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In a recent Letter [Phys. Rev. Lett. 125, 180604 (2020)], we introduced a closed-form analytic expression
for the average bipartite von Neumann entanglement entropy of many-body eigenstates of random quadratic
Hamiltonians, namely, of Hamiltonians whose single-particle eigenstates have random coefficients in the position
basis. A paradigmatic Hamiltonian for which the expression is valid is the quadratic Sachdev-Ye-Kitaev (SYK2)
model in its Dirac fermion formulation. Here we show that the applicability of our result is much broader. Most
prominently, it is also relevant for local Hamiltonians such as the three-dimensional (3D) Anderson model at
weak disorder. Moreover, it describes the average entanglement entropy in Hamiltonians without particle-number
conservation, such as the SYK2 model in the Majorana fermion formulation and the 3D Anderson model with
additional terms that break particle-number conservation. We extend our analysis to the average bipartite second
Rényi entanglement entropy of eigenstates of the same quadratic Hamiltonians, which is derived analytically
and tested numerically. We conjecture that our results for the entanglement entropies of many-body eigenstates
apply to quadratic Hamiltonians whose single-particle eigenstates exhibit quantum chaos, which we refer to as
quantum-chaotic quadratic Hamiltonians.
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I. INTRODUCTION

Many-body quantum chaos is a phenomenon that under-
pins our understanding of quantum ergodicity in many-body
systems and is studied in different fields of physics ranging
from condensed matter systems [1], quantum gases, and ana-
log quantum simulators [1–3] to high-energy physics [4]. It
is also intimately related to the eigenstate thermalization hy-
pothesis (ETH) [1,5–8], which provides sufficient criterion to
explain thermalization of local observables in isolated quan-
tum systems. Establishing more rigorous relations between
the ETH and many-body quantum chaos is an active research
direction [1,9–14].

Early studies of quantum chaos focused on single-particle
quantum systems that exhibit chaotic dynamics in the semi-
classical limit [15]. In this context, it was conjectured [16]
that the statistics of the energy level spacings of quantum
systems whose classical counterpart is chaotic agrees with
the random matrix theory (RMT) predictions [17]. As a re-
sult, RMT statistics of level spacings has become a defining
property of quantum chaotic systems. These ideas have been
extended to lattice Hamiltonians in regimes that do not have a
semiclassical limit [18–28].

One can divide lattice Hamiltonians into quadratic Hamil-
tonians and interacting ones. Quadratic Hamiltonians (our
focus here) can be expressed in the diagonal form Ĥ =∑

q εqĉ†
qĉq, where {εq} and {c†

q} are the single-particle
eigenenergies and the corresponding creation operators of
the single-particle energy eigenstates, respectively. The

many-body eigenstates of those Hamiltonians are products of
single-particle eigenstates, |q〉 ≡ ĉ†

q|∅〉. As a consequence of
this simple structure, quadratic models do not exhibit quantum
chaos at the many-body level. Instead, RMT-like properties
can be found in their single-particle sector. For example,
the three-dimensional Anderson model below the localiza-
tion transition [29–33] is known to exhibit single-particle
level statistics and wave-function delocalization measures that
agree with the RMT predictions. In what follows we refer to
Hamiltonians that exhibit single-particle quantum chaos as
quantum-chaotic quadratic Hamiltonians. They are to be con-
trasted with other quadratic Hamiltonians, e.g., translationally
invariant ones, which do not exhibit single-particle quantum
chaos.

One of the motivations of our study is to show that it is
possible to identify the underlying presence of single-particle
quantum chaos in the many-body eigenstates of quadratic
Hamiltonians. Recent studies of a class of quantum-chaotic
quadratic models (SYK2 Hamiltonians) used the spectral
form factor to demonstrate that single-particle quantum chaos
manifests in the many-body spectrum as a residual repulsion
between distant many-body energy levels [34,35].

Interacting (generic) Hamiltonians, on the other hand, can-
not be reduced to bilinear forms in creation and annihilation
operators. For those Hamiltonians, RMT-like properties are
explored in the many-body context, e.g., by studying the spec-
tral statistics of the many-body eigenenergies [18–28] or the
structure of their many-body eigenstates [9,26–28,36–44]. If
properties of an interacting Hamiltonian agree with the RMT
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predictions, one says that the Hamiltonian is quantum chaotic.
Such Hamiltonians are to be contrasted with integrable ones,
for which exact solutions are available even in the many-body
context in the presence of interactions.

Many studies have shown that entanglement measures are
effective in identifying quantum chaos at the many-body level.
They include, for example, bipartite [9–11,43–75] and mul-
tipartite [36,76,77] entanglement measures on Hamiltonian
eigenstates and measures in the time domain that include the
operator space entanglement entropy [78–82] and entangle-
ment entropy generation [83]. Here, we focus on the average
bipartite (von Neumann and second Rényi) entanglement en-
tropy of Hamiltonian eigenstates. Recent studies, focusing on
the von Neumann eigenstate entanglement entropy, showed
that the average provides a useful tool to distinguish quantum-
chaotic Hamiltonians [9,10,48,51] from quadratic [68–70]
and interacting integrable [52] ones.

