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Metallic nanostructures (nanofilms and nanowires) are widely used in electronic devices, and their thermal
transport properties are crucial for heat dissipation. However, there are still gaps in understanding thermal
transport in metallic nanostructures, especially regarding the size effect and validity of the Wiedemann-Franz
law. In this work, we perform mode-by-mode first-principles calculations combining the Boltzmann transport
equation to understand the thermal transport in metallic nanostructures. We take gold (Au) and tungsten
(W) nanostructures as prototypes. It is found that when the size of nanostructures is on the order of several
tens of nanometers, the electronic/phonon thermal conductivity is smaller than the bulk value and decreases
with size. The phonon contribution to the total thermal conductivity increases in nanostructures for those
metals with small bulk phonon thermal conductivity (like Au), while it may increase or be suppressed in
nanostructures for those metals with large bulk phonon thermal conductivity (like W). By assuming that the
grain boundary does not induce inelastic electron-phonon scattering, the Wiedemann-Franz law works well
in both Au and W nanostructures if the Lorentz ratio is estimated using electronic thermal conductivity. The
Wiedemann-Franz law also works well in Au nanostructures when the Lorentz ratio is estimated by total thermal
conductivity.
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I. INTRODUCTION

Due to the miniaturization of electronic devices, metallic
nanostructures (nanofilms and nanowires) play an impera-
tive role in electronic applications ranging from interconnects
to sensors [1–3]. Since effective heat dissipation is crucial
to ensure the reliability of electronic devices [4], the ther-
mal conductivity of metallic nanostructures is crucial [5–11].
Over the past two decades, there have been many discussions
on thermal transport in metallic nanostructures [9,10,12–18].
Among these discussions, there are two key issues: the size
effect and the validity of the Wiedemann-Franz law.

Both experimental and theoretical evidence shows a size
effect [19,20]: the thermal conductivities in the metallic
nanostructures are smaller than their bulk counterparts and
depend on the size of the nanostructures. This size effect is at-
tributed to the surface scattering and grain boundary scattering
of the electron/phonon [21–23]. The size effect of the elec-
tronic component has been described by Fuchs-Sondheimer
theory and Mayadas-Shatzkes theory [24,25]. However, the
success of these theories relies on the validity of the free
electron model [7]. For the phonon component, the main strat-
egy used in previous works is roughly estimating the phonon
thermal conductivity using the molecular dynamics method or
the Debye model [26–29]. However, the magnitude of phonon
thermal conductivity is still under debate. For example, in
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gold nanostructures, some studies believe that the phonon
component can be ignored [5,9,27], while other studies esti-
mate a large phonon component, which is even larger than the
electronic component [7,15]. An established understanding of
the size effect on phonon thermal conductivity is still lacking.

The Wiedemann-Franz law states that the ratio of the elec-
tronic thermal conductivity to the electrical conductivity in a
metal is proportional to the temperature. The proportionality
constant, known as the Lorentz ratio, is assumed to be the
Sommerfeld value, L0 = 2.44 × 10−8 W �/K2 [30]. When
the phonon contribution is negligible, the Wiedemann-Franz
law provides an estimation of thermal conductivity according
to the measured electrical conductivity, which is easier to be
measured [30]. Meanwhile, the Wiedemann-Franz law can be
used to separate the electron and phonon contributions when
the total thermal conductivity is known [8]. However, the
validity of the Wiedemann-Franz law in metallic nanostruc-
tures is still controversial. Several researchers reported that
the Lorentz ratio is several times larger than the Sommer-
feld value [7,8,15,16,26], while other researchers reported the
Lorentz ratio is around or smaller than the Sommerfeld value
[9–11,18,31–33]. Moreover, it is still under debate whether
or not the Lorentz ratio is size and temperature dependent
[5,9,31]. Stojanovic et al. proposed that the deviation of the
Lorentz ratio from the Sommerfeld value is related to the
neglect of phonon contribution and the inelastic electron-
phonon scattering [28]. A quantitative understanding of
phonon contribution and inelastic electron-phonon scattering
is desired to understand the Wiedemann-Franz law in metallic
nanostructures.
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In this work, we tackle these two issues using a theo-
retical calculation combining first-principles calculations and
Boltzmann transport equations. We take gold (Au) and tung-
sten (W) as testing materials, as their transport properties
are widely studied in experiments [9,15,34,35]. Furthermore,
the two metals have typical characteristics from a theo-
retical perspective (Au has a near spherical Fermi surface
and W has a complicated Fermi surface [36,37]). Different
from previous theoretical calculations [24,25,28], we consider
the intrinsic electron and phonon properties using rigorous
mode-by-mode first-principles calculations [37–39], instead
of applying assumptions such as the free electron assump-
tion and Debye model for the phonon [28]. Combining the
Boltzmann transport equation with the intrinsic electron and
phonon properties, the thermal transport properties (thermal
conductivity and Lorentz ratio) of metallic nanostructures can
be predicted.

