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Chemical order relaxation in a substitutional solid alloy around the critical temperature
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The relaxation rate for phase transformations depends on how the system is far from its thermodynamic equi-
librium. If, for example, temperature in the system approaches to the phase transition point, the relaxation rate
becomes close to zero. We theoretically investigate the laser-induced kinetics of chemical order-disorder trans-
formations (CODTs) in substitutional solid alloys at temperatures T satisfying the condition that |T –Tc| � Tc,
where Tc is the CODT critical temperature. In these studies, we use the equation obtained by Metiu, Kitahara, and
Ross, that is, dη/dt = –(�/2kBT )∂F/∂η, where 0 < η < 1 is the chemical order parameter, � is the frequency
of atomic jumps, kB is the Boltzmann constant, and F is the free energy of the system, which we combine
with the Landau theory for second-order phase transitions. If the two lowest terms are retained only in a Taylor
expansion of F, the η(t ) dependence can be found analytically. Such an approach is assumed to be valid for
sufficiently small η < 0.5. As an example, we simulate CODTs in the thin-film (40-nm thickness) binary alloy
of FexAl1−x (x = 0.6). Our simulations show that both extensive chemical ordering and disordering in the
solid alloy are feasible under short-pulse laser irradiation, at least, at a nanosecond time scale. This finding
can be useful for improving the properties of functional alloyed materials and for extension of their potential
applications.
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I. INTRODUCTION

Since the 1970s, after a study by Ovshinsky [1], materials
that exhibit reversible changes in their physical properties
such as electrical resistivity [1], optical reflectivity [2,3], or
magnitude of magnetization [4,5] due to thermally induced
changes in their crystalline structure, so-called phase-change
materials, have been attracted a steady interest in view of their
applications in memory [2–8] and computing [8–10] devices.
For such materials, it is crucial that their relaxation to the ther-
modynamic equilibrium occurs rapidly enough. A one type
of phase-change materials, namely chalcogenide glasses, ex-
hibits fast structural order (crystalline)–disorder (amorphous)
transitions with the critical temperature Tm that corresponds
to the phase transition between the liquid and solid states
[2–7]. It was demonstrated, e.g., Refs. [11–15], that the phase
changes result from applying heating pulses with duration in
a broad range of time scales, from the nanosecond to subpi-
cosecond regimes. A motivation for these studies is to clarify
how the concept of phase-change memory and specific phase-
change materials proposed are applicable to data recording
and storage [16,17].

As phase-change materials, one can consider alloys and
compounds whose properties depend on the chemical order
in their atomic lattice [18–20]. To extend their functional-
ity [1–17], it is an important point to address the kinetics
of chemical order-disorder transformations (CODTs) [21–31]
by emphasizing the CODT relaxation rate [32–35]. It has
been found experimentally [32,33] that a single laser pulse
of even a subpicosecond duration provides formation of the
disordered state in a melted film of the Fe0.6Al0.4 alloy, which

persists in the alloy upon resolidification and cooling down
to room temperatures. It is also striking that the disordered
state is able to transform into the ordered one with short-
pulse laser irradiation of lower intensity [32]. More recently,
it was shown by simulations [35], based on the microscopic
approach to the CODT kinetics, that the fast relaxation to
the disordered state is feasible without melting if the CODT
critical temperature (Tc) is significantly lower than the melt-
ing point (Tm). As there can be no a need to cycle melting
and resolidification of the alloy for its reversible transfor-
mations, such phase-change materials can have an enhanced
endurance, which would be useful for their applications. In
our current CODT studies, we employ a phenomenological
macroscopic approach upon the basis of the Metiu, Kitahara,
and Ross (MKR) equation for temporal evolution of the chem-
ical order parameter 0 < η < 1 [25,27], which is combined
with the Landau theory for second-order phase transitions
[21]. From the viewpoint of practical applications [1–17], it
is challengeable to consider such alloys in which a change
in η mediates the modification of their physical properties.
For example, there previously were taken significant efforts
[36–53] and a consensus has been reached in understanding
the phenomenon of disorder-induced magnetism occurring in
intermetallic alloys such as FexAl1−x (x ∼ 0.6). We show that
there is a not so broad range of temperatures T around Tc,
within of which the relaxation of η in the Fe0.6Al0.4 alloy
towards both the disorder (η→0) and, at least, partial order
(η ∼ 0.5) is rapid enough, at least, in the nanosecond regime.
As the relationship between η and magnetism in FexAl1−x

alloys was established both theoretically [51] and experimen-
tally [52], experimental observations of fast and reversible
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transitions between the magnetic states under CODTs would
be realistic [32].

