with the ergodicity proven in Appendix A, this
suggests that the algorithm is, in the same sense as the original
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FIG. 12. Finite-size scaling of the bond susceptibility, defined
in Eq. (B17), for L = 8, 16, 24, 32, 48, 64, 80, 100, 128, 200. Only
data with L � 24 were included in the fit. Error bars were determined
from the standard error across 100 or 1000 chunks. Right panel
shows the residuals with respect to the fit, amplified by a factor of
103.

Swendsen-Wang/Wolff algorithm for the d = 2 Ising model,
optimally adapted to our model at the value � = 0.5π .

Our value of τ is quite close to the exact value 187/91 for
short-ranged percolation in d = 2, which leads us to conjec-
ture that our algorithm is constructing clusters precisely at the
critical point of that problem. Further, if we use the exact value
of τ for the scaling collapse, the results are equally impressive
by eye.

3. Long-ranged bond correlations

We note that the connection to short-ranged percolation
is somewhat unexpected as the underlying spin correlations
are long ranged. Decomposing the entire lattice into clusters
in the manner of Swendsen-Wang helps clarify this picture.
The first moment of the bond distribution is measured to be
〈b〉 = 1

2 , in agreement with the percolation threshold pc of
uncorrelated bond percolation on the square lattice on the
grounds of duality [83]. However, in contrast to that short-
ranged percolation problem, we do find evidence of QLRO in
the bond correlations. Figure 12 shows the finite-size scaling
of the bond susceptibility, defined analogously to the spin
susceptibility as

χb(L) = 1

L2

∑
〈i j〉
〈kl〉

[〈bi jbkl〉 − 〈b〉2]. (B17)

We find that this scales as a power law χb ∼ L2−a, implying
algebraic decay of the bond correlations with exponent a:

〈bi jbkl〉 − 〈b〉2 ∝ 1/ra, (B18)

where r is the distance between bonds 〈i j〉 and 〈kl〉 on the
lattice. The estimated value of a, determined from scaling up
to L = 200, is

a = 0.7870 ± 0.000 66. (B19)

The Harris criterion applied to long-range correlated per-
colation suggests that correlations of the form of Eq. (B18)
are irrelevant for a > 2/ν, where ν is the percolation correla-
tion length exponent for the short-ranged percolation problem
[84]. In this regime, the critical exponents at the percola-
tion threshold are unaffected by the presence of long-range
bond correlations. When the correlations become relevant
(a < 2/ν), the critical exponents are expected to deviate from
the uncorrelated percolation exponents in an a-dependent
fashion.

Given that ν = 4
3 for short-ranged 2D percolation,

Eq. (B19) implies that the quasi-long-ranged bond correla-
tions are in fact relevant. However, simulation of long-range
correlated site percolation on the square lattice [85] indicates
that while other critical exponents depend on a, the fractal
dimension dF (and in turn, τ ) remains consistent with its
uncorrelated value as a decreases. Similarly, on the triangular
lattice dF was found to be independent of a down to a = 2

3 , be-
low which dF increases continuously [86]. Thus, we conclude
that at � = 0.5π , the cluster model produced by the reflect
algorithm maps to standard percolation in d = 2, with relevant
quasi-long-ranged correlations that do not affect the scaling
of average or largest cluster size. To further investigate this
interpretation, in future research it will be worthwhile to mea-
sure other critical exponents of the percolation model that are
sensitive to these correlations.
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