II. METHOD AND SIMULATION DETAILS

In this section, we provide our calculation framework: first-
principles calculations combining the Boltzmann transport
equation for predicting the thermal conductivity of metallic
nanostructures. Since our framework is based on the Boltz-
mann transport equation, we restricted our focus to length
scales beyond ten nanometers, for which the quantum con-
finement effects of the electron or phonon can be ignored
[40,41]. Both the electron and phonon are involved in the
thermal transport of metallic nanostructures. The electron and
phonon in nanostructures not only encounter intrinsic scatter-
ing processes in ideal bulk [36,38], but also encounter external
scattering processes including surface scattering and grain
boundary scattering [24,25].

A. Surface scattering and grain boundary scattering

Both surface scattering and grain boundary scattering are
important in the phonon and electron transport in metallic
nanostructures [24,25]. Schematics of these scattering pro-
cesses as well as the typical structure of a nanofilm/nanowire
with thickness/diameter H and average grain size D are shown
in Fig. 1. The grain boundary is assumed to be perpendicu-
lar to the surface, as observed in the experimental samples
[22,25]. The proportionality between the average grain size
D and the thickness H is usually adopted in experiments, and
the proportionality constant is usually in the range of 2–0.5
[22,25,42].

To describe the surface scattering, we adopt the idea of
Fuchs’ model: some of the carriers are specularly reflected
by the surface, while others are diffusely reflected by the
surface (Fig. 1). The percentage of specularly reflected car-
riers is specularity p. This model is also known as the partial
diffuse-partial specular boundary condition, which is widely
used in surface scattering modeling [43–45]. The specularity
p for each electron or phonon λ can be obtained by Soffer’s
model [46,47],

pλ = exp
(−16π2η2

/
�2

λcos2θ
)
,

where η is the roughness of the surface, and �λ is the wave-
length of the electron or phonon. θ is the incident angle.

FIG. 1. Surface scattering and grain boundary scattering in a
typical (a) nanofilm and (b) nanowire. The thickness of the nanofilm
is H and the average grain size is D. The diameter of the nanowire
is H and the average grain size is D. The specularity of carriers at
the surface is p. The reflection coefficient of carriers at the grain
boundary is R.

The roughness η of the surface can be measured, and the
reported values are around 1 nm [22,48,49]. For Au and W,
the wavelengths of electrons and phonons contributing 80%
of thermal conductivity are smaller than 1 nm. According
to Soffer’s model, when the roughness is around 1 nm, the
specularity is nearly zero (pure diffuse surface scattering) for
all electrons and phonons in both Au and W. Thus, we as-
sume a diffuse surface scattering for all carriers in subsequent
sections.

The scattering around the grain boundary is complex and
similar to the scattering at the interface [50,51]. To simplify
the complex grain boundary scattering, we adopt the idea
of Mayadas’ model: some of the carriers transmit across
the grain boundary, while others are reflected at the grain
boundary. The percentage of reflected carriers is the reflection
coefficient R [25]. The accuracy of this model depends on
the reflection coefficient. As far as we know, it is difficult
to theoretically obtain the reflection coefficient R, which is
usually obtained by fitting the experimental results [27,42,52].
The range of reported R for electrons is 0.2–0.8 for polycrys-
talline nanostructures [8,27,28,53]. The large range may be
due to the fact that R is related to the configuration of the
grains, which varies for different samples. Previous studies
demonstrated that the grain boundary resistance for phonon
transport is low (much lower than that for electronic transport)
[54,55], thus we assume that all phonons can transmit across
the grain boundaries, i.e., the reflection coefficients of phonon
modes are zero [28].

Since the structural scatterings are usually treated as elastic
scattering [56–58], we assume the charge and thermal trans-
port of the electron have the same specularity and reflection
coefficient.

B. Thermal conductivity: Boltzmann transport
equation model

By solving the Boltzmann transport equation with the re-
laxation time approximation [19], the phonon and electronic
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thermal conductivity in the transport direction of a metallic
nanostructure (nanofilm or nanowire) can be calculated as

κ =
∑

λ

cλ‖vx,λ‖2τλSλ, (1)

where κ is the phonon thermal conductivity κph or the
electronic thermal conductivity κe. For the phonon thermal
conductivity, λ ≡ (q, υ ) denotes the phonon mode with po-
larization υ and wave vector q. For the electronic thermal
conductivity, the λ ≡ (k, n) denotes the electron with wave
vector k and band index n. cλ is the volumetric specific heat

of the phonon or the electron. vx,λ denotes the component
of the phonon group velocity or the electron velocity in the
transport direction. τλ denotes the intrinsic phonon relaxation
time or the intrinsic electronic thermal transport relaxation
time. Sλ denotes the “suppression function” for phonons and
electrons, which captures the size dependence of the ther-
mal conductivity. For bulk materials, Sλ is equal to 1, and
Eq. (1) is reduced to the expression for bulk materials [59].
Thus, Eq. (1) can be simplified as κ = ∑

