
PHYSICAL REVIEW B 103, 104304 (2021)

Heat transport through a superconducting artificial atom
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Quantum heat transfer through a generic superconducting setup consisting of a tunable transmon qubit
placed between resonators that are terminated by thermal reservoirs is explored. Two types of architectures are
considered: a sequential setting and a beam-splitter setting. Applying the numerical exact hierarchical equation of
motion (HEOM) approach, steady-state properties are revealed, and experimentally relevant parameter sets are
identified. Benchmark results are compared with predictions based on approximate treatments to demonstrate
their failure in broad ranges of parameter space. These findings may allow improved future designs for heat
control in superconducting devices.
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I. INTRODUCTION

Theoretical studies of photonic heat transport [1–7] and
rectification [8–12] in superconducting platforms play an im-
portant role not only in understanding current experimental
findings [13,14] but also in designing and potentially improv-
ing future architectures to control heat, for example, in circuit
quantum electrodynamics (cQED) [13–15]. Moreover, funda-
mental questions regarding signatures of quantum mechanics
in thermodynamic properties of devices at nanoscales [16–18]
have not been answered yet and require advanced simula-
tion techniques beyond conventional perturbative treatments
[19–24].

Dynamical control of heat flow has received particular
attention recently, for example, mediated by phonons in
solid-state circuits [25], in carbon nanotubes [26], and in
arrangements of trapped ions [27]. Further, energy transfers
due to electronic motion in hybrid systems [28], where normal
metals are tunnel coupled to superconductors, and due to
microwave photons in superconducting circuits [13,14,29,30]
have been studied.

In particular, superconducting devices as promising plat-
forms for quantum information processing allow for mod-
ulation of the heat flow carried by photons based on a
superconducting quantum interference device (SQUID) with
tunable magnetic flux; see, e.g., Ref. [13]. In the milli-Kelvin
(mK) temperature domain, where they are operated, quasipar-
ticle energy transfer is basically absent [29,31] and residual
phononic channels, while not completely avoidable, give rise
to only flux independent energy transfer [13,14]. In addition,
circuits including Josephson junctions naturally exhibit non-
linear behavior, a prerequisite for heat rectification [8,11,14].

The theoretical framework to describe heat transfer be-
tween two thermal reservoirs at different temperatures in
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quantum mechanical settings is a challenging task. Mostly,
model systems have been explored so far and often based on
approaches, where the interactions between the heat modulat-
ing component (system) and the thermal reservoirs are treated
perturbatively, for example, in terms of quantum optical mas-
ter equations [32]. The latter, however, suffer not only from
the known limitations to weak couplings and sufficiently ele-
vated temperatures [32–35] but also from deficiencies related
to the proper state representation of the dissipative part in the
evolution equation of the reduced density operator [36,37].
In contrast, the description of realistic setups at cryogenic
temperatures has received much less attention [1–4,13,14].

The goal of this paper is to fill this gap and to answer, at
least partially, the following major questions: First, to which
extent are conventional perturbative treatments able to quan-
titatively describe the modulation of the heat flow through a
generic superconducting setting? Second, how does the heat
flow depend on circuit properties, either fixed by design or
tunable in situ?

For this purpose, in the following we employ the so-
called hierarchical equations of motion (HEOM) formulation
[38–42], a nonperturbative simulation technique of open
quantum systems which is derived from the formally exact
representation of the reduced density in terms of path integrals
[33,43]. The HEOM has the additional benefit that, depending
on the depths of the hierarchy, perturbative approaches such
as the Redfield and the Lindblad master equations can easily
be computed with the same code. We note in passing that
alternative, nonperturbative frameworks such as the stochas-
tic Liouville–von Neumann equation (SLN) [11,44], the
multilayer multiconfiguration time-dependent Hartree (ML-
MCTDH) approach [45,46], and continuous-time quantum
Monte Carlo (CT-QMC) algorithm [47,48] have also been
applied recently to explore quantum heat phenomena.

More specifically, we will consider a generic setup, where
a two-level system, implemented in form of a transmon qubit,
is placed in series between two resonators that are coupled
to respective thermal reservoirs, realized as ohmic resistors;
see Fig. 1. Due to the SQUID architecture of the transmon,
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FIG. 1. A schematic of the quantum heat valve described in this
article. The total system Hamiltonian is given by Eq. (1).

an external magnetic flux allows us to tune its transition fre-
quency and thus to modulate the capacity to carry heat through
the resonator-transmon-resonator device. This quantum heat
valve has been experimentally realized in a slightly more com-
plex circuitry in Ref. [13]. We consider two scenarios, one in
which energy is transferred through the transmon only and one
in which in addition heat can also directly flow from the left to
the right resonator, thus bypassing the transmon. We provide
a detailed understanding of how the energy level structure of
the total complex (resonator-transmon-resonator) determines
the heat flow through quantum channels in resonant and off-
resonant (dispersive) regimes. Benchmark results obtained
within the HEOM allow us to fix, when compared to exper-
imental data, circuit parameters, particularly those which are
not known or not known with sufficient accuracy. In addition,
information about residual transfer channels (phonons) that
are not sensitive to the flux modulation can be retrieved.

The remaining sections of this paper are arranged as fol-
lows. In Sec. II, we present the model, the sequential and
the beam-splitter settings, and their properties in the absence
of thermal contacts. The HEOM approach, how to extract
the heat currents, and approximate treatments are briefly dis-
cussed in Sec. III. The main part of the paper is Sec. IV. There,
we compare results from the HEOM with those obtained with
perturbative treatments, investigate in detail the steady state
with constant heat flow from hot to cold reservoir, and analyze
the parameter dependence of the quantum heat valve. This
section also has an extension to a quantum heat rectifier and
its performance when the symmetry in the setting is broken.
Finally, in Sec.V, a detailed comparison with the available
data from the experiment that is reported in Ref. [13] is given.
Conclusions are made in Sec. VI.

II. THEORETICAL MODELING

A. Total system Hamiltonian

Tunable photonic heat transport and heat rectification can
be achieved by the platform of superconducting circuit quan-
tum electrodynamics (cQED) [13,14]. In the language of open
quantum systems [33], a corresponding Hamiltonian of the
total system then can be formally partitioned into three parts,

H = Hs + Hb + Hsb, (1)

where Hs is what one identifies as the system Hamiltonian
which can be controlled experimentally to act as a valve [13],
Hb describes two thermal reservoirs at different temperatures
TL � TR (henceforth denoted as left bath and right bath, re-
spectively), and Hsb is the coupling between these parties. In
the following, we consider a situation as shown in Fig. 1,
where this coupling to an artificial atom (transmon) is me-

diated by two harmonic oscillators (LC circuits or cavities).
These oscillators can either be included in the system part or
in the reservoir part, as we will discuss below.

