
PHYSICAL REVIEW B 103, 104204 (2021)

Random matrix approach to the boson peak and Ioffe-Regel criterion in amorphous solids
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We present a random matrix approach to study the general vibrational properties of stable amorphous solids
with translational invariance using the correlated Wishart ensemble. Within this approach, both analytical and
numerical methods can be applied. Applying the random matrix theory to the correlated Wishart ensemble, we
found the analytical form of the vibrational density of states and the dynamical structure factor. The ratio between
the number of bonds and the number of degrees of freedom controls the Ioffe-Regel frequency, which determines
the crossover between low-frequency propagating phonons and diffusons at higher frequencies. The reduced
vibrational density of states shows the boson peak, whose frequency is close to the Ioffe-Regel crossover. In the
isostatic case, we obtain the low-frequency cusplike singularity of the vibrational density of states, which was
observed numerically. We also present a simple numerical random matrix model with finite interaction radius,
whose properties rapidly converge to the analytical results with increasing the interaction radius. For a finite
interaction radius, the numerical model demonstrates the presence of quasilocalized vibrations with a power-law
low-frequency density of states.
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I. INTRODUCTION

Establishing the general vibrational properties in amor-
phous dielectrics (glasses) is one of the key problems in the
physics of disordered systems. The dominant part of the vi-
brational spectrum above the Ioffe-Regel crossover and below
the mobility edge is occupied by diffusons [1,2]. These delo-
calized vibrations are spread by means of a diffusive energy
transfer from atom to atom. The diffusons correspond to heat
transfer in glasses in a wide range of temperatures. Therefore,
it is important to understand the microscopic nature of these
vibrational modes.

There is another universal vibrational property of almost all
glasses, which is known as the boson peak. It is an excess vi-
brational density of states (VDOS) over the Debye prediction.
The boson peak was observed using different experimental
techniques: Raman scattering [3,4], x-ray scattering [5], in-
elastic neutron scattering [6], far-infrared spectroscopy [7–9],
and the temperature dependence of the heat capacity [10–13].
Also, the boson peak appears in two-dimensional structures
[14–18]. It was observed that the boson peak frequency ωb is
usually close to the frequency ωIR of the Ioffe-Regel crossover
between well-defined phonons with a long mean free path and
disordered vibrations, diffusons [19–21]. Therefore, a general
theory of the boson peak and Ioffe-Regel criterion can shed
light on the nature of vibrations in amorphous solids.

There are several theoretical explanations of these anoma-
lies such as an effective medium theory of elasticity [22–27],
soft-potential model [28–32], the mode-coupling theory [33],
attribution to the transverse-acoustic van Hove singularity
[21,34,35], and the breaking of local inversion symmetry [36].
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Hence, it is important to find the most general properties of
amorphous solids, which are relevant to the formation of the
boson peak and the Ioffe-Regel criterion.

To study these fundamental vibrational features of amor-
phous solids, we use an approach based on the random matrix
theory (RMT). This theory has important applications in many
diverse areas of science and engineering [37–46]. Depending
on the inherent symmetry properties of different disordered
systems, various random matrix ensembles are used. Vibra-
tions of amorphous solids are characterized by eigenvalues
and eigenvectors of the dynamical matrix M̂. The presence of
disorder in amorphous systems leads to the random nature of
the matrix elements Mi j . Therefore, the RMT can be applied to
study the vibrational properties of amorphous solids [47–50].
It is also applicable to jammed solids [51], which are widely
studied nowadays [52,53]. However, not every random matrix
ensemble takes into account the special correlations between
matrix elements Mi j in amorphous solids. In this paper we
consider a correlated ensemble, which takes into account only
two of the most important properties of amorphous solids: (i)
The system is near the stable equilibrium position and (ii) the
potential energy is invariant under the continuous translation
of the system. We demonstrate that the general properties
(i) and (ii) determine a correlated random matrix ensemble,
which represents the most important properties of amorphous
solids such as the boson peak and the Ioffe-Regel crossover.

The paper is organized as follows. In Sec. II, we present
the correlated Wishart ensemble of the form M̂ = ÂÂT with
the sum rule

∑
i Aik = 0, which is the most general ensem-

ble, which satisfies the symmetrical properties (i) and (ii).
Using the random matrix theory, we find the general spec-
tral properties of the dynamical matrix M̂. In Sec. III, we
present a numerical random matrix model, which refines the
given correlated Wishart ensemble for a finite interaction
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radius. Sections IV and V demonstrate the vibrational den-
sity of states and the dynamical structure factor obtained
from the general spectral properties of the dynamical matrix
M̂. Section VI demonstrates the presence of the Ioffe-Regel
crossover, which splits the vibrational spectrum into phonon
and diffuson frequency ranges with different vibrational
properties. In Sec. VII, we demonstrate the presence of
quasilocalized vibrations with the low-frequency power-law
density of states, which is determined by the non-Gaussian
properties of the random matrix Â. Finally, in Sec. VIII, we
discuss the obtained results and compare them with experi-
ments and other theories.

II. CORRELATED WISHART ENSEMBLE

The mechanical stability of amorphous solids is equivalent
to the positive definiteness of the dynamical matrix M̂. Any
positive definite matrix M̂ can be written as M̂ = ÂÂT , and
vice versa, ÂÂT is positive definite for any (not necessarily
square) matrix Â [54]. Therefore, we can consider a N × K
random matrix Â to obtain a mechanically stable system with
the dynamical matrix in the form of the Wishart ensemble
M̂ = ÂÂT . Each column of the matrix Â represents a bond
with non-negative potential energy [55]

Uk = 1

2

(∑
i

Aikui

)2

, (1)

where ui is a displacement of the ith degree of freedom from
the equilibrium value. Usually, only several elements Aik are
nonzero in each column of the matrix Â. In the simplest
case there are only two nonzero elements, which represent
a simple spring with a pairwise interaction with an energy
Ui j = ki j

2 (ui − u j )2. The bond defined by Eq. (1) is a gener-
alization of the simple spring to the many-body interaction.
Each bond with a many-body interaction can be represented as
a number of simple springs. However, a number of them may
have negative stiffness ki j , which complicates further analysis
due to the individual instability of such springs [49].