λ κbulk,λSλ. Sλ for
nanofilms and nanowires are related to surface scattering and
grain boundary scattering. For the nanofilm, Sλ is expressed
as

Sλ(H, D, τλ, vλ, pλ, R) = τ ′
λ

τλ

1

H

∫ H

0

[
1 − 1 − pλ

1 − pλ exp (−H/τ ′
λ
|vy,λ|) exp

(
− y

τ ′
λ
|vy,λ|

)]
dy, (2)

where τ ′
λ is the relaxation time considering the intrinsic

scattering processes (electron-phonon, phonon-phonon, and
phonon-electron scattering) and grain boundary scattering
process, and is expressed as

1

τ ′
λ

= 1

τλ

+ α

2τλ

vλ

|vλ,x| , α = vλτλ

D

R

1 − R
. (3)

According to the expression, when the reflection coeffi-
cient is nearly 0 (all carriers can transmit the grain boundary)
or the mean free path is much smaller than the grain size,
the grain boundary scattering can be ignored and τ ′

λ is equal
to the intrinsic relaxation time τλ. Since we have assumed
the reflection coefficients of phonon modes to be zero, the
grain boundary scattering of phonons is ignored. The elec-
tron/phonon properties including velocity, heat capacity, and
intrinsic relaxation time are obtained by first-principles cal-
culations. The detailed derivation of Eq. (2) as well as the
equation for nanowires are presented in the Supplemental
Material [60].

The formula above can also be used in electrical conduc-
tivity calculation, i.e., σ = ∑

λ σbulk,λSλ, which will not be
discussed here.

C. Intrinsic phonon and electron properties:
First-principles calculations

For phonons, the volumetric specific heat can be obtained

by cv,λ = h̄ωλ

V
∂n0

λ

∂T , with n0
λ the Bose-Einstein distribution func-

tion, V the volume of the primitive cell, ωλ the phonon
frequency, and T the temperature. The phonon group ve-
locity can be obtained by vλ = ∂ωλ

∂q . The phonon relaxation
time can be obtained using the Matthiessen’s rule [61] con-
sidering both phonon-phonon and phonon-electron scattering
[62], namely 1/τλ = 1/τpp + 1/τpe, where 1/τpp is the scat-
tering rate with respect to three-phonon interactions [61], and
1/τpe is the scattering rate with respect to phonon-electron
interactions [63]. For electrons, the volumetric specific heat

can be obtained by cv,nk = − ns
V T (εnk − μ) ∂ f 0

nk
∂εnk

, with f 0
nk the

Fermi-Dirac distribution function, V is the volume of the
primitive cell, ns denotes spin degeneracy, εnk is the electron
energy, and μ is the Fermi energy. It should be noted that we

only consider the zero-electric-field condition for electronic
thermal conductivity and heat capacity and ignore the effects
of electrochemical potential gradient. This is reasonable for
metals since the reduction of electronic thermal conductivity
caused by the thermoelectric effects is usually smaller than
1%. However, the thermoelectric effects cannot be ignored
in semiconductors and the zero-current formula should be
used. The electron group velocity can be obtained by vnk =
1
h̄

∂εnk
∂k . For pure metals at intermediate and high temperatures,

the electron relaxation time is limited by electron-phonon
scattering and can be obtained using Fermi’s “golden rule”
[64]. In particular, we rigorously consider the elastic/inelastic
electron-phonon scatterings and their effects on transport co-
efficients by distinguishing the electron relaxation time for
heat and charge transport. More computational details of the
intrinsic phonon and electron properties (for both heat and
charge transport) from first-principles methods have been
described previously [38]. The electron relaxation time ap-
proximation is employed to obtain the electrical transport
properties of metals in this work. The electron relaxation
times are well defined and the results calculated by this
method are close to experimental data [38]. Similar numerical
results can also be obtained using the iterative calculation
scheme [36,65,66].