In the absence of thermal reservoirs and any internal inter-
actions, the bare Hamiltonian of our cQED system reduces to

H0 = h̄ωLa†
LaL + h̄ωqσ+σ− + h̄ωRa†

RaR + HZPE , (2)

where h̄ωL, h̄ωq, and h̄ωR are the transition energies of the
left resonator, qubit, and right resonator, respectively, with
standard annihilation and creation operators for the oscillators
and Pauli matrices σk, k = x, y, z with σ± = σx ± iσy. The
zero-point energy (ZPE) of the bare system is denoted by a
constant HZPE , which, however, does not affect the quantum
dynamics and will thus be set zero (see also Ref. [13]). The
frequency of the transmon-qubit ωq is tunable via a magnetic
flux φ according to

ωq(φ) =
√

8EJ (φ)Ec − Ec

h
(3)

with charging energy Ec = 2e2/C and effective Josephson
energy

EJ (φ) = EJ0

∣∣∣∣ cos

(
π

φ

φ0

)∣∣∣∣
√

1 + d2 tan2

(
π

φ

φ0

)
, (4)

where φ0 = h/2e is the magnetic flux quantum. An asymme-
try in the two Josephson junctions constituting the transmon
is captured by an asymmetry parameter d [49]. According
to Fig. 1, internal couplings induce interactions between the
transmon and the respective oscillators (couplings gL, gR) and
directly between the oscillators (g̃), respectively.

The bare thermal reservoirs, kept at different temperatures,
are modeled as usual by quasicontinua of independent har-
monic degrees of freedom, i.e.,

Hb = HL + HR

=
∑

α=L,R

{ ∞∑
i=1

p2
α

2mα,i
+ 1

2
mα,iω

2
α,ix

2
α,i

}
,

(5)

where mα,i, ωα,i, xα,i, and pα,i denote mass, frequency, coordi-
nate, and momentum of the ith harmonic oscillator in the αth
reservoir. The bilinear interaction between these reservoirs
and what is considered as the system is given by

Hsb =
∑

α=L,R

Xα (a†
α + aα ) + 1

2

∑
α=L,R

μα (a†
α + aα )2, (6)

with Xα = ∑
i cα,ixα,i denoting a collective coordinate of the

αth reservoir and cα,i being the coupling constant of the ith
mode with oscillator α. The last term guarantees that the
reservoirs only act dynamically upon the system and any
coupling-induced distortion is absent (counter term). In the
following, we will put masses to unity and h̄ = 1.

In this setting, the effective impact of the reservoirs onto
the system is completely described by coupling weighted
spectral densities

Jα (ω) = π

2

∑
i

c2
α,i

ωα,i
δ(ω − ωα,i ), (7)
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which implies μα = (2/π )
∫ ∞

0 dωJα (ω)/ω. In the following,
we assume a generic ohmic spectral density with a Debye type
of frequency cutoff ωD,α , i.e.,

JD,α (ω) = ηα ω

1 + ω2/ω2
D,α

(8)

with a dimensionless coupling ηα . This way, an unmanageable
UV divergence of purely Ohmic dissipation is avoided.

B. Sequential setting

As a first case, we assume the resonators and the qubit
to be coupled in a linear geometry such that no direct
resonator-resonator interaction exists, i.e., g̃ = 0 in Fig. 1. As
a consequence, this sequential setting is described by Hs ≡
Hseq with

Hseq = H0 +
∑

α=L,R

gα (a†
α + aα ) (σ+ + σ−) . (9)

However, in a sequential setting, one can also consider the
intermediate resonators as part of the respective reservoirs to
which they are directly coupled. Technically, this is achieved
by performing a normal mode transformation [50] of the so-
defined total Hamiltonian and eventually leads to a spin-boson
form for the total Hamiltonian [8,51] with Hs representing the
transmon only, i.e.,

H = ωqσ+σ− + (σ+ + σ−)
∑
α,i

c̃α,i x̃α,i

+
∑
α,i

{
p̃2

α,i

2
+ 1

2
ω̃2

α,ix̃
2
α,i

}
(10)

up to an irrelevant constant, where quantities with a tilde
denote those of the mapped reservoirs.

For sufficiently large cutoff frequency, the spectral distribu-
tion (7) transforms accordingly such that it takes a Lorentzian
form in the spin-boson representation [50–52]

Jeff,α (ω) = κα

η̃αω(
1 − ω2/ω2

α

)2 + η̃2
αω2/ω4

α

(11)

with κα = 2g2
α/ω3

α . In the low-frequency sector ω � ωα , the
ohmic-type of dissipation is recovered with Jeff,α ≈ καη̃αω

and effective coupling καη̃α . We note in passing that η̃α has
the dimension of a frequency in contrast to the dimensionless
ηα in Eq. (8); since καη̃α is dimensionless, both Jeff and JD,α

carry identical dimensions.
This transformation reduces the system Hilbert space

considerably (from resonator-qubit-resonator to qubit) and
it leads to an effective spectral distribution through which
the qubit interacts with effective reservoirs, where the in-
termediate oscillators appear as frequency filters. While for
conventional perturbative treatments of open system dynamics
in terms of master equations, this may cause substantial prob-
lems with all interesting situations, ωα ≈ ωq being outside the
range of validity; it implies a profound increase in efficiency
for the nonperturbative HEOM that we apply here.

This can also been seen upon inspection of the autocorre-
lation functions of the transformed αth reservoir correlation

function C̃α (t ) = 〈X̃α (t )X̃α (0)〉β that are obtained as [53–55]

C̃α (t ) = 1

π

∫ +∞

−∞
dωJeff,α (ω)

e−iωt

1 − e−βαω

= καω4
α

4ξα

∑
σ=±1

{
coth

[
βα

2

(
ξα − iσ

η̃α

2

)]
+ σ

}

× exp

[
−

(
η̃α

2
+ iσξα

)
t

]

− 2καη̃αω4
α

βα

∞∑
k=1

νk(
ω2

α + ν2
k

)2 − η̃2
αν2

k

e−νkt , (12)

where ξα = √
ω2

α − η̃2
α/4, νk = 2πk/βα are the Matsubara

frequencies with inverse temperature βα = 1/(kBTα ). Appar-
ently, the correlation functions decay to zero with rates ηα

in the underdamped limit and at higher temperatures, while
at low temperatures the last term including Matsubara fre-
quencies becomes very long ranged on the order h̄β, thus
inducing strong retardation effects. We note in passing that
the quantum dynamics of spin-boson type of systems has been
widely studied in the past [8,11,45,51,52,56–59] with both
perturbative and nonperturbative techniques.