II. THE CALCULATION

In a substitutional binary alloy, the relaxation of η = n1–n2,
where n1(2) is the probability for an atom of the component 1
(2) to occupy a site r in the atomic lattice, is governed by the
MKR equation [25] (see also discussions in Ref. [27]), that is,

dη

dt
= − �

2kBT

∂F

∂η
, (1)

where � is the frequency of atomic jumps, which provide or-
dering of atoms within unit cells of the atomic lattice, kB is the
Boltzmann constant, and F is the free energy. Within a frame
of the Landau theory [21], the increment of F (η = 0, T = Tc)
can be written in the form of a Taylor series, that is,

�F ≡ F (η, T ) − F (0, Tc)

= 1
2 A(T − Tc)η2 + 1

4 Bη4 + 1
6Cη6 . . . , (2)

where the first three nonzero coefficients are as follows:
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In Eq. (2), the coefficients at η, η3, η5, . . . have to be
equal to zero because �F does not change upon a change in
the sign of η. To find coefficients at η2, η4, η6, . . ., we have
used the expression for F obtained in the self-consistent field
approximation [22,23]:

F = 1

2

∑
r,r′

V (r − r′)n(r)n(r′) + kBT
∑

r

[n(r) ln n(r)

+ (1 − n(r)) ln(1 − n(r))], (4)

where the first term is the internal energy with V (r–r′) being
the interatomic potential between atoms located in sites r and
r′, while the second one is the configurational entropy. The
Fourier transform of V (r–r′) at 2π/a, where a is the lattice
constant, is –kBTc/x(1–x) [22,23] to define Tc in Eq. (2). In
Eq. (4), the quantity of n ≡ n1(2) relates to η as

n = x + η(1 − x), (5)

where x is the content of the component 1 (2) in the alloy. To
find the coefficients in Eq. (2) with the help of Eq. (4), we use
that an increment of F is

�F ≡
∑

r′

δF

δn(r′)
δn(r′) =

∑
r

∑
r′

V (r − r′)n(r)δn(r′)

+ kBT
∑

r′
ln

n(r′)
1 − n(r′)

δn(r′), (6)

FIG. 1. �F/kBT versus η at γ = (T –Tc )/T = ±0.1 with the
three (solid black and red curves) and two (dashed blue and ma-
genta curves) terms which are left in Taylor expansion in Eq. (2).
If η < 0.5, it is assumed that the two terms can only be left.

where δF/δn(r′) is the variational derivative of F. Thus, one
obtains

∂F

∂n
≡ δF

δn(r′)
=

∑
r

V (r − r′)n(r) + kBT ln
n(r′)

1 − n(r′)
, (7)

∂2F

∂n2
≡ δ2F

δn2(r)
= V (r − r′) + kBT

n(r′)(1 − n(r′))
, (8)

∂3F

∂n3
= kBT

2n − 1

n2(1 − n)2 , (9)

∂4F

∂n4
= 2kBT

1 − 3n(1 − n)

n3(1 − n)3 , (10)

∂5F

∂n5
= 6kBT

(2n − 1)(2n2 − 2n + 1)

n4(1 − n)4 , (11)

∂6F

∂n6
= 24kBT

5n4 − 6n3 + 2n2 − 3n + 1

n5(1 − n)5 . (12)

As a result, for the first three coefficients in Eq. (2), we
have that

A = 1 − x

x
kB, (13)

B = 1

3
(1 − x)kBT

1 − 3x(1 − x)

x3
, (14)

C = 1

5
(1 − x)kBT

5x4 − 6x3 + 2x2 − 3x + 1

x5
. (15)