We carried out the first-principles calculations using the
QUANTUM ESPRESSO [67] package to predict electron trans-
port. The types of local density approximation (LDA) [68] and
generalized gradient approximation (GGA) [69] exchange-
correlation functional are used for Au and W, respectively.
The phonon-phonon scattering rate is evaluated by the SHENG-
BTE package [70]. The harmonic force constants are extracted
using density functional perturbation theory (DFPT) with a
6 × 6 × 6 q-point mesh. A supercell of 4 × 4 × 4 and the
third nearest atom neighbor is considered to obtain the cubic
force constants [70]. The q-point mesh is set as 60 × 60 × 60
and 40 × 40 × 40 in the BTE solver, respectively for Au and
W to ensure the convergence of lattice thermal conductiv-
ity. The phonon-electron scattering rate and electron-phonon
scattering rate are evaluated using the EPW package [71].
The cutoff energy of plane wave is set as 180 Ry for Au
and 120 Ry for W. A threshold of energy of 10−10 Ry is
employed in the self-consistent field calculation and non-self-
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FIG. 2. (a) Bulk thermal conductivity of Au and W. The experimental data are taken from Ref. [72]. (b) The normalized thermal
conductivity accumulation with respect to carrier mean free path (MFP) in Au and W at 300 K.

consistent field calculation. The initial coarse k-point and
q-point meshes are set as 12 × 12 × 12 and 6 × 6 × 6, respec-
tively, for both Au and W. The k-point and q-point meshes are
set to be 80 × 80 × 80 and 60 × 60 × 60 for Au, while 100 ×
100 × 100 and 40 × 40 × 40 for W to sample the Brillouin
zone.

D. Bulk thermal conductivity and mean free path

We present the bulk thermal conductivity for Au and W
in Fig. 2(a), calculated by Eq. (1) (the suppression function
Sλ is equal to 1). The calculated bulk thermal conductivity
agrees well with the experimental results [72] (the error is less
than 10%). In bulk Au, the phonon contribution is negligible
(less than 1% of the total thermal conductivity). In contrast, in
bulk W, the phonon contribution is more than 30% of the total
thermal conductivity.

The thermal conductivity accumulation [73] with respect
to the carrier mean free path at 300 K is shown in Fig. 2(b).
This property is crucial for our mode-by-mode calculation.
This also shows that our model is more accurate than previous
studies, which usually adopt the averaged electron MFP from
the free electron model and phonon thermal conductivity from
molecular dynamics or the Debye model [15,28]. In general,
the range of electron mean free path is much narrower than
that of the phonon mean free path for both Au and W. In
Au, 80% of the phonon thermal conductivity is contributed
by phonons with mean free path less than 10 nm, which is
smaller than the mean free path of the electron. In W, above
50% of the phonon thermal conductivity is contributed by the
phonon with mean free path larger than 25 nm, which is larger
than the mean free path of the electron. At lower temperatures,
the mean free path of carriers becomes larger [36,39], which
is not shown here for simplicity.

III. SIZE EFFECT

In this section, we study the size effect of the total thermal
conductivity, electronic thermal conductivity, phonon thermal
conductivity, and the phonon contribution. We only present
the results for nanofilms in the main text and the results for
nanowires are presented in the Supplemental Material [60].

All the conclusions about nanofilms can also be applied to
nanowires.

A. Total thermal conductivity

In this subsection, we study the size effect of total thermal
conductivity in Au and W nanofilms (including single-
crystalline and polycrystalline nanofilms) at 300 and 100 K.
Previous studies demonstrated that the electrical conductivity
in W single-crystalline nanofilms is related to the transport
orientation [59,60]. Thus, we study the single crystalline for
[100] and [110] transport orientations. Polycrystalline nanos-
tructures always relate to multiple orientations and thus we
assume a random distribution of orientations in calculating
grain boundary scattering (in polycrystalline nanofilms). As
described in Sec. II A, we assume the pure diffuse surface
scattering. For polycrystalline nanofilms, we present the data
for grain size D equal to the thickness H and electron re-
flection coefficient R equal to 0.5. Other D/H values and
electronic R values will be discussed later.

The normalized total thermal conductivity (over the bulk
total thermal conductivity) values are shown in Fig. 3. For all
nanofilms, the thermal conductivity is smaller than 90% of
the bulk value for sizes ranging from 400 to 20 nm. Since the
mean free path of the carriers contributing 80% thermal con-
ductivity is on the order of magnitude 10 nm, the size effect is
obvious when the size is less than ten times the mean free path
[24,25,74]. When the size decreases, the thermal conductivity
of the nanofilm decreases. At 300 K, the thermal conductivity
reduces to 20% of the bulk value for the 20-nm Au polycrys-
talline nanofilm and 35% of the bulk value for the 20-nm W
polycrystalline nanofilm [Figs. 3(a) and 3(c)]. Since the mean
free path of carriers increases with temperature decreasing,
the reduction of thermal conductivity is larger at 100 K and
reaches 90% for the 20-nm Au polycrystalline nanofilm and
80% for the 20-nm W polycrystalline nanofilm. Compared
with polycrystalline nanofilms, the reduction is smaller in the
single-crystalline nanofilm (50% reduction for the 20-nm Au
nanofilm and 40% reduction for the 20-nm W nanofilm at
300 K) due to the absence of electron grain boundary scatter-
ing [Figs. 3(b) and 3(d)]. In single-crystalline nanofilms, the
thermal conductivity is transport orientation dependent. The
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FIG. 3. Thickness H dependence of normalized thermal conductivity over bulk thermal conductivity for the (a) polycrystalline Au nanofilm,
(b) single-crystalline Au nanofilm, (c) polycrystalline W nanofilm, and (d) single-crystalline W nanofilm.