C. Beam-splitter setting

For the second case, we extend the sequential setting by
allowing also a direct resonator-resonator interaction with
strength g̃. Accordingly, energy transfer can happen via two
channels, one which includes the qubit and one which does
not (beam-splitter setting). The system part of the total Hamil-
tonian thus takes the form Hs ≡ Hbeam with

Hbeam = H0 +
∑

α=L,R

gα (a†
α + aα )(σ+ + σ−)

+ g̃(a†
L + aL )(a†

R + aR) (13)

with the coupling to the reservoirs again governed by qα . This
beam-splitter situation does not allow for a reduction similar
to the sequential setting: If the resonators are incorporated in
the respective reservoirs, an effective reservoir-reservoir inter-
action emerges which does not provide any benefit compared
to the original model.

The spectral density (7) gives then rise to the autocorrela-
tion function of the αth bath Cα (t ) = 〈Xα (t )Xα (0)〉β as

Cα (t ) = 1

π

∫ +∞

−∞
dωJD,α (ω)

e−iωt

1 − e−βαω

= ηαω2
D,α

2

[
cot

(
βαωD,α

2

)
− i

]
e−ωD,αt

+ 2ηαω2
D,α

βα

+∞∑
k=1

νk

ν2
k − ω2

D,α

e−νkt . (14)

As we will see, the beam-splitter interaction makes the quan-
tum dynamics richer compared to that of the sequential
setting. So far, it has been studied only in limiting regimes
using perturbative methods [13,60].
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FIG. 2. Energy spectra of bare system Hamiltonians (sequential,
beam splitter) in Eqs. (9) and (13). Here, the relevant states are rep-
resented as |1〉 = |000〉, |2〉 = |100〉, |3〉 = |010〉, |4〉 = |001〉, |5〉 =
|110〉, |6〉 = |101〉, and |7〉 = |200〉 with corresponding eigenen-
ergies E1, ..., E9, where we put E1 = 0. Solid lines denote the
beam splitter, and dashed lines the sequential setting. Parameters
are Ej0/2π = 40 GHz, Ec/2π = 0.15 GHz, d = 0.45, gL = gR =
0.55 GHz, g̃ = −0.55 GHz, and h̄ωL = h̄ωR = 33.3 GHz.

D. Bare system energy spectrum

Before we start with a discussion of the heat flow through
the respective settings, it is instructive to study the energy
spectra of the bare systems; see Fig. 2. Here, we use parame-
ters typical for superconducting settings (see, e.g., Ref. [13]).
As one expects, the impact of the direct oscillator-oscillator
coupling is most prominent far away from resonances be-
tween oscillators and transmon, i.e., in the so-called dispersive
regime |α| 	 gα with detuning α = ωq − ωα . Indeed, in
this regime and for symmetric couplings gα = g, α = , the
Hamiltonian Hbeam in (13) can be cast via a Schrieffer-Wolf
transform [61,62] and retaining only terms up to second order
in (g/)2 [60,63,64] into the approximate form

H eff
beam = eSHbeame−S

≈
(

ωq + 2g2



)
σ+σ− +

(
ωL + g2


σz

)
a†

LaL

+
(

ωR + g2


σz

)
a†

RaR +
(

g̃ + g2


σz

)
(a†

LaR+aLa†
R),

(15)

with

S = g


(σ+aL − σ−a†

L + σ+aR − σ−a†
R). (16)

Apparently, the oscillator-transmon coupling appears only
as renormalization to the oscillator-oscillator coupling. For
the parameters chosen in Fig. 2 with equal bare oscillator fre-
quencies ωL = ωR, the dispersive regime with well-separated
levels between oscillators and transmon is seen in the regimes
around φ/φ0 = k with k integer (see E2, E3, E5, E6) as well
as around φ/φ0 = k + 1

2 with k integer (see E4, E7); cf. also
Figs. 3(a) and 3(c). For finite oscillator-oscillator coupling,
the degeneracy is lifted and delocalized superpositions of bare
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FIG. 3. Frequency of the transmon qubit tuned by an external
magnetic flux. The parameters are Ej0/2π = 40 GHz, Ec/2π =
0.15 GHz, and d = 0.45. The black line denotes the transmon-qubit
frequency, and the red line resonator frequencies.

oscillator eigenstates appear. For values of the magnetic flux
slightly below and above φ/φ0 = k + 1

2 (k integer), avoided
crossings indicate resonances between the oscillators and the
transmon; see Fig. 3(b).

Now, based on this analysis, we expect for the energy trans-
fer across the structure the following behavior: In the case
of the sequential situation, the energy transferred from hot
to cold reservoirs approaches maxima at and near transmon-
oscillator resonances ωq(φ) ≈ ωL = ωR [8,65] and is small
otherwise [60]. The beam splitter displays these two maxima
as well but in addition exhibits substantial transmission in
regimes, where the direct oscillator channel prevails. More
specifically, in the latter regimes, an effective oscillator-
oscillator coupling g̃eff = g̃ + (g2/)〈σz〉 has for g̃ < 0 and
at low temperatures a larger absolute value around φ/φ0 = k
compared to that around φ/φ0 = k + 1

2 due to 〈σz〉 < 0.
For a quantitative description, one could rely on perturba-

tive approaches such as quantum optical master equations.
However, it is worth discussing a subtlety here that may
easily be overlooked. Naively, one may assume that such
a treatment is justified as long as ωL, ωR, ωq 	 ηL, ηR and
temperatures are sufficiently elevated. However, these master
equations are derived using second-order perturbation theory
within the eigenstate basis of the system Hamiltonian Hs. The
more precise and much stricter condition for their validity is
thus |Ei − Ej |/h̄ 	 ηL, ηR with Ei, Ej being eigenenergies of
Hseq and Hbeam, respectively. Since avoided crossings lead to
energy splittings on the order of the intrasystem couplings,
standard master equations may fail whenever thermal cou-
plings constants ηL, ηR are on the order of g̃α, gα , which in
turn limits their applicability [22]. For this reason, in the fol-
lowing in order to provide benchmark data, a nonperturbative
treatment is employed, the so-called hierarchical equation of
motion (HEOM).

III. SIMULATION TECHNIQUES

A. Hierarchical equation of motion

Here, we briefly describe the essence of the HEOM ap-
proach and how it is derived from the path integral expression
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of the reduced density matrix. For the sake of simplicity, we
consider only a single reservoir for a Hamiltonian of the form
(1) and assume factorized initial states at time zero, ρT (0) =
ρs(0) ⊗ e−βHb/Zb, where Zb = Tr e−βHb . The generalization to
correlated initial states has also been discussed [66,67].