For simplicity, we consider a scalar model with unit masses
mi = 1. In this case the displacements of atoms are collinear
and described by scalars ui [47,56]. The bond energy Uk

should not depend on the continuous translation ui → ui +
const. Therefore, the matrix Â obeys the sum rule

∑
i Aik = 0.

In the framework of the random matrix theory, it means that
the matrix elements Ai j are correlated.

In the minimal model, we can assume that an amorphous
solid consists of statistically equivalent random bonds. In this
case the pairwise correlations between matrix elements Ai j

can be written as

〈AikA jl〉 = 1

N
Ci jδkl , (2)

where Ĉ is some correlation matrix. One can see that the
correlation matrix Ĉ is proportional to the average dynamical
matrix: Ĉ = N

K 〈M̂〉. For simplicity, we consider a model amor-
phous solid as a simple cubic lattice with random bonds and
unit lattice constant a0 = 1. In this case the average dynami-
cal matrix 〈M̂〉 describes the simple cubic crystal. It is natural
to assume that the crystalline matrix 〈M̂〉 has simple bonds

between the nearest neighbors with a certain rigidity. In this
case the matrix Ĉ has the following structure. Nondiagonal
elements are Ci j = −�2 if atoms with indices i and j are
the nearest neighbors in the lattice and Ci j = 0 otherwise.
Diagonal elements are Cii = 6�2. The constant � defines a
typical frequency in the system. Thus, the correlation matrix
Ĉ is a regular matrix, which describes a simple cubic lattice
with a nearest-neighbor interaction. Eigenvalues of the matrix
Ĉ depend on the wave vector q which can be expressed as a
dispersion law,

ω2
0(q) = 4�2

(
sin2 qx

2
+ sin2 qy

2
+ sin2 qz

2

)
. (3)

The minimal model described above can be generalized to
the vector model or any regular matrix Ĉ. In this case the mod-
ified dispersion law ω0(q) (probably with several branches)
can be used. Moreover, many results of this paper can be
applied for an irregular correlation matrix Ĉ, which will be
discussed below.

Using the random matrix approach, it can be shown that
the statistical properties of the random matrix M̂ are related to
the known correlation matrix Ĉ. To find these properties, we
consider the corresponding resolvents,

Ĝ(z) =
〈

1

z − M̂

〉
, Ĝ0(Z ) = 1

Z − Ĉ
, (4)

where z and Z are complex parameters. The averaging is
performed over different realizations of the random matrix M̂.
In the thermodynamic limit N → ∞ there is a fundamental
duality relation between the spectral properties of M̂ and Ĉ
[57],

ZĜ0(Z ) = zĜ(z), (5)

where complex parameters z and Z are related by a conformal
map Z (z) defined by the equation

κZ + Z2

N
Tr Ĝ0(Z ) = z. (6)

Parameter κ = (K − N )/N defines the relative excess of the
total number of bonds in comparison to the total number of
degrees of freedom. The duality relation (5) makes it possi-
ble to find the vibrational density of states (VDOS) and the
dynamical structure factor (DSF) of the dynamical matrix M̂.

The difference between the total number of bonds K and
the total number of degrees of freedom N plays a crucial
role in the vibrational and mechanical properties. In a stable
system with a finite rigidity, the number of bonds should be
larger than the number of degrees of freedom, which is known
as the Maxwell counting rule [58]. Therefore, the parameter κ

varies in a wide range 0 � κ < ∞ and controls the relation-
ship between stiffness and disorder in the system.

For jammed solids, it was shown that many properties
(such as the shear modulus and the crossover frequency) are
scaled with κ [51,53]. In this model, the number of bonds K
is defined by the total number of contacts between granules.
Using the variation of the density of jammed packing, the
value of the parameter κ can be varied in a wide range of
values 0 < κ � 1.

In amorphous solids, the parameter κ could not be varied in
such a wide range. However, different amorphous solids have
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different typical values of the parameter κ. In the Stillinger-
Weber model of amorphous silicon, each atom has 4/2 = 2
bonds determining the distance between atoms and six bonds
determining the angles between the bonds of amorphous sil-
icon [59]. Therefore, we can estimate the parameter as κ =
5/3 ∼ 1. In amorphous SiO2, there are nine degrees of free-
dom per each silicon atom. In this case, the number of bonds
can be estimated as 12 (four determine the Si-O distance,
six determine the O-Si-O angles, and 4/2 = 2 determine the
Si-O-Si angles). In this case κ = 1/3. Actually, the Si-O-Si
angle bond has a lower stiffness, which results in a slightly
smaller typical value of the parameter κ. The difference in
parameters κ for amorphous silicon and SiO2 correlates well
with the difference of vibrational density of states, the boson
peak frequency, and the Ioffe-Regel criterion in these systems.

The derivation of the duality relation (5) assumes that the
matrix Â has a multivariate Gaussian distribution [57],

p(Â) ∼ exp
(− 1

2 Tr ÂT Ĉ−1Â
)
, (7)

which implies the long-range interaction between atoms.
However, the result (5) may be used for a much wider class of
sparse random matrices Â, which corresponds to a short-range
interaction between atoms. Before investigating the vibra-
tional properties using the duality relation (5), we present a
numerical model with a short-range interaction and the same
correlation matrix Ĉ.