Figure 1 shows the free energy change �F/kBT as a func-
tion of η in a substitutional binary alloy with x = 0.6. In
this plot, the solid and dashed curves are such dependences
at γ ≡ (T –Tc)/T = ±0.1 with the three (up to η6) and two
lowest terms (up to η4), respectively, which are left in Taylor
expansion in Eq. (2). Since a conspicuous difference between
the solid and dashed curves appear to be at η > 0.5, as in-
dicated by the arrow in Fig. 1, one can tentatively leave the
first two terms only in Taylor expansion, at least, for η < 0.5.
Substituting such a cut Taylor series into the right-hand part
of Eq. (1), we obtain the following equation for η(t ):

dη

dt
+ α(t )η + β(t )η3 = 0, (16)
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FIG. 2. An elementary diffusion jump into an antistructure site
of a bcc lattice, which is occupied by a vacancy. Events of such a
kind lead to a stronger chemical disorder in the alloy.

where a(t ) = �(t )Aγ (t )/2kB and β(t ) = �(t )B(t )/2kBT (t )
are time-dependent coefficients in view of a dependence of
T on t . As for �(t ), this quantity can be written as

�(t ) = D(t )xcv (t )Z/a2,

where cv (t ) is the vacancy concentration, D(t ) =
D0exp(−Em/kBT (t )) is the atomic diffusivity, Em is the
activation energy for atomic migration, and Z is the number
of nearest neighbors in the atomic lattice. Figure 2 illustrates
an elementary diffusion jump into an antistructure site in a
body-centered cubic (bcc) lattice ( Z = 8), which is occupied
by a vacancy [54,55]. Events of such a kind lead to a stronger
chemical disorder in the alloy. The vacancy concentration
obeys the relaxation equation of the Bloch-type [56], that is,

dcv

dt
= ceq(T ) − cv

τ
, (17)

where ceq(T ) = exp(sv/kB)exp(–Ev/kBT ), sv and Ev are the
entropy and energy for vacancy formation, τ = L2/D, and L
is the crystalline grain diameter or film thickness. By physical
meaning, the quantity of ceq(T ) is the vacancy concentration
at the equilibrium; while the quantity of τ is the characteristic
time of vacancy life between its formation and annihilation
at crystallite or film boundaries. The equilibrium state, i.e.,
dcv/dt = 0, is achievable by approaching exponentially cv (t )
to ceq(T ) under isothermal conditions for vacancy migration.
The solution of Eq. (17) reads

cv (t ) = (cv (0) + M(t ))/K (t ), (18)

where

K (t ) = exp

[
(1/τ0)

∫ t

0
exp(−Em/kBT )dt

]
,

M(t ) = (1/τ0)
∫ t

0
χ (t )K (t )dt,

τ0 = L2/D0, and χ (t ) = ceq(T ) exp(−Em/kBT ).

After multiplying by η–3, Eq. (16) is convertible into a
linear differential equation for a variable ν = η–2, so that

dν

dt
− α(t )ν = β(t ), (19)

where 2α and 2β are replaced by α and β, respectively. As the
solution of Eq. (19) is retrievable in the analytical form, one
obtains finally that

η(t ) =
[

R(t )

(
1/η2(0) +

∫ t

0

β(t )

R(t )
dt

)]−1/2

, (20)

FIG. 3. Simulated T (t ) evolution in the 40-nm-thick alloy of
Fe0.6Al0.4 onto SiO2(150 nm)/Si under laser irradiation of 5-ns-
duration at FWHM with different fluences � absorbed by the film
within the range of 420–300 J/m2. The melting point Tm and the
CODT critical temperature Tc are indicated by the dashed lines.
The transformations are expected to occur at T close enough to Tc,
|T –Tc| � Tc.

where R(t ) = exp(
∫ t

0 α(t )dt ), so that η(�)→0 at T = Tc,
which is in accordance to the Landau theory. Equation (20) is
of central significance in this study to be valid at sufficiently
small η < 0.5 (Fig. 1).

III. RESULTS AND DISCUSSION

A. T (t ) evolution

To find out the laser-induced CODT kinetics, first we sim-
ulate the temporal evolution of temperature T (t ) inside the
alloy. Figure 3 shows T (t ) curves calculated for different
laser fluences � within the range of 300–420 J/m2, which
are absorbed by a thin (L = 40 nm) film of the bcc Fe0.6Al0.4

alloy on (150 nm)SiO2/Si substrate. The film is irradiated
by a short laser pulse, whose full width at half maximum
(FWHM) is 5.0 ns. The rest of details for the T (t ) simulations
were given in Ref. [33]. In the context of our current study,
it is important that �c ≈ 385 J/m2 heats the film up to the
maximal temperature equal to Tc = 1563 K [57] in Fe0.6Al0.4.
We expect that a fluence, which is sufficiently high (� > �c)
to provide T > Tc but still not sufficient for film melting oc-
curring at T > Tm = 1662 K [57], is able to provide extensive
disordering (η→0). Another question is whether is it possible
to recover the ordered state by short-pulse laser irradiation of
lower intensity (� < �c)?