Accordingly, in path integral representation [43], the re-
duced density operator is obtained as

ρs(t ) =
∫

Dq+(t )Dq−(t )ei{S+[q+(t )]−S−[q−(t )]}

×F[q+(t ), q−(t )]ρs(0), (17)

where q+(t ) and q−(t ) denote forward and backward system
paths, respectively, and S+[q+(t )] and S−[q−(t )] are the corre-
sponding actions. Generally, a continuous system coordinate
can be discretized using a system-specific discrete variable
representation (DVR) [68]. Specially, within the HEOM and
for harmonic oscillators and qubits considered here, an eigen-
state representation is convenient. The effective impact of
the reservoir onto the system dynamics is described by the
influence functional [43], which reads

F[q+(t ), q−(t )]

= exp

{
−

∫ t

0
ds[q+(s) − q−(s)]

×
∫ s

0
dτ [C(s − τ )q+(τ ) − C∗(s − τ )q−(τ )]

}
. (18)

The derivation of the real-time HEOM starts by first ex-
panding the bath correlation function as a sum of exponential
terms Refs. [38,69], i.e.,

C(t ) = 1

Zb
Tr[e−βHbX (t )X (0)]

= 1

π

∫ +∞

−∞
dωJ (ω) nβ (ω)eiωt

=
∑

k

dke−γkt for t > 0, (19)

with the collective bath operator X as in (6) and the Bose-
Einstein distribution nβ (ω). The dk denote proper coefficients
in an expansion in terms of exponentials with proper rates γk .
By the following auxiliary density operator definition,

ρn(t ) =
∫

Dq+(t )Dq−(t )ei{S+[q+(t )]−S−[q−(t )]}

×
∏

k

[φk (t )]nk F[q+(t ), q−(t )] ρs(0); (20a)

φk (t ) = −i
∫ t

0
dt2[q+(t2)dke−γk (t−t2 ) − q−(t2)d∗

k e−γk (t−t2 )],

(20b)

the formulation of the HEOM leads to [38–40,55,70–73]

dρn(t )

dt
= −

(
iLs +

∑
k

nkγk

)
ρn(t ) − i

[
q̂,

∑
k

ρn+
k

(t )

]

− i
∑

k

nk
(
dkq̂ρn−

k
(t ) − d∗

k ρn−
k

(t )q̂
)
, (21)

where q̂ denotes the system’s coordinate operator that in-
teracts with the collective bath force. The ρns are auxiliary
density operators (ADOs) with the subscript n denoting a
set of integers {n1, ..., nk, ...}, with nk � 0 associated with
the kth exponential term in Eq. (19); n+

k and n−
k de-

note {n1, ..., nk + 1, ...} and {n1, ..., nk − 1, ...}, respectively.
Further, the superoperator acting on these densities is de-
fined as Lsρn = [Hs, ρn] with the reduced density operator
ρs = ρ{0,...0,...}.

Assuming that ρ0(t ) is of order one, the magnitude of
ρn(t ) is proportional to

∏
k dnk

k ∼ |C(t = 0)|n1+···+nk+···, which
may be divergent for strong system-bath coupling η as |n| .=
n1 + n2 + · · · + nk + · · · increases. Therefore, the unscaled
original HEOM [38,74] is of not good use in practice. The
proposed scaled HEOM combined with on-the-fly filtering
methods [75] solves this problem efficiently. In our simula-
tions, we choose the following rescaling,

ρ̃n(t ) =
(∏

k

nk! |C(0)|nk

)−1/2

ρn(t ), (22)

so that Eq. (21) is recast as

dρ̃n(t )

dt
= −

(
iLs +

∑
k

nkγk

)
ρ̃n(t )

− i
∑

k

√
(nk + 1)|C(0)|[q̂, ρ̃n+

k
(t )

]

− i
∑

k

√
nk

|C(0)|
(
dkq̂ρ̃n−

k
(t ) − d∗

k ρ̃n−
k

(t )q̂
)
, (23)

where C(0) = C(t = 0). The magnitude of ρ̃n(t ) is propor-
tional to

∏
k

√|C(0)|nk /nk! and decays to zero for high hierar-
chical levels. Therefore, we can put ρn(t ) = 0 if |ρmax

n (t )| < δ,
where δ denotes the error tolerance (here we set δ = 10−7).
More advanced algorithms to support the efficiency and nu-
merical stability can be found in Refs. [40,55,72,73,76–78].

B. Perturbative treatment

Approximate treatments of open system dynamics have
been developed in second-order perturbation theory in the
system-reservoir coupling. Together with a timescale sepa-
ration between quickly decaying reservoir correlations and
relaxation dynamics of the reduced density operator, this leads
to the Redfield master equation. Interestingly, an extended
Redfield equation is also obtained from the HEOM if it is cut
off to first-order ADOs (

∑
k nk = 1). Namely, in the interac-

tion picture this leads to

d

dt
ρI

s (t ) = −i
∑

k

[
q̂I (t ), ρI

0+
k

(t )
]
, (24a)

d

dt
ρI

0+
k

(t ) = −γkρ
I
0+

k
(t ) − i

[
dkq̂I (t )ρI

s (t ) − d∗
k ρI

s (t )q̂I (t )
]
,

(24b)

where q̂I (t ), ρI
s (t ), and ρI

0+
k

(t ) denote system coordinate, re-

duced density matrix, and first-order ADOs in the interaction
picture, respectively. Solving Eq. (24b) and inserting it into
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Eq. (24a) gives

d

dt
ρI

s (t ) = −
∑

k

∫ t

0
dτe−γk (t−τ )[q̂I (t ), dkq̂I (τ )ρI

s (τ )

− d∗
k ρI

s (τ )q̂I (τ )
]

= −
∫ t

0
dτ

[
qI (t ),C(t − τ )q̂I (τ )ρI

s (τ )

− C∗(t − τ )ρI
s (τ )q̂I (τ )

]
= −

∫ t

0
dτTrB

{[
HI

sb(t ),
[
HI

sb(τ ), ρI
T (τ )

]]}
. (25)

In the above expression, the correlation function in Eq. (19)
and the Born approximation [32] have been used but not the
Markov approximation. Thus, Eq. (25) is a nonlocal in time
integro-differential equation, which we call Redfield plus in
the following since it goes beyond the conventional Redfield
formulation in that the reduced density appears on the right-
hand side at the instantaneous time τ and not the final time t .
This evolution equation can be solved with the help of auxil-
iary variables [79–81]. An additional Markov approximation
where we put ρI

s (τ ) ≈ ρI
s (t ) leads to the time-local Redfield

master equation

d

dt
ρI

s (t ) = −
∫ t

0
dτTrB

{[
HI

sb(t ),
[
HI

sb(τ ), ρI
T (t )

]]}
. (26)

Hence, the HEOM approach can been seen as an infinity-order
extension beyond the Redfield-plus/Redfield approximation
[71,82,83]. This allows us to reveal consistently the impact of
higher order system-reservoir correlations which are particu-
larly subtle for heat currents.