III. THE NUMERICAL MODEL

In this section we present the numerical model of an amor-
phous system as a lattice with random bonds between atoms.

For κ = 0 the matrix Â is square and the number of bonds
K is equal to the number of degrees of freedom N . We assume
that the bonds cover the lattice uniformly, which results in one
bond per atom in the scalar model under consideration. Thus,
we can consider the following structure of the nondiagonal
elements of the matrix Â:

Ai j =
{�

2 ξi j if i and j are neighbors,

0 otherwise,
(8)

where ξi j are independent Gaussian random numbers with
zero mean and unit variance. The diagonal elements are
defined using the sum rule Aii = −∑

j �=i A ji. Up to the
normalization constant, this structure of the square random
matrix Â was considered in Ref. [49]. The relation between
the matrix Â and the dynamical matrix M̂ is also discussed in
detail in Ref. [49].

Using Eq. (2), the correlation matrix can be written as

Ci j = N

K

∑
k

〈AikA jk〉. (9)

We intentionally add the summation over bonds k, which
effectively averages over all bond positions in the system.

For the square random matrix Â defined by Eq. (8), the
average 〈AikA jk〉 over different realizations of the random
numbers ξi j is nonzero only if i = k or j = k. Nondiagonal
elements are Ci j = −�2 if i and j are neighbors and Ci j = 0
otherwise. Diagonal elements are Cii = 6�2. Therefore, the

structure of the matrix Â defined by Eq. (8) gives the same
correlation matrix Ĉ as was considered in Sec. II.

For κ > 0 we can use two realizations of the square ran-
dom matrices defined by Eq. (8): Â(0) and Â(1). The resulting
rectangular matrix Â can be obtained by inserting κN columns
of the matrix Â(1) into the matrix Â(0). This random insertion
of the new columns corresponds to a random addition of new
bonds to the vibrational system. This procedure results in the
same correlation matrix Ĉ.

In this section we have considered the nearest-neighbor
case with the unit radius of bonds R = 1. The generalization
of this model for arbitrary R is given in Appendix A. We
will show that increasing the radius R leads to a rapid con-
vergence to the vibrational properties obtained by the random
matrix theory using the relation (5). For R = 1 there are only
nnz = 7 nonzero elements in each column of the matrix Â.
For R = 2 and R = 3 this number is nnz = 33 and nnz = 123,
respectively. The influence of the sparsity in the case of an
uncorrelated Wishart ensemble was discussed in Ref. [60].

IV. VIBRATIONAL DENSITY OF STATES

To analyze the VDOS g(ω), we consider the normalized
trace of Ĝ(z), which is the Stieltjes transform of g(ω):

F (z) = 1

N
Tr Ĝ(z) =

∫
g(ω)

z − ω2
dω. (10)

For regular correlation matrix Ĉ, we can calculate a similar
quantity F0(Z ) = 1

N Tr Ĝ0(Z ). Using the dispersion law for the
cubic lattice (3), we find

F0(Z ) = 1

2�2
Ws

( Z

2�2
− 3

)
, (11)

where Ws is the third Watson integral [61] (see Appendix B).
On the one hand, from Eq. (5) we know the relation ZF0(Z ) =
zF (z). On the other hand, we can express the VDOS as g(ω) =
2ω
π

Im F (ω2 − i0). As a result, we find

g(ω) = 2ω

π
Im

1

Z (ω2)
, (12)

where the complex parameter Z depends on the real parameter
ω2 through the following complex equation,

κZ + Z2F0(Z ) = ω2. (13)

This equation defines a contour on a complex plane, which
is known as a critical horizon [62]. For a given parameter ω,
Eq. (13) has multiple solutions. We choose a physical one with
Im Z (ω2) < 0 which corresponds to g(ω) > 0.

Equations (11)–(13) define the VDOS g(ω) in an implicit
form, which can be solved numerically. The result is presented
in Figs. 1 and 2. For κ > 0, one can see a low-frequency
range with the Debye law g(ω) ∼ ω2. However, for κ = 0, the
VDOS has a constant low-frequency limit. Such behavior of
the VDOS was observed in the random matrix model and the
jamming transition [49,53]. An animated plot of the transition
between a crystalline VDOS (κ = ∞) and a soft amorphous
one (κ = 0) is presented in the Supplemental Material [63].

Figure 1 demonstrates a good agreement between the the-
ory and the numerical VDOS calculated for a finite interaction
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(a) (b)

FIG. 1. The VDOS of the ensemble M̂ = ÂÂT for κ = 0 and
κ = 1. Black lines show the theoretical result obtained by Eqs. (11)–
(13). Color lines show the numerical analysis of the system with
N = 4003 atoms using the kernel polynomial method for different
radii of bonds: R = 1 and R = 2.

radius R for a system with 4003 atoms using the kernel poly-
nomial method (KPM) [64–66]. The results for R = 3 are
not shown in Fig. 1 because the difference with the theory
is much smaller than the line thickness. Therefore, the theory
is applicable for a finite interaction radius, which is important
to describe amorphous solids.