Consider a bipartition of a lattice into two connected sub-
systems A (our subsystem of interest) and B. We define the
subsystem fraction as f = VA/V , the ratio between the volume
VA (i.e., the number of lattice sites) of subsystem A and the
total volume V = VA + VB. The reduced density matrix ρ̂A of
a many-body Hamiltonian eigenstate |m〉 in subsystem A is
obtained by tracing out subsystem B, ρ̂A = TrB{ρ̂m}, where
ρ̂m = |m〉〈m|. The von Neumann entanglement entropy of |m〉
is then defined as

Sm = −Tr{ρ̂A ln ρ̂A}, (1)

and the corresponding second Rényi entropy as

S(2)
m = − ln

[
Tr

{
ρ̂2

A

}]
. (2)

Throughout this work, we focus on systems with two states
per lattice site (e.g., spinless fermions or spin-1/2 systems),
and we are interested in the average (over all eigenstates)
entanglement entropies

S̄ = 2−V
2V∑

m=1

Sm (3)

and

S̄(2) = 2−V
2V∑

m=1

S(2)
m . (4)

For the Hamiltonians studied here (see Sec. II), the results
for the averages coincide with the typical entanglement en-
tropies of many-body energy eigenstates, so we use both terms
interchangeably. We also note that for all model parameters
under investigation, the average entanglement entropies ex-
hibit a volume law scaling, i.e, the leading terms in S̄ and S̄(2)

are proportional to the subsystem volume VA.
One of the main results from previous studies of the aver-

age von Neumann entanglement entropy is that S̄ exhibits a
leading (volume-law) term of the form: (i)

S̄ = VA ln 2 (5)

for quantum-chaotic Hamiltonians [9–11,44,51] and (ii)

S̄ = c0( f )VA ln 2 (6)
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FIG. 1. The average von Neumann S̄ and second Rényi S̄(2)

entanglement entropies as functions of a subsystem fraction f .
The solid and dashed lines show the analytical predictions from
Eqs. (7) and (28), respectively. Circles and squares show the numer-
ical results for S̄ and S̄(2), respectively, in many-body eigenstates of
the 3D Anderson model (11) with disorder W = 1 and V = 203 =
8000 sites. The numerical results were obtained after averaging over
100 randomly selected many-body eigenstates in each of 10 disorder
realizations.

for quadratic Hamiltonians (in the absence of real-space lo-
calization) [61,68–70,84] and for the translationally invariant
(integrable) spin-1/2 XXZ chain [52]. In Eq. (6), the volume-
law coefficient c0( f = 0) = 1 and c0( f > 0) < 1. In other
words, the average in Eq. (6) is not maximal if the subsystem
fraction f does not vanish in the thermodynamic limit.

Equation (5) tells us that the leading (in VA) term in the en-
tanglement entropy of typical eigenstates of quantum-chaotic
Hamiltonians is the same as that for the thermodynamic
entropy at the corresponding (“infinite-temperature”) energy
[9–11,42,47]. Equation (5) also coincides with the leading
term for the entanglement entropy averaged over random pure
states in the Hilbert space obtained by Page [85].

In relation to Eq. (6), in Ref. [75] we provided a closed-
form expression for c0( f ) obtained in context of random
quadratic Hamiltonians. For such Hamiltonians, the average
von Neumann entanglement entropy of eigenstates (for f �
1/2) reads

S̄ =
(

1 − 1 + f −1(1 − f ) ln(1 − f )

ln 2

)
VA ln 2, (7)

see the solid line in Fig. 1. (The results for f > 1/2 are
obtained replacing VA → V − VA and f → 1 − f .) To derive
Eq. (7), we assumed that the coefficients of the single-particle
eigenstates are random and normally distributed in the posi-
tion basis. Hence, one expects Eq. (7) to be the analog of
Page’s result [85] for quadratic systems. The correctness of
Eq. (7) was checked numerically for many-body eigenstates
of the SYK2 Hamiltonian in the Dirac fermion formulation
and of power-law random banded matrices in the delocalized
regime [75].

Here we conjecture that Eq. (7) applies to quantum-chaotic
quadratic Hamiltonians, which means that it allows one to
identify the presence of single-particle quantum chaos in the
many-body eigenstates of quadratic Hamiltonians. We test this
conjecture for several quadratic Hamiltonians, ranging from
those with nonlocal operators to those with only local opera-
tors. The latter include the well-known 3D Anderson model in
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the presence of weak disorder, see the circles in Fig. 1. Going
beyond the von Neumann entanglement entropy, we derive
an analytic expression for the second Rényi entanglement
entropy (see the dashed line in Fig. 1) and show numerical
results (see the squares in Fig. 1 for 3D Anderson model
results) that support the expectation that it is also universal
for quantum-chaotic quadratic Hamiltonians. Note that the
second Rényi entanglement entropy can be viewed as a purity
of a subsystem density matrix of a quantum state and has
been measured in experiments with ultracold atoms on optical
lattices [86,87].

The presentation is organized as follows. In Sec. II, we
introduce the quantum-chaotic quadratic Hamiltonians under
investigation and discuss the contrast between the single-
particle and many-body results for the level spacing statistics
when there is single-particle quantum chaos. We then study
numerically, in Sec. III, the validity of Eq. (7) in the many-
body eigenstates of the models under investigation. In Sec. IV,
we derive an analytical expression for the second Rényi entan-
glement entropy, which we then test numerically. We conclude
with a summary and discussion in Sec. V.

II. QUANTUM-CHAOTIC QUADRATIC HAMILTONIANS

Quantum-chaotic quadratic Hamiltonians can be divided
into two classes: local Hamiltonians, i.e., Hamiltonians Ĥ
that are extensive sums of local operators [operators that have
support on O(1) consecutive lattice sites] and nonlocal ones.
Below we introduce those two classes separately.