C. Heat current

In the framework of the HEOM, effects of the environment
onto the system dynamics and statistical properties of the
environment can be obtained from the ADOs [41,42,84–86].
Here, we concentrate on the quantum heat current which is
linear in the collective bath force X . One starts, in the interac-
tion picture, with the following two equations:

d

dt
ρI

s (t ) = −i
∑

k

[
q̂I (t ), ρI

0+
k

(t )
]
; (27a)

d

dt
ρI

s (t ) = −iTrb
{[

q̂I (t )X I (t ), ρI
T (t )

]}
= −i

[
q̂I (t ), Trb

{
X I (t )ρI

T (t )
}]

, (27b)

where ρI
T (t ) denotes total density matrix in the interaction pic-

ture. In the next step, relations between first-order ADOs (ρ0+
k
)

in the HEOM and first-order moments of X are constructed
according to ∑

k

ρI
0+

k
(t ) = Trb

{
XI(t)ρI

T(t)
}
. (28)

Higher order relations can be found in Refs. [42,84].
In the presence of two thermal reservoirs, it is the above

relation which is inserted into the definition [42,45,87] of the
quantum heat current Iα (t ) between quantum system and the

αth bath, i.e.,

Iα (t ) ≡ − d

dt
〈Hα + Hsb,α〉 = −i〈[Hs, q̂Xα]〉

= −iTrs{[Hs, q̂]Trb{XαρT }}
= −i

∑
k

Trs
{
[Hs, q̂]ρ0+

k
(t )

}
, k ∈ αth bath. (29)

Here, Hsb,α denotes the coupling between system and the αth
reservoir. Eventually, the total heat current from left (hot) to
right (cold) bath is given as

I (t ) = 1
2 [IL(t ) − IR(t )]. (30)

With the above set of equations at hand, we are in a position to
explore heat transfer properties of the two respective settings
in more detail.

IV. RESULTS

In this section, we set the initial factorized state ρT (0) =
ρs(0) ⊗ ∏

α e−βαHα /Tr[e−βαHα ] in the simulations. Results for
heat transport according to the sequential and the beam-
splitter setting, respectively, are presented and discussed.
First, we compare data obtained from the approximate treat-
ments with exact ones from the HEOM. For this purpose,
a symmetric situation is considered ωL = ωR and gL = gR

which in a recent experiment has been shown to realize a
heat valve [13]. Second, for the same scenario and using the
HEOM, steady-state and heat-transfer properties are explored
for broad ranges of relevant parameters. Third, by break-
ing symmetry via ωL �= ωR, we address the situation where
the heat valve turns into a heat rectifier as implemented in
Ref. [14].

In the HEOM numerical simulations, Páde decomposi-
tions [88,89] and on-the-fly filtering [75] are adopted in
order to achieve high efficiency. Further, gigahertz (GHz)
units are applied in the following, typical for superconduct-
ing circuits. Since we focus on the low-temperature quantum
domain βL/Rh̄ωL/R > 1, convergence is reached by working in
a restricted Hilbert space spanned by a basis of seven eigen-
states |nLnqnR〉 of the bare oscillators (|nL〉, |nR〉, nL, nR =
0, 1, 2, . . .) and transmon (|nq〉, nq = 0, 1), i.e., {|1〉 = |000〉,
|2〉 = |100〉, |3〉 = |010〉, |4〉 = |001〉, |5〉 = |110〉, |6〉 =
|101〉, |7〉 = |200〉}. As for the reservoir parameters, we con-
sider a fixed temperature profile of TL = 330 mK and TR =
100 mK as in Ref. [13] with typical couplings rates ηα and
Debye frequencies ωD,α that fit experimental findings; see also
the discussion in Sec. V.

A. Perturbative treatment versus HEOM

In Figs. 4 and 5, data are shown for three types of
treatments, namely, Redfield-plus according to Eq. (25), a
conventional Fermi golden rule (FGR) approach (see the
Appendix), and the exact HEOM. Note that for the sequen-
tial setting we here use the original formulation Eq. (9)
with Debye-type thermal reservoirs and an oscillator-qubit-
oscillator system part.

In agreement with our expectation from Sec. II D, the heat
power versus the flux exhibits two peaks together with an
almost vanishing value away from it for the sequential setting.
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FIG. 4. Heat power vs magnetic flux: Data from HEOM (red)
and Redfield-plus master equation as in Eq. (25). Parameters
are Ej0/2π = 40 GHz, Ec/2π = 0.15 GHz, d = 0.45, gL = gR =
0.55 GHz, g̃ = −0.55 GHz, TL = 330 mK, TR = 100 mK, h̄ωL =
h̄ωR = 33.3 GHz, ηL = ηR = 0.03, and ωD,L = ωD,R = 60 GHz.

The beam-splitter case leads in addition to a local maximum
around φ/φ0 = 0.5 induced by the direct oscillator-oscillator
coupling. In fact, in this dispersive regime, the effective cou-
pling |g̃eff | achieves a maximum at φ/φ0 = 0.5 and decreases
away from it due to an increasing 〈σz〉/.

Apparently, in the sequential situation Redfield-plus is in
excellent agreement with exact data, while stronger deviations
appear for the beam-splitter one, particularly in the dispersive
regime. In the latter case, eigenfunctions of the bare system,
relevant for heat transfer, are strongly delocalized and may
induce reservoir-reservoir correlations that are absent in a
perturbative approach. In contrast, a description in terms of
a conventional master equation predicts a substantially larger
heat power with quite a different modulation; see Fig. 5. In
both settings, the resonance peaks are absent. One has to keep
in mind that the heat power results from a steady state driven
by a thermal gradient, a situation for which the applicabil-
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FIG. 5. Photonic heat power calculated with Fermi’s golden rule
(FGR). Parameters are the same as in Fig. 4.
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FIG. 6. In sequential setting, photonic heat transport calculated
with HEOM and FGR based on the effective formulation of Eq. (10).
Parameters are Ej0/2π = 40 GHz, Ec/2π = 0.15 GHz, d = 0.45,
gL = gR = 0.55 GHz, TL = 330 mK, TR = 100 mK, h̄ωL = h̄ωR =
33.3 GHz, and η̃L = η̃R = 1.5 GHz.

ity of conventional master equations is not obvious. Further,
the Debye frequency extracted to match experimental data
(see Sec. V) may not exceed the relevant system frequencies
sufficiently as required treatments based on Markov approxi-
mations.