V. DYNAMICAL STRUCTURE FACTOR

To analyze the spatial structure of the vibration modes,
we calculate the DSF, which specifies the relation between
the frequency ω and the wave vector q [21]. In the scalar
model under consideration, the DFS has the form S(q, ω) =
(kBT q2/mω2)F (q, ω) with the Fourier transform of eigenvec-
tors defined as

F (q, ω) =
∑

n

|〈n|q〉|2δ(ω − ωn), (14)

where 〈n|q〉 is a projection of the nth eigenmode to the plane
wave with the wave vector q. The DSF can be calculated from
the resolvent:

S(q, ω) = 2kBT q2

πmω
Im〈q|Ĝ(ω2)|q〉. (15)

Using the duality relation (5) and the dispersion law
〈q|Ĝ0(Z )|q〉 = 1/[Z − ω2

0(q)], the resulting dynamical struc-
ture factor can be presented in the form of a damped harmonic
oscillator (DHO),

S(q, ω) = kBT

πm

2q2�(q, ω)

[ω2 − q2E (q, ω)]2 + ω2�2(q, ω)
, (16)

where the Young’s modulus is

E (q, ω) = ω2
0(q)

q2
Re

ω2

Z (ω2)
, (17)

and the damping is

�(q, ω) = ω2
0(q) Im

ω

Z (ω2)
= π

2
ω2

0(q)g(ω). (18)

Figure 3 shows the normalized Fourier transform of eigen-
vectors for different κ. This figure represents the shape of
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FIG. 2. (a) The VDOS g(ω) for different values of the parameter
κ. Solid lines show the theoretical result obtained by Eqs. (11)–(13).
For each value of κ, the phononic VDOS gph(ω) defined by Eq. (24)
is shown by a dashed line. (b) The same for the reduced VDOS
g(ω)/gD(ω).

the dynamic structure factor and makes it possible to qual-
itatively determine the relation between the frequency ω

and the wave vector q. For κ = 0, there is no exact rela-
tion between the frequency ω and the wave vector q. Such
a broad DSF was attributed to diffusons [2,49]. For κ =
1, in the low-frequency range, there is a linear dispersion
ω ∼ q with a small broadening due to a small scattering of
plane waves. Such low-frequency vibrations are propagating
phonons. However, in the dominant frequency range, there is
a broad behavior of the DSF. Thus, for nonzero κ, there is
a crossover between phonons and diffusons which is known
as the Ioffe-Regel crossover. In this paper we do not consider
the Anderson localization which affects only a small part of
high-frequency vibrations [2,49].

VI. IOFFE-REGEL CROSSOVER

To analyze the Ioffe-Regel crossover, we consider the
low-frequency range ω � �. In this case we can use a small-
argument expansion of F0(Z ). For any three-dimensional
system with a linear dispersion ω0(q) = �q for q → 0, this
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(a) (b) (c)

FIG. 3. The dynamical structure factor for κ = 0, κ = 0.1, and κ = 1. Color represents the normalized Fourier transform of eigenmodes
F (q, ω)/ maxω F (q, ω) for q along the direction [100] in the reciprocal space of the lattice. Horizontal dashed lines indicate the Ioffe-Regel
frequency. The inset in (b) shows the magnification of the Ioffe-Regel crossover for κ = 0.1.

expansion has a form

F0(Z ) = − a2

�2
+

√−Z

4π�3
+ O(Z ), (19)

where the dimensionless constant a is determined by the inte-
gral over the first Brillouin zone,

a2 = �2

VBZ

∫
BZ

dq
ω2

0(q)
, (20)

where VBZ is the volume of the first Brillouin zone. For the
cubic lattice under consideration a = √

ws/2, where ws =
(
√

3 − 1)/(96π3)�2( 1
24 )�2( 11

24 ) ≈ 0.505 462 is the third Wat-
son constant [61]. Using Eq. (19), the critical horizon can
be found explicitly for ω � � using an iterative solution of
Eq. (13) (see Appendix C),

1

Z (ω2)
= κ

2ω2
+ 1

ω

√
f (ω) + iω/4π�3√

κ/2 + ω
√

f (ω)
, (21)

where

f (ω) = κ
2

4ω2
− a2

�2
. (22)

The sign of f (ω) significantly changes the behavior of Z (ω2).
The corresponding crossover frequency

ωc = κ

�

2a
(23)

separates the frequency domain into two frequency ranges.
Using the result (21), we analyze vibrational properties in both
frequency ranges separately.

A. Phonon frequency range

In this section we will show that the frequency range
ω < ωc is occupied by phonons with a well-defined dispersion
relation ω(q). Using Eq. (21) for ω < ωc − δ with δ � ωc, we
obtain the VDOS,

gph(ω) = ω

4π2(a�)3/2

√
ωc − √

ω2
c − ω2

ω2
c − ω2

, ω < ωc. (24)

In the low-frequency range ω � ωc, the obtained VDOS has
the Debye behavior

gD(ω) = ω2

2π2v3
0

, (25)

with a low-frequency phonon velocity v0 = �
√

κ, which
corresponds to a static Young’s modulus E0 = �2

κ. For
κ = 0 the Young’s modulus becomes zero, which means
a soft system without the propagation of phonons. Fig-
ure 2(b) demonstrates the boson peak in the reduced VDOS
gph(ω)/gD(ω) for different values of the parameter κ. The
height of the boson peak is proportional to κ

−1/2, which
diverges for κ → 0.

In this frequency range, the Young’s modulus E (q, ω) de-
pends on the frequency only,

Eph(ω) = �2
κ

2

(
1 +

√
1 − ω2

ω2
c

)
. (26)

At zero frequency we obtain the static Young’s modulus
Eph(0) = E0 = �2

κ. Using Eq. (26) and the relation ω2/q2 =
Eph(ω), we obtain the dispersion of phonons,

ω(q) = �aq
√

2q2
c − q2, (27)

where the crossover wave number qc =
√

κ/2a2 corresponds
to the crossover frequency ωc. For low-frequency modes with
q � qc, the dispersion is linear: ω(q) = v0q. The group ve-
locity has a form

vg(q) = 2a�
q2

c − q2√
2q2

c − q2
. (28)

For q = qc the group velocity of phonons becomes zero,
which explained the divergence of the phononic VDOS for
ω = ωc.