difference between the two orientations increases when the
size decreases. However, compared with the large reduction of
thermal conductivity from bulk values (around 50% at 20 nm),
the difference between these two orientations is not large (less
than 10% of the bulk thermal conductivity at 20 nm). This
anisotropy of thermal conductivity is similar to the anisotropy
of electrical conductivity observed in previous work, which is
due to the anisotropy of the Fermi surface [75].

In the following subsections, we analyze the size effect of
the electron component and the phonon component separately.
Since the polycrystalline nanofilms are usually fabricated in
experiments and contain both surface and grain boundary
scattering [8], we will only present the data for polycrystalline
nanofilms in the remaining parts.

B. Electronic thermal conductivity

As described in Sec. II A, we assume pure diffuse surface
scattering. The ratio of the grain size to the thickness D/H
ranges from 0.5 to 2. The electron reflection coefficient R
ranges from 0.2 to 0.8. The range of corresponding thermal
conductivity at 300 K is shown by the shadow region in Fig. 4.
We also present the typical values corresponding to D/H = 1
and R = 0.5 in Fig. 4 as dots. At 300 K, the electronic thermal
conductivity is reduced to 90% of the bulk value when the
size is smaller than 400 nm for Au and 200 nm for W. This
can happen as the electron mean free path is around 40 nm
for Au and 20 nm for W. When the thickness decreases, the
electronic thermal conductivity decreases. At 300 K, the ther-
mal conductivity reduces to 20% for the 20-nm Au nanofilm
and 40% for the 20-nm W nanofilm. Because the mean free

path of electrons increases with temperature decreases, this
reduction is larger at 100 K and around 90% for both Au
and W at 20 nm. When D/H decreases or R increases, the
electronic thermal conductivity decreases due to the larger
grain boundary scattering. At 300 K, for D/H ranging from 0.5
to 2 and R ranging from 0.2 to 0.8, the reduction of electronic
thermal conductivity goes from 55% to 98% for Au nanofilm
and from 40% to 90% for W nanofilm with a thickness of
20 nm.

The free electron model has been widely used in previ-
ous theoretical works [24,25]. However, whether or not it is
good at metallic nanostructure properties prediction remains
unknown. In this model, one assumes that the velocities of all
electrons are the Fermi velocity (1.39 × 106 m/s for Au and
6.1 × 105 m/s for W [76,77]); the Fermi surface is spherical,
and the mean free path of all electrons is the same, which is the
averaged mean free path calculated by lF = κe,bulk/( 1

3 cevF )).
It should be noted that this free electron model uses the elec-
tronic thermal conductivity calculated from real electron and
phonon modes. The average mean free path of electrons is
45 nm for Au and 22 nm for W at 300 K (the average mean
free paths from 100 to 400 K are presented in the Supple-
mental Material [60]). We also calculate the electronic thermal
conductivity using the free electron model. The results from
the free electron model match the mode-by-mode results well
(the error is smaller than 10% for both Au and W, Fig. 4).
This observation is also valid for other D/H values, R values,
and other temperatures between 100 and 400 K, which are not
shown here for simplicity. This phenomenon is due to the fact
that the range of electron mean free paths is not large for both
W and Au (Fig. 2).
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FIG. 4. Thickness H dependent electronic thermal conductivity over bulk electronic thermal conductivity for the (a) Au nanofilm and (b)
W nanofilm.

C. Phonon thermal conductivity

In this subsection, we discuss the size effect on phonon
thermal conductivity. As described in Sec. II A, we assume
pure diffuse surface scattering and ignore the grain boundary
scattering of phonons. The reduction of the phonon thermal
conductivity for the 20-nm Au nanofilm is only 17% at 300 K
[Fig. 5(a)], since the mean free path of the phonon is only
around 2 nm [Fig. 2(b)]. The reduction reaches 30% at 100 K
due to the increase in the mean free path. In contrast, the re-
duction in phonon thermal conductivity for W is much larger
[Fig. 5(b)]. The thermal conductivity is reduced to 90% of the
bulk value when the size is smaller than 700 nm at 300 K.
This phenomenon is related to the large mean free path of
phonon in W, which spans from several nanometers to 200 nm.
The reduction reaches 70% for the 20-nm W nanofilm. The
reduction increases further at lower temperatures.