For stronger coupling between the reservoirs and the
neighboring oscillators, the condition of weak system-bath
interaction ηα � gα, g̃ breaks down. As discussed above, this
implies that energy level splittings of bare system eigenstates
no longer exceed the level broadening due to the system-bath
interaction. In a sequential setting, one way to proceed is then
to consider the oscillators as part of the respective reservoir
which leads to the spin-boson formulation around (10) with
a structured spectral density. Within a master equation ap-
proach, this modeling is only justified as long as a timescale
separation exists between the decay of bath correlations [cf.
(12)] and the overall relaxation of the reduced system. This
implies a sufficiently weak oscillator-qubit coupling (καωq �
η̃α/ωq � 1). In simple generalization of the golden rule ex-
pression for ohmic spectral distributions [8], one then finds
for the heat current through the two-level system

I (ωq) = ωqJeff,L(ωq)Jeff,R(ωq)[nL(ωq) − nR(ωq)]

Jeff,L(ωq)[1 + 2nL(ωq)] + Jeff,R(ωq)[1 + 2nR(ωq)]

(31)

with the effective spectral distribution Jeff,α (ω) of the αth
bath as in Eq. (11). Figure 6 shows corresponding results in
comparison to data from the HEOM. We observe that the
description based on (31) captures the flux modulation in
the quantum heat valve quite accurately but underestimates
the value of the heat power. At transmon-oscillator reso-
nances ωq ≈ ωα , the effective spectral distribution reduces to
Jeff (ωq) ≈ καω3

α/η̃α and thus overestimates the heat transfer
toward small values of η̃α; this in turn limits the applicability
of (31).
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FIG. 7. Steady-state populations vs magnetic flux in a quantum
heat valve. Simulation parameters are same as in Fig. 4.

B. Quantum heat valve: Steady-state dynamics

In this and the following sections, the operation of the
beam-splitter setting as quantum heat valves is explored in
more detail based on numerical HEOM simulations. Deeper
insight can be obtained from the analysis of steady-state pop-
ulations in terms of local states |k〉 as defined above Sec. IV A;
see Fig. 7. Roughly, one can again distinguish between reso-
nant and dispersive regimes when the external flux is tuned.
Ground-state populations prevail outside the range around and
between the resonances. They approach minima at the reso-
nances and smooth local maxima at φ/φ0 = 0.5. The latter
directly lead to local maxima in the heat power for finite
oscillator-oscillator coupling. In accordance with the temper-
ature gradient TL > TR, state |2〉 (nL = 1, nq = 0, nR = 0) is
much more populated than |3〉, |4〉 for which nL = 0; around
and between the resonances it mirrors the behavior of the state
|1〉. Double excited states are even less populated, which in
turn justifies the Hilbert space reduction.

The nonequilibrium dynamics of both the populations and
the heat power are displayed in Figs. 8 and 9 in the disper-
sive and resonant regimes, respectively. Here, we observe the
overall behavior that steady states are approached on similar
timescales in both regimes. Interestingly, substantial transient
oscillations occur that we associate with coherent quantum
dynamics between the relevant eigenstates. When operating
the devices on shorter timescales, it may be possible to exploit
these coherences for proper control techniques.

C. Quantum heat valve: Parameter dependence

Here we discuss the performance of the experimental de-
vice when relevant parameters are tuned, also in order to
tailor the design of future setups. Relevant quantities include
transmon-qubit parameters d and Ej0, qubit-resonant coupling
parameters gα , the beam-splitter parameter g̃, and resonator-
bath coupling parameters ηα . These parameters are typically
fixed during the fabrication process of the circuitry.

We start with the asymmetry parameter d which enters the
flux dependence of the effective Josephson coupling energy
EJ (φ) in Eq. (4). Note that for any finite value of d , the cou-
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FIG. 8. Population dynamics toward steady state in the regimes
of dispersive and resonant energy transfer. Black (φ/φ0 = 0), red
(φ/φ0 = 0.35), and blue (φ/φ0 = 0.5) curves correspond to regimes
(a), (b), and (c) in Fig. 3. Other parameters are as in Fig. 4.

pling energy stays always finite. Figure 10 displays the impact
on the modulation of the photonic heat valve. A decreasing
value of d has basically three consequences: The domain
between the resonances grows, the relative peak heights de-
crease, and the local maxima in the dispersive regime at
φ/φ0 = 0.5 tend to be more pronounced. This behavior can
be traced back to an increased detuning  with decreasing
asymmetry. This in turn makes the effective coupling geff

grow, thus leading to a larger heat transition rate. Note that
the parameter d is in general difficult to fine-tune in chemical
etching and difficult to measure precisely. Theory provides a
means to extract it from experimental data.

Next, in Fig. 11, the dependence on the bare Josephon
energy Ej0 is shown. The dominant effect is a broadening of
the domain between the resonances, while the relative peak
heights and the local maxima in the dispersive regime are
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FIG. 9. Heat current dynamics in the regimes of dispersive and
resonant energy transfer. Black (φ/φ0 = 0), red (φ/φ0 = 0.35), and
blue (φ/φ0 = 0.5) curves correspond to regimes (a), (b), and (c) in
Fig. 3. The inset displays the long-time behavior. Simulation param-
eters are the same as in Fig. 4.
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FIG. 10. Dependence of the heat power vs magnetic flux through
a quantum heat valve on the asymmetry parameter d between the
two Josephson junctions constituting the tunable transmon. Other
parameters are as in Fig. 4.

less sensitive. A smaller value for EJ,0 makes the resonances
to appear further away from the symmetry point φ/φ0 = 0.5
since for the given parameters ωL = ωR the maximal detuning
 decreases.

Very interesting is the dependence on the oscillator-
reservoir coupling η ≡ ηL = ηR displayed in Fig. 12. First
of all, we observe that the overall modulation with tunable
magnetic flux is smeared out toward stronger thermal con-
tact. This particularly applies to the local maxima in the
dispersive regime. A stronger coupling has the tendency to lo-
calize eigenstates, while heat transfer occurs most efficiently
through delocalized eigenstates. The same process applies to
avoided crossings between oscillator-transmon levels and in
turn reduces the heights of the resonance peaks.

The competition between dissipation-induced localiza-
tion versus resonance-induced delocalization has been seen
in the experiment [13] and discussed theoretically also in
Refs. [45,90,91]. In fact, it leads to a turnover behavior of the
heat power with respect to the system-bath coupling strength
that can be rationalized in the following way: When the
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FIG. 11. Dependence of the heat power through a quantum valve
on the Josephson coupling energy Ej0 for d = 0. Other parameters
are as in Fig. 4.
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FIG. 12. Dependence of the heat power through a quantum heat
valve on the thermal coupling ηα . Other parameters are the same as
in Fig. 4.

system-bath coupling strength is tuned from weak to inter-
mediate, the coupling plays an effective role in accelerating
photons to tunnel between system and bath. However, for
stronger system-bath coupling, the bath-induced friction that
dissipates energy away from the system dominates which
implies a slower photon tunneling rate. In between these
regimes, maxima of the thermal conductance appear [45].