B. Nonequilibrium vacancy concentration

As the relaxation process we consider occurs via vacancies
in the atomic lattice, the next step is to clarify how many
vacancies can be produced in the alloy by its preliminary
treatments. Figure 4(a) shows the equilibrium vacancy con-
centration ceq in Fe0.6Al0.4 as a function of T under isothermal
annealing. For this plotting, the factor of sv/kB and the energy
for vacancy formation in Fe0.6Al04 were taken to be equal
to 5.7 [58] and Ev = 1.0 eV [58–60]. As seen, the quantity
of ceq can be high enough, up to ≈25 at.%, at T → Tm.
Using Eq. (17), which empirically gives the nonequilibrium
vacancy concentration when T depends on t , we find that the
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FIG. 4. (a) Equilibrium vacancy concentration ceq versus T in
Fe0.6Al0.4 up to Tm = 1662 K [57]. (b) Vacancy concentration cvn in
the thin-film (L = 40 nm) Fe0.6Al0.4 alloy as a function of number
of pulses n with � = 420 J/m2 at different τ0–10–4 ns, 5.0×10–4 ns,
and 5.0×10–3 ns.

dependence of this quantity on number of laser pulses (n) is

cvn = cv (0)K−n(∞) + M(∞)
1 − K−n(∞)

K (∞) − 1
.

Figure 4(b) shows the cvn(n) dependence in the thin-film
(L = 40 nm) Fe0.6Al0.4 alloy at different values of τ0–10–4 ns,
5.0×10–4 ns, and 5.0×10–3 ns. Under the assumption that va-
cancies annihilate at boundaries of the film, we estimate that
τ0 = 6.0×10–4 ns provided that D0 = 2.6×10–3 m2/s [59,60].
Thus, a train of n ∼ 102 5-ns-duration (FWHM) pulses with
� = 420 J/m2 provides a value of cvn close to ceq(Tm) ≈ 25
at.% even at a small initial vacancy concentration, ceq(0) ∼
0.01 at.%, which can be obtained by isothermal annealing at
T ∼ 800 K [61].

C. η(t ) evolution

The central result of our study is illustrated in Figs. 5(a)–
5(d) where we show the temporal evolution of η in the alloy at
different values of � within the range of 300–420 J/m2. The
plotted η(t ) curves are calculated at Em = 1.7 eV [58–60],
a = 0.29 nm, e.g., Ref. [36], and cv (0) = 21.0 at.%. Such a
high level of the vacancy concentration can be achieved with
a train of laser pulses, as illustrated in Fig. 4(b).

First, our interest was to clarify whether the disordering can
be induced at T > Tc but still without melting, i.e., at T < Tm.
Figure 5(a) shows the η(t ) evolution simulated at different
fluences � > �c, which provide such heating (Fig. 3). As
the approach used to obtain the η(t ) is not valid at η > 0.5,
the η(t ) curves are shown by the dashed lines at η > 0.5. We
find that a fluence of � = 420 J/m2, which induces the film
overheating by T –Tc ≈ 100 K, provides a highly disordered
state η(∞) → 10–3 if η(0) = 0.48. However, such disorder-
ing is not achievable even with a slightly lower fluence, e.g.,
� = 410 J/m2. As shown in Fig. 5(b), the minimum of η(t )
achieved at � = 420 J/m2 is essentially deeper (down to η ∼
10–7) than that achieved at � = 410 J/m2. This difference in
the depth of the minimum in η(t ) provides strongly different
final states, η(�), produced by even slightly different fluences
[Fig. 5(a)].