A. Nonlocal Hamiltonians

We consider the quadratic Sachdev-Ye-Kitaev model in the
Dirac fermion formulation (in short, the Dirac SYK2 model),

ĤDSYK2 =
V∑

i, j=1

Ai j f̂ †
i f̂ j, (8)

as well as in the Majorana fermion formulation (the Majorana
SYK2 model),

ĤMSYK2 =
2V∑

i, j=1

i�i jχ̂iχ̂ j, (9)

where f̂i ( f̂ †
i ) is the Dirac fermion annihilation (creation) oper-

ator at site i, V is the number of lattice sites for Dirac fermions,
and χ̂i is the Majorana fermion operator. We assume that the
neighboring Majorana fermions are paired, f̂i = χ̂2i−1 + iχ̂2i

and f̂ †
i = χ̂2i−1 − iχ̂2i [88,89]. The matrix A in Eq. (8) is a

complex Hermitian matrix drawn from the Gaussian unitary
ensemble, i.e., its diagonal elements are real numbers with
zero mean and 2/V variance, while the off-diagonal elements
are complex numbers with real and imaginary parts having
zero mean and 1/V variance. The matrix � in Eq. (9) is real
and antisymmetric with normally distributed entries having
zero mean and (1 + δi j )/V variance [61,90].

We also consider the general quadratic (GQ) model

ĤGQ =
V∑

i, j=1

Ai j f̂ †
i f̂ j +

V∑
i, j=1

(Bi j f̂ †
i f̂ †

j + B∗
i j f̂ j f̂i ), (10)

for which the matrices A and B are complex Hermitian and
complex antisymmetric, respectively. Their diagonal elements
are normally distributed real numbers with zero mean and
2/V variance, while their off-diagonal elements are com-
plex numbers with normally distributed real and imaginary
parts with zero mean and 1/V variance. The Hamiltonian in
Eq. (10) breaks the particle-number conservation present in
Eq. (8). Note that the Majorana SYK2 model also breaks the
particle-number conservation, i.e., the Hamiltonian in Eq. (9)
can be presented in the same form as the Hamiltonian in
Eq. (10) when written in terms of Dirac fermions. However,
the matrices A and B are related and fully determined by � in
that case.

B. Local Hamiltonians

We also study the Anderson model on a cubic lattice with
V sites [91],

ĤA = −
∑
〈i, j〉

f̂ †
i f̂ j + W

2

V∑
i=1

εi f̂ †
i f̂i, (11)

which is a local Hamiltonian with nearest-neighbor hopping
and onsite disorder. The latter is described by independent
uniformly distributed random numbers εi ∈ [−1, 1], so that
W is the width of the disorder distribution. The indices in the
sums in Eq. (11) are defined as i = x + (y − 1)L + (z − 1)L2

where (x, y, z) are the Cartesian coordinates of a lattice site,
each belonging to the set [1, . . . , L] with the linear size
L = V 1/3. In the first sum in Eq. (11), 〈i, j〉 denotes nearest
neighbor sites i and j. We use periodic boundary conditions
so the Hamiltonian is translationally invariant at W = 0.

The 3D Anderson model in Eq. (11) exhibits a
delocalization-localization transition upon increasing W . For
single-particle eigenstates at the center of the energy spec-
trum, the critical value of W is W ∗ ≈ 16.5 [92–94]. In this
work we focus on the delocalized regime W < W ∗, and, in
the context of the average eigenstate entanglement entropy,
in the regime in which the overwhelming majority of the
single-particle eigenstates are delocalized for the system sizes
studied.

We note that the 3D Anderson model conserves the number
of particles. We also study an extended 3D Anderson model
(ĤEA) that contains local terms that break particle-number
conservation

ĤEA = ĤA +
∑
〈i, j〉

�i j ( f̂ †
i f̂ †

j + f̂ j f̂i ), (12)

where �i j = sign(i − j)�. When W = 0, the Hamiltonian in
Eq. (12) is somewhat related to the Hamiltonian of p-wave
superconductors with a pairing field � [95]. We therefore
refer to � as the strength of the pairing field.

Quadratic Hamiltonians that break particle-number con-
servation can be diagonalized using a Bogoliubov trans-
formation, ĉq = ∑

j αq j f̂ j + βq j f̂ †
j . The inverse transforma-

tion is f̂ j = ∑
q v jqĉq + θ jqĉ†

q, where αq j = v∗
jq and βq j =

θ jq. Hence, the “rotated” Hamiltonians commute with the
quasiparticle-number operators ĉ†

qĉq [96,97]. For particle-

number conserving quadratic Hamiltonians, ĉq = ∑
j αq j f̂ j .

104206-3
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FIG. 2. The distribution P(r̃) of level spacing ratios in the 3D
Anderson model (11) for W = 1. Main panel: P(r̃) for the many-
body level spacings on V = 27 sites. The solid line is the distribution
for uncorrelated random energy levels (14). The numerical results
were obtained using 500 (out of the 227) many-body eigenstates about
the mean energy of the spectrum and averaging over 100 disorder
realizations. Inset: P(r̃) for the single-particle level spacings on V =
203 = 8000 sites. The solid line is the GOE result for 3 × 3 matrices
(13). The numerical results were obtained using 500 (out of 203)
single-particle eigenstates about the mean energy of the spectrum
and averaging over 100 disorder realizations.

C. Level spacing statistics

The statistics of the spacings δi = Ei − Ei−1 between near-
est neighbor energy levels Ei−1 and Ei is commonly used to
identify quantum chaos. It is convenient to introduce the ratio
r̃i = min{δi, δi+1}/max{δi, δi+1}, such that r̃i ∈ [0, 1], which
allows one to study statistical properties without the need of
carrying out a spectral unfolding [98]. Within the Gaussian
orthogonal ensemble (GOE) of RMT, the distribution of ratios
r̃i was obtained analytically for 3 × 3 matrices [99]

P(r̃) = 27

4

(r̃ + r̃2)

(1 + r̃ + r̃2)
5
2

. (13)

Numerical studies of the energy level statistics in quantum-
chaotic Hamiltonians have shown that Eq. (13) closely follows
the exact distribution of ratios r̃i in large systems [38,100].