The dependence on the intrasystem coupling parameters g̃
(direct oscillator channel) and g (oscillator-transmon channel)
can be seen in Figs. 13 and 14, respectively. Of course, for
a vanishing oscillator-oscillator coupling (sequential setting),
the local maxima at φ/φ0 = 0.5 are not present and heat can
be transferred only through the transmon. The latter increases
for stronger g and implies larger relative peak heights in the
heat power.

D. From quantum heat valve to quantum rectifier

Heat rectification appears when the net heat flow between
forward and backward transfer for reversed temperature gra-
dient is finite. This requires a symmetry breaking in the device
architecture, for example, by putting gL �= gR or (experimen-
tally easier to realize) ωL �= ωR. In the past, heat rectification
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FIG. 13. Dependence of the heat power through a quantum heat
valve on the direct oscillator-oscillator coupling g̃. Other parameters
are as in Fig. 4.
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FIG. 14. Dependence of the heat power through a quantum heat
valve on the qubit-resonator coupling gα . Other parameters are as in
Fig. 4.

has been discussed theoretically in the classical regime; see,
for example, Refs. [92,93]. In the quantum domain, simple
models like the spin-boson model [8] and harmonic systems
[12] have been treated. A nonperturbative approach applicable
to a broad class of setups has been formulated only recently in
Ref. [11], followed by experimental realizations [14]. Here,
based on the cQED platform, we address heat rectification
by introducing an asymmetric system structure with ωL �= ωR,
where ωL is considered as tunable.

Figure 15(a) depicts the asymmetry in the forward and
backward heat power, which grows with increasing detuning
ωL �= ωR. Notably, with increasing asymmetry, the peak-
valley feature, characteristic for the symmetric situation,
disappears and is replaced by a single central hump at φ/φ0 =
0.5. Further, the symmetry breaking now leads to resonances
between qubit and individual oscillators which thus appear at
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FIG. 15. Rectification of the photonic heat power for an asym-
metric system architecture with ωL �= ωR. In panel (a), solid curves
correspond to forward photonic heat power and dashed curves to
backward photonic heat power. Panel (b) shows corresponding heat
rectification in terms of the coefficient (32). In the simulations, ωL

changes from 20 to 30 GHz, while other parameters are kept constant
as in Fig. 4.

different values of the external flux or may not be present at
all for large detunings.

To quantify the rectification, we introduce the rectification
coefficient

R = |Pf − Pb|
|Pb| (32)

as the weighted net transfer between forward (Pf ) and back-
ward (Pb) heat power. Corresponding results are shown in
Fig. 15(b). As expected, a stronger asymmetry induces a
larger overall rectification. The modulation of the coeffi-
cient R with the magnetic flux is interesting: For very
weak asymmetry (ωL = 30 GHz), shallow peaks appear near
transmon-oscillator resonances followed by a central dip.
With growing asymmetry (ωL = 25 GHz), two more pro-
nounced maxima develop together with two pronounced dips
and a local maximum at φ/φ0 = 0.5. For strong asymmetry
(ωL = 20 GHz), this central maximum shrinks, as well as
the overall maxima. However, in all situations we see that a
tunable magnetic flux allows control of the rectification, from
almost 100% for intermediate asymmetry to 25% for strong
asymmetry. This may offer other options to regulate heat
transfer in cQED devices. We also note that the dependence
on the asymmetry is nonmonotonous: In the regime of smaller
detunings, an increase in asymmetry first leads to a decrease
in the rectification performance; for stronger asymmetry, rec-
tification is always enhanced.

V. PHOTONIC HEAT TRANSPORT: COMPARISON
WITH EXPERIMENTAL DATA

In the previous sections, we studied to which extent the
heat transfer through a generic superconducting setup can
be quantitatively described by approximate treatments in
comparison to nonperturbative HEOM simulations. For this
purpose, the thermal reservoirs were assumed to carry a
generic spectral distribution of Debye type.

Here, we lay focus on an actual experimental situation de-
scribed in Ref. [13]. There, a two-level system, implemented
in the form of a transmon qubit with tunable frequency, is
capacitively embedded between two superconducting trans-
mission lines, each terminated by a mesoscopic normal-metal
reservoir. Effectively, this leads to the model depicted in
Fig. 1, however, as seen from the harmonic oscillators, with a
Lorentzian-type of spectral distributions with maxima around
their bare frequencies ωL = ωR.

However, in many cases less detailed information about
the nature of thermal reservoirs is known so that one may
assume only a class of spectral distributions, rather than
an explicit distribution. Then, the following question arises:
How strongly does heat transfer in the quantum regime de-
pend on the specific form of the spectral distribution as
long as a substantial portion of the distribution covers the
relevant “bandwidth” of eigenenergies? To be more spe-
cific, in the present case, is it possible to quantitatively
describe experimental data of Ref. [13] with different forms of
spectral distributions parametrized by physically meaningful
parameters?
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FIG. 16. Heat power in a quantum heat valve with temperatures
TL = 330 mK, TR = 100 mK, resonator frequencies ωL = ωR =
33.3 GHz, and Ec/2π = 0.15 GHz simulated with two types of
reservoir spectral densities in the HEOM. For the Debye spectral den-
sity other parameters are Ej0/2π = 40 GHz, d = 0.45, gL = gR =
0.55 GHz, g̃ = −0.55 GHz, ηL = ηR = 0.03, and ωD,L = ωD,R =
60 GHz; for the Lorentz spectral densities Jα,n they are Ej0/2π =
34 GHz, d = 0.58, gL = gR = 0.35 GHz, g̃ = −0.25 GHz, and QL =
QR = 40.