Second, it is interesting that a fluence close to �c, within
the range of 350–390 J/m2, provides the ordering in the
alloy from a disordered state η(0) = 10–3, at least, to a

FIG. 5. η versus t in the thin-film (L = 40 nm) Fe0.6Al0.4: (a) The
η(t ) evolution at different values of �, starting from a partially or-
dered state, η(0) = 0.48. The final state obtained with a high enough
fluence � = 420 J/m2 is strongly disordered, η(∞) → 10–3. As the
approach used to obtain η(t ) is not valid at η > 0.5, the η(t ) curves
are shown by the dashed lines at η > 0.5. (b) The achieved minima of
η(t ) under disordering at � = 410 J/m2 and � = 420 J/m2. (c) The
η(t ) evolution at different values of �, starting from a highly disor-
dered state, η(0) = 10–3. Fluences close to �c provide the ordering,
at least, to a partially ordered state, η→0.5. (d) The achieved minima
of η(t ) under the ordering at � = 390 J/m2 and � = 410 J/m2. The
numbers in the plots are values of � given in units of J/m2.

partially ordered state η∼0.5, as shown in Fig. 5(c). We
find that even a fluence that slightly exceeds �c, e.g., � =
390 J/m2, is sufficient for extensive ordering in the nanosec-
ond regime. However, the minimum in η(t ) achievable with
a higher fluence, e.g. � = 410 J/m2, is so deep [Fig. 5(d)]
that the final state remains highly disordered, η(∞) → 0.3 ×
10–2. Obviously, the laser irradiation of too low intensity
(� < 330 J/m2) is not able to provide temperature elevation
that would be sufficient (T < 1300 K) to induce significant
changes in η.

D. Relationship between the chemical order and magnetism

In view of our considerations of FexAl1−x alloys as phase-
change materials, [32–35] it is important that a change in
η mediates the change of Fe magnetic moments [32–53].
Figure 6 shows the expected temporal change in the Fe mag-
netic moment 〈μ〉 averaged on lattice sites and given in units
of Bohr magneton (μB) under the irradiation of the alloy
with a fluence of � = 380 J/m2. This dependence was ex-
tracted by combining the η(t ) (Fig. 5) and 〈μ〉(η) curves.
The latter dependence was taken from Ref. [51] where it
had been calculated from first principles. It is seen that the
magnetic moment 〈μ〉 → 2.4 μB at η → η(0) = 0.01, while
〈μ〉 → 1.8 μB at η → 0.5. Qualitatively, the enhancement of
magnetization upon chemical disordering can be explained
by strengthening Fe-Fe bonds. The changes in 〈μ〉 under
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FIG. 6. The expected change of the averaged Fe magnetic mo-
ment 〈μ〉 in an Fe0.6Al0.4 alloy under nanosecond laser irradiation.
The dependence has been extracted by combining the η(t ) (Fig. 5)
and 〈μ〉(η) [51] curves.

the CODT relaxation were observed experimentally in thin
films of FexAl1−x [32–34,47,48,52], and so, CODTs in such
specimens are controllable by measuring the magnetization
with magnetometry techniques [33].

IV. SUMMARY

We have theoretically studied the temporal evolution of
the chemical order parameter η in the thin-film (40-nm thick-
ness) Fe0.6Al0.4 alloy under nanosecond laser irradiation (5-ns
duration at FWHM). For our simulations, we employed the
MKR equation [Eq. (1)] combined with the Landau theory

for second-order phase transitions. The theoretical approach
we used has allowed us to obtain the analytical expression
for the η(t ) evolution [Eq. (20)], which is assumed to be
valid for η < 0.5. Firstly, we have explored whether this ap-
proach predicts chemical disordering in the solid alloy at the
nanosecond time scale. To check this, the absorbed fluence
was chosen to be sufficient for heating the alloy above the
CODT critical temperature Tc = 1563 K but to be still too
low to induce its melting occurring at T > Tm = 1662 K . It
has been found that such a fluence provides the formation
of a highly disordered state (η→0), starting from, at least, a
partially ordered state η ∼ 0.5. The disordered state produced
persists upon cooling the alloy down to room temperatures.
It is also interesting that a lower fluence of the same pulse
duration is able to recover the ordered state. Temperatures, at
which the CODT relaxation occurs, satisfy the condition that
|T –Tc| � Tc, which is necessary for employing the Landau
theory to account for the relaxation rate under CODTs. We
note, finally, that the relaxation process can be controlled
experimentally by measuring the magnetization of the alloy.
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