According to Eq. (18), the damping �(q, ω) follows the
vibrational density of states g(ω), which can be written using
the dispersion relation:

�ph(q) = �q4

8πa

√
2q2

c − q2

q2
c − q2

. (29)

104204-5



D. A. CONYUH AND Y. M. BELTUKOV PHYSICAL REVIEW B 103, 104204 (2021)

FIG. 4. The damping � as a function of the wave vector q for
different values of the parameter κ. Solid lines show the theoretical
result obtained by Eqs. (11)–(13) and (18). For each value of κ, the
damping of phonons �ph(q) defined by Eq. (29) is shown by a dashed
line. The thin solid black line shows the diffusion law � = Dq2 with
D = a�. The dotted line shows the Rayleigh scattering γ ∼ q4.

For low-frequency modes with q � qc, the damping �ph(q) ∼
q4, which corresponds to the Rayleigh scattering from dis-
order (Fig. 4). In amorphous bodies, an additional resonant
scattering of phonons by quasilocal vibrations can occur [32].
The number of quasilocal vibrations decreases with increas-
ing relaxation time [67], and this phenomenon goes beyond
the general assumptions (i) and (ii) given in the Introduc-
tion. However, the quasilocal vibrations can be studied in
the framework of the random matrix model, which will be
discussed in Sec. VII.

The mean free path of phonons is defined by the ratio of the
group velocity vg(q) = dω(q)/dq and the damping �ph(q):

lph(q) = vg(q)

�ph(q)
= 16πa2

q4

(q2
c − q2)2

2q2
c − q2

. (30)

The mean free path lph(q) becomes of the order of the wave-
length λ = 2π/q near the crossover frequency ωc (Fig. 5). It
means that the frequency ωc defines the Ioffe-Regel crossover,
which can be written as lph(q)/λ ≈ 1/2 [49].

For an arbitrary relation between ω and ωc, we can also find
the dispersion law ω(q) using the definition ω2/q2 = E (ω, q)
with E (ω, q) defined by Eq. (17). The resulting ratio l (q)/λ
is shown in Fig. 5 by solid lines. However, the notion of
dispersion law ω(q) for ω > ωc is not meaningful because the
damping greatly exceeds the frequency in this case. Indeed,
the DSF demonstrates a broad shape for ω > ωc (Fig. 3).

B. Diffuson frequency range

In this section we study vibrational properties in the fre-
quency range ω > ωc in more detail. From Eq. (21) for ω >

ωc + δ with δ � ωc, we obtain the VDOS in the form

gdiff (ω) = 2a

πω�

√
ω2 − ω2

c , ω > ωc. (31)

This form is similar to the form of the Marchenko-Pastur law
obtained for the uncorrelated Wishart ensemble [51].
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FIG. 5. The ratio of the mean free path l to the wavelength λ

as a function of the reduced wave vector q/qc for different values
of the parameter κ. Solid lines show the theoretical result obtained
by Eqs. (11)–(13), (17), and (18). Dashed lines show the result for
phonons using lph(q) defined by Eq. (30). The horizontal dotted line
marks the Ioffe-Regel criterion l ≈ λ/2.

Figure 2(b) shows that the frequency of the boson peak
ωb is slightly bigger than the crossover frequency ωc. For
κ � 1 we obtain the relation ωb = √

3/2ωc from Eq. (31).
As a result, the Young’s modulus E0 is proportional to the
boson peak frequency ωb. This relation was observed by other
experimental and theoretical groups [13,68].

If κ = 0, the number of degrees of freedom N is equal to
the number of bonds K . In the jamming transition, this state
is known as the isostatic state. In this case, the macroscopic
rigidity becomes zero and the low-frequency VDOS does not
follow the Debye law because ωc = 0. From Eq. (31) for ωc =
0, we obtain gis(0) = 2a/π�. The inset in Fig. 1(a) shows that
isostatic VDOS in the numerical random matrix model also
has a finite zero-frequency limit. It is worth noting that the
isostatic VDOS in the inset has a linear form as a function of√

ω, which means a low-frequency cusplike singularity in the
linear scale. Such a form of the isostatic VDOS was observed
numerically in the random matrix model [51] and the jamming
transition [25,53,69]. We will show that this behavior is re-
lated to the diffusive nature of low-frequency vibrations in the
isostatic case. To demonstrate this, we consider the isostatic
DSF Sis(q, ω) = (kBT q2/mω2)Fis(q, ω), which is determined
by the Fourier transform of the eigenmodes in the form [see
Eq. (16) for κ = 0]

Fis(q, ω) = 1

π

2�(q, ω)

ω2 + �2(q, ω)
. (32)

From Eq. (18) for the isostatic case, we obtain �(q, ω) =
a
�
ω2

0(q). The obtained Fis(q, ω) coincide with the Fourier
transform of the random walk on a lattice [49]. Thus, we
analytically confirm the idea that diffusons in the isostatic case
can be considered as random walks of atomic displacements
[49]. In the continuous limit q � 1, �(q, ω) = Dq2 with dif-
fusivity D = a�.
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The VDOS is related to the Fourier transform of the eigen-
modes as

gis(ω) = 1

VBZ

∫
BZ

Fis(q, ω)dq. (33)

Since Fis(q, ω) depends on �(q, ω), which depends on gis(ω),
we obtain the observed singular behavior of the isostatic
VDOS:

gis(ω) � 2a

π�
− 1

4π2

√
ω

2a3�3
. (34)

For nonzero κ, there is a nonzero frequency-dependent
Young’s modulus,

Ediff (ω) = �2
κ

2
+ 1

8π

√
ω3�

2a3
. (35)

However, in the dominant part of the diffuson frequency range
ωc � ω � �, the existence of a nonzero Young’s modulus is
negligible and the DSF is described by the isostatic one,

Sdiff (q, ω) = kBT q2

πmω2

2�(q, ω)

ω2 + �2(q, ω)
, (36)

which verifies the notion of diffusons introduced in
Refs. [1,2]. Figure 4 shows a crossover between the low-
frequency Rayleigh scattering � ∝ q4 and the diffusion
damping � ∝ q2. Such a quadratic dependence above the
Ioffe-Regel crossover was observed experimentally [70–72].
The crossover between � ∝ q4 and � ∝ q2 was observed
experimentally [19,73] and in the molecular dynamics sim-
ulations [74].