For this purpose, we focus on Debye type as in (8) and on
Lorentz-type distributions, respectively, i.e.,

Jα,n(ω) = 1

Q2ωn
α

ηαωn

(1 − ω2/ω2
α )2 + η2

αω2/ω4
α

(33)

with a quality factor Qα = ωα/ηα and for n = 1, 2, 3. Note
that Jα,n ∝ ωn in the low-frequency sector ω � ωα and Jα,n ∝
1/ω4−n for high frequencies; in particular, at low frequencies
Jα,1 describes ohmic behavior, while Jα,2/3 describes super-
ohmic behavior, and at resonance Jα,n(ωα ) = ωα/Qα . The
corresponding correlation functions read

Cα,n(t ) = 1

π

∫ +∞

0
dωJα,n(ω)

[
coth

βαω

2
cos ωt − i sin ωt

]

=
∑
σ=±

ω4−n
α (ξα − iσηα/2)n−1

4Q2
αξα

×
{

coth

[
βα

2

(
ξα − iσ

ηα

2

)]
+ σ

}

× exp

[
−

(
ηα

2
+ iσξα

)
t

]

+ 2ω5−n
α

βαQ3
α

∞∑
k=1

(−i)n+1νn
k(

ω2
α + ν2

k

)2 − η2
αν2

k

e−νkt . (34)

Figure 16 shows a comparison between theoretical predic-
tions and experimental data for the heat power from Ref. [13]
with properly adjusted parameters. Important to mention here
is the fact that in the actual experimental setup in addition to
the flux-sensitive photonic channel there is a flux-independent
phononic channel for energy transfer. The corresponding lat-
ter contribution was not measured in the experiment and is
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FIG. 17. Photonic heat transport through a quantum heat valve
studied by FGR with Lorentz-class spectral density; parameters are
as in Fig. 16.

here considered as an overall constant subtracted from the
experimental data (see arrows).

The first main point we observe is that the experimental
findings can be very accurately captured by all four types of
spectral distributions. In fact, predictions based on the Lorentz
forms with Jα,n all coincide using identical sets of parameters,
which implies that only the behavior around the resonance fre-
quencies matter, while the low- and high-frequency portions
of the respective distributions have only very minor impact.
Indeed, the most relevant heat-carrying eigenstates exhibit
frequencies in a range around ωL, ωR as seen in Figs. 2 and 7.
Note that even the Debye distribution provides a quantitative
agreement with a somewhat smaller contribution from the
(flux-insensitive) phononic channel. From our simulations, we
predict the magnitude of this portion to the net heat transfer
to be about 1.4 fW, substantially bigger than the modulation
amplitude of about 0.2 fW.

Using the same parameter set, we show in Fig. 17 results
based on a golden rule treatment (see the Appendix). The main
difference to the HEOM data appears around φ/φ0 = k/2 (k
integer), where local minima (maxima) occur instead of max-
ima (minima). In addition, the golden rule predictions based
on the Lorentz forms Jα,n do not coincide using identical sets
of parameters, particularly in the dispersive regime, in contrast
to HEOM predictions.

VI. CONCLUSIONS

This paper provides benchmark results for quantum heat
transfer through a generic setup consisting of a resonator-
transmon-resonator channel terminated by thermal reservoirs.
Theoretical predictions have been obtained within the for-
mally exact HEOM simulation technique and also in compar-
ison with the performance of perturbative treatments.

With respect to the first major question placed in the in-
troduction about the accuracy of the latter ones, we conclude
that while they may provide a qualitative description in some
aspects, they certainly fail to give a quantitative understand-
ing of experimental results. Remarkably, this is even true in
domains of parameter space, where conventional approaches
naively are assumed to work. With respect to the second
question about the parameter dependence, one observes that
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(i) the structure of the internal couplings play a decisive role,
(ii) the precise structure of the thermal reservoirs, i.e., the
spectral distributions, does matter much less as long as in
the frequency domain their main portions cover the relevant
eigenstate channels, and (iii) too strong thermal couplings
wash out the modulation features and reduce its amplitude.
HEOM (and other nonperturbative approaches) allow us to
fix circuit parameters which are not sufficiently known. The
beam-splitter setting provides means to fine-tune heat transfer
by adjusting, may be even in a tunable manner, the resonator-
transmon versus the resonator-resonator coupling.
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APPENDIX: FERMI GOLDEN RULE (FGR)

We can derive the Fermi golden rule description (FGR)
directly from Eq. (26). In the Schrödinger representation, one
then arrives at the expressions

d

dt
ρs(t ) = −iLsρs(t ) −

∫ +∞

0
dτC(τ ) [q̂, (e−iLsτ q̂)ρs(t )]

+ C(−t ) [ρs(t )(e−iLsτ q̂), q̂]. (A1)

If we just consider diagonal elements Pj (t ) = {ρs(t )} j j ,
these equations reduce to

d

dt
Pj (t ) = −R j jPj (t ) −

∑
k �= j

R jkPk (t ), (A2)

with

R jk =
∫ +∞

0
dτC(τ )〈 j|[q̂, (e−iLsτ q̂) |k〉〈k|]| j〉

+ C(−τ )〈 j|[|k〉〈k| (e−iLsτ q̂), q̂]| j〉

=
∑

r

q jrqrkδk j

∫ +∞

0
dτC(τ )e−iωrkτ

− q jkqk j

∫ +∞

0
dτC(τ )e−iω jkτ

+
∑

r

qkrqr jδk j

∫ +∞

0
dτC(−τ )e−iωkrτ

− q jkqk j

∫ +∞

0
dτC(−τ )e−iωk jτ

=
∑

r

q jrqrkδk j

∫ +∞

−∞
dτC(τ )e−iωrkτ

− q jkqk j

∫ +∞

−∞
dτC(τ )e−iω jkτ , (A3)

where Hs| j〉 = h̄ω j | j〉, ω jk = ω j − ωk , and q jk = 〈 j|q̂|k〉.
When we apply the fluctuation-dissipation theorem,

C(t ) = 1

π

∫ +∞

−∞
dω

J (ω)

1 − e−βω
e−iωt , (A4a)

J (ω)

1 − e−βω
= 1

2

∫ +∞

−∞
dt C(t )eiωt , (A4b)

we find that

R j j =
∑

r

|〈 j|q̂|r〉|2 2J (ω jr )

1 − e−βω jr
, (A5a)

R jk = −|〈 j|q̂|k〉|2 2J (ωk j )

1 − e−βωk j
for k �= j. (A5b)

Finally, the Pauli master equation is obtained:

d

dt
Pj (t ) = −R j jPj (t ) −

∑
k �= j

R jkPk (t )

= −
∑

k

|〈 j|q̂|k〉|2 2J (ω jk )

1 − e−βω jk
Pj (t )

+
∑
k �= j

|〈 j|q̂|k〉|2 2J (ωk j )

1 − e−βωk j
Pk (t )

= 2
∑
k �= j

|〈 j|q̂|k〉|2[J (ω jk )nβ (ω jk )Pk (t )

− J (ωk j )nβ (ωk j )Pj (t )]

=
∑
k �= j

[� jkPk (t ) − �k jPj (t )], (A6)

with FGR rates � jk . In the situation of two thermal reservoirs
and in nonequilibrium steady-state Pk (t ) → P(∞)

k , the heat
current flowing between system and the αth bath is given by

Iα =
∑

j,k

P(∞)
k ω jk � jk;α. (A7)
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