P(r̃), when used for the single-particle energy spectrum,
can also detect single-particle quantum chaos. The nonlocal
SYK2-like models introduced in Sec. II A comply with the
RMT predictions by construction. It is also well known that
the level-spacing statistics of the 3D Anderson model (11)
complies with the RMT predictions in the delocalized regime
[101–103]. In the inset in Fig. 2 we show the agreement
between P(r̃) in the 3D Anderson model and the predictions
of Eq. (13). Moreover, in the inset of Fig. 5(b), we show
that the distribution remains unchanged in the extended 3D
Anderson model in Eq. (12).

The main panel in Fig. 2 shows that, in contrast to the
single-particle results in the inset, P(r̃) for the many-body
eigenstates of the 3D Anderson model exhibits no level repul-
sion (as expected). The numerical results for P(r̃) in the main
panel agree with the analytic predictions for uncorrelated ran-

dom energy levels [99]

P(r̃) = 2

(1 + r̃)2
. (14)

Therefore, at the energy scale that corresponds to the mean
level spacing of the many-body spectrum, as shown in Fig. 2,
the many-body energy levels of quantum-chaotic quadratic
Hamiltonians behave as uncorrelated random numbers. This
is exactly the way in which the energy levels of integrable
interacting Hamiltonians behave [19,20,26]. Interestingly, two
recent works [34,35] showed that the many-body spectral
statistics of quantum-chaotic quadratic Hamiltonians exhibit
deviations from the predictions for uncorrelated random en-
ergy levels at energy scales comparable to or larger than the
single-particle level spacing.

III. VON NEUMANN ENTANGLEMENT ENTROPY

A. Theoretical considerations

We first describe the main steps needed to calculate the von
Neumann entanglement entropy of the many-body eigenkets
{|m〉} of the Hamiltonians introduced in Sec. II. We de-
note the single-particle energy eigenkets as {|q〉 = ĉ†

q|∅〉; q =
1, . . . ,V }. The many-body eigenkets are then constructed as
{|m〉 = ∏

{ql }m
ĉ†

ql
|∅〉; m = 1, . . . , 2V }, where {ql}m represent

the mth set of occupied single-particle energy eigenkets.
If the number of particles is conserved, all many-body

correlations for eigenket |m〉 can be computed (via Wick’s
theorem) using the V × V generalized one-body correlation
matrix [68,104–107]

(Jm)i j = 〈m| f̂ †
i f̂ j − f̂ j f̂ †

i |m〉 = 2(ρm)i j − δi j, (15)

where ρm is the one-body correlation matrix of |m〉. The
matrix Jm can be written as

(Jm)i j =
V∑

q=1

〈m| 2ĉ†
qĉq − 1 |m〉 v∗

iqv jq, (16)

where (2ĉ†
qĉq − 1)|m〉 = 1 (−1) for an occupied (empty)

single-particle energy eigenket |q〉 in the many-body energy
eigenket |m〉.

To calculate the von Neumann entanglement entropy of
eigenket |m〉, we bipartition the system into a connected sub-
system A with VA lattice sites and an environment B with
V − VA lattice sites, and restrict Jm in Eq. (16) to the entries
with i, j from the subsystem A. Then, the von Neumann en-
tanglement entropy can be obtained as [106,108]

Sm = −
VA∑
i=1

(
1 + λi

2
ln

[
1 + λi

2

]
+ 1 − λi

2
ln

[
1 − λi

2

])
,

(17)

where {λi} are the eigenvalues of the restricted Jm.
If the number of particles is not conserved, all many-body

correlations for the eigenket |m〉 can be computed using the
2V × 2V generalized one-body correlation matrix [68,107]

Jm =
[ Jm Km

−Km
∗ −Jm

∗

]
, (18)
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FIG. 3. Distributions of the von Neumann eigenstate entangle-
ment entropies at f = 1/2 for (a) the Dirac SYK2 model (8) and
(b) the 3D Anderson model (11) with W = 1, 5, and 10. The vertical
lines mark the analytical prediction [Eq. (7)]. We show results for
lattices with: (a) V = 50, 100, and 150, and (b) V = 103, 143, and
183, using dotted, dashed, and solid lines, respectively. The results in
(a) were obtained using at least 105 randomly selected eigenstates, in
each of the 500 Hamiltonian realizations over which we average. The
results in (b) were obtained for 104, 103, and 102 randomly selected
eigenstates in each of the 100, 10, and 5 Hamiltonian realizations for
V = 103, 143, and 183, respectively.

where the matrix elements of Jm [defined in Eq. (15)] can be
written as

(Jm)i j =
V∑

q=1

〈m| 2ĉ†
qĉq − 1 |m〉 (v∗

iqv jq − θ∗
iqθ jq) (19)

and [105,109]

(Km)i j = 〈m| f̂ †
i f̂ †

j − f̂ †
j f̂ †

i |m〉 , (20)

which can be written in terms of the parameters of the Bogoli-
ubov transformation as

(Km)i j =
V∑

q=1

〈m| 2ĉ†
qĉq − 1 |m〉 (v∗

iqθ
∗
jq − θ∗

iqv
∗
jq). (21)

In this case, the von Neumann entanglement entropy can be
calculated from Jm restricted to the entries of Jm and Km with
i, j in subsystem A,

Sm = −
2VA∑
i=1

1 + λ̃i

2
ln

[
1 + λ̃i

2

]
, (22)

where {λ̃i} are eigenvalues of the restricted Jm.
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FIG. 4. Average von Neumann entanglement entropies S̄model of
eigenstates of: (main panel) the Majorana SYK2 model (9) and (in-
set) the general quadratic model (10). The averages were computed
over at least 105 randomly selected many-body eigenstates and from
100 to 500 Hamiltonian realizations. Results for S̄model are shown
for different subsystem fractions f , as indicated in the legend, and
subtracted from the analytical prediction S̄ in Eq. (7). Solid lines
show the results of two-parameter linear fits to a0 + a1/V using the
data for V � 70. In all cases we get a0 � 5 × 10−5.