Apart from the value of phonon thermal conductivity, the
percentage of phonon thermal conductivity contributing to the
total thermal conductivity (phonon contribution) also receives
attention [36,37]. Thus, we present the percentage of phonon
thermal conductivity in Fig. 6. We also present the range of
the phonon contribution as the shadow region and the typi-
cal values corresponding to D/H = 1 and electron R = 0.5
as dots. In general, the κph/κtotal in nanofilms can be much
different from that in bulk. For Au, the phonon contribution

is larger in nanofilms than in bulk and increases with the
size decreases [Fig. 6(a)]. For D/H = 1 and electron R = 0.5,
the κph/κtotal increases to 1% for the 20-nm Au nanofilm at
300 K. This percentage further increases with temperature
decreases, the grain size decreases and the reflection coef-
ficient of electrons increases. At 100 K, the κph/κtotal can
reach up to 12%, which is much larger than 1% in bulk. The
increment of the phonon contribution in Au nanofilms is due
to the smaller size effect of the phonon part than that of the
electron part, which is caused by two facts: (1) the phonon
mean free path is smaller than the electron mean free path in
Au [Fig. 2(b)]; (2) the phonon reflection coefficient is smaller
than the electron reflection coefficient (0 versus 0.2–0.8). At
lower temperatures, the larger size effect further increases
the phonon contribution. In contrast, for W, the κph/κtotal is
larger in some nanofilms and smaller in other nanofilms com-
pared with in bulk W [Fig. 6(b)]. For D/H = 1 and electron
R = 0.5, the percentage is smaller in the 20-nm W nanofilm
(30%) than in the bulk value (35%) at 300 K. However, at
100 K, the percentage is larger in 20-nm W nanofilm (45%)
than in the bulk value (33%). The reason for this is the
trade-off between the larger phonon mean free path versus the
electron mean free path [Fig. 2(b)] and the smaller phonon
reflection coefficient versus the electron reflection coefficient.
The former causes a larger size effect in phonons than in

�
�

�
�

FIG. 5. Thickness H dependent phonon thermal conductivity over bulk phonon thermal conductivity for the (a) Au nanofilm and (b) W
nanofilm.
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FIG. 6. Thickness H dependent percentage of phonon thermal conductivity contributing to the total thermal conductivity for the (a) Au
nanofilm and (b) W nanofilm.

electrons [78], while the latter causes a smaller size effect
in phonons than in electrons. This trade-off also varies at
different temperatures. When the grain size decreases and
the reflection coefficient of electrons increases (high granular
nanostructures), the percentage increases and can reach above
80% at 100 K, which is much larger than 33% in bulk W.
When the grain size increases and the reflection coefficient
of electrons decreases (low granular nanostructures), the per-
centage decreases and can be less than 30% at 300 K, which
is smaller than 35% in bulk W.

IV. VALIDITY OF THE WIEDEMANN-FRANZ LAW

In this section, we study the validity of the Wiedemann-
Franz law. We first discuss the Lorentz ratio estimated by
the electronic thermal conductivity: Le = κe/σT . Then, we
discuss the Lorentz ratio estimated by the total thermal con-
ductivity: L = κtotal/σT . All the conclusions about nanofilms
can also be applied to nanowires (results are presented in the
Supplemental Material [60]).

The Lorentz ratios Le calculated by the electronic thermal
conductivity of bulk Au and bulk W are smaller than the
Sommerfeld value (Fig. 7). When the temperature drops, the
discrepancy gets larger. Note that this phenomenon is usually

attributed to the inelastic electron-phonon scattering [5,9,28].
However, Ref. [38] showed that the difference between elec-
tron momentum relaxation time and energy relaxation time
is small in metal Cu and Al when the temperature is higher
than 100 K. The inelastic electron-phonon scattering effects
can also be ignored in the temperature range of 100–400 K
in Au and W, shown in Fig. 10. We attribute the departure
in the Lorentz ratio to the energy-dependent electron relax-
ation time around the Fermi energy. The detailed explanation
is shown in the Appendix. The electron relaxation time of
bulk Au has weaker energy dependence compared to bulk
W (shown in Fig. 11), resulting in a smaller departure in
the Lorentz number of Au. Since the range of electron mean
free path is narrow, the electron scatterings caused by grain
boundary scattering and surface scattering are nearly energy
independent. With the addition of such energy-independent
scatterings, the energy-dependent behavior of scattering in
nanostructures becomes weaker (shown in Fig. 11). Thus, the
Lorentz ratio Le of nanostructures is closer to the Sommerfeld
value when the size effect increases, i.e., the thickness and
grain size decrease. The Lorentz ratio of an Au nanofilm
matches well with the Sommerfeld value in the whole temper-
ature range we studied (100–400 K). In contrast, the Lorentz
ratio of a W nanofilm is still smaller than the Sommerfeld