VII. QUASILOCALIZED VIBRATIONS

The sparsity of the matrix Â results in some deviation of
the vibrational properties due to the non-Gaussian statistical
properties of the random matrix ensemble. Therefore, we will
study additional vibrational properties of the numerical ran-
dom matrix model for a finite radius of bonds R.

The presence of quasilocalized modes can be studied using
the participation ratio

P(ωn) = 1

N
∑

i〈n|ri〉4
, (37)

where 〈n|ri〉 is the projection of the nth eigenmode to the
ith site. For delocalized modes (phonons and diffusons) P ∼
1, while for localized ones P ∼ 1/N . For a small system,
quasilocalized modes are weakly entangled with phonons due
to a small number of phonons in such a case. The participation
ratio clearly shows the presence of quasilocalized modes for
R = 1: There are vibrations with P � 1 between phonons,
which have P ∼ 1 (Fig. 6).

For bigger values of R, we have shown that the VDOS
becomes close to the prediction of the random matrix theory
(Fig. 1). The participation ratio for R = 2 did not show any
vibrational mode, which can be clearly identified as quasilo-
cal vibration (Fig. 6). Thus, increasing the interaction radius
reduces the sparsity of the matrices Â and M̂, which decreases
the number of quasilocalized modes.

For a fixed value of the parameter κ, the values of the static
Young’s modulus E0, the boson peak frequency ωb, and Ioffe-

FIG. 6. Participation ratio P for different values of the bond’s ra-
dius R and the non-Gaussian parameter b. The value of the parameter
κ is chosen to hold the static Young’s modulus E0 = 0.2�2. In all
cases the system size is N = 303. The gray vertical strip indicates the
position of the boson peaks. The arrow shows the minimal phonon
frequency ωmin. The gray dashed line roughly outlines the region of
quasilocalized vibrations.

Regel frequency ωIR slightly depend on the radius of bonds
R. For better visual performance, the parameter κ is chosen to
hold the same static Young’s modulus E0 = 0.2�2 in Fig. 6.
In this case the boson peak frequency ωb stays within a narrow
frequency range shown by the vertical strip in Fig. 6. The
Ioffe-Regel frequency is also close to this frequency range.

There are different possibilities to increase the sparsity of
the interaction network more than it is possible for the small-
est bond radius R = 1. The first one is to consider the lattice
with a smaller number of neighbors (e.g., diamond lattice).
However, it is a nonuniversal approach with a fixed sparsity of
the matrices. The second one is to randomly put some random
values to zero. However, it results in a loose network with a
number of small independent clusters of atoms. The third one
is to consider a non-Gaussian distribution of nonzero entries
in the sparse random matrix A. Indeed, some random elements
can be relatively small, which represents a weaker interaction
between some degrees of freedom.

We settled on the third option and introduce the non-
Gaussian parameter b which increases the probability to
obtain a small-magnitude interaction (see Appendix D). The
value b = 0 corresponds to the Gaussian distribution, which
was studied before. The participation ratio for b = 4 is shown
in Fig. 6. The number of quasilocalized modes with P � 1
is significantly bigger in this case. There are some quasilo-
calized modes, whose frequency is smaller than the smallest
phonon frequency ωmin ≈ 2πv0/L in the periodic system of
size L = 30 (marked by the arrow in Fig. 6).

To study the distribution of the quasilocalized modes, we
calculate the VDOS using the full diagonalization of small
matrices and plot the histogram in Fig. 7. The smallest fre-
quency of phonons ωmin is limited by the system size. At
the same time, there is no such constraint for quasilocal-
ized modes [75]. In this case the low-frequency range of the
calculated VDOS represents the density of quasilocalized
modes gqlv(ω).
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FIG. 7. The VDOS for a small system with N = 73 atoms for
κ = 0.5 and integer values of the non-Gaussian parameter b from
b = 0 to b = 7. The bond’s radius is R = 1. Each histogram was
averaged over 5 × 107 different realizations of the system. Vertical
arrows show the approximate position of the smallest phonon fre-
quency ωmin for b = 0 and b = 7. Thin lines show the fit to the
power-law dependence gqlv(ω) ∼ ωs. The inset shows the depen-
dence of the fitted value of s on the non-Gaussian parameter b.

Figure 7 shows the VDOS calculated for a small system
with N = 73 atoms for different values of the non-Gaussian
parameter b. Increasing the value of b leads to a substantial
growth of the density of quasilocalized modes gqlv (up to six
orders of magnitude). In the low-frequency range, we observe
the power-law dependence gqlv ∼ ωs. The exponent s was
fitted using the maximum likelihood method assuming that the
height of each bin in the histogram has a Poisson distribution.
Increasing parameter b decreases the power s (see the inset in
Fig. 7).

Figure 7 was calculated using a system with N = 73 atoms
and κ = 0.5. The same power-law dependence with the same
exponents s was observed for N = 53 and N = 103. For a
smaller value of the parameter κ = 0.2, we observe similar
values of the exponent s. In the case R = 2, the non-Gaussian
parameter b also leads to the presence of quasilocalized modes
but for higher values of b ∼ 40.

VIII. DISCUSSION

We have shown that the random matrix approach can be
applied numerically and analytically to study the general vi-
brational properties of amorphous solids such as the boson
peak and the Ioffe-Regel crossover.