B. Numerical results

In Fig. 3, we show the normalized distribution of eigen-
state entanglement entropies Sm/[VA ln 2] for the Dirac SYK2
model (8) [Fig. 3(a)] and the 3D Anderson model (11)
[Fig. 3(b)]. In both cases, the distribution narrows upon
increasing the system size. This is consistent with results
reported in Ref. [75], which showed that the variance σ 2 =
2−V

∑2V

m=1 (Sm − S̄)2
/(VA ln 2)2 of the distribution [with S̄ as

defined in Eq. (3)] in the Dirac SYK2 model vanishes as
V → ∞. Therefore, the average entanglement entropy over
all eigenstates S̄, the quantity on which we focus in the re-
mainder of this paper, coincides with the typical eigenstate
entanglement entropy as V → ∞.

In our numerical calculations we approximate the av-
erage over all eigenstates by an average over a set of
randomly selected eigenstates with equal probability through-
out the spectrum. Those averages are then further averaged
over different realizations of the random Hamiltonians un-
der consideration. In Appendix A we show, studying the
realization-to-realization fluctuations for the 3D Anderson
model at W = 1, that the average entanglement entropy over
eigenstates of a single Hamiltonian provides an accurate es-
timate for the entanglement entropy obtained after averaging
over disorder realizations.

As shown in Ref. [75], the leading volume-law term in the
average entanglement entropy S̄ of the Dirac SYK2 model
(8) agrees in the thermodynamic limit with the analytical
expression S̄ from Eq. (7). It was pointed out in Ref. [61]
that, because of the particle-hole symmetry, S̄ in the Majorana
SYK2 model (9) exhibits the same volume-law contribution.
This is numerically confirmed in the main panel of Fig. 4,
where we show that the difference between the numerical
results in finite systems and the analytic prediction appear to
vanish with increasing system size. The results in the inset
in Fig. 4, for the general quadratic model in Eq. (10), show
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that the leading volume-law term in the average eigenstate en-
tanglement entropy is actually insensitive to particle-number
conservation. For all results in Fig. 4, the extrapolated ther-
modynamic limit value of the volume-law coefficient agrees
with the predictions in Eq. (7) to within limV,VA→∞ |S̄ −
S̄model|/(VA ln 2) � 5 × 10−5.

We stress that the difference between the particle-number
conserving and nonconserving models can be detected already
in the first subleading term of the average entanglement en-
tropy. For the nonlocal models introduced in Sec. II A, the
dominant subleading term at f > 0 is a constant. This con-
stant is positive for the particle nonconserving models such as
the Majorana SYK2 model and the general quadratic model
(see Fig. 4) and negative for the particle conserving Dirac
SYK2 model (see Fig. 1 of Ref. [75]).

We next show that the result in Eq. (7) accurately describes
the volume-law contribution to the average entanglement en-
tropies S̄ of quantum-chaotic quadratic Hamiltonians that are
sums of local operators in position space (local quantum-
chaotic quadratic Hamiltonians). For this, we focus on the
3D Anderson model at f = 1/2 (see Fig. 1 for results as a
function of f ). In Fig. 5(a) we show results for the traditional
(particle-number conserving) 3D Anderson model (11) in the
delocalized regime, and in Fig. 5(b) we show results for the
extended (particle-number nonconserving) Anderson model
(12). In both cases one can see that the difference between the
numerical results in finite systems and the analytic prediction
decreases with increasing system size. For all results in Fig. 5,
we find that limV,VA→∞ |S̄ − S̄model|/(VA ln 2) � 5 × 10−4 for
W � 3.

We note that there is a significant difference between the
local and nonlocal models in terms of the first subleading
correction to the leading volume-law term at f > 0. While
the dominant subleading correction for nonlocal models is
a constant (cf. Fig. 4), it grows subextensively for the local
models (cf. Fig. 5). The fits in Fig. 5 for the 3D Anderson
models at f = 1/2 suggest that S̄ = S̄ + O(

√
V ). A similar

subleading contribution was observed for the average en-
tanglement entropy over eigenstates of interacting integrable
models [52]. With regard to the results for the particle-
number conserving model in Fig. 5(a), we note that for W =
0 it corresponds to translationally invariant noninteracting
fermions in a cubic lattice, for which the single-particle level
statistics does not obey the RMT predictions [111,112]. The
results in Fig. 5(a) for S̄ at W = 0 show that limV,VA→∞ |S̄ −
S̄model|/(VA ln 2) �= 0. Instead, S̄ approaches the result for
translationally-invariant noninteracting fermions in one di-
mension obtained in Ref. [68] [shown as a horizontal dashed
line in Fig. 5(a)]. This provides further support to the conjec-
ture put forward in Ref. [69] that the average entanglement
entropy is universal for all translationally invariant quadratic
models. While in Ref. [70] tight bounds were provided for
that case, the corresponding close-form expression (if any)
remains elusive.