FIG. 7. Temperature dependent Lorentz ratio Le for the (a) Au nanofilm and (b) W nanofilm. The Lorentz ratio is normalized by
Sommerfeld value, as L0 = 2.44 × 10−8 W �/K2.
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FIG. 8. Temperature dependent Lorentz ratio L for the (a) Au nanofilm, (b) W nanofilm. The Lorentz ratio is normalized by the Sommerfeld
value, as L0 = 2.44 × 10−8 W �/K2.

value due to its energy-dependent electron relaxation time,
shown in Fig. 11(b). Overall, the discrepancy is within 30%
in W nanofilms.

Since the electronic thermal conductivity is difficult to ob-
tain in experiments, the Lorentz ratio is sometimes estimated
by the total thermal conductivity L = κtotal/σT . The Lorentz
ratio L can be larger than the Sommerfeld value due to the
additional phonon contribution (Fig. 8). Since the phonon
contribution in nanofilms is different from that in bulk metals,
the increment of Lorentz ratio L is also different from that in
bulk metals. In Au, due to the increment of phonon contribu-
tion and the weaker energy-dependent electron scattering, the
Lorentz ratio L is larger in nanofilms than in bulk Au. For W,
since the phonon contribution in nanofilms has a large range
(Fig. 6), the Lorentz ratio L in nanofilms also spans a large
range, and the upper limit can reach 2.4 times the Sommerfeld
value.

The Au polycrystalline nanofilm has also been studied in
experimental studies [5,7,9,27]. The reported Lorentz ratios
L are shown in Fig. 9. The reported Lorentz ratios L spans a
large range from 3 times to 0.1 times the Sommerfeld value. In
these works, L larger than the Sommerfeld value is ascribed to
the phonon contribution [7,27], and L smaller than the Som-

FIG. 9. The range of our predicted and the reported Lorentz
ratios for Au nanofilms (normalized by the Sommerfeld value) in
previous experimental studies [5,7,9,27,81].

merfeld value is explained by the inelastic electron-phonon
scattering [5,9]. The Bloch-Grüneisien (BG) model [58,79,80]
is also applied to fit the deviation of Lorenz ratio Le in nanos-
tructures previously [5,10,18]. However, the BG model is not
a quantitative model due to the strong assumptions in it, such
as the Debye phonon spectrum and electrons are only scat-
tered by longitudinal acoustic phonons [38]. In our model, we
rigorously consider the phonon contribution and include the
intrinsic inelastic electron-phonon scattering. We also present
the range of our predicted results in Fig. 9. The upper limit of
the range is the Sommerfeld value plus the phonon contribu-
tion (set as 13%, since the percentages we obtained are below
13%). The lower limit is the bulk Lorentz ratio. Some experi-
mental results [5,7,9,27] exceed the range of predicted results.
Since we assume that the existence of grain boundaries does
not induce inelastic electron-phonon scattering, one possible
reason for the deviation is that the high granular nature of the
experimental sample induces inelastic electron-phonon scat-
tering [9]. The inelastic scattering can induce the Lorentz ratio
value to be the Sommerfeld value multiplied by an efficiency
factor, which is within the theoretical limit between 0 and 2
[38,56,58]. This also indicates that the mechanism of electron
and phonon scattering at grain boundaries should be further
studied. Finally, we note that only a single set of experimental
data (Ref. [27]) observed that the Lorentz ratio value exceeds
the range of zero to two times and reaches three times the
Sommerfeld value, which cannot be explained by inelastic
scattering, and the mechanism should be further analyzed.

A recent careful experimental measurement reveals that
when excluding the contact resistance, the Lorentz ratio of
silver nanowires is close to the Sommerfeld value [11], which
is consistent with our findings (silver also has a small phonon
contribution, which is similar to Au). It indicates that there
may be some uncertainties in earlier experimental measure-
ments due to the challenge in dealing with contact resistance.
Thus, to fully understand these effects, further experiments
need to be carefully performed.

V. CONCLUSIONS

In this study, we use the framework of first-principles
calculations combining the Boltzmann transport equation to
study the thermal transport in metallic nanostructures. Within
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this framework, the mode-by-mode electron and phonon prop-
erties are rigorously considered. The size effect and the
validity of the Wiedemann-Franz law in Au and W nanostruc-
tures are studied.