In this paper we obtain the vibrational properties in differ-
ent analytical forms. The system of Eqs. (11)–(13) represents
the precise form of the critical horizon Z (ω2) for the simple
cubic lattice with random bonds. Using Eqs. (12), (16), (17),
and (18), we find the vibrational properties without any ap-
proximation, which are shown by solid lines in Figs. 2–5.

Then we apply the approximation ω � � to find the exact
analytical form of Z (ω2) for any atomic ordering [Eq. (21)].
We have checked that the result is almost indistinguishable
from the exact solution of the simple cubic lattice for fre-

quencies up to ω ≈ 2�. Thus, the results obtained in this
approximation can be applied for any regular correlation
matrix Ĉ. We can also consider an ensemble of amorphous
systems, whose average dynamical matrix 〈M̂〉 is not a regular
matrix. In this case, there is no exact dispersion law ω0(q) for
the correlation matrix Ĉ. However, for low frequencies the dis-
persion law ω0(q) remains well defined. Thus, the proposed
model does not rely on the separation of the dynamical matrix
to the regular part and disorder-dependent correction [47].

Then we find vibrational properties in a simple analytical
form for phonons (Sec. VI A) and diffusons (Sec. VI B) sep-
arately. The obtained analytical results significantly expand
the results of Ref. [49], which were obtained numerically. In
the present paper we also introduce the notion of bonds as a
many-body positive-definite interaction, which plays a crucial
role in the theory.

The relation between the number of degrees of freedom in
the system N and the number of bonds K plays a crucial role
in many theoretical approaches such as the effective medium
theory (EMT) [22–25] and jammed solids [51,53]. The ob-
tained scaling relations correspond to transverse vibrational
properties of the jammed solids if we put κ ∼ 
φ1/2 and
� ∼ 
φ(α−2)/2 [53,68].

In terms of scaling relations, our results have a good
agreement with the results of the EMT if we put κ ∼ z − z0

[22–24]. In particular, the relation ωb � ωIR between bo-
son peak frequency ωb and Ioffe-Regel crossover frequency
ωIR = ωc was also obtained in works [24,25] with the scaling
relations ωb ∼ κ and ωIR ∼ κ, which are also verified by a
numerical simulation [76,77]. The height of the boson peak
is scaled as g(ωb)/gD(ωb) ∝ κ

−1/2, which is also one of the
predictions of the work [24].

However, there are original results obtained by the random
matrix approach. As we mentioned above, we present the
vibrational properties in different analytical forms, depend-
ing on whether or not we apply some approximations. We
also explain the cusplike singularity of the isostatic VDOS
[25,51,53,69] using the notion of diffusons in this frequency
range.

The random matrix approach can be also applied to analyze
two-dimensional amorphous systems [78]. It was shown that
the height of the boson peak has logarithmic scaling with
g(ωb)/gD(ωb) ∝ log(κ−1) in this case.

We also present a numerical model with a finite interaction
radius and the same pairwise correlation matrix Ĉ. Starting
from the radius of bonds R = 2, there is almost perfect agree-
ment between the theory and the numerical results.

For a small interaction radius R = 1, there is some devi-
ation of the vibrational properties due to the non-Gaussian
statistics of the matrix Â. We can enhance this deviation by
introducing a nonzero non-Gaussian parameter b. We observe
quasilocalized modes with the low-frequency VDOS gqlv ∼
ωs. For b = 5.8 and R = 1 we obtain s ≈ 4 (see the inset
in Fig. 7), which corresponds to the distribution gqlv ∼ ω4,
which was usually observed in amorphous solids [75,76,79–
82]. Also, a power s = 3 can be sometimes observed [80].

The non-Gaussian statistics can be considered as an addi-
tional inhomogeneity of an amorphous system obtained with
a finite relaxation time. We assume that the equilibration of
amorphous systems is a complicated process, which may lead
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to specific non-Gaussian properties of the near-equilibrium
dynamical matrix. The present theory is essentially based on
the stability properties of the dynamical matrix after the equi-
libration. At the same time, the existing theories investigate
the stabilization and atomic rearrangement of unstable modes
and the marginal stability of amorphous solids [28,76,83–85].
In terms of the random matrix approach, the equilibration
process leads to specific statistical properties of the matrix Â
which will be investigated in detail in future research.

Increasing the parameter b increases the number of quasilo-
calized modes, which results in an increase of the VDOS g(ω)
below the Ioffe-Regel crossover. Due to the resonance scatter-
ing of phonons on the quasilocalized vibrations, the damping
�(q) will be also increased below the Ioffe-Regel crossover.
For a large number of quasilocalized modes, the stepwise
behavior of g(ω) and �(q) near the Ioffe-Regel crossover will
be smoothed out.

IX. CONCLUSION

We have shown that the random matrix theory can be
applied numerically and analytically to study the general vi-
brational properties of amorphous solids such as the boson
peak and the Ioffe-Regel crossover.

To summarize, we present the correlated Wishart ensemble
random matrix approach, which takes into account only the
most important correlations of random matrices, which ensure
(i) mechanical stability and (ii) translation invariance. In the
framework of the random matrix approach, we find the vi-
brational density of states and the dynamical structure factor.
We demonstrate the presence of the Ioffe-Regel crossover
between low-frequency propagating phonons and diffusons at
higher frequencies. The boson peak essentially appears near
the Ioffe-Regel crossover.