A second important observation about the results in
Fig. 5(a) is that the numerically obtained limV,VA→∞ |S̄ −
S̄model|/(VA ln 2) increases with increasing the magnitude of
W . The small offset is larger for W = 5 (of the order 10−3)
when compared to results for W � 3. This is expected in
light of the mobility edge in the single-particle spectrum of

0 0.02 0.04 0.06 0.08
0
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0.02

0.03

0 0.02 0.04 0.06 0.08
0

0.01

0 0.3 0.6 0.9
0

2

(a)

(b)

FIG. 5. Average von Neumann entanglement entropies S̄model of
eigenstates of: (a) the 3D Anderson model (11) and (b) the extended
3D Anderson model (12) at subsystem fraction f = 1/2. The aver-
ages were computed over 102 to 104 randomly selected many-body
eigenstates in from 5 to 500 Hamiltonian realizations. The solid
lines show the results of two-parameter fits to a0 + a1/

√
V using

the data for V � 512. We get a0 � 5 × 10−4 for W = 1 and 3 and
a0 = 9 × 10−4 for W = 5. The dotted line in (a) corresponds to a
three-parameter fit a0 + a1e−a2L (with L = V 1/3) to the data at W = 0
with V � 512 [110]. The horizontal dashed line marks the thermody-
namic limit result obtained numerically for translationally-invariant
noninteracting fermions in one dimension S̄W =0/(VA ln 2) ≈ 0.5378
[68]. Inset in (b): The distribution of ratios of level spacings P(r̃) at
W = 1, � = 0.5, and V = 8000 for 500 single-particle states around
the mean energy of the single-particle spectrum. The solid and dotted
lines show the results of Eqs. (13) and (14), respectively.

the 3D Anderson model. Namely, one expects the differ-
ences between the exact averages over all eigenstates and
the predictions from Eq. (7) to persist in the thermodynamic
limit whenever there are localized states at the edges of the
spectrum and to decrease as the fraction of localized states
decreases. Hence, we stress that our numerical results show
that the closed-form expression in Eq. (7) provides an accurate
estimate for the average eigenstate entanglement entropy in
the 3D Anderson model at weak disorder (far below W ∗). It is
interesting to note that even at W = 10, as one can conclude
from the results shown in Fig. 3(b), the average entanglement
entropy is close to the result in Eq. (7). The functional form
of the difference between the results for finite W < W ∗ in the
thermodynamic limit and the predictions of Eq. (7) is yet to
be established.
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IV. THE SECOND RÉNYI ENTROPY

A. Theoretical considerations

The numerical calculation of S(2)
m is similar to the one

for the von Neumann entanglement entropy in Sec. III, i.e.,
one needs to construct an appropriate one-body correlation
matrix and obtain the corresponding eigenvalues. For particle-
number conserving systems [107]

S(2)
m = −

VA∑
i=1

ln
[
α2

i + (1 − αi )
2
]
, (23)

where {αi; i = 1, . . . ,VA} are the eigenvalues of the one-body
correlation matrix ρm from Eq. (15), restricted to entries that
belong to subsystem A.

In order to compute S̄(2) [defined in Eq. (4)] analytically,
we follow a different approach to the one in Ref. [75]. We
first note that in Ref. [61] it was pointed out (and tested
numerically) that the restricted correlation matrix ρm (15) of a
typical many-body eigenket |m〉 of the Dirac SYK2 model (8)
belongs to the β-Jacobi ensemble with β = 2. The distribution
of its eigenvalues, for different subsystem fractions f , has the
following form [61]:

F f (α) = 1

2π f

√
α(1 − α) + f (1 − f ) − 1

4

α(1 − α)
1[α−,α+], (24)

where we assumed that the system is at half filling. F f (α)
is nonzero for α ∈ [α−, α+], where α± = 1

2 ± √
f (1 − f ).

Using Eq. (24), one can calculate the average second Rényi
entanglement entropy as S̄ (2) = ∫

dαF f (α)S(2)(α) by replac-
ing the sum in Eq. (23) by the integral,

∑
i → VA

∫
dαF f (α).

We write α = (λ + 1)/2, where λ are the eigenvalues of
the restricted one-body correlation matrix J in Eq. (15), to
obtain

S̄ (2) = − VA

π f

∫ λ+

λ−

√
1
4 (1 − λ2) + f (1 − f ) − 1

4

1 − λ2

× ln

[
1 − 1

2
(1 − λ2)

]
dλ, (25)

where λ± = ±√
4 f (1 − f ). Next, we replace the logarithm

with its power series expansion, which yields

S̄ (2) = VA

π f

∞∑
k=1

2−k

k

∫ λ+

λ−
(1 − λ2)k−1

×
√

1

4
(1 − λ2) + f (1 − f ) − 1

4
dλ. (26)

Each integral in the sum in Eq. (26) can be written in terms of
a hypergeometric function,

∫ λ+

λ−
(1 − λ2)k−1

√
1

4
(1 − λ2) + f (1 − f ) − 1

4
dλ

= f (1 − f )π 2F1

[
1

2
, 1 − k, 2, 4 f (1 − f )

]
, (27)

with 2F1(a, b, c, d ) = ∑∞
n=0

(a)n(b)n
(c)n

dn

n! , where (a)0 = 1, and
(a)n = a(a + 1)...(a + n − 1) for integer n > 0 is known as

a Pochhammer symbol. As a result, the average second Rényi
entropy can be expressed as an infinite series

S̄ (2) = VA(1 − f )
∞∑

k=1

2−k

k
2F1

[
1

2
, 1 − k, 2, 4 f (1 − f )

]
.

(28)

The hypergeometric function for f < 1/2 and k � 1 is
a polynomial of 4 f (1 − f ) of degree k − 1. The special
point f = 1/2 is given by the Chu-Vandermonde identity

2F1(1/2, 1 − k, 2, 1) = (3/2)1−k

(2)1−k
[113]. Therefore, S̄ (2) always

converges to a finite value, as can be verified with the help of
the ratio test.