For the size effect, we show that the thermal conductivity
is smaller than the bulk value when the size is in the range
of 10–1000 nm. Both the phonon and electronic thermal con-
ductivity decrease with the size. Specifically, the size effect of
the electronic thermal conductivity can be well described by
the free electron model with an error less than 10%. However,
the phonon contribution to the total thermal conductivity is
complicated in metallic nanostructures, as it relates to the
metals, temperatures, grain properties, and sizes. For Au, the
phonon contribution in a thin film is larger than that in bulk
metal and can reach up to 15%, which is much larger than 1%
in bulk Au. For W, the phonon contribution is in a large range
(20–80%), which can be either larger or smaller than the bulk
value (∼30%). Roughly, the phonon contribution increases
in nanostructures for those metals with small bulk phonon
thermal conductivity (like Au), while it can be suppressed
in nanostructures for those metals with large bulk phonon
thermal conductivity (like W).

By assuming that the grain boundary does not induce
inelastic electron-phonon scattering, the Lorentz ratio of
nanostructures estimated by the electronic thermal conduc-
tivity is between the bulk value and the Sommerfeld value.
The Lorentz ratio is closer to the Sommerfeld value when
size decreases. In Au and W nanostructures, the Wiedemann-
Franz law works well. The Lorentz ratio estimated by total
thermal conductivity can be larger than the Sommerfeld
value and can reach a large value due to the large phonon
contribution. Some reported Lorentz ratios for Au polycrys-
talline nanofilms exceed the range of our findings: between
the Sommerfeld value and the bulk Lorentz ratio. To fully
understand these effects, further experiments need to be
carefully performed. Moreover, the effect of the grain bound-
ary on the electron-phonon interaction should be further
investigated.
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APPENDIX: ENERGY-DEPENDENT ELECTRON
RELAXATION TIME

In previous works [5,9,28], the departure of the Lorentz
ratio from the Sommerfeld value is usually attributed to the
inelastic electron-phonon scattering. The same charge car-
rier holds intrinsically different channels for electrical and
heat conduction. Here we present the average electron energy
relaxation time and momentum relaxation time to identify
the inelastic electron-phonon scattering. The average electron
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FIG. 10. The average momentum relaxation time (τσ ) and the
energy relaxation time (τκ ) with different temperatures for W.

relaxation times are calculated from the following expressions
[82]:

〈τσ 〉 =
∑

km
∂ f 0

km
∂εkm

|vkm|2τσ,km∑
km

∂ f 0
km

∂εkm
|vkm|2

, (A1)

〈τκ〉 =
∑

km
∂ f 0

km
∂εkm

|vkm|2τκ,km∑
km

∂ f 0
km

∂εkm
|vkm|2

. (A2)

τσ,km and τκ,km are the mode-by-mode momentum relaxation
time and energy relaxation time. Their detailed expressions
can be found in Ref. [38]. The two average electron relaxation
times are almost identical to each other in the entire temper-
ature range, as shown in Fig. 10. Therefore, the difference
between the Lorentz ratio and the Sommerfeld value is not
related to the inelastic electron-phonon scattering.

Here, we attribute the departure of the Lorentz ratio from
the Sommerfeld value to the energy-dependent electron relax-
ation time near the Fermi energy [38]. The energy-dependent
electron relaxation time is given by

τ (ε) =
∑

km τkmδ(ε − εkm)∑
km δ(ε − εkm)

. (A3)

The δ function is approximated by the Gaussian
broadening scheme δ(x) = limη→0

1√
π

1
η
e−(x/η)2

. The
broadening parameter η is chosen as 0.01 eV. The calculated
energy-dependent electron relaxation times are shown
in Fig. 11. For the bulk cases, we only consider the
electron-phonon scattering and peaks exist in the electron
relaxation times of both Au and W at 100 K. The peaks
become weaker at higher temperatures. This is an intrinsic
behavior of electron and it is attributed to equilibrium
distribution functions of electron and phonon [83]. The
larger peak in the electron relaxation time results in the
more significant failure of the Wiedemann-Franz law. Bulk
W holds a larger peak compared to bulk Au at 100 K and
the former has significantly smaller Lorentz ratio, shown in
Fig. 7. The peaks will decay or disappear in the electron
relaxation times of thin films since the electron scattering
induced by grain boundary scattering and surface scattering is
nearly energy independent. The constant relaxation time
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FIG. 11. The energy-dependent electron relaxation time of (a) gold and (b) tungsten at 100 and 400 K with/without grain boundary
scattering and surface scattering. The electron energy is normalized to the Fermi energy. The grain size and thickness of the nanofilm are 50
nm. The reflection coefficient is 0.5. The surface scattering is diffuse scattering.

approximation can be applied to cases with energy-
independent electron relaxation times. Therefore, the
Wiedemann-Franz law is valid in these cases [38]. The

peak still exists in the electron relaxation time of the W thin
film at 100 K, shown in Fig. 11(b). That is why the departure
of Lorentz ratio is observed in the W thin films in Fig. 7(b).
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