Using the numerical random matrix model, we verify the
obtained results for a sparse matrix Â with nnz  1 nonzero
elements in each column. The presence of non-Gaussian
properties for a small number nnz leads to the presence of
quasilocalized vibrations in the system. The introduced non-
Gaussian parameter b enhances the number of quasilocalized
modes in the system. The quasilocalized vibrations make
an additional contribution to the boson peak, which may be
significant for large values of b. However, we demonstrate
the presence of the boson peak and the Ioffe-Regel crossover
without quasilocalized vibrations.
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APPENDIX A: THE NUMERICAL MODEL WITH AN
ARBITRARY RADIUS OF BONDS

To obtain the random matrix Â for an arbitrary radius of
bonds R with a given correlation matrix Ĉ, we use the follow-

FIG. 8. A two-dimensional illustration of a bond k with radius
R = 2. The nonzero elements h(k)

i j are indicated by straight lines

between two atoms. Each nonzero h(k)
i j corresponds to the presence

of a random interaction ξ
(k)
i j between atoms i and k in the bond k.

ing form of the matrix Â:

Aik = �

√
d

N
∑

j

h(k)
i j ξ

(k)
i j . (A1)

Here, ξ
(k)
i j are Gaussian random numbers with unit variance

and zero mean, which specifies the interaction between atoms
i and j in the bond k (see Fig. 8). These random numbers are
independent except the antisymmetry rule ξ

(k)
i j = −ξ

(k)
ji . The

range of summation is determined by the mask h(k)
i j , which is

1 if atoms i and j are neighbors with rik � R and r jk � R.
Otherwise, h(k)

i j = 0. The prefactor in Eq. (A1) is determined
by the number of dimensions d = 3 and the mask size N =∑

ik h(k)
i j , which is assumed to be the same for each bond k.

In the model under consideration, we have K = (1 + κ)N
statistically equivalent bonds. We place N of them uniformly
in the system with the ith bond centered at the ith atom. Then
we take κN atoms randomly and place an additional set of κN
bonds around them. Using Eq. (9), we obtain the correlation
matrix

Ci j = �2 Nd

KN
∑
ki′ j′

〈
h(k)

ii′ h(k)
j j′ξ

(k)
ii′ ξ

(k)
j j′

〉
, (A2)

where averaging is performed over random numbers ξ
(k)
i j and

the random placement of κN bonds.
For nondiagonal elements i �= j the averaging of ξ

(k)
ii′ ξ

(k)
j j′ is

nonzero only if i′ = j and j′ = i:

Ci j = −�2 Nd

KN
∑

k

〈
h(k)

i j

〉
. (A3)

After averaging over the random placement of bonds, we
obtain Ci j = −�2 if i and j are neighbors and zero otherwise.
For diagonal elements i = j we obtain the usual sum rule
Cii = −∑

j �=i Ci j because the sum rule
∑

i Aik = 0 is valid for
any realization of the matrix Â.

The case R = 1 coincides with a simple numerical model
described in Sec. III.
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APPENDIX B: THE THIRD WATSON INTEGRAL

By definition, the third Watson integral is [61]

Ws(w) = 1

π3

∫ π

0

∫ π

0

∫ π

0

dx dy dz

w − cos x − cos y − cos z
. (B1)

For any complex number w, it can be presented in the follow-
ing form [86],

Ws(w) = 4(1 − 9ξ 4)

π2w(1 − ξ )3(1 + 3ξ )
K2

(
16ξ 3

(1 − ξ )3(1 + 3ξ )

)
,

(B2)
where

ξ =
√√√√1 −

√
1 − 1/w2

1 +
√

1 − 9/w2
(B3)

and the following definition of the complete elliptic integral
of the first kind is used:

K (m) =
∫ π/2

0

dθ√
1 − m sin2 θ

. (B4)

The above result is slightly different from Eq. (3.9) in
Ref. [61] to ensure that it is correct for any complex number
w for the primary branch of the square root.

APPENDIX C: ANALYTICAL FORM OF THE
CRITICAL HORIZON

Using the small-argument expansion of F0(Z ) (19), we
obtain the conformal map (13) in the following form:

κZ − a2 Z2

�2
+ Z2

√−Z

4π�3
= ω2. (C1)

We solve Eq. (C1) using the method of simple iterations with
the initial approximation Z0 = 0 and recurrence relation

1

Zn+1(ω2)
= κ

2ω2
+ 1

ω

√
f (ω) +

√
−Zn(ω2)

4π�3
, (C2)

obtained from Eq. (C1). The function f (ω) is defined in
Eq. (22). After each step, we keep only the leading terms
of ω/� and ωc/� taking into account that ω/ωc is arbitrary.
After two iterations, this procedure converges to Z (ω2) given
in Eq. (21).

APPENDIX D: NON-GAUSSIAN
PROBABILITY DISTRIBUTION

In order to simulate a wide range of different magnitudes of
nonzero matrix elements, we multiply the standard Gaussian

FIG. 9. Probability density function of the random variable ξ

defined by Eq. (D1) for different values of the non-Gaussian para-
meter b.

random number by a log-uniform random variable. In this case
the random variable has a form

ξ = cη exp ζ , (D1)

where η is the Gaussian random number with zero mean
and unit variance and ζ is an independent random number
uniformly distributed in the interval (−b/2, b/2). The normal-
ization constant c = √

b/ sinh b is chosen to provide the unit
variance of ξ .

The resulting probability density function of the random
variable ξ has a form (see Fig. 9)

p(ξ ) =
erf

(
ξeb/2√

2b/ sinh b

) − erf
(

ξe−b/2√
2b/ sinh b

)
2bξ

. (D2)

For b � 1 it is close to the Gaussian distribution. However,
with increasing b, the distribution of ξ becomes closer to the
reciprocal distribution ∼1/|ξ |. The similarity to the Gaussian
distribution can be quantitatively described as 〈ξ 4〉/3〈ξ 2〉2.
For the Gaussian distribution, it is equal to 1. For the distri-
bution p(ξ ), we obtain

〈ξ 4〉
3〈ξ 2〉2

= b

tanh b
, (D3)

which differs significantly from 1 for b  1.
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