Equation (28) reduces to simple closed-form expressions in
two limiting cases. When f → 0, the distribution in Eq. (24)
becomes a delta function at α = 1/2 and hence the entangle-
ment entropy is maximal S̄ (2) → VA ln 2 (see also Ref. [68]).
When f = 1/2, Eq. (25) becomes

S̄ (2) =
(

2 + 2
ln(2 − √

2)

ln 2

)
VA ln 2 ≈ 0.457VA ln 2. (29)

In what follows we test whether S̄ (2) (28) is universal for
the average second Rényi entanglement entropy of eigenstates
of quantum-chaotic quadratic Hamiltonians in the same way
that S̄ (7) is for the von Neumann entanglement entropy.
We compare S̄ (2) (28) to the numerical evaluation of S̄(2)

as defined in Eq. (4). For particle-conserving models, S(2)
m is

computed evaluating Eq. (23).
We also conjecture that Eq. (28) is valid for models in

which the particle number is not conserved. In that case, S(2)
m

is computed evaluating

S(2)
m = −1

2

2VA∑
i=1

ln

[
1 + λ̃2

i

2

]
, (30)

where {λ̃i} are the eigenvalues of the restricted one-body cor-
relation matrix Jm from Eq. (18).

B. Numerical results

In Fig. 6, we compare S̄ (2) (28) with numerical results
for the average second Rényi entanglement entropy S̄(2)

of eigenstates of the nonlocal quantum-chaotic quadratic
Hamiltonians introduced in Sec. II A. The comparison yields
qualitatively similar results to the one for the von Neumann
entanglement entropy. Figure 6(a) shows that, for the Dirac
SYK2 model (8), the differences decrease with increasing
system size. The scaling observed suggests that the first
subleading correction to the leading volume-law term is a neg-
ative constant. The results in Fig. 6(b), for the Majorana SYK2
model (9) in the main panel and for the general quadratic
model (10) in the inset, are qualitatively similar. The main
difference is that the subleading constant term is positive.

Next, we compare S̄ (2) from Eq. (28) with numerical re-
sults for the average second Rényi entanglement entropy S̄(2)

of eigenstates of the local quantum-chaotic quadratic Hamil-
tonians (3D Anderson models) introduced in Sec. II B at
f = 1/2. [In Fig. 1 we already showed that, for the particle-
number conserving 3D Anderson model (11) in a lattice with
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FIG. 6. Average second Rényi entanglement entropies S̄(2)
model of

eigenstates of: (a) the Dirac SYK2 model (8), (b) the Majorana SYK2
model (9), and inset in (b) the general quadratic model (10). The
averages we computed as in Fig. 4. Results for S̄(2)

model are shown
for different subsystem fractions f , as indicated in the legend, and
subtracted from the analytical prediction S̄ (2) in Eq. (28). Solid lines
are the results of two-parameter linear fits to a0 + a1/V using the
data for V � 70. In all cases we get a0 � 4 × 10−4.

V = 8000 sites and W = 1, the numerical results for S̄(2) as a
function of the subsystem fraction f are accurately described
by the analytical prediction S̄ (2) from Eq. (28).] The results
in Fig. 7(a) for the particle-number conserving 3D Ander-
son model (11) in the delocalized regime, and in Fig. 7(b)
for the extended (particle-number nonconserving) Anderson
model (12), are qualitatively similar to the ones for the von
Neumann entanglement entropy shown in Figs. 5(a) and 5(b),
respectively.

For the particle-number conserving model in Fig. 7(a),
as mentioned before, W = 0 corresponds to a translation-
ally invariant model, which does not exhibit single-particle
quantum chaos. In that case the results appear to converge,
with increasing system size, to the thermodynamic limit result
obtained numerically for noninteracting fermions in one di-
mension, limV,VA→∞ S̄(2)/(VA ln 2) ≈ 0.4713 at f = 1/2 [see
the horizontal dashed line in Fig. 7(a), and Appendix B]. We
note that it is larger than the value predicted by Eq. (30) for
quantum-chaotic quadratic Hamiltonians. It is interesting that,
in contrast, the volume-law coefficient of the average von
Neumann entanglement entropy of translationally-invariant
noninteracting fermions is smaller than the one for quantum-
chaotic quadratic Hamiltonians, see Fig. 5(a).
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-0.01
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-0.005
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0.005
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FIG. 7. Average second Rényi entanglement entropies S̄(2)
model of

eigenstates of: (a) the 3D Anderson model (11) and (b) the ex-
tended 3D Anderson model (12) at subsystem fraction f = 1/2.
The averages were computed as in Fig. 5. The solid lines show
the results of two-parameter fits to a0 + a1/

√
V using the data for

V � 512. We get a0 � 5 × 10−4 for W = 1 and 3, and a0 = 10−3 for
W = 5. In (a), the dotted line corresponds to a three-parameter fit to
a0 + a1/

√
V + a2/V using the data for V � 512 at W = 0. The hor-

izontal dashed line marks the thermodynamic limit result obtained
numerically for translationally invariant noninteracting fermions in
one dimension, S̄(2)

W =0/(VA ln 2) ≈ 0.4713, see Appendix B.

V. SUMMARY AND DISCUSSION

We studied the entanglement properties of many-body
eigenstates of various quantum-chaotic quadratic Hamil-
tonians, namely, of quadratic Hamiltonians that exhibit
single-particle quantum chaos. By the latter we mean that
the statistics of the single-particle energy levels is described
by the random matrix theory. We argued that the entangle-
ment entropies of typical many-body eigenstates of those
Hamiltonians exhibit universal features. Specifically, we re-
ported numerical evidence that the analytical expression for
the average von Neumann entanglement entropy introduced
in Ref. [75], and for the second Rényi entanglement entropy
introduced here, describe the results for exemplary quantum-
chaotic quadratic Hamiltonians. We considered both local and
nonlocal Hamiltonians, as well as particle-number conserv-
ing and nonconserving versions of each of them. We also
showed that the average entanglement entropies of many-
body eigenstates of local translationally-invariant quadratic
Hamiltonians, which do not exhibit quantum chaos but have
single-particle eigenstates that are delocalized in real space,
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exhibit small but robust deviations from the analytical predic-
tions for quantum-chaotic quadratic Hamiltonians.

Several questions are left open for future work. Among
those is whether there is a close-form expression for the
average second Rényi entanglement entropy in Eq. (28), for
which we provided closed-form expressions in the limits of
subsystem fractions f → 0 and f = 1/2. Also, our analytical
treatment focused on the leading (volume law) term in the
entanglement entropies. As discussed in Secs. III and IV, the
subleading terms exhibit interesting behaviors that still need to
be understood analytically. Finally, as shown in Fig. 1, we note
that the averages (over all eigenstates) of both the von Neu-
mann and second Rényi entanglement entropies are concave
functions of f . What happens in “finite-temperature” averages
is an open question. For eigenstates of generic Hamiltonians,
a qualitative difference between the von Neumann and second
Rényi entanglement entropies was conjectured to emerge for
averages in microcanonical windows away from infinite tem-
perature [43]: While the von Neumann entropy is expected
to increase linearly with f , the second (and higher) Rényi
entropies were conjectured to be convex functions.
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APPENDIX A: FLUCTUATIONS OVER HAMILTONIAN
REALIZATIONS

In the main text, we compared analytical results for S̄ and
S̄ (2) [cf. Eqs. (7) and (28)] with numerical results S̄ and S̄(2) for
the von Neumann and second Rényi entanglement entropies,
respectively. The numerical results were obtained by first
averaging over Hamiltonian eigenstates for a single Hamilto-
nian realization and then averaging over different Hamiltonian
realizations.

Here we explore the realization-to-realization fluctuations.
To this end, we compute S̄ as an eigenstate average for a single
Hamiltonian realization and define 〈. . .〉 as the average over
different Hamiltonian realizations. We define the correspond-
ing realization-to-realization standard deviation for the von
Neumann entanglement entropy as

σ =
√

〈S̄2〉 − 〈S̄〉2

VA ln 2
. (A1)

In what follows S̄ corresponds to the average over 500 random
many-body eigenstates in a single Hamiltonian, while the av-
erage 〈. . .〉 is computed over 50 Hamiltonian realizations. We
also compute the realization-to-realization standard deviation
for the second Rényi entanglement entropy σ (2), for which S̄
in Eq. (A1) is replaced by S̄(2).

Figure 8(a) shows the standard deviations σ and σ (2) for
the 3D Anderson model at W = 1 for different system sizes. σ

FIG. 8. (a) Realization-to-realization standard deviations σ and
σ (2), see Eq. (A1), versus 1/V for the 3D Anderson model with W =
1. We consider systems with V ∈ {83, 103, . . . , 203} at subsystem
fraction f = 1/2. The lines show results of second-order polynomial
fits to a1/V − a2/V 2, with fitting parameters a1 and a2. (b) Relative
differences between the analytical prediction S̄ and numerical results
S̄ for the von Neumann entanglement entropy versus f . Each point
depicts the result obtained for a single disorder realization in a system
with V = 203. For each f , we report results for 50 different disorder
realizations. Note that all points are light gray so darker means a
higher number of overlapping points.

and σ (2) are very small (of the order 10−4) for the system sizes
considered in the main text and appear to vanish with increas-
ing system size. In Fig. 8(b), we plot the relative differences
(S̄ − S̄)/[(V/2) ln 2] for 50 different disorder realizations as a
function of the subsystem fraction f . These results show that
the realization-to-realization fluctuations are smaller than the
finite-size corrections to the analytic result S̄ in the thermody-
namic limit. Similar results (not shown) were obtained for the
second Rényi entanglement entropy.

APPENDIX B: SECOND RÉNYI ENTROPY FOR
TRANSLATIONALLY INVARIANT FREE FERMIONS

In Fig. 7(a), we show results for the average second Rényi
entanglement entropy for W = 0, i.e., for translationally in-
variant noninteracting fermions in three dimensions. Those
results are compared to the result obtained for translationally
invariant noninteracting fermions in one dimension (1D) [hor-
izontal dashed line in Fig. 7(a)]. Here we show how the latter
result was obtained.
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We calculated the average second Rényi entanglement en-
tropy S̄(2) for translationally invariant free fermions in 1D
using Eq. (4) for systems with linear sizes up to L = 34 (we
set V → L and VA → LA), so that the average can be com-
puted over all 2L eigenstates. Results for subsystem fraction
f = 1/2 are shown in Fig. 9 as a function of 1/L. The domi-
nant subleading contribution to S̄(2)/(LA ln 2) scales as ∝1/L2.
Using a fit to a quadratic function, we obtain an accurate
estimate for the volume-law coefficient in the thermodynamic
limit, limL,LA→∞ S̄(2)/(LA ln 2) ≈ 0.4713. It is interesting to
note the different scalings of the dominant subleading terms
in the translationally invariant free fermion Hamiltonian in
1D. While for the average second Rényi entanglement shown
here it vanishes as a power law, it vanishes exponentially
fast with L for the average von Neumann entanglement
entropy [68].

0.0 0.1 0.2 0.3

0.472

0.476

0.480

FIG. 9. The average second Rényi entanglement entropy
S̄(2)/(LA ln 2) versus 1/L, at f = 1/2, for translationally invariant
free fermions in 1D. The solid line shows the result of a quadratic
fit a0 + a2/L2 to the data, yielding a0 ≈ 0.